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Abstract

Chemokine (C–C) ligand 17 (CCL17) was first identified as thymus- and

activation-regulated chemokine when it was found to be constitutively expressed

in the thymus and identified as a T-cell chemokine. This chemoattractant

molecule has subsequently been found at elevated levels in a range of

autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C–C
chemokine receptor type 4 (CCR4) ligand, with chemokine (C–C) ligand 22

being the other major ligand and, as CCR4 is highly expressed on helper T cells,

CCL17 can play a role in T-cell–driven diseases, usually considered to be via its

chemotactic activity on T helper 2 cells; however, given that CCR4 is also

expressed by other cell types and there is elevated expression of CCL17 in many

diseases, a broader CCL17 biology is suggested. In this review, we summarize

the biology of CCL17, its regulation and its potential contribution to the

pathogenesis of various preclinical models. Reference is made, for example, to

recent literature indicating a role for CCL17 in the control of pain as part of a

granulocyte macrophage–colony-stimulating factor/CCL17 pathway in

lymphocyte-independent models and thus not as a T-cell chemokine. The

review also discusses the potential for CCL17 to be a biomarker and a

therapeutic target in human disorders.

INTRODUCTION

Chemokine (C–C) ligand 17 (CCL17), which is also known

as thymus- and activation-regulated chemokine, was first

discovered as a constitutively expressed protein in the

thymus by Imai et al. in 1996.1 Its designation originally

arose from its chemotactic activity on C–C chemokine

receptor type 4–positive (CCR4+) cells, which are

predominately T cells.2 CCL17 is secreted by many cell

types and its levels have since been found to be elevated in

a wide range of diseases, including T helper 2 (Th2)

diseases, such as atopic dermatitis (AD) and asthma, and

autoimmune diseases, such as rheumatoid arthritis (RA).

In this short review the diverse biology of CCL17 and its

roles in various autoimmune and inflammatory diseases

will be discussed, as well as its potential to be a diagnostic

biomarker and therapeutic target. While CCL17 shares its

receptor with chemokine (C–C) ligand 22 (CCL22), which

is also elevated in autoimmune and inflammatory diseases,

the focus here will be on CCL17 biology.

CCL17 BIOLOGY

CCL17 gene and protein structure

The human CCL17 gene is encoded on chromosome

16q13, and it is made up of 2176 bp and 4 exons.3 The

human CCL17 monomer is an 8.1-kDa protein composed

of 71 amino acids and a 23-amino acid signal peptide3;

the CCL17 dimer has a unique asymmetrical structure

that is not seen in the other C–C chemokines.3,4

CCL17 binding to CCR4

CCR4 belongs to the G protein–coupled receptor family

with CCL17 and CCL22 being considered as its major
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ligands. CCL22 is also a chemokine that is highly

expressed in the thymus.5 The interaction of CCL17 with

CCR4 is often compared with that of CCL22. CCR4 is

reported to have at least two distinct binding

conformations and CCL17 can bind only to the major

conformation, while CCL22 can bind to both the major

and minor conformations.6 CCL17 also binds to CCR4

with lower affinity than CCL22,7 and it is less effective at

inducing receptor internalization, chemotaxis and beta-

arrestin coupling in CCR4+ cells8–10; CCL22 potently

desensitizes CCR4 to CCL17 in Th2 cell types,10 although

the opposite was seen in regulatory T cells (Tregs),

whereby CCL17 desensitizes CCR4 to CCL22 in a dose-

dependent manner.11 The unique binding characteristics

of CCL17 to CCR4 induce downstream signaling when it

is concurrently bound to two of its binding sites.6,12 As

CCL17 and CCL22 have different and even competing

effects on CCR4, in this short review our focus is on

CCL17 biology per se rather than on CCR4 and CCL22.

Therapies can be designed to specifically target CCL17

function while leaving those of CCL22 and CCR4 intact.

