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No common laminar kinetic energy (LKE) transition model has to date been able to

predict both separation-induced and bypass transition, both phenomena commonly found

in low-pressure turbines (LPT) and high-pressure turbines (HPT). Here, a data-driven ap-

proach is adopted to develop a more general LKE transition model suitable for both transi-

tion modes. To achieve this, two strategies are adopted. The first is to extend the compu-

tational fluid dynamics (CFD)-driven model training framework for simultaneously training

models on multiple turbine cases, subject to multiple objectives. By increasing the training

data set, different transition modes can be considered. The second strategy employed is

the use of a newly derived set of local non-dimensionalized variables as training inputs to

reduce the search space. Because one of the training turbine cases is characterized by

strong unsteady effects, for the first time an unsteady solver is utilized during the CFD-

Driven training, and the time-averaged results are used to calculate the cost function as

part of the model development process. The results show that the data-driven models do

perform better, in terms of their predictions of pressure coefficient, wall shear stress, and

wake losses, than the baseline model. The models were then tested on two previously

unseen testing cases, one at a higher Reynolds number and one with a different geome-

try. For both testing cases, stable solutions were obtained with results improved over the

predictions using the baseline models.

NOMENCLATURE

aij Extra anisotropy stress

Cax The axial chord

Cf Friction coefficient

Cp Pressure coefficient

fi Trained functions in the transition model

gi Trained functions in the extra anisotropy stress

H Shape factor

Ii Scalar invariants in extra anisotropic stress

2



Insert ASME Journal Title in the Header Here

J Objective function

kl Laminar kinetic energy

k Turbulent kinetic energy

lt Turbulence length scale, lt =
√
k
ω

Ma Mach number

P Production term

Pi Non-dimensional inputs to train the transition model

Q Quantity of interest

R Transfer term

Re Reynolds number

Ry wall-normal-distance Reynolds number, Ry =
√
ky
ν

Tu∞ Free-stream turbulence intensity

U velocity magnitude

Vij Tensor basis in extra anisotropic stress

y wall distance

x, y Cartesian coordinates

δij Kronecker Delta

sij , ωij non-dimensional mean strain and rotation rate

S∗
ij Deviatoric strain rate S∗

ij = Sij − 1
3
∂uk
∂xk

δij

ϵl Dissipation term of laminar kinetic energy

ω Specific dissipation rate

µt turbulent dynamic viscosity

νt, ν turbulent and fluid kinematic viscosity

ρ Fluid density

Ω Vorticity magnitude

Ω∗ Wake loss

τij Reynolds stress tensor

τw Wall shear stress
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δΩ shear layer vorticity thickness

θ Boundary thickness

δ Momentum thickness

SUBSCRIPTS/SUPERSCRIPTS

l Laminar

k Turbulent

∞ Freestream

truth The ground truth

ACRONYMS

LKE Laminar kinetic energy

TKE Turbulent kinetic energy

LPT Low-pressure turbine

HPT High-pressure turbine

CFD Computational fluid dynamics

(U)RANS (Unsteady) Reynolds averaged Navier-Stokes

DNS Direct Numerical Simulation

LES Large Eddy Simulation

ML Machine Learning

ANN artificial neural network

GPR Gaussian process regression

GEP Gene expression programming

FSTI Free-stream turbulence intensity

INTRODUCTION

The laminar-turbulent transition phenomenon plays a significant role in gas turbine engines.

In gas turbines, transition is a major source of uncertainty regarding performance and long-term
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reliability, but accurately modeling the many paths of transition remains a major challenge. Since

the turbulent heat transfer and aerodynamic loss resulting from transitional and turbulent flows are

larger than for laminar flow, improved prediction of transition is essential. Such an improvement

will contribute to the design of lighter and smaller engines [1], potentially leading to significant fuel

savings and emission reductions [2].

High and low-pressure turbines, two key components in gas turbines, often undergo different

modes of transition. Operating at high pressure and temperature conditions, the high-pressure tur-

bine (HPT) blades are designed with a large leading edge to leave room for the cooling system in

order to reduce the heat load [3]. Induced by the incoming high-amplitude free-stream turbulence

flow, HPTs often undergo bypass transition. As the name suggests, this transition mode bypasses

the initial two-dimensional instability phase of natural transition [3]. Streamwise elongated distur-

bances termed as streaks are induced in the laminar boundary layer. These streaks then break

down and form turbulent spots [4]. Further downstream, the flow enters the low-pressure turbine

(LPT) where the high-lift blades extract power to drive the propulsion device [1]. With the de-

creased Mach and Reynolds number of the flow, LPTs generally experience separation-induced

transition. At the leading edge or downstream of the point of minimum pressure on the suction

side, the laminar boundary layer may separate. Then transition occurs in the free shear layer and

the turbulent flow may reattach to form a closed separation or might remain detached to cause

an open separation [5]. These two transition modes need to be captured numerically in the initial

design to accurately predict the heat load for an HPT and the aerodynamic loss for an LPT.

In the early design phase, (Unsteady) Reynolds Averaged Navier-Stokes ((U)RANS) are rou-

tinely used as they are significantly more cost-effective than high-fidelity simulations or experi-

ments. However, (U)RANS employs both turbulence and transition models, which directly affects

the accuracy of the predictions. The transition models can be broadly characterized into two cat-

egories, namely correlation-based and physical-based models [6]. The former type derives the

onset and growth of transition from experimental correlations. A typical example is based on the

concept of intermittency defined as the probability of a flow being turbulent at a certain location [5].

