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Take home message: Chronic cough in patients with cerebellar ataxia, neuropathy, and 

vestibular areflexia syndrome (CANVAS), a rare neurological disorder with a repeat expansion 

in the RFC1 gene, shares similar characteristics with cough hypersensitivity syndrome. 

  



Abstract 

Chronic cough is a frequent disorder that is defined by a cough of more than 8 weeks duration. 

Despite extensive investigation, some patients exhibit no aetiology and others do not respond 

to specific treatments directed against apparent causes of cough. Such patients are identified as 

having unexplained or refractory chronic cough. Recently, a high proportion of patients with 

chronic cough in the context of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome 

(CANVAS) was highlighted. CANVAS is a rare neurological disorder with a biallelic variation 

in the replication factor C subunit 1 (RFC1) gene corresponding mostly to an intronic AAGGG 

repeat expansion. Chronic cough in patients with CANVAS shares similar characteristics with 

cough hypersensitivity syndrome. The high prevalence of chronic cough in CANVAS gives the 

opportunity to better understand the neurogenic mechanism of chronic cough. In this review, 

we will describe the characteristics and mechanisms of CANVAS. We will also address the 

potential mechanisms responsible for chronic cough in CANVAS. Finally, we will address 

chronic cough management in the context of CANVAS. 
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Introduction 

Chronic cough is defined by a cough of more than eight weeks duration [1], and affects 

around 9.6% of people worldwide [2]. This disease is commonly associated with a deterioration 

in the patient’s quality of life [3, 4] related to psychosocial complications with the inability to 

suppress cough in a quiet environment such as the theatre, church, or cinema3 and physical 

complications including urinary incontinence [5]. Chronic cough can be associated with 

common diseases such as asthma, rhinosinusitis, and GERD (gastro-oesophageal reflux 

disease) [6-8]. However, its management is sometimes difficult because some patients exhibit 

no aetiology despite extensive investigation, or do not respond to specific treatments directed 

against apparent causes of cough [9]. Such patients are identified as having unexplained or 

refractory chronic cough (RCC) [9]. The prevalence of RCC has not been extensively studied, 

but may represent 7 to 40% of patients with chronic cough [10]. 

A current proposition is that RCC could be the consequence of neurological dysfunction, 

possibly related to neuropathy impacting the peripheral nerve fibres mediating cough [11, 12]. 

However, although the concept of RCC as a neuropathic disorder has largely been investigated 

in animal models [13], there is little evidence to show that humans with RCC present 

comparable nerve alterations. 

In papers published in the 1990s and 2000s, genetic neurological conditions such as 

Holmes-Adie syndrome have been associated with chronic cough [14, 15]. However, the 

clinical implications of those conditions in patients with RCC remain limited given the small 

number of patients. RCC is also common in Cerebellar Ataxia, Neuropathy, and Vestibular 

Areflexia Syndrome (CANVAS), a genetic neurological disorder due to a repeat expansion in 

the RFC1 gene. Intriguingly, we observed that 25% of patients with RCC presented at least one 

AAGGG repeat expansion in the RFC1 gene [16]. In this review, we will describe the 



characteristics of RCC in the CANVAS context and investigate the potential mechanisms 

responsible for this trait. 

 

History and clinical description of CANVAS 

The description of a rare syndrome combining bilateral vestibular areflexia and progressive 

cerebellar ataxia was published in the late nineties [17] (Figure 1). At that time, it was 

recognized that some patients with this specific disorder also presented sensory peripheral 

neuropathy; but the first full description of the complete disorder and use of the acronym 

CANVAS did not appear until 2011 [18]. Since 2019 and the first recognition of an AAGGG 

biallelic intronic expansion in the RFC1 gene in this disorder, several series have been 

published that outline the phenotypic spectrum of CANVAS [19, 20]. 

As with many slowly advancing diseases, it is difficult to determine the exact date of 

symptom onset in CANVAS patients. Nevertheless, with the notable exception of RCC, patients 

start to complain of sensory symptoms and/or ataxia at a median age of 52-53 years [21, 22]. 

Cerebellar ataxia is of variable severity and cerebellar atrophy, predominating on anterior and 

dorsal vermis, usually appears mild on brain magnetic resonance imaging [21]. It is estimated 

that around 50% of patients need to use at least a walking stick after 10 years of disease 

progression [22]. The peripheral neuropathic characteristics of CANVAS are best described as 

a sensory neuronopathy, resulting from the selective destruction of peripheral sensory neurons 

culminating in a combination of numbness, ataxia, and neuropathic pain with no motor 

involvement [18]. Although CANVAS patients rarely complain of vertigo, some of them 

describe oscillopsia, and video-oculography may reveal vestibular areflexia or hyporeflexia 

[19].  