CCL17 as a chemotactic agent

The biology of CCL17 is often associated with T cells as

its receptor, CCR4, is predominately expressed by Th2

cells, although it is also expressed by T helper 17,

T helper 22, Tregs cells, natural killer cells, type 2 CD8+

T cells and cutaneous lymphocyte antigen–expressing
skin-homing T cells.2 CCR4 is also expressed by other

cell types, such as airway eosinophils, megakaryocytes and

platelets, and so the migration of these cells could also be

regulated by CCL17 in certain contexts.2 Moreover,

CCL17 may enhance the chemotactic functions of other

chemokines. In one mouse model of dermal

inflammation, it was shown that CCL17 is indirectly

required for C–C chemokine receptor type 7 (CCR7)-

and CXCR4-dependent migration of cutaneous dendritic

cells (DCs),13 while another study using a murine

vaccination model showed that CCL17 is required for

chemokine (C–C) ligand 19–dependent migration of

mature CCR7+ DCs.14 While CCL17 may not directly

bind to CCR7, it might indirectly regulate its migration.

Cellular expression and regulation of CCL17 synthesis

CCL17 expression is not limited to the thymus and it is

produced by a number of different cell types in various

tissues. These cells include monocytes, macrophages, DCs,

eosinophils, epithelial cells (e.g. keratinocytes),

Langerhans cells, fibroblasts, platelets and various

T cells.15,16 The chemokine is synthesized in various

tissues, such as the thymus, lymph nodes, gut, bronchi

and the brain, and is found in the circulation and in the

lymphatic system.16,17

The molecular mechanisms underlying CCL17

synthesis and secretion differ depending on the cell type

and nature of the stimulus, and the chemokine was

suggested to be able to regulate its own production in

CCR4+ DCs in an autocrine manner.18 In immune cells,

interleukin-4 (IL-4) can stimulate CCL17 synthesis via (i)

signal transducer and activator of transcription 6

phosphorylation, whereby the activated dimer can directly

bind to the CCL17 promoter19, (ii) the demethylase

activity of Jumonji domain-containing 3 protein D3

(JMJD3) and interferon regulatory factor 420 and (iii) the

mitogen-activated protein kinase kinase (MEK)5/

extracellular signal-regulated kinase (ERK)5 signaling

pathway.21 IL-4 can also cooperate with IL-3, interferon-

gamma and tumor necrosis factor to synergistically

upregulate CCL17 expression.16

In addition, CCL17 production by interferon-gamma and

tumor necrosis factor is nuclear factor-kappa B– and signal

transducer and activator of transcription 1–dependent (see,
for example, Saeki and Tamaki22), which is consistent with

the presence of consensus recognition sequences of

interferon-gamma response elements23 and potential

nuclear factor-kappa B transcriptional elements in the

CCL17 promoter.24 Given that many cytokines can activate

nuclear factor-kappa B signaling, other inflammatory

cytokines are likely to regulate CCL17 expression.

The granulocyte macrophage–colony-stimulating factor/

CCL17 pathway

It has also been shown that granulocyte macrophage–
colony-stimulating factor (GM-CSF), a hematopoietic

growth factor and proinflammatory cytokine, upregulates

CCL17 production via JMJD3 and interferon regulatory

factor 4 in human monocytes and mouse macrophages

(termed the GM-CSF/CCL17 pathway).25 GM-CSF–
activated signal transducer and activator of transcription

5 can also directly bind to the CCL17 promoter to

regulate its expression.26

In preclinical models of inflammation, when GM-CSF

activity was neutralized with a monoclonal antibody

(mAb), CCL17 expression was inhibited in inflammatory

macrophages and monocyte-derived DCs.25,27 It was also

demonstrated that the GM-CSF/CCL17 pathway is

relevant in T-cell independent, inflammatory arthritic25,28

and osteoarthritic pain29,30; as CCL17 is usually

associated with T-cell biology, these studies25,28–30

highlight a novel, non-T–cell biology for the chemokine.

Furthermore, it was noted in arthritis models that CCL17

deletion/depletion can have minimal effects on cell

infiltration into the joints, despite having a dramatic
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effect on pain; in other words, CCL17 seems to have a

broader role than simply being a chemokine.25,28,29

The GM-CSF/CCL17 pathway has also been

demonstrated in humans. In clinical trials for RA,

circulating CCL17 levels were significantly reduced in

patients treated with otilimab, a GM-CSF–targeting mAb,

and with mavrilimumab, a GM-CSF receptor–targeting
mAb.31,32 The presence of this GM-CSF/CCL17 pathway

could lead to a new diagnostic approach, in that high CCL17

levels in patients could serve as a biomarker to justify anti-

GM-CSF–based therapeutics for various indications,

leading hopefully to better clinical outcomes.

As indicated earlier, elevated CCL17 levels are seen in a

number of diseases, some of which are discussed in the

next section.