Various intermittency models have been proposed, from algebraic models including conditionally
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averaged flow equations [7] and streamwise algebraic transition models [8, 9], to intermittency

transport models including local correlation-based ones [10, 11] and non-local ones [12]. These

types of intermittency-based models are known to function well on bypass transition, but do not

yield satisfactory results for separation-induced transition.

An alternative to correlation-based transition models is physical-based ones, focusing on mod-

eling the physical flow structure during transition. As a prominent representative, the laminar

kinetic energy (LKE), a concept originally proposed by Mayle and Schulz [13] models the laminar

fluctuations in the pre-transition region of a boundary layer [6]. They formulated an LKE trans-

port equation mimicking the turbulent transport process. In this model, the production of LKE is

believed to be triggered by imposing fluctuating pressure forces. However, recent research has

shown that the laminar fluctuation amplification comes from the conventional shear-stress/strain

interaction [14], similar to the evolution of turbulent fluctuations, rather than from pressure diffusion

[13]. Hence, Walters and Leylek [15, 16, 17] and Lardeau et al. [18] developed LKE models with

a production term that is proportional to the square of the mean shear rate. In addition to that

revision, they sensitized two production terms by using two sensors to activate the onset of steady

natural and bypass transition, instead of using one production term as in Mayle and Schulz’s model

[13]. However, as their models have no specific terms for separation-induced transition, Pacciani

et al. [19] proposed a new LKE production term to model transition in a separated state. This

production structure was kept in their updated model with an additional equation for the turbu-

lent indicator function associated with wake turbulence. Although good performance has been

shown for single-type transition, no LKE model has to date been built that satisfactorily captures

both bypass and separation-induced transition, due to their different physical regimes. Hence, a

more general LKE transition model that performs well across different turbine configurations, with

different transition paths and trailing-edge separation behavior, becomes the goal of this study.

A data-driven approach is adopted here due to the recent promising results for model develop-

ment. Although considerable efforts have been put into machine learning (ML) assisted turbulence

modeling, transition model development via ML has been much more limited. Duraisamy and

Durbin [20] first attempted to construct the difference of the source and sink terms in an intermit-
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tency model for bypass transition using field inversion and machine learning methods, including an

artificial neural network (ANN) and Gaussian process regression (GPR). Yang and Xiao [21] also

employed this two-step method to model the first Tollmien-Schlichting mode of the characteristic

time scale in the flow transition. Wu et al. [22] on the other hand reconstructed the whole tran-

sition intermittency factor by ANN and coupled it with a two-equation turbulence model. In order

to obtain interpretable and explicit ML-trained models rather than black-box ones, Akolekar et al.

[23, 24] used gene expression programming (GEP) to revise the production and transfer terms in

the LKE transition model and include extra anisotropy stress terms in the k − ω turbulence model.

An enhanced prediction was obtained in that study. However, only a single case, a T106A data

set, was used for training and thus the models were only sensitized for one transition mode and

their performance for other cases was not known.

To build a more general LKE transition model, in this study, two strategies are adopted in

the previously used data-driven method [24]. The first is extending the original single-case multi-

objective CFD-Driven training framework [25] to a multi-case training framework. Increasing the

training data set to multiple configurations ensures that models are trained considering different

transition modes. The second strategy is reducing the number of inputs for transition model train-

ing. Instead of the seven non-dimensional input parameters used in the previous work [24], we

use a more concise parameter group that only consists of six inputs. This update reduces the

search space of GEP, and thus speeds up the training convergence rate.

Another contribution that deserves attention is that an unsteady solver, for the first time, is

utilized during CFD-Driven training. Among all the training cases, the HPT case experiencing

bypass transition involves complicated physical phenomena such as shocks and strong vortex

shedding. This causes numerical instability of the steady calculations and thus an unsteady solver

is needed. A further benefit is gained as the present models trained in this way are expected to be

applicable in both steady and unsteady RANS predictions.

The outline of this paper is as follows. In the methodology section, the baseline LKE transition

model, the k − ω turbulence model, and their correction terms via the ML method are described.

Then the multi-case multi-objectives CFD-Driven framework and the numerical setup of every tur-

7



Insert ASME Journal Title in the Header Here

bine case are given. The trained models are then presented and analyzed and their performance

discussed. The cross-validation results on two cases outside of training data sets are also dis-

cussed. The conclusion of this study is given in the last section.

METHODOLOGY

In this section, details of the mathematical model are given. Firstly, the formula of two terms

in the baseline LKE transition model and their corresponding ML-trained components, and the

nonlinear correction given by ML for the turbulence model are described. Then, the important

components of the multi-case multi-objective CFD-Driven training framework including the input

features and cost functions are introduced. Moreover, the (U)RANS formulations for the LPT and

HPT configurations are briefly introduced.