 

 



Genetic anomalies in CANVAS 

In 2019, Cortese et al. identified the first molecular cause of CANVAS, corresponding to 

a biallelic intronic AAGGG repeat expansion in the replication factor C subunit 1 (RFC1) gene 

[23]. Subsequently, the allele frequency of the AAGGG repeat expansion was estimated at 2.3% 

in the general population [24]. This intronic expansion located between exons 2 and 3 differs 

from those initially described in controls, both in size and nucleotide sequence. Indeed, the 

mutated sequence was described as a large expansion (ranging from around 400 to 2,000 

repeats) of AAGGG pentanucleotides, also named (AAGGG)exp, while the initial reference 

sequence corresponds to 11 repeats of the AAAAG motif (AAAAG)11. In addition, the size of 

this “normal” motif in controls can be large (AAAAG)exp and the motif can be different 

(AAAGG)exp [23]. Other repeated motifs in this RFC1 intronic region have been identified, 

including AAGAG, AGAGG, but their pathological impacts need to be studied further [25-28]. 

More recently, the large expansion of the new motif (ACAGG)exp has been identified in 

Japanese patients [29-31] and a few groups have described that in some patients with a typical 

phenotype of CANVAS and a heterozygous RFC1 expansion, a truncating nucleotide variation 

is present on the other allele of the gene, explaining why these people develop the disease [32-

36]. To date, CANVAS is considered an autosomal recessive disease, in which patients present 

two alleles mutated in RFC1. To confirm the diagnosis, Long Range PCR and gene sequencing 

is needed to check the size of the repeats [23].  

The RFC1 gene is located on chromosome 4 (4p .14) and contains 25 exons. This gene 

encodes for the large subunit of 140 kDa of replicator factor C (RFC). RFC is a clamp loader 

of 5 subunits, involved in the DNA replication fork within the proliferating cell nuclear antigen 

(PCNA). It is involved in nuclear DNA replication and in telomere maintenance, mismatch 

repair, and base excision repair. Variations in the RFC1 gene had initially been described to not 

result in an abnormal RFC1 protein conformation or expression [23]. However, additional 



studies showed a decreased level of RFC1 mRNA and/or RFC1 protein compared to controls  

[32, 33, 35, 36]. Thus, the relationship between the variations in the RFC1 gene and the clinical 

phenotype of CANVAS has not been fully elucidated. 

 

Pathophysiology of CANVAS 

Neuropathological and neurophysiological observations in CANVAS patients clearly point 

to a ganglionopathy (sensory neuronopathy) involving the dorsal root (DRG) and V, VII and 

VIIIth cranial nerve ganglia [19]. Observations have shown a ganglionic and nerve root atrophy 

with a loss of neuronal cells and their replacement by psammoma bodies areas and areas of 

satellite (glial) cell proliferation. DRG atrophy is accompanied by pathological changes in the 

spinal cord [37], with atrophy of the dorsal columns reflecting a significant loss of myelinated 

axons secondary to the degeneration of the central projections of DRG neurons. Gross 

examination of the brain shows cerebellar atrophy with loss of Purkinje cells, while pathological 

changes in the medulla oblongata where cranial ganglia neurons terminate, are confined to a 

loss of neurons and gliosis in the inferior olivary nuclei. Notably, the cranial nerve nuclei appear 

normal without signs of gliosis [38].  

The molecular mechanisms underpinning the progressive loss of neurons in CANVAS are 

not known but may involve alterations in mitochondrial function [39]. Sensory neurons can 

have long axonal projections, sometimes greater than 1 meter in length, extending from the 

CNS (spinal cord or brainstem) to distal tissue sites. Consequently, sensory neurons have a high 

metabolic demand for homeostatic production and transport of materials over long distances. 

Oxygenated blood delivery to sustain metabolic demands of DRG neurons is optimized by a 

local, highly fenestrated capillary network [40]. Cerebellar Purkinje cells, also comparatively 

larger neurons, similarly have high metabolic demands. Accordingly, mitochondrial 

dysfunction would be expected to interrupt energy supply and lead to the progressive demise 



of susceptible neurons. How mitochondria dysfunction could occur in CANVAS is unclear, but 

possibilities include changes in iron metabolism or decrease in Vitamin B6 or E levels. 