CCL17 in disease

Rheumatoid arthritis

RA is a chronic inflammatory, autoimmune joint disease,

with its pathogenesis involving inflammatory cell

infiltration, elevated proinflammatory cytokine levels and

irreversible joint destruction. It has been reported that

CCL17 is detected in the synovial fluid of patients with

RA.33,34 Interestingly, one study indicated no difference

in CCL17 serum expression between patients with RA

and healthy volunteers,35 although it was not indicated as

to whether these patients were receiving treatment and

thus warrants further investigation. CCL17 has been

shown to be secreted by mononuclear cells in RA

synovial fluid, including CD1c+ DCs.34,36

In animal models of inflammatory arthritis, including

zymosan-induced and antigen-induced arthritis, CCL17

gene–deficient mice fail to develop arthritic pain and

optimal disease, and the therapeutic administration of

anti-mouse CCL17 mAb ameliorates already established

arthritic pain and halts disease progression.25,28

Systemically administered CCL17 has also been shown to

directly induce arthritic pain and disease in methylated

bovine serum albumin (BSA)-injected joints, as well as

inflammatory pain in mouse paws, with the CCL17-driven

inflammatory pain dependent on cyclooxygenase activity,

neurotrophins and neuropeptides.27 These studies indicate

a role for CCL17 in the development and progression of

inflammatory arthritic pain; however, whether CCL17 acts

on neurons directly via CCR4 remains controversial, as one

study claimed that peripheral sensory neurons express

CCR4,37 while another study using single-cell RNA-seq

detected no CCR4 expression by these cells.38

As mentioned earlier, patients with RA who receive

neutralizing mAbs against GM-CSF or its receptor have

reduced circulating CCL17 levels31; these findings are

consistent with a functional GM-CSF/CCL17 pathway

and serve as supporting evidence for CCL17 to be

considered as a biomarker for anti-GM-CSF or anti–GM-

CSF receptor treatment in RA and possibly other

inflammatory arthritides. Furthermore, as GM-CSF

deficiency can potentially lead to the lung condition

known as pulmonary alveolar proteinosis,39 targeting

CCL17 may be an alternative and safer therapeutic target.

Osteoarthritis

Osteoarthritis (OA) was once considered to be a

noninflammatory arthropathy; however, it is now well-

recognized that there is a significant inflammatory

component in its pathogenesis and in the development of

symptoms, including chronic pain.40 Interestingly,

increased CCL17 levels have been associated with

increased pressure pain sensitivity and higher pain

intensity in male patients with OA.41

Preclinical studies have demonstrated that CCL17

gene–deficient mice are protected from the development

of collagenase-induced OA pain and optimal disease,29

and the therapeutic neutralization of CCL17 effectively

ameliorates pain and disease progression in the same OA

model.29,30 Synovial macrophages were shown to be a

major cellular source of CCL17 in this model.29

Moreover, mice induced with this OA model, that were

also GM-CSF-deficient or treated with anti-GM-CSF

mAb, had a reduction in pain that was similar to that

seen with CCL17 blockade.30 These findings point toward

the potential relevance of the GM-CSF/CCL17 pathway in

OA; however, the effect of CCL17 inhibition on OA pain

needs to be investigated in other OA models. In addition,

OA is a multifactorial disease with many risk factors,

such as aging and obesity40; the role of CCL17 in OA

with these associated risk factors should be studied.

While the mechanism(s) by which CCL17 governs OA

pain remains to be elucidated, its role in human OA has

been recognized as a potential therapeutic target. The

human CCL17 inhibitor, GSK3858279, is in phase 1

clinical trials in knee OA (NCT03485365), with phase 1

trials investigating its potential as an analgesic recently

completed (NCT04114656). Given that chronic pain is a

symptom associated with many inflammatory diseases,

the anti-CCL17 inhibitor could be repurposed to provide

therapeutic benefit to patients suffering from such

conditions.