Baseline models

LKE is identified as the pre-transition rise of the laminar fluctuating kinetic energy. The LKE

baseline model used here was proposed by Pacciani et al.[19], constructed as follows:

Dkl
Dt

= Pl − ϵl + ν∇2kl −R. (1)

The unsteady and convection terms are on the left-hand side, and the production Pl, dissipation

(ϵl = 2µkl/y
2), diffusion (ν∇2kl) and transfer terms R are on the right-hand side. As the name

indicates, R represents the LKE transfer to turbulent kinetic energy (TKE) and is used to couple

the transition model with the k − ω turbulence model:

Dk

Dt
= Pk − β∗fkkω +

∂

∂xj

[
(ν + δkνt)

∂k

∂xj

]
+R,

Dω

Dt
= α

ω

k
Pk − β∗ω2 +

∂

∂xj

[
(ν + δωνt)

∂ω

∂xj

]
.

(2)
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Among the terms in the LKE transition model, Pl controls the production of LKE and R adjusts the

transfer of LKE to TKE. They are thus pertinent terms in the model and are identified to be the

terms most likely to have a direct effect on the results. Hence, we will attempt to use ML to find

improved formulations for Pl and R.

The production term Pl (see Eq.(3)) is formulated with the laminar eddy viscosity νl and the

mean shear rate S. This is consistent with the latest research [6] indicating that the laminar fluc-

tuations are amplified mainly due to the conventional shear-stress/strain interaction. The original

laminar eddy-viscosity is constructed with an estimator of the shear-layer vorticity thickness δΩ, kl

and a constant C1:

Pl = νlS
2,

νl = C1

√
klδΩ,

δΩ = min
(
Ωy2

U
, 2

)
.

(3)

The transfer term R represents the process of LKE being transferred to the TKE. The original R

term is

R = C2ft2ωkl,

ft2 = 1− eψ/C3 ,

ψ = max( Ry︸︷︷︸
transition sensor

− C4︸︷︷︸
threshold

, 0),

Ry =
√
ky/ν.

(4)

As indicated by the construction of ψ in Eq. (4), the onset of transition is initiated when the flow

feature sensor, the wall distance Reynolds number Ry, reaches the threshold value of C4.

This baseline model has been reported to perform well for separation-induced transition [19]. If

it is used to predict bypass transition, however, the coefficients in the LKE production and transfer
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Fig. 1. The framework of multi-case multi-objective CFD-Driven training.

terms need to be considerably changed. For example, the coefficient in the LKE production term

for an HPT needs to be 5 times larger than for the case of an LPT, while the coefficient in the

transfer term needs to be 2 times smaller as found in preliminary baseline calculations. This

enables the prediction of much larger LKE needed to accurately predict bypass transition.

The specific research problem now becomes clear: a data-driven methodology will be em-

ployed to obtain corrections to the LKE model that will include flow features that are sensitive to

transition as inputs. The main outcome is to obtain a transition model that will give good predictions

for both transition modes.

ML for model corrections

ML-trained model corrections are based on the previous study [23, 24], while several changes

have been made. The model inputs and the training outputs for the LKE transition model and the

k − ω turbulence model are introduced here.

Two terms in the LKE transport equations are trained. Their common inputs are a new and

more concise set of input variables, compared to that previously used [23, 24], developed based

on the Buckingham Π theorem [26], shown in Table 1. All Pi (where i=1, 2,...6) are sensitive

to transition. In addition, random constants Cm and mathematical operators including plus (+),

minus (−) and multiply (×) are provided as inputs to the GEP algorithm to generate the LKE model

corrections. Other mathematical operators such as the exponential, logarithm, and tangent can
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Table 1. Flow feature inputs in transition model and their physical interpretation

Transition
inputs

Expressions Physical interpretation

P1
kl
νΩ Similar to P5, but based on kl

P2
Ωy
U The ratio of wall distance to a length scale represen-

tative of separated laminar flow 1

P3
y
lt

The ratio of wall-distance to turbulent length scale

P4

√
ky
ν Wall-distance Reynolds number

P5
k
νΩ The time scale ratio of molecular diffusion to small-

scale turbulence (a bypass transition marker).

P6

√
k

Ωy The ratio between slow and rapid pressure fluctua-
tions (a bypass transition marker).

also be included during the training. However, these operators are not included in this study to

keep the trained expressions as simple as possible.

The first training output adjusts the LKE production, replacing the baseline formulation in

Eq. (3). It is the f1(Pi) in the laminar eddy-viscosity νl with the input Pi from Table 1:

νl = f1(Pi)y
√
kl . (5)

where y is wall distance. Note that all the inputs are not scaled so that their original magnitude

information can be kept during the training. To achieve realizability of the LKE production term,

a limiter max(f1(Pi), 0) is used to ensure f1(Pi) > 0. Another limiter min(f1(Pi), 0.01Ωy
U ) (U is

the mean velocity, 0.01 is used for the LS89 baseline) is employed to avoid numerical instabilities

possibly caused by unreasonably large LKE production.

The second training output f2(Pi) controls the energy transfer from LKE to TKE. This transfer

process starts when f2(Pi) is larger than 0:

ψ = max(f2(Pi), 0) , (6)
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Fig. 2. Training regions of the turbulence model highlighted by TKE

replacing the baseline formulation of ψ in Eq. (4). To summarize, two outputs sharing the same

set of inputs, given in Table 1, will be trained to revise the LKE transition model. One is f1(Pi)

(f1(Pi)y replaces the C1δΩ in the baseline) to adjust the LKE production magnitude, and the other

is f2(Pi) (f2(Pi) replaces Ry − C4) which determines where to activate the energy transfer from

LKE to TKE.

