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Mapping connectomes with diffusion MRI:  

deterministic or probabilistic tractography?  

Abstract 

Purpose 

Human connectomics necessitates high-throughput, whole-brain reconstruction of multiple white matter 

fiber bundles. Scaling-up tractography to meet these high-throughput demands yields new fiber tracking 

challenges, such as minimizing spurious connections and controlling for gyral biases. The aim of this 

study is to determine which of the two broadest classes of tractography algorithms—deterministic or 

probabilistic—is most suited to mapping connectomes.  

Methods 

This study develops numerical connectome phantoms that feature realistic network topologies and that are 

matched to the fiber complexity of in vivo diffusion magnetic resonance imaging (dMRI) data. The 

phantoms are utilized to evaluate the performance of tensor-based and multi-fiber implementations of 

deterministic and probabilistic tractography.  

Results 

For connectome phantoms that are representative of the fiber complexity of in vivo dMRI, multi-fiber 

deterministic tractography yields the most accurate connectome reconstructions (F-measure=0.35). 

Probabilistic algorithms are hampered by an abundance of false positive connections, leading to lower 

specificity (F=0.19). While omitting connections with the fewest number of streamlines (thresholding) 

improves the performance of probabilistic algorithms (F=0.38), multi-fiber deterministic tractography 

remains optimal when it benefits from thresholding (F=0.42).  

Conclusions 
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Multi -fiber deterministic tractography is well suited to connectome mapping, while connectome 

thresholding is essential when using probabilistic algorithms.  

Keywords: connectome, phantom, ground truth, tractography, diffusion MRI, network 

Mapping the human connectome (

Introduction 

1, 2) is a major goal in neuroscience. The connectome refers to a 

comprehensive network description of the brain, often represented as a graph, where nodes denote brain 

regions and edges represent white matter pathways (3-5). Tractography can be used to reconstruct white 

matter pathways in vivo using diffusion-weighted Magnetic Resonance Imaging (dMRI) (6, 7). 

Tractography was originally developed to reconstruct and virtually dissect individual or small groups of 

white matter fascicles (8, 9), whereas connectomics requires high-throughput, whole-brain reconstruction 

of thousands of connections. Scaling-up tractography to meet these high-throughput demands has given 

rise to new challenges, such as minimizing spurious connections (10), identifying fiber terminations and 

acceptance criteria (11, 12),  and controlling for gyral biases (13, 14). Which of the many tractography 

algorithms available can best address these important challenges remains unclear (15, 16).   

Tractography in connectomics is a process that comprises three steps: (i) estimation of local fiber 

orientations; (ii) linking together these local fiber orientations to generate streamlines that represent the 

long-range trajectories of white matter fibers; and, (iii) assigning streamlines to pairs of nodes to build a 

connectivity matrix. Numerous models have been developed to estimate local fiber orientations. The 

classical diffusion tensor (17-19) is one such model that is unable to estimate multiple fiber orientations. 

To overcome this limitation, a probability distribution of orientations can be fitted using any of a number 

of models, including deconvolution methods (20, 21), q-ball imaging (22-25) or diffusion spectrum 

imaging (26).  Their utility has been demonstrated in tracking deep white matter (27) and the transition 

between gray and white matter (28). Once local fiber orientations have been estimated, tractography is 

used to link together these local orientations to generate streamlines that trace out the trajectories of fiber 

bundles.  

Tractography can be broadly categorized into two classes: deterministic and probabilistic algorithms.  The 

salient feature that distinguishes these two categories is the sampling of fiber directions for streamline 

propagation. With deterministic tractography, streamlines are steered according to a fixed (deterministic) 

direction at each voxel. Deterministic methods can be used for both single (9, 29-31) and multiple fiber 

orientations estimated per voxel. A criticism leveled against deterministic methods is that they are unable 

to account for inherent uncertainty in estimates of fiber orientations (32), are sensitive to the estimated 

principal direction (33) and susceptible to noise (34). In contrast, with probabilistic tractography, a 
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distribution of fiber orientations is estimated for each voxel (27, 35, 36), where a sample is randomly 

drawn from this distribution to determine the direction of streamline propagation. Probabilistic methods 

are usually more computationally expensive, but can better account for uncertainty in data (33, 37, 38).  