Alternative hypotheses explaining why neuronopathy occurs in CANVAS include possible 

neuronal DNA damage, as RFC1 is needed for DNA damage recognition and recruitment of 

repair enzymes [41]. These putative mechanisms require further validation given that RFC1 

protein production may be unaffected in CANVAS [23]. 

The functional impacts of neuronopathy in CANVAS reflect the neural systems involved. 

Progressive imbalance likely stems from both cerebellar dysfunction and sensory involvement, 

since ataxia is almost always worse without visual control in these patients [22]. Sensory 

neuronopathy evolves towards a complete disappearance of sensory nerve action potentials 

(SNAPs) with preservation of compound muscle action potentials (CMAPs) on nerve 

conduction studies [42]. All types of sensory fibres are affected in CANVAS, as exemplified 

by sensory loss in all modalities with some variability among patients [22]. Strikingly, many 

patients complain of neuropathic pain, by contrast with most patients with hereditary 

neuropathy, including those with Friedreich’s ataxia who also have cerebellar involvement. 

Otherwise, patients with CANVAS have mostly preserved tendon jerks, which is probably 

explained by the less severe involvement of sensory neurons transmitting muscle afferent 

signals [43]. Recent findings suggest the possible involvement of motor neurons in CANVAS 

patients - a feature seemingly devoid of significant clinical consequences [44]. CANVAS 

patients may also present with vestibular areflexia, which partly explains oculomotor disorders 

and abnormal head impulse tests results [17]. Besides the core clinical features of CANVAS, 

authors have also reported that some patients may experience dysautonomia, parkinsonism, and 

cognitive impairment but, at this stage, the prevalence of these additional features is unknown 

[45]. Autonomic dysfunction is also common in CANVAS patients.  In one study cohort 

undergoing a battery of autonomic tests, all patients displayed at least one autonomic symptom 



and 91% displayed more than two autonomic symptoms [46].  The cause of autonomic 

dysfunction may relate to the peripheral spinal and cranial nerve ganglionopathies or the 

brainstem pathological changes in regions involved in cranial nerve control. 

 

Chronic cough in CANVAS patients 

Cough in CANVAS patients was first described in 2014 [46,47].  Wu et al. [46] reported, 

2 of 26 patients with clinical CANVAS had chronic cough. Interestingly, in one of them, 

chronic cough was the initial symptom, appearing 5 years before the onset of ataxia. Persistent 

chronic cough was also described in a retrospective study published in the same year, but no 

details on patient numbers were provided [47]. According to the literature, the prevalence of 

chronic cough in CANVAS patients with RFC1 repeat expansion varies from 8% to 100% [21-

23, 28, 44-46, 48, 49] (Figure 2). It is remarkable to see that the prevalence of cough reported 

in studies of CANVAS patients increases over time. The reason for this is not known but it is 

likely that cough was more systematically documented in the latest cohorts due to an increased 

acceptance that cough is particularly prevalent in CANVAS. Cortese et al. noticed that cough 

could precede the walking difficulties by one decade [23]. Indeed, chronic cough can apparently 

be described by patients up to three decades before the onset of neurological symptoms and is 

the initial symptom in two thirds of CANVAS patients [21].  

We recently identified that 25% of RCC patients had homozygous (16.2%) or 

heterozygous (8.8%) AAGGG repeat expansions in RFC1 [16]. The pathogenic role of 

heterozygous AAGGG repeat expansions in RFC1 is still debated in chronic cough [50]. The 

cough characteristics were quite homogeneous among the CANVAS patients reported in the 

literature and those in our study. Most patients describe a persistent, irritating, dry, spasmodic 

cough [28, 44] potentially triggered by a variety of factors such as emotion, stress, speaking, 

ear cleaning with a cotton bud or swallowing. GERD, which is a common cause of chronic 



cough, does not explain the high prevalence of RCC in CANVAS. In a recent study, reflux 

disease was reported in 19 patients (31%) with CANVAS and was not significantly more 

prevalent either with or without cough although GERD was observed in 40% of patients with 

cough and 19% of those with no cough [22]. In CANVAS patients, the role of GERD in cough 

triggering needs to be better elucidated. Indeed, other mechanisms other than acid reflux could 

be involved in cough. For example, non-acid reflux seems to be more closely associated with 

cough. Moreover, oesophageal dysmotility is commonly seen in patients with chronic cough. 