Apart from the transition model, the turbulence model is also revised to further improve the

wake loss prediction. The training of both models is kept spatially separated. Near the wall, only

the LKE transition model is trained. As the LKE transfer term is used to balance the energy both

in the transition and turbulence model, it will inevitably change the transfer term in the turbulence

model near the wall. Other than this, no change is made to the turbulence model in this region.

In the wake region, only the turbulence model is revised. As shown in Fig.2, the training region is

limited with two conditions. The first activates training at a certain distance away from the trailing

edge [27]. The second is delineating the wake region by a preset threshold value of TKE.

A nonlinear correction is trained to supplement the Boussinesq approximation in the baseline

turbulence model. The basic approximation assumes the Reynolds stress τij is proportional to

the deviatoric part of the mean strain rate S∗
ij . As shown in Eq.(7), the Reynolds stress can be

divided into isotropic and anisotropic stresses. Based on Pope’s theory [28], the correction, an

12
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extra anisotropic stress multiplied with 2ρk is added as:

τij =
2

3
ρkδij︸ ︷︷ ︸

isotropic

− 2µTS
∗
ij︸ ︷︷ ︸

anisotropy

+ 2ρkaij︸ ︷︷ ︸
extra anisotropy

. (7)

For statistically two-dimensional flows, aij consists of three independent tensor bases (V 1
ij ,V

2
ij

and V 3
ij ) and two non-zero independent invariants I1, I2 [28, 29]:

aij = g1(I1, I2)V
1
ij + g2(I1, I2)V

2
ij + g3(I1, I2)V

3
ij , (8)

with V 1
ij = sij , V 2

ij = sikwkj − wikskj and V 3
ij = sikskj − 1

3δijsmnsnm. Here, sij and wij are

non-dimensionalized strain and rotation rate tensors, respectively, given by sij = 1/ωS
′
ij and

wij = 1/ωΩij . Note that the third tensor used in this paper is from [29] rather the one in [28].

Either of them can be chosen because they are directly proportional to each other.

In addition to the same set of constants and mathematical operators as in the transition model

corrections, the inputs for the k − ω turbulence model corrections are:

I1 = smnsnm; I2 = wmnwnm. (9)

The model outputs, g1, g2 and g3 in Eq. (8), adjust the nonlinear extra anisotropy stress and thus

change the turbulence diffusion.

The CFD-Driven training framework

As shown in Fig. 1, the current multi-case multi-objective CFD-Driven training framework con-

sists of two parts, i.e. the ML algorithm and the CFD calculations, which are closely coupled in

the training process. For the ML algorithm, GEP is used to generate the corrections for the LKE

transition and k − ω turbulence models with given inputs, as discussed above. GEP is chosen as
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it produces models in symbolic form, which as will be demonstrated later helps the interpretation

of the models and allows for further manipulation. The trained expressions are then inserted into

CFD solvers, and then tested in realistic CFD calculations in every training iteration. Including

CFD-feedback in model training has previously been shown to substantially increase the usability

of the obtained models [30]. One of the key novelties of the current study is that instead of training

models only on data of one case, CFD of multiple turbine cases are simultaneously run for each

candidate model in order to increase generalizability of the resulting model.

Table 2. Parameters for the training and testing turbine cases

Train/Test Types Cases Reis Mais Flow features Grid points in O-H Mesh

Train LPT T106A 100k 0.4 closed separation 641× 101 + 71× 121

Train LPT T108 100k 0.6 separation 661× 101 + 121× 141

Train HPT LS89 1, 000k 0.92 bypass transition
and shocks

1061× 73 + 81× 321

Test LPT PakB 100k 0.9 separation 561× 65 + 145× 121

Test LPT T108 120k 0.6 separation 661× 101 + 121× 141

T108 T106A PakB LS89
0e+00

2e-01

3e-01

5e-01

6e-01

8e-01

||U||/||U∞||

Fig. 3. The velocity magnitude of different turbine cases near their trailing edge

The construction of the cost function is also critical to the data-driven training process as it

14



Insert ASME Journal Title in the Header Here

directs GEP to train models toward the desired outcome. In the present study, the model perfor-

mance is evaluated based on multiple objectives. To be specific, cost functions are defined here

for different quantities of interest, considering the pressure coefficient Cp, the wall shear stress τw,

and the kinetic wake loss (Ω∗) at certain locations, as

JCp =
1

Lx

n∑
i=1

(
C truth
p (xi)− C(U)RANS

p (xi)

maxx(C truth
p )

)2

,

Jτw =
1

Lx

n∑
i=1

(
τ truth
w (xi)− τ (U)RANS

w (xi)

maxy(τ truth
w )

)2

,

JΩ =
1

Ly

n∑
i=1

(
Ω∗truth(yi)− Ω∗(U)RANS(yi)

maxy(Ω∗truth)

)2

.

(10)

Lx represents the location along the axial chord and Ly is along the pitchwise direction.

Note that the components of the cost function from different turbine cases are then divided

by their baseline errors (see in Eq. (11)) before summing them up to to avoid specific errors

dominating the optimization. By summing up the same variable of interest over different cases, the

trained models are expected to improve predictions for cases with different physics. Furthermore,

instead of simply summing up the different cost functions JMOi, the multi-objective algorithm that

exploits a Pareto ranking approach is used to evaluate the model performance [25].