CCL17 in the central nervous system

Various preclinical models have shown that CCL17

functions in the brain. CCL17 was reported to be a

homeostatic and inflammatory neuromodulatory
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chemokine whereby it could increase the microglia

population while downmodulating the basal synaptic

transmission of neurons in the hippocampus.17 By

contrast, CCL17 was found to activate CCR4+

macrophages/microglia in a preclinical model of

intracerebral hemorrhage, to reduce the associated brain

edema and ameliorate neurological deficits,

neuroinflammation and neuronal apoptosis.42

CCL17 could play a role in neuropathy. Increased

CCL17 expression is seen in the dorsal root ganglia of

rats induced with chronic neuropathic pain, and

intrathecal administration of CCL17 led to heightened

thermal hypersensitivity and pronociception.43 CCR4

inhibition decreased hypersensitivity and increased opioid

analgesia in a preclinical model of diabetic neuropathy.44

It remains unconfirmed as to whether CCL17 mediates

its analgesic activity via CCR4+ neurons or other immune

cells.25,38,45,46 Should CCL17 mediate neuropathy in the

brain, its therapeutic inhibition could be used to manage

pain in more than just inflammatory settings.

Multiple sclerosis

Multiple sclerosis is a chronic inflammatory,

autoimmune disease and it is characterized by the

degradation of the protective myelin sheath on nerve

fibers in the central nervous system, which results in a

progressive neurological disability. Experimental

autoimmune encephalomyelitis (EAE) is the most

studied preclinical multiple sclerosis model and CCL17,

as well as CCR4 and GM-CSF, is associated with EAE

pathogenesis.47,48 Indeed, CCL17 upregulates GM-CSF

production in CCR4+ DCs, which in turn secrete IL-23

and contribute to EAE development,49 while another

study showed that central nervous system–immigrating

DCs secrete high levels of CCL17 in EAE-induced mice,

despite IL-23 production being unaffected in CCL17-

deficient DCs.50 Thus, in this model, CCR4 and CCL17

appear to operate at distinct levels in DC-associated

immune responses. The former study highlights the

non-T–cell biology of CCL17 in EAE, albeit via CCR4,49

although CCL17 is likely to still have a traditional T-cell

function(s) in the model. Indeed, CCL17-deficient mice

with EAE disease were reported to have an altered T-

cell population, with T helper 17 migration into the

central nervous system being reduced while Treg

expansion was enhanced50; because of the involvement

of CCR4+ T cells in this model,50 the efficacy of various

CCR4 antagonists has been investigated and, while one

has been shown to be efficacious in preclinical trials,

efficacy remains to be investigated in patients with

multiple sclerosis.47 Furthermore, given the role of

CCL17 in EAE pathogenesis, its targeting is another

therapeutic option that merits investigation in multiple

sclerosis.

AD and other skin diseases

AD is the most common inflammatory skin disease and

is characterized by dry, itchy and chronically inflamed

patches of skin. It is a complex disease and often

considered to be a type-2 immune response disease. High

levels of Th2-associated cytokines, such as IL-4 and IL-

13, are found in the serum of patients with AD and these

cytokines, in turn, promote the increased production of

CCL17 and CCL22 by epidermal keratinocytes,

endothelial cells and DCs.13,51 The elevated platelet

population in patients with AD also contributes to the

high CCL17 concentration,52 with the chemokine

suggested to be able to recruit functionally impaired

CCR4+ Tregs into the skin.16 CCL17 was reported to be

the most reliable AD biomarker and,53 as it so strongly

correlates with AD disease severity, its levels are used to

assess therapy efficacy54; indeed, CCL17 has been

measured commercially for health insurance purposes in

Japan since 2008. Elevated CCL17 serum levels have been

noted in other skin diseases such as scabies, polymorphic

prurigo, cutaneous T-cell lymphoma and pustular

dermatosis.55

Asthma and other lung diseases

Asthma is a common respiratory disease with its

characteristic airway inflammation being driven by type-2

immune pathophysiological responses that are also seen

in allergic diseases and AD.56 CCL17 is elevated in the

bronchoalveolar fluid of patients with asthma and is

thought to drive the migration of CCR4+ Th2 cells into

the lungs.16 In fact, blocking this migration via inhibition

of CCL1757 or CCR458,59 has been investigated in a

mouse model of allergic airway inflammation and shown

to reduce airway hypersensitivity. Interestingly, while

CCL17 gene–deficient mice showed consistent results,60

for reasons that are not clear, CCR4 gene–deficient mice

showed no apparent phenotype in this model.61 CCL17

and CCR4 have not been extensively investigated as

targets in clinical trials for asthma, except for one phase 1

study for mogamulizumab that was prematurely

terminated (NCT01514981). Of note, dupilumab, which

targets IL-4Ra, showed clinical efficacy in patients with

asthma with reduced CCL17 levels noted,62 highlighting

the potential of targeting CCL17 in asthma.