Interestingly, in CANVAS patients with brainstem atrophy, 100% report dysphagia [22]. The 

effect of GERD even mild to moderate on cough triggering in a context of cough 

hypersensitivity in CANVAS patients should be considered. Although there are no data on the 

flexible endoscopic evaluation of swallowing in CANVAS patients, swallowing difficulties are 

not generally commonplace in these patients. In our experience, coughing mainly occurs during 

the daytime but seldom at night or in the supine position. Otherwise, it has a relentless clinical 

course with no seasonal fluctuations. Chronic cough in CANVAS patients has the 

characteristics of RCC and repeat consultations take place across numerous disciplines 

including pulmonology, gastroenterology, and ENT. In our cohort, the age of cough onset was 

statistically lower in patients with repeat expansions of RFC1 compared to those with no repeat 

expansions of RFC1 (44.6 ± 12.4 vs 51.2 ± 10.8, respectively, p=0.04) [16]. Moreover, apart 

from age, dust/smoke or food as triggering factor, remain strongly associated with repeat 

expansions of RFC1 after adjustment. 

In the context of late-onset ataxia, chronic cough is a strong, positive, discriminative 

predictor of CANVAS [48]. Otherwise, the prevalence of intronic RFC1 expansions is 

particularly high in patients with hereditary sensory and autonomic neuropathies accompanied 

by chronic cough [49].  

 



Cough hypersensitivity syndrome: the clinical expression of neurological dysfunction 

A common feature of adult patients with chronic cough is hypersensitivity in which the 

vagal sensory neural pathways responsible for cough are more readily activated by airway 

stimuli. This has led to the adoption of the unifying concept of cough hypersensitivity syndrome 

(CHS) to facilitate the understanding and management of chronic cough [51, 52]. CHS is 

defined as troublesome coughing often triggered by low levels of thermal, mechanical, or 

chemical exposure, reflecting both the clinical observation that patients with chronic cough 

mostly complain of coughing triggered by a change in atmosphere, strong smells, perfumes, 

speaking, or singing and the experimental observation that cough reflex thresholds are lowered 

[53]. The introduction of CHS provides a clearer explanation of the occurrence of RCC, 

particularly in patients with no obvious cough aetiology [54]. This approach was endorsed by 

opinion leaders as a valid and useful concept in 2014 [55]. 

In clinical practice, many patients with chronic cough display allotussia (cough triggered 

by ordinarily innocuous stimuli), hypertussia (increased sensitivity to cough evoking stimuli), 

and other sensory disturbances including laryngeal paraesthesia and perceptions of irritation 

and obstruction in the throat, all of which contribute to the experience of an increased urge-to-

cough and excessive coughing (Table 1). These symptoms are consistent with impaired or 

sensitized airway neural function. In CHS, sensory nerves may show altered patterns in signals 

encoding responses to irritant stimuli [56, 57]. CHS may also be induced through central 

amplification of normal sensory signals or through loss of central inhibitory controls [58]. 

 

Why do CANVAS patients have chronic cough? 

Cough is dependent on sensory nerves in the airway epithelium originating from neurons 

in the cranial ganglia of the vagus nerve (Figure 3). The vagal sensory neurons mediating cough 

are divided into two groups: chemosensitive nociceptors (unmyelinated C-fibres) from the 



jugular ganglia and low-threshold mechanosensors (myelinated A-delta fibres) from the nodose 

ganglia [59]. These two sensory neuron types terminate in the mucosa of laryngeal and 

conducting airways, where they monitor the local environment for noxious and potentially 

damaging inhaled gases, particulates, aspirated foodstuffs and gastric contents, mucus , and 

locally produced inflammatory mediators. Centrally, these nerve fibre types terminate in the 

nucleus of the solitary tract and paratrigeminal nucleus in the medulla oblongata, brainstem 

regions that have been shown to be integral to the initiation of cough and the accompanying 

sensory manifestations of airway noxious stimuli [60-63]. Additionally, the activity of several 

populations of extrapulmonary sensory nerve fibres, including those innervating the 

oesophagus, nasal airways, and external ear can functionally facilitate cough through 

convergent interactions with primary cough-evoking sensory pathways in the brainstem [64].  