JMO1 =
3∑
j=1

(
J
Cp

j

J
Cp

Baseline,j

)
, JMO2 =

3∑
j=1

(
Jτwj

JτwBaseline,j

)
,

JMO3 =
3∑
j=1

(
JΩ∗
j

JΩ∗
Baseline,j

)
.

(11)

It should be emphasized that another strength of the CFD-Driven approach is that it does

not require full spatial data sets which are usually hard to obtain from experiments. In the current

study for every turbine case only limited truth data in the form of one-dimensional profiles is utilized.

These include Cp or Mais, τw on the suction side near the trailing edge or Ω∗ profiles in the wake
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region. More detailed information about the ML framework can be found in [30, 25].

CFD settings

Fig. 4. Model evaluation: (a) the evaluation of averaged cost function value along training generation; (b) Pareto analysis on errors

of the blade surface and wake parameters

As shown in Table 2, two LPT (T106A and T108) and one HPT (LS89) configurations are used

as the training cases, while another LPT profile (PakB) and a T108 at a higher Reynolds number

are selected as the testing cases. The cases are selected to incorporate as many transition

phenomena as possible. To visualize the transition, Fig.3 shows contour plots of the velocity

magnitude for each case. As described in Table 2, a close separation bubble on the T106A suction

side is observed. For T108 and PakB, open separation is observed near the trailing edge. LS89

undergoes bypass transition.

The CFD solver used in this study is called TRAF [31]. Because the present calculations

focus on the blades’ midspan sections, two-dimensional plane-cut calculations can be run to save

computational costs [2]. Steady and compressible RANS are conducted for the LPT cases, while

URANS is applied for the HPT (LS89) to capture the strong vortex shedding. Table 2 summarizes

the mesh and inflow information of all the turbine cases conducted in this study. A dual-time-

stepping method and a 2nd order cell-centered spatial scheme are employed. In terms of the

boundary condition of LKE, the inlet condition for kl is: kl,∞ = k∞ = 3/2Tu2∞U
2
∞. The wall
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boundary condition is set with kl = 0. More details for the (U)RANS calculations can be found in

[32] for T106A, [33] for T108, and [27] for PakB.

The ground truth data for model training are obtained either from high-fidelity simulations or

experiments, specifically direct numerical simulation (DNS) for T106A [2], experiments for T108

[34, 33] and PakB [35], and large eddy simulation (LES) for LS89 [36].

RESULTS & DISCUSSION

This section details how the ML-trained models are selected, and their performance on the

training turbine cases is presented. The common characteristics of selected trained models are

summarized and analyzed. The last part shows the numerical prediction from the trained model

on two cases different from the training cases: the testing cases PakB and T108 at Reis = 120k.

Model selection and performance

Fig.4 (a) tracks the minimum average value of all the cost function components over every

training generation. It indicates that the training process seems converged after roughly 160 gen-

erations. Fig.4 (b) shows the distribution of three cost function components (Cp, τw (shown in

colour) and Ω∗, see Eq. (10)) from the trained models at the last training generation. To facilitate

the model selection, these values are divided by the baseline errors and then presented in per-

centage form. Hereafter, we select models that have small errors for either pressure coefficient or

isentropic Mach number, wake loss and wall shear stress as highlighted in Fig.4 (b). Three models

are selected. Model 1 has low JCp . Model 2 has low JCp , Jτw and JΩ∗
. Model 3 has low JΩ∗

. In

this paper, they are denoted as the ‘CFD-Driven model 1/2/3’.

We turn our attention first to the comparison of the pressure coefficient or isentropic Mach

number from the ground truth, baseline model, and CFD-Driven models, as shown in Fig.5 (a)-(c).

In general, improvements are obtained with the trained models 1/2/3, especially in the transition

region for the LPTs (T108 and T106A), mostly visible in the zoom-in view. The baseline LKE

model (in blue) shows a larger slope of pressure coefficient or isentropic Mach number close to

the trailing edge than the ground truth data. This means that the baseline LKE model tends to

overpredict the pressure or velocity gradient in the adverse pressure region, no matter whether
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Fig. 5. The comparison of the pressure coefficient or mach number and wall shear stress between the ground truth, baseline, and

CFD-Driven models

separation-induced or bypass transition occurs. Nonphysical phenomena may be predicted as a

result of these large gradients such as the presence of a nonphysical shock for the LS89 case. On

the other hand, the CFD-Driven models have better agreement with the reference data and are

able to improve the prediction of the gradients in the transition region.
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Fig. 6. Comparison of the wake loss profiles: (a) T108 at x/Cax = 1.55; (b) T106A at x/Cax = 1.29; (c) LS89 at x/Cax =
1.25

To further illustrate the transition phenomena, the wall shear stress on the suction side, and

a zoom-in view, from the ground truth data, baseline and the CFD-Driven models are plotted

in Fig.5(d)-(f). Similar to the pressure coefficient or isentropic Mach number shown in Fig.5(a)-

(c), the major differences can be observed near the trailing edge. For the T108 case shown in

Fig.5(d), no negative wall shear stress is observed in the experimental data while negative values

are indeed found from the baseline calculation. However, there is possibly some uncertainty in the

experimental data, because the hot-films used to measure wall shear stress may be too thick to

be fully immersed in the boundary layer. By improving the prediction of the maximum location of