Probabilistic tractography is generally considered a superior method for reconstructing and dissecting 

individual white matter fascicles, particularly if there is a need to quantify the confidence (probability) of 

each reconstructed pathway (6). However, for high-throughput applications of tractography such as 

connectome mapping, where spuriously reconstructed fibers can rapidly multiply due to the multiplicity 

of testing, it remains unclear whether deterministic or probabilistic tractography is superior. Tractography 

in connectomics involves seeding millions of streamlines throughout the entire white matter volume. 

With probabilistic methods, each of these streamlines can traverse a unique trajectory, and if a sufficient 

number of streamlines is generated, it is likely that streamlines will be found between virtually all pairs of 

nodes, resulting in a fully-connected connectome. To reduce connection density, thresholding can be 

performed to eliminate connections comprising the fewest numbers of streamlines, under the assumption 

that these connections are spurious (39, 40). While eliminating connections with a low streamline count 

can improve connectome specificity, not all eliminated connections are necessarily spurious, and thus any 

gain in specificity is inevitably traded for a loss in sensitivity (41-43). Given these difficulties, 

deterministic fiber tracking might be considered a viable alternative for high-throughput applications such 

as connectome mapping. Indeed, a recent study that compared a plethora of tractography algorithms 

found that deterministic methods can sometimes outperform their probabilistic counterparts (15). It is 

important to remark that several advanced fiber tracking methods are not amenable to classification as 

either deterministic or probabilistic tractography algorithms. These include global (44-51) and graph-

theoretic tractography methods (52-55), machine learning approaches (56, 57), fiber tracking based on 

anatomical models (14) and fast marching methods (58, 59

The absence of a ground truth limits the ability to assess the accuracy and precision of connectomes 

reconstructed with tractography. The current gold standard in quantitative tractography evaluation is 

axonal tract tracing (

). Advanced methods are not evaluated in the 

present study.  

13, 42, 43, 60-62), but tract tracing is highly invasive and yields a micron resolution 

that is orders of magnitude finer than the millimeter resolution afforded by dMRI. This mismatch in 

spatial scale can complicate the comparison between the two modalities. To overcome the shortcomings 

of using tract tracing as a benchmark for tractography, dMRI phantoms have been developed in the form 

of physical (63-67) and numerical (68-74) dMRI phantoms. The majority of these phantoms were 

developed to evaluate the accuracy with which fiber bundle geometry, spatial extent and curvature is 

reconstructed by tractography. However, faithful reconstruction of these geometric attributes is not a key 
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consideration for connectomics. When mapping a connectome, the most important consideration is 

whether a fiber bundle is present/absent between a pair of brain regions, and the strength of fibers that are 

present.  Most phantom-based evaluations undertaken to date have not assessed the important step of 

assigning streamline endpoints to pairs of nodes to build a connectivity matrix. A notable exception is the 

recent study of Maier-Hein and colleagues (15), where a numerical phantom (composed of 25 manually 

segmented white matter bundles) was used to evaluate tractography performance with respect to the 

number of valid (true positives) and invalid (false positives) bundles. These two metrics explicitly 

quantify the accuracy and precision with which connectomes (connectivity matrices) can be reconstructed 

with tractography. These connectivity measures were first developed in the Tractometer study (75,76), a 

tractography evaluation and validation system, which evaluated valid and invalid bundles estimated by 

tractography algorithms under the simplified conditions of the realistic dMRI Fibercup phantom, 

comprising only seven fibers (63). Subsequently, Girard and colleagues (77) used  a numerical phantom 

comprising 27 fibers (73, 75

Here, we aim to develop numerical connectome phantoms to evaluate which of single and multi-fiber 

implementations of deterministic or probabilistic tractography can reconstruct binary connectivity 

matrices with the greatest accuracy and precision. We develop connectome phantoms with realistic 

topological attributes, at the expense of a more rudimentary modeling of fiber geometry. Fiber bundles 

are modeled as curved tubular structures of fixed diameter, and nodes are positioned along the 

circumference of a circle and interconnected with realistic network topologies. We generate ensembles of 

ground truth connectivity matrices, simulate corresponding dMRI signals, estimate local fiber orientations 

in the simulated data, perform tractography and finally reconstruct connectivity matrices. We evaluate the 

performance of connectivity matrix reconstruction with respect to the presence or absence of connections, 

without considering connectivity strength.     