Chronic obstructive pulmonary disease (COPD) is a

progressive and irreversible lung disease, with smoking

and long-term exposure to air pollution being associated

risk factors.63 CCL17 expression in COPD was recently
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reviewed,64 and the chemokine was reported to be a

predictive biomarker for the rapid decline of lung

function (forced expiratory volume in 1 s), with elevated

CCL17 levels seen in the epithelial cells and

bronchoalveolar lavage fluid of patients with COPD;

moreover, high CCL17 serum levels are seen in

individuals living in a highly air-polluted environment.65

However, the exact role of CCL17 in COPD pathogenesis

remains unclear. Regardless, a preclinical model of

cigarette smoke–induced COPD found that CCL17,

secreted by lung epithelial cells, promoted the

accumulation of alveolar macrophages in the lung and

emphysema,66 revealing a potential pathogenic role for

the chemokine. Moreover, high CCL17 and low CXCL9

serum levels are predictors of declining lung function in

chronic bird–related hypersensitivity pneumonitis,67 with

high levels of CCL17 also associated with severe adult

and childhood interstitial lung disease.68

Eosinophilic disorders

Elevated eosinophil levels in the blood and various tissues

can result in a range of disorders of varying severity, and

include senile erythroderma, allergic asthma, eosinophilic

granulomatosis with polyangiitis (formerly known as

Churg–Strauss syndrome), acute and chronic eosinophilic

pneumonia, lymphoproliferative malignancies such as

mycosis fungoides and Sezary syndrome, as well as

lymphocytic variant hypereosinophilic syndrome and

bullous pemphigoid. The role of CCL17 and its elevated

levels in these disorders have been discussed previously.16

Interestingly, CCL17 was the most highly upregulated

gene in GM-CSF–treated mouse eosinophils, which

suggests that the GM-CSF/CCL17 pathway may have a

role in eosinophilic disorders.69

Additional autoimmune/inflammatory diseases

A potential role for CCL17 in additional autoimmune

and inflammatory diseases has been identified and it

continues to be investigated in other preclinical models.

For example, CCL17 was associated with the development

of murine colitis,70 endometriosis71 and myocardial

inflammation.11 Increased CCL17 levels correlate with the

virological response of patients with chronic hepatitis B72

and CCL17 has been considered to be a potential

therapeutic target in cardiac hypertrophy and fibrosis, as

well as in many other types of fibrosis.46 High levels of

the chemokine are seen in patients with food-induced

anaphylaxis,73 gastrointestinal food allergies74 and

childhood allergy development,75 with elevated CCL17

serum levels reported to be a potential diagnostic

biomarker for food protein–induced enterocolitis

syndrome, which is a non-immunoglobulin E–mediated

gut allergic response.76 Its tear levels have even been

suggested to be a diagnostic biomarker for acute and

chronic allergic conjunctival disorders,77 and atopic and

vernal keratoconjunctivitis.78 These studies again

highlight the potential for CCL17 to serve at least as a

diagnostic biomarker for numerous diseases.

Coronavirus disease 2019

Severe acute respiratory syndrome coronavirus 2 can

cause various clinical respiratory symptoms in infected

individuals that range in severity, with up to 20% of

patients with coronavirus disease 2019 developing severe

pneumonia that requires supplemental oxygen or invasive

cardiopulmonary support.79 One study found that high

CCL17 expression in the early phase of disease is

predictive of a mild to moderate, rather than a severe to

critical infection, and that the chemokine could be used

as a triage marker during the first day of

hospitalization.79 Interestingly, anti-GM-CSF and anti–
GM-CSF receptor mAbs were trialed for early and late

stages of coronavirus disease 2019, although their use has

not translated into clinical practice.80

Cancer

Cancer encompasses a myriad of different diseases

affecting all types of tissue, and there is some evidence

that CCL17-driven metastasis contributes to the

pathogenesis of some cancers. It has been reported that

CCL17 promotes bladder cancer cell metastasis,81

proliferation of cervical cancer cells82 and mediates

human keratinocyte proliferation into cutaneous

squamous cell carcinoma.83 Mechanistically, studies have

shown that CCL17-dependent84 and CCR4-dependent85

Treg recruitment have been associated with impaired

antitumor immunity via inhibiting cytotoxic T cells,

resulting in tumor growth. These findings highlight the

potential use of CCL17/CCR4 axis inhibitors, in

conjunction with other treatments (e.g. checkpoint

inhibitors), for better clinical outcomes.