τw near the trailing edge and its gradient, all CFD-Driven models give better Mais prediction as

shown in Fig.5(a). Note that the wall shear stress predicted by model 3 is much smoother than

when using models 1 and 2, indicating that model 3 is the most numerically stable. For the T106A

case shown in Fig.5(e), two closed separation bubbles can be identified, one near the leading

edge and one near the trailing edge. For the latter separation bubble, the baseline model predicts

a larger extent than the high-fidelity result while all CFD-Driven models 1, 2 and 3 provide a closer

prediction to the high-fidelity results. Fig.5(f) shows the wall shear stress distribution for the LS89

case. The location where the wall shear stress suddenly increases identifies the bypass transition

onset. It turns out all the CFD-Driven models perform better than the baseline upstream of the
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3

bypass transition onset. Both CFD-Driven models 1 and 2 show a more accurate prediction of the

transition onset while CFD-Driven model 3 gives an earlier onset prediction similar to the baseline.

We remark that the wall shear stress calculated by all CFD-Driven models does not reach the

same amplitude as the ground truth data. After the transition, the LKE decreases and TKE grows

where the τw is then mainly decided by TKE. However, no turbulence correction is made in this

near-wall region to further increase TKE, which will be considered for future work.

In addition to the on-blade flow behaviour, the kinetic wake-loss is also a parameter of primary

interest and is presented in Fig.6. For the LPT cases T108 and T106A, shown in Fig.6(a) and (b),

the baseline predictions display narrower and bigger peak wake loss values than the ground truth

data. All the CFD-Driven models, on the other hand, are able to correct this behavior and produce

predictions closer to the ground truth. For the HPT LS89 case shown in Fig.6(c), the prediction

of the wake width is not much changed compared to the baseline and actually a little worse at
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the wake peak. However, it should be noted that the baseline prediction already is rather good,

owing to the unsteady RANS resolving the vortex shedding. We believe this small deterioration in

prediction is acceptable given the significant improvement of the same models for the LPT cases.

This shows that a single set of models, developed on multiple training cases, is able to significantly

improve predictive performance for the cases where the baseline models performed badly, while

a similar prediction to the baseline is obtained for cases in which the baseline already performs

quite well, i.e. here the URANS of the HPT LS89 case.

In order to differentiate whether the changes to the wake prediction come from the trained

transition or turbulence models, the wake loss obtained by running a test using only the updated

transition model of the CFD-Driven model 3, but the baseline turbulence model, is also presented

and compared with the full set of CFD-Driven model 3. As shown by the dashed green lines in

Fig.6, the revised transition model can provide a better prediction of wake loss but not as good as

when also including the trained turbulence model. Hence, training the transition model alone can

not provide satisfactory results for wake loss. We believe the improved flow coming off the blade

by the trained transition model and the higher levels of turbulent diffusion predicted by the trained

turbulence model are both required to improve the prediction of the wake loss.

We also compare the boundary layer thickness, momentum thickness and shape factor on

the suction side from CFD-Driven model 3 with the predictions from the baseline, as shown in

Fig.7. Since the boundary layer thickness in the transition regions for the LPTs (T108 and T106A)

predicted by CFD-Driven model 3 is thicker than when using the baseline, this contributes to the

widening of the wake width and the improvement can be noticed in Fig.6 (a) and (b). In contrast

to the LPT cases, the width of the wake loss profile of the HPT LS89 shown in Fig.6 is too wide.

That is why the CFD-Driven model 3 tries to decrease the boundary thickness in Fig.8 (g) and (i).

In terms of shape factor, the larger shape factors given by CFD-Driven model 3 over the baseline

indicate smaller momentum thickness and thus reduce the wall shear stress in Fig.5 (d) and (f).

For the T106A case, the difference is too small to be observed.

We also conducted single-case training for each training turbine case, with the results shown

in the Appendix. The purpose of these additional training runs was to find a reference ‘best
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Fig. 8. The distribution of P1, P2, P3, P4 and P5 on the suction side for T108, T106A and LS89

model’, essentially an entitlement, against which we could evaluate the multi-case trained model

performance. Note that the CFD-Driven model 3 shows similar performance to every single-case

trained model for each case. This promising result means one model performs well across different

transition paths without the need for manually changing the coefficients in the LKE model.

Model analysis

In order to understand why the trained models perform better than the baseline model, the ML-

trained explicit expressions are now analyzed, and the transition inputs Pi and the LKE transport

components such as the LKE production and transfer terms will be extracted in this subsection.

The following are the expressions in the LKE transition model given by GEP. The trained terms
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in the LKE production and transfer of CFD-Driven model 1 are:

fmodel11 (Pi) = (1.2P1 − 1.09)(P2 − 2.91),

fmodel12 (Pi) = −P1 − P2 − P3 + P5 − P6 − 0.7.

(12)

The trained terms of CFD-Driven model 2 are:

fmodel21 (Pi) = (1.2P1 − 1.09)(P2 − 2.91)

fmodel22 (Pi) = −2P1 − 2P3 + P5 − 0.18.

(13)

The CFD-Driven transition model 3 is:

fmodel31 (Pi) = −0.09P4(P2 − 2.15)(P1P4 − P2 − 2P3 + 0.91)

fmodel32 (Pi) = −P1 − P2 − P3 + P5 − P6 − 0.7.