The clinical presentation of cough in CANVAS is characteristic of CHS in RCC. Patient 

reports of throat irritation and cough triggered by emotion, stress, speaking, or swallowing are 

consistent with the allotusia and hypertussia in RCC. Recently, it has been described that airway 

epithelial sensory nerve density is increased in chronic cough [65], suggesting that changes in 

neural innervation can contribute to the pathophysiology of cough disorders.  There have been 

no studies of airway nerve fibre density in CANVAS patients, although airway denervation due 

to the extensive ganglionopathies is more likely a feature rather than hyperinnervation. This 

may call into question the relative involvement of peripheral airway causes of chronic cough in 

these patients.  Up to one third of adult RCC and CANVAS patients (compared to 1-2% of 

healthy individuals) display an upregulated Arnold’s nerve cough reflex whereby mechanical 

stimulation of the external ear canal, a region innervated by the auricular branch of the vagus 

nerve, triggers coughing. This is consistent with a generalised hypersensitivity along vagal 

sensory neural pathways in RCC [66, 67] and CANVAS. However, in our cohort, the proportion 



of patients with Arnold’s reflex was similar between chronic cough patients with (29.4%) and 

with no (21.1%) repeat expansions of RFC1 [16].  

The potential mechanisms leading to vagal hypersensitivity in CANVAS are unclear. 

Similarly, why cough presents as an early symptom in many CANVAS patients is equally 

perplexing. In RCC, epithelial-derived and other inflammatory mediators, notably including 

adenosine triphosphate (ATP), may be important for the development of vagal hypersensitivity 

[68, 69]. However, there is no evidence that pulmonary inflammation exists in CANVAS. 

Instead, the development of cough is more likely related to progressive neuronopathy in these 

patients. One possibility is that the early processes leading to vagal sensory neuron damage 

establish a state of neuroinflammation within the vagal nerves and ganglia. This has been shown 

to occur following pathogen exposure in animal models of vagal hypersensitivity and is 

characterized by upregulated inflammatory cell influx into the nerve and ganglia, the activation 

of local glial cells, and the induction of proinflammatory genes [70-72]. Such a phenomenon 

might be expected to promote a state of sensory hypersensitivity in the period prior to sensory 

neuron destruction. Similarly, in other neuropathies, injured sensory neurons commonly 

generate ectopic activity, independent of peripheral stimuli, due to changes in the ion channel 

composition and activity along their membranes [73, 74]. However, these possible mechanisms 

are only plausible in the short term, while the sensory neurons maintain some functionality and 

connectivity with the central nervous system.  

The substantial loss of sensory neurons seen in the later stages of CANVAS would 

minimise any potential effects of peripheral neuroinflammation or plasticity. Instead, the 

denervation of brainstem neurons normally in receipt of sensory inputs may result in 

spontaneous activity along central cough-evoking pathways. Deafferentation hypersensitivity 

[75] is a cause of chronic pain in some patients with peripheral neuropathies or following 

surgical denervation of peripheral nerves [76]. Phantom limb pain is also thought to represent 



reorganisation of the central pain pathways in the absence of sensory inputs normally conveyed 

from the missing limb nerves. Consistent with this, neonatal destruction of nociceptive primary 

sensory neurons in rodents dramatically upregulates the responsivity of neurons in the nucleus 

of the solitary tract to local injections of neurotransmitters [77], suggestive of a state of 

denervation-induced sensitization. Nevertheless, whether this is a mechanism leading to RCC 

in CANVAS requires further investigation and validation.  Recent studies have demonstrated 

the utility of employing functional brain imaging to investigate brainstem activity in response 

to inhaled cough challenges, and such investigations may provide an avenue to understand the 

intactness and vagal cough nerve fibre inputs and mechanisms of hypersensitivity in CANVAS 

patients [78]. 

 

Therapeutic options in patients with CANVAS and chronic cough 

To date, there is no disease-modifying therapy for patients with CANVAS related 

neurological symptoms. Gait rehabilitation exercises must be proposed, and physicians should 

exercise caution when using drugs that may cause vestibular (aminoglycoside), cerebellar 

(phenytoin) or peripheral nervous system (chemotherapies) toxicities (Figure 4). Otherwise, 

pain in CANVAS patients is of neuropathic origin and the treatment regimen may include, as 

in any patient with neuropathic pain, tricyclic (and other) antidepressants, antiepileptics, and 

opioids.  

Patients with CANVAS seek medical help for cough more than for other neurological 

symptoms due to the high impact of cough on quality of life. Recently, the European 

Respiratory Society published guidelines on the diagnosis and treatment of chronic cough [1]. 