CCL17 and Tregs are highly associated with Epstein–
Barr virus–positive pyothorax-associated lymphoma

cells86; further, they are associated with esophageal

squamous cell carcinoma.87 CCL17 is also secreted by

multinucleated Reed–Sternberg cells in Hodgkin’s

lymphoma, and its levels negatively correlate with

disease status, treatment response and survival rates for

patients.88 Thus, while cancers are highly heterogeneous,

the inhibition of CCL17 and its chemotactic targets may

restrict the metastasis and proliferation of some cancer

cells.
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CONCLUDING REMARKS

As indicated earlier, CCL17 has traditionally been viewed as

a T-cell chemokine acting via its cognate receptor, CCR4,

and is often associated with Th2 biology as its expression is

elevated in T-cell–associated pathologies (Figure 1), such as

AD and asthma, with such expression being upregulated by

Th2 cytokines, such as IL-4 and IL-13. Given the wide

receptor distribution and its own wide-ranging expression

in disease, it is likely that this limited view would be

inadequate to explain all CCL17 biology and that there

would be other responsive cell types and functions. Indeed,

it can be seen from the discussion above that CCL17 can

play a role in some T-cell–independent pathologies

(Figure 1), such as in OA models, and its deletion/depletion

can sometimes have a minor bearing on cell numbers at a

site of inflammation, even though it leads to a beneficial

outcome. Given the widespread elevation of CCL17 levels in

disease and CCR4 expression in a range of cell types,

including both T and non-T cells, it is likely that both

T-cell–associated and non-T-cell–associated functions will

occur, for example, in eosinophilic disorders and fibrosis

(Figure 1). Many more targeting and mechanistic studies

are obviously needed to determine the relevance of CCL17

to disease pathogenesis and, if so, its mode of action, and

whether other unknown stimuli are also involved. As

mentioned earlier, in this context there appears to be a

GM-CSF/CCL17 pathway acting in vivo in both preclinical

and clinical studies, again pointing to other CCL17 biology.

As CCL17 shares its receptor with CCL22 and other

ligands such as chemokine-like factor 1 (CFKL1),89 care

needs to be exercised in interpreting data resulting from

targeting CCR4 directly, that is, in assigning a role for

any of these particular ligands. Because there are multiple

ligands for CCR4, specific CCL17 blockade could have

fewer adverse effects than targeting CCR4 itself, although

more research on comparing the biology of the respective

components of this system would be informative. A

human CCL17 inhibitor is currently being tested in

clinical trials for knee OA pain (NCT03485365) and in a

battery of evoked pain tests in healthy volunteers

(NCT04114656); given the high prevalence of pain

globally, this approach could be widely used to treat

different types of pain.

This review has outlined some of the new CCL17

biology with implications for its use as a potential

diagnostic biomarker and for its therapeutic targeting.

Hopefully, further research will be soon forthcoming to

answer some of the outstanding questions raised.
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Figure 1. CCL17 is more than a T-cell chemokine. CCL17 is elevated

in many autoimmune/inflammatory diseases. CCL17, via its cognate

receptor, CCR4, is traditionally viewed as a T-cell chemokine with its

putative role mainly associated around Th2-driven pathology (e.g.

atopic dermatitis and asthma) and Treg-driven pathology (e.g.

Hodgkin’s lymphoma and cancer metastasis). Recent studies have also

implicated CCL17 as having a novel role in non-T-cell–associated

pathology; for example, in the pain associated with osteoarthritis and

inflammatory arthritis. Given the widespread elevation of CCL17

levels in disease and CCR4 expression in a range of cell types, it is

likely that both T-cell–associated and non-T-cell–associated functions

will occur (e.g. in eosinophilic disorders and fibrosis). Although CCL17

has been claimed to be associated with many “autoimmune/

inflammatory” diseases, many more targeting and mechanistic studies

are still needed to determine (i) the relevance of CCL17 to disease

pathogenesis, (ii) its mode of action and (iii) whether other unknown

stimuli are also involved. CCL17, chemokine (C–C) ligand 17; CCR4,

C–C chemokine receptor type 4; Treg, regulatory T cells.
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