), to show that connectivity measures derived from Tractometer can be 

improved by seeding streamlines from the white/gray-matter interface, using partial volume as stopping 

and streamline filtering criteria.     

Methods 

Connectome Phantom Generation 

This section provides an overview of the construction and simulation of the connectome phantom. Details 

can be found in Supporting Information S1 and a schematic is shown in Figure 1(a)

i. Node Delineation: The phantom was instantiated in three dimensions, where fiber trajectories and 

node locations were fixed across the third dimension for simplicity and ease of visualization. A 

circle was positioned at the center of a 140 × 140 × 5 grid of voxels and fiber trajectories were 
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only permitted to traverse the interior of the circle. The circumference of the circle was uniformly 

subdivided into NR sectors, where each sector represented a single node. For the current study, we 

used NR

ii. Connectivity Matrix Generation: The absence/presence of connections was encoded with a 

symmetric connectivity matrix G (�� × ��) where element (�, �) was set to one if a connection was 

present between nodes � and �, otherwise this element was set to zero. The connectivity matrix was 

sampled from a generative model that yielded networks with topological attributes comparable to 

empirical brain networks (

=25. 

78-79). Specifically, the relative probability of connection formation 

between nodes i and j was given by �(�, �) ∝ �(�, �)ɳ ×  �(�, �)�  where �(�, �)  denotes the 

Euclidean distance and �(�, �)  represents a non-geometric relationship between nodes i and j. 

Betzel and colleagues (79) tested different non-geometric models for �(�, �) and found that the 

matching index resulted in networks with the greatest topological resemblance to empirical 

connectomes.  We thus generated networks based on the matching index model, with exponents 

that have previously been found to yield realistic topologies (ɳ = −0.98 and � = 0.42; 79

iii. Fiber Bundles: Tubular fibers with varying curvature and diameter were generated between all 

pairs of nodes (i,j) for which G

). The 

number of connections was varied to generate phantoms with connection densities ranging from 2 

to 20%. 

ij = 1. For each such pair of nodes, a curved trajectory was drawn 

between randomly chosen voxels in nodes i and j.  Specifically, control points were positioned 

along the straight line between the two endpoints, each of which defined the center of a circle 

around which the straight line was deformed to yield a curved fiber trajectory (Figure 1(b)). For a 

fiber with only a single bend (Figure S.1(b)-left image), the mid-point of the line connecting the 

two endpoints was computed, which served as the center of curvature. The point located 

perpendicularly with distance r from this center acted as a control point for the fiber. Afterwards 

cubic spline interpolation of the end points and control point was performed to generate 

intermediate points defining the complete fiber. Similarly, for a fiber with multiple bends (Figure 

1(b)-right image, three center of curvature points were equidistantly located on the line joining the 

two end points. A local tangent vector, denoted with v, was estimated for each of 1000 points 

parameterizing the length of each fiber trajectory. Each trajectory was then dilated cross-sectionally 

to endow it with volume, thus resulting in a tubular bundle (

)

Figure 1(c)

iv.   Synthetic dMRI Generation: The compartment model was used to generate dMRI data. Each 

fiber that traversed a voxel contributed an anisotropic compartment and voxels that were not 

). Tangent vectors were 

used to simulate the dMRI signal for each voxel.   
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traversed by any fiber comprised an isotropic compartment. We used the “ball” model (38) for the 

isotropic and the zeppelin model (80-82) for anisotropic compartments, with volume fraction f and 

1-f respectively. The dMRI signal for the ith voxel for gradient direction � and b-value b was given 

by (71

�� = ��−�� + (1 − �) � ��−�����(�)�� ���∈��  

),  

(1) 

where d is the diffusivity of the isotropic compartment, ��  is the set of all fiber paths inside the ith 

voxel and Dp(x )

��(�) = α��� + β� 

 is the prolate tensor defining the anisotropic diffusion at point � of path � ∈ ��, 
given by, 

(2) 

where v denotes the local tangent vector of the fiber trajectory at point x (Step iii ), I is the identity 

tensor, α and β are diffusivity parameters. If d || and d⊥ are the apparent diffusivities parallel and 

perpendicular to the principal direction respectively, then d ||=α+β and d⊥=β. The integral in 

Equation (1)

v.  Noise: Finally, Rician noise (

 was evaluated by sampling at most 3 tangent vectors within each voxel along the 

length of each fiber path. Therefore, for a given fiber path, �, multiple tangent vectors were often 

estimated within the same voxel. 