Given the neurological mechanisms in CHS, the use of neuromodulators was recommended in 

a situation of RCC. Given the potential combination of neuropathic pain and RCC in patients 

with CANVAS, a discussion between the pulmonologist and the neurologist is essential to 



determine the best therapeutic option [21]. Two major therapeutic classes are recommended by 

ERS for the treatment of RCC: morphine and γ-aminobutyric acid analogues [1]. The classical 

opioid receptors (δ, κ and μ) are distributed widely within the central nervous system and, to a 

lesser extent, throughout the periphery [79]. γ-aminobutyric acid analogues could also act on 

the cerebral cortex, which might both modulate and initiate cough by acting on the respiratory 

area of the brainstem or at the spinal level. The effect of P2X3 antagonists on cough in 

CANVAS patients is still unknown. 

 

Conclusion 

RCC management is entering a new era. Ten years ago, the concept of CHS emerged, with the 

strong impression that neurological mechanisms are involved in RCC. Data from animal models 

also give proof that the cough dysfunction is mainly neurogenic. However, conclusive evidence 

regarding a neurogenic origin of RCC in humans has been difficult to obtain but may be 

exemplified by the RCC that commonly associates with CANVAS.  However, a range of future 

studies are needed to unravel the mechanisms of cough hypersensitivity in CANVAS in 

comparison to RCC, including assessments of responsiveness through cough challenge testing, 

functional brain imaging to investigate central mechanisms of cough amplification, vagus nerve 

microneurography and airway biopsy analysis to understand the functional and structural 

degree of peripheral cough axon denervation, and preclinical studies employing patient stem 

cell-derived sensory neurons which may help link the varied genetic mutations with sensory 

neuron function. The ongoing development of new antitussive therapies for RCC provides hope 

for CANVAS patients and physicians and it will be important to assess the efficacy of these 

(and existing therapies) in controlled trials to understand their clinical utility for treating cough 

in CANVAS. 
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Figure 1: Clinical characteristics of patients with CANVAS 

 

Figure 2: Prevalence of chronic cough in patients with CANVAS (i.e. RFC1 repeat 

expansion) in the literature. *Cough was an inclusion criterion 

 

Figure 3: Pathophysiology of cough and CANVAS. The vagal sensory neurons mediating 

cough are divided into two groups of neurons arising from the cranial ganglia of the vagus 

nerves: the chemosensitive nociceptors (unmyelinated C-fibres) arising from the jugular 

ganglia and the low-threshold mechanosensors (myelinated A-delta fibres) arising from the 

nodose ganglia. Collectively, these two sensory neuron types terminate in the mucosa of 

laryngeal and conducting airways, monitoring the local environment for noxious and potentially 

damaging chemical and mechanical airway stimuli, including inhaled gases, particulates,  

aspirated foodstuffs and gastric contents, mucus and locally produced inflammatory mediators. 

Centrally, these nerve fibre types terminate in the nucleus of the solitary tract and 

paratrigeminal nucleus in the medulla oblongata, brainstem regions that have been shown to be 

integral to the initiation of cough and the accompanying sensory manifestations of airway 

noxious stimuli.  

CANVAS is characterised by ganglionic and nerve root atrophy with a loss of neuronal cells. 

Dorsal root ganglion (DRG) atrophy is accompanied by pathological changes in the spinal cord 

architecture, with atrophy of the dorsal columns reflecting a significant loss of myelinated 

axons, presumably secondary to the degeneration of the central projections of DRG neurons. 

Pathological changes in the medulla oblongata where cranial ganglia neurons terminate, seems 

to be confined to the inferior olivary nuclei, with evidence of a loss of neurons and gliosis at 

this location. 

 

Figure 4: Algorithm of chronic cough management in CANVAS patients 

  



Table 1: Clinical characteristics of cough hypersensitivity syndrome according to Chung et al. 

[11] 

 

1. Irritation in the throat or upper chest: laryngeal/pharyngeal/upper airway 

paraesthesia 

2. Cough triggered by non-tussive stimulus, e.g. talking, laughing: allotussia 

3. Increased cough sensitivity to inhaled stimuli and number of triggers: hypertussia 

4. Cough paroxysms that are difficult to control 

5. Trigger factors: 

- Singing, talking, laughing, deep breaths: mechanical activation 

- Changes in temperature, cold air: thermoactivation 

- Aerosols, scents, odours: chemoactivation 

- Supine position, eating 

- Exercise 
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