(14)

We start by observing the common characteristics of GEP-trained models in the LKE pro-

duction and transfer terms. The physical representation of Pi is given in Table 1. For the LKE

production term, we notice that both P1 and P2 commonly occur. The appearance of P1 means

the kl is closely related to LKE production. P2 on the other hand brings the free stream velocity

information to LKE prediction. These observations are consistent with the original construction of

the LKE production term, in which the laminar eddy viscosity is νl = C1

√
klδΩ in Eq.(3) and the

estimator of shear-layer vorticity thickness is δΩ = min
(
Ωy2

U , 2
)

.

For the transfer term, the combination of negative P1 and P3 and positive P5 is present in all

the three CFD-Driven models. If we merge P1 and P5 as:

f2 = −P1 − P3 + P5 = (P5 − P1)− P3 =
k − kl
νΩ︸ ︷︷ ︸

transition sensor

− y

lt︸︷︷︸
threshold

,
(15)
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we find that this expression follows a similar construction pattern as the one in the baseline LKE

transfer term, see Eq.(4). This leads to an activation of the energy transfer when the transition

sensor reaches the threshold. Here, the transition sensor represents a non-dimensional variable

related to transition phenomena. The sensor given by the CFD-Driven models is k−kl
νΩ , while for

the baseline LKE model (see Eq.4) it is based on the wall distance Reynolds number P4. As for

the threshold, the CFD-Driven model gives a variable that is the ratio of wall-distance to turbulent

length scale y
lt

, while the baseline uses a constant (see Eq.4). In terms of the selection of transition

sensor, both P4 and P5 are identified as important quantities for the shear-sheltering in attached

boundary layer states [15, 17, 37, 38]. Shear-sheltering is a physical phenomenon that damps

the small-scale free-stream fluctuations penetrating the pre-transitional boundary layer, confirmed

by [39, 40, 41]. Walters and Cokljat [17] defined a shear-sheltering factor based on the ratio of

the diffusive and convective time scales P5. Assuming the wall-normal fluctuation length scale

in the laminar portion of a pre-transitional boundary layer,
√
k is replaced by yΩ and thus P4 is

used in the definition of the shear factor in [15, 38]. To summarize, the obtained CFD-Driven

model suggests replacing P4, as used in the baseline, with P5 as the transition sensor, and a

non-constant parameter as the threshold.

Fig.8 plots the distribution of Pi within the boundary layer on the suction side for every training

turbine case. For the T108 case, shown in the first column of Fig.8, we notice that all flow features

Pi are quite large near the open separation region. For the T106A case, the second column, Pi

takes the largest values in the separation bubble, identified by the wall shear stress distribution in

Fig.5. This observation suggests that Pi are quite sensitive to the separation-induced transition.

For the LS89 case presented in the third column, P4 and P5 vary more than P1, P2, and P3. This is

related to the shear-sheltering effect and explains why P4 and P5 are often used for activation of

bypass transition in transition models [6].

We then shift our focus to analyze the LKE production, transfer terms, LKE, and TKE on the

suction sides for all the training cases. We also plot these variables from the single-case trained

models (their performance can be found in the Appendix ) to confirm the respective correction

trends. The expressions and model performance from single-case training can be found in the
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Fig. 9. Comparison of the baseline, single-case trained and multi-case trained models on LKE production, transfer terms, LKE and

TKE

Appendix. The comparison of these physical terms is given in Fig.9 (using CFD-Driven model

3 as an example). The first column in Fig.9 shows the LKE-related quantities and TKE for the

T108 case. Before the transition onset, all the models give nearly zero LKE production, transfer,

and thus LKE and TKE. This common prediction is physical due to the existence of the laminar

region. As shown in Fig.9(g), after the transition onset, both single- and multi-case trained models

decrease LKE gradually instead of immediately back to zero as the baseline. This agrees with the

statement in [15] that a small amount of LKE still exists in the viscous layer after transition.

The second column in Fig.9 presents the same quantities for the T106A. As shown in Fig.5(e),

there are two separation bubbles on the suction side. The LKE production Pl and kl are quite

large near both bubbles, while the LKE transfer term R and k only show strong variation close

to the one near the trailing edge. This makes sense due to R and k representing the turbulent

state. The large values near the bubble also explain why the trained models easily improve the Cp

and τw near the trailing edge and not across the whole suction side as seen in Fig.5(e). In other

words, the transition inputs are more sensitive to the separation bubble, which is consistent with
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Fig. 11. The pressure coefficient and wake loss of T108Reis = 120k with the CFD-Driven model

the analysis of Fig.8.

The last column in Fig.9 plots the same quantities for the LS89 case. Both single- and multi-

case trained models produce less LKE than the baseline to obtain smaller τw in Fig.5. However,

the insufficient LKE and less transfer to TKE in the bypass transition region also lead to values of

τw that are too small near the trailing edge, as seen in Fig.5 (f).

It is worth emphasizing that the trained models produce larger LKE than the baseline for LPTs

while the opposite is true for the HPT case. This means the same trained models are able to

provide different correction trends for different transition modes.

Finally, we also investigate the turbulence model correction. The extra anisotropy stress given

by CFD-Driven model 1 is:
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amodel1ij =(−I21 − 2.43I1 − 3.1)V 1
ij + (2I21 − 2I2 + 2.38)V 2

ij+

(0.24(I2 + 1)(−1.8I1 + 1.8I2 + 0.36))V 3
ij .