83) was added to the dMRI signal. The signal-to-noise ratio (SNR) 

was computed as ��� = �0/�, where �0 is the non-gradient weighted signal (b=0) averaged across 

voxels traversed by fibers.  

Phantom Simulation 

We generated phantoms with connection densities ranging from 2 to 20% in increments of 2%. For each 

connection density, we generated 100 phantoms, where for each phantom a new connectivity matrix was 

sampled using the generative model.  Diffusivity parameters were chosen to match human brain tissue 

(71); namely, d ||= R1.5x10-3 mm2/s and d⊥= R0.2x10-3 mm2/s for the zeppelin compartment, whereas d=

R0.9x10-3 mm2/s for the ball compartment. The choice of the volume fraction value (�) for compartment 

models is somewhat arbitrary (84, 85). In this study, we used a volume fraction of � = 0.2 for all voxels. 

We also evaluated a range of alternative volume fraction values and found that the relative performance 

ranking of the four tractography algorithms was not substantially affected by this parameter choice 

(Supporting Information S4

 Nominal dMRI acquisition parameters for this study were: 2x2x2 mm

). 

3 voxel resolution, 60 diffusion 

gradients distributed equally over the sphere, b-value of 2000 s/mm2 and an SNR of 10 dB for the non-
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gradient weighted image. Investigation of alternative acquisition parameters (b-value= R 1000, 3000 

s/mm2 and SNR= R20, 30 dB) can be found in Supporting Information S2 and 

Tractography 

S3. 

We utilized our phantoms to evaluate which of deterministic or probabilistic tractography can reconstruct 

binary connectivity matrices with the greatest accuracy and precision. We considered four tractography 

implementations: i) deterministic tensor-based tracking (Det Tensor) with Euler integration (29); ii) 

probabilistic tensor-based tracking (Prob Tensor) using bootstrapping (37); iii) deterministic tracking 

steered according to peaks in the fiber orientation distribution (FOD) estimated with constrained spherical 

deconvolution (Det CSD; 36); and, iv) probabilistic CSD tracking (Prob CSD; 35). We used 

implementations of these four algorithms provided by the MRtrix tckgen function (www.mrtrix.org; 

tensor_det, tensor_prob, sd_stream and ifod2, respectively).  

A spherical harmonic order of 8 was used for CSD and 1 million streamlines were generated for each 

phantom. Default parameter settings recommended in the MRtrix tckgen function were used for the 

angle threshold, step size, FA (fractional anisotropy) and FOD threshold (Table 1).  

Evaluation Methodology 

Tractography was performed on the phantoms to infer connectivity matrices, which were then compared 

to the ground truth connectivity matrices. A connection was defined as the set of all streamlines with 

endpoints residing in the same pair of nodes. Streamlines with one or both endpoints terminating before 

reaching a node were discarded. Each connection was associated with a streamline count, defined as the 

number of streamlines that it comprised. Connections that were present in both the ground truth and 

reconstructed connectivity matrices were called true positives (TPs), while connections that were only 

present in reconstructed matrices were called false positives (FPs). False negatives (FNs) were 

connections that were absent in the reconstructed connectivity matrices, but present in the ground truth 

matrices.     

Before computing TPs, FPs and FNs, the streamline count for each connection was thresholded to yield 

binary connectivity matrices B. The streamline threshold was increased incrementally from zero to the 

maximum streamline count of a connecting pair of nodes (reported as percentage of streamlines). If the 

connection between regions �  and � comprised fewer streamlines than the threshold, we set ��� = 0 ; 

otherwise ��� = 1. The binary matrices B were used to compute the FP and TP rate, 

#�� = ∑ 1{���∩���}��  ;  #�� = ∑ 1{���−���}��  ; #�� = ∑ 1{���−���}��  (3) 
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��� =
#��∑ 1{���}��  ; ��� =

#��∑ (1−���)��  (4) 

 

The F-measure was computed for the reconstructed connectivity matrices to assess the tradeoff between 

TPs and FPs with a single index,  � =
2 × #��

2 × #�� + #�� + #�� (5) 

We used the F-measure primarily because this index was not overwhelmed by the disproportionate 

number of true negatives that was characteristic of the relatively sparse connectivity matrices considered 

here.  

Phantom Complexity 

To quantify the impact of variations in connection densities, fiber configurations and network topologies, 

we defined measures of voxel and fiber complexity.  Voxel complexity, ��, was defined as the proportion 

of voxels intersected by more than one fiber bundle out of the set of all voxels intersected by at least one 

fiber bundle. Complementarily, fiber complexity, �� was defined as,  

�� =
∑ ����>1∑ ����≥1  (6) 

where �� denotes the number of fibers traversing the �th voxel in the ground truth. For ��, complexity is 

measured categorically, with any voxel comprising more than one fiber considered complex. In contrast, �� quantifies the percentage of multiple fibers in a phantom and together these two measures help to 

understand the impact of multiple fiber configurations on tractography.  

Using our measures of voxel and fiber complexity, we benchmarked the complexity of each phantom to 

the complexity of in vivo dMRI data from the Human Connectome Project (HCP; 86). To measure �� and �� in the HCP data, the number of fiber orientations per voxel was estimated with two complementary 

methods: i) estimation of the FOD using multi-tissue constrained spherical deconvolution for multi-shell 

dMRI (MSMT;87); and, ii) the bedpostx routine provided by FSL (38). Further details are provided 

in Supporting Information S5

Results 

.  

Figure 2(a-d) shows the dMRI image for a typical connectome phantom with connection density of 12%, 

including an axial slice of the non-diffusion weighted (b=0) image and FA image. Figure 3 shows 

representative streamlines generated by the four tractography algorithms for dMRI images with varying 
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connection density. Figure 4 shows representative streamlines generated by the four tractography 

algorithms for the dMRI images shown in Figure 2(c)

For brevity, we only report performance for the case of dMRI images with a b-value of 2000 s/mm

, together with the diffusion tensor and FOD 

estimates for a slice of voxels in a region of intersecting fibers.  It can be seen that Det Tensor generated 

several broken streamlines that failed to traverse the intersecting fibers, whereas the CSD-based tracking 

algorithms navigated this region with greater success. However, Prob CSD yielded streamline trajectories 

that were somewhat rippled (i.e. trajectory oscillates from side-to-side). We quantify this rippling artifact 

below.  

2 and 

SNR of 10 dB. Alternative b-values (1000, 3000 s/mm2) and/or SNR (20, 30 db) affected performance but 

did not substantially affect the relative performance ranking of each tractography algorithm (Supporting 

Information S2 and S3). Performance was quantified using three criteria: i) receiver operating 

characteristic (ROC) curves, which were parameterized by the streamline threshold (Figure 5); ii) F-

measure evaluated as a function of the streamline threshold (Figure 6); and iii) FN-to-FP ratio evaluated 

as a function of the streamline threshold (Supporting Information S6). For each of the four tractography 

algorithms, we quantified performance in terms of the mean and standard deviation over 100 phantom 

realizations for 10 cases corresponding to distinct connection densities (2, 4, …, 20%). Finally, �� and �� 

were used to evaluate the complexity of in vivo dMRI data from the HCP. We compared the complexity 

of our phantoms with the in vivo dMRI data to determine which phantom was most representative of the 

complexity of the human connectome (Figure 7).  

Evaluation of Connectome Reconstruction Performance  

ROC curves for the four tractography algorithms are presented in Figure 5. Prob CSD yielded the highest 

TPR for all connection densities, whereas Det Tensor yielded the lowest. However, Prob CSD also 

yielded the highest FPR. Therefore, in the absence of streamline thresholding, Prob CSD provides high 

sensitivity but poor specificity. Conversely, Det CSD yielded improved specificity compared to Prob 

CSD but lower sensitivity. This emphasizes the tradeoff between connectome sensitivity and specificity. 

Increasing connection density, and hence the number of crossing fibers, decreased the TPR for all 

algorithms and Det CSD became comparable with tensor-based tractography for a connection density of 

20%. At this density, Prob CSD continued to yield the highest TPR, but at the expense of a very high 

FPR. 

To quantify the tradeoff between TPR and FPR, we evaluated the F-measure as a function of the 

streamline threshold for each tractography algorithm (Figure 6). Det CSD achieved the maximum F-

measure for all connection densities in the range 2-16%. For phantoms with connection densities 

exceeding 16%, Prob CSD either rivaled or exceeded the performance of Det CSD.    
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We therefore conclude that the choice between Det and Prob CSD should be guided by connection 

density. Det CSD is well suited to mapping relatively sparse connectomes, whereas Prob CSD achieves a 

superior F-measure once the ground truth connection density exceeds a given threshold (20% for our 

phantoms). While streamline thresholding can be used to improve the performance of Prob CSD by 

eliminating FP connections, the choice of streamline threshold to maximize accuracy is unknown in 

practice. However, if an appropriate streamline threshold can be chosen, it can be seen that the connection 

density at which Prob CSD first rivals the performance of Det CSD is reduced to 14%. The advantage of 

Det CSD is that near-optimal performance can be achieved without the need for streamline thresholding. 

In summary, our performance evaluation indicates that: i) Det CSD is optimal for mapping sparse 

connectomes with connection densities below 20%; ii) Prob CSD can achieve comparable performance to 

Det CSD, if streamline thresholding is enforced; and iii) CSD-based methods generally outperform 

tensor-based tractography. 

It has been suggested that connectomes should be reconstructed with an FN-to-FP ratio of approximately 

2 (10). We therefore investigated the FN-to-FP ratio as a complementary measure to assess algorithm 

performance in addition to the F-measure which suggests that streamline threshold is mandatory to 

achieve a 2:1 FN-to-FP ratio (Supporting Information; Figure S8)

Complexity Estimation  

. 

Having evaluated a range of connectome phantoms with different connection densities, fiber curvatures 

and network topologies, we next sought to identify which of our phantoms most resembled the human 

connectome by comparing their complexity with in vivo dMRI data. Figure 7 shows �� (blue bars) and �� 

(red) for our phantoms and the HCP dMRI data. It can be seen that complexity increases monotonically 

with density, since the number of intersecting fibers also increases with density (Figure 7(a)).  The 

complexity estimated under different FOD thresholds using the supervised response function are shown 

in Figure 7(b) whereas the estimation using unsupervised response function can be found in Supporting 

Information S8.  For bedpostx based complexity estimation, the volume fraction of fibers was thresholded 

to estimate the number of multiple fibers, shown in Figure 7(c). A FOD threshold of 0.1 and a volume 

fraction of 0.05 has been previously recommended (38, 88). Based on these suggested thresholds, we 

estimated �� = 0.52 and �� = 0.71 with MSMT. With bedpostx, we estimated �� = 0.46 and �� = 0.67 

(dashed boxes in Figure 7(b) and 7(c) respectively). We were able to generate this level of complexity in 

our phantoms when using a ground truth connection density of approximately 10% (dashed box in Figure 

7(a)). This provided a rationale for centering the range of ground truth connection densities evaluated at 

10%.  
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Table 2 shows the maximum F-measure achieved by each tractography algorithm for the set of phantoms 

with a ground truth connection density of 10%, with and without application of a streamline threshold.  

We also show the number of streamlines that need to be discarded to achieve the maximum F-measure 

and to obtain a 2:1 FN-to-FP ratio. From Table 2, a clear difference in thresholds for maximum F-

measure and FN-to-FP suggests that there is no universal choice of threshold that can be used to study the 

connectome. The significance (two-sample t-test) and percentage difference in F-measure (with and 

without threshold) are reported in Supporting Information Table S3. 

Fiber Length Estimation 

  

Prob CSD yielded streamlines with rippled trajectories (Figure 4). We considered this rippling behavior 

an artifact, given that it was evident in simulated fibers with an entirely linear trajectory.  We therefore 

aimed to quantify the magnitude of the artifact by