(16)

The trained expression in CFD-Driven model 2 is:

amodel2ij =(−I21 − 3I1 − 2)V 1
ij + (−I1(I2 + 0.15) + 5.42)V 2

ij+

(0.43I2(I2 + 0.2)(I2 + 1)(I1− I2 + 0.1))V 3
ij .

(17)

For the CFD-Driven model 3:

amodel3ij =(−I21 − 3I1 − 2)V 1
ij + (−I1I2 + 3I1 + 2)V 2

ij+

(−I2(I2 + 1.0)− 1.8)V 3
ij .

(18)

Similar analysis of the turbulence model as in [42] can be performed. Here we take CFD-

Driven model 3 as an example. Keeping only the leading term in Eq.(16) and considering that the

magnitudes of I1 and I2 are quite small, the trained extra anisotropic stress can be simplified as

aij = (−2)V 1
ij . With µtS

′
ij = ρkV 1

ij and Eq.(16), we obtain:

τCFD−Driven
ij =

2

3
ρkδij − 2µt(1.0 + 2)S

′
ij . (19)

The above correction of increasing turbulence diffusion is found to be consistent with the single-

case trained model of [24], where the coefficient also equals roughly 2. Hence, both training

approaches indicate that the baseline approximation cannot provide enough turbulence diffusion

for 2D turbine wake predictions. More diffusion is needed to decrease the amplitude of the wake
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peak and increase the wake width. The fact that the revised turbulence models still look very

similar to the Boussinesq approximation with only an increase in the coefficient of anisotropic

stress is promising. This small change brings improved results for 2D RANS calculations of turbine

cases and maintains a similar computation cost. This is also further validated by testing the

performance of the transition model from CFD-Driven model 3 and only the term −2V 1
ij of the

anisotropic stress correction for the turbulence model, shown with the dashed blue line in Fig. 6.

This result agrees well with the full CFD-Driven model 3.

Cross validation

We select the CFD-Driven model 3 to conduct the cross-validation on two testing cases. One

is the T108 profile at a higher Reynolds number (Reis = 120k) than the one used as the training

case and the other is a different geometry, the PakB section at Reis = 100k. CFD-Driven model 3

is used to perform RANS calculations of the two testing cases, with the results shown in Figs.10

and 11. Overall, the numerical predictions from the baseline and the CFD-Driven model 3 give

stable predictions and both agree quite well with the reference data. For the on-blade parameters

in Fig.10 (a) and in Fig.11 (a), the CFD-Driven model 3 performs better in the transition region by

decreasing the gradient of Mais or Cp. In the wake region, the CFD-Driven model 3 predicts wider

wake loss and smaller wake peak that agrees better with the ground truth in Fig.10 (b) and 11 (c).

In Fig.11(b), it can be noticed that the prediction of wall shear stress τw for the T108 case gives

a smaller amplitude than the experiment and baseline, even though it improves the calculation of

the amplitude location near the trailing edge.

CONCLUSIONS

In this study, we presented an approach to develop a more general LKE transition model that

can capture the most common transition phenomenon in gas turbines. They are the separation-

induced transition that is often found in LPTs and bypass transition mostly occurring in HPTs. To

achieve this, the original single-case CFD-Driven framework used in [24] was extended to a multi-

case training approach. Several LPT and HPT configurations, including T108, T106A, and LS89

were used for model training in the present framework. Unsteady RANS was employed for the
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LS89 case to capture the strong vortex shedding near the trailing edge, constituting the first use

of URANS feedback in data-driven model training. Moreover, more concise inputs to the transition

model were proposed and utilized in this study. The following conclusions have been obtained:

1. By training the LKE production and transfer terms with the six input features, multi-case

CFD-Driven transition models are obtained by GEP that perform as well on all cases as single-

case trained models developed for each case individually. This means that there is no need for

a user to specify different coefficients to predict different transition modes. Instead the trained

models, by using the appropriate flow-dependent input features, can automatically adapt to the

different transition scenarios.

2. Opposite correction trends for the separation-induced and bypass transition cases are found

to be required by extracting and analyzing the trained LKE production, transfer terms, LKE and

TKE. The CFD-Driven models produce and transfer more LKE close to the trailing edges of

LPTs while they produce and transfer less LKE in the HPT case.

3. The training of both transition and turbulence models benefits the wake loss prediction. The

trained transition models provide better prediction of the flow coming off the trailing edge and

thus improve the wake width. The CFD-Driven turbulence correction provides extra anisotropy

stress to further increase the turbulence diffusion. As a result, wider and smaller peak-

amplitude wakes are obtained that better approximate the ground truth data.

4. By analyzing the common characteristics of the multi-case trained models, some sugges-

tions are given by the ML algorithm to construct the transition model. For the LKE production

term, a time scale ratio containing LKE is suggested to be considered. For the transfer term,

a non-constant threshold is recommended to activate the energy transfer.
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APPENDIX A: SINGLE-CASE TRAINED MODELS’ PERFORMANCE

The performance of all the single-case trained models is shown here.
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Fig. 12. Comparison of isotropic Mach number, wall shear stress and wake loss from the experiment, baseline, and single-case

trained model for T108 case
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Fig. 13. Comparison on pressure coefficient, wall shear stress and wake loss from the experiment, baseline, and single-case trained

model for T106A case
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Fig. 14. Comparsion on pressure coefficient, wall shear stress and wake loss from the experiment, baseline, and single-case trained

model for LS89 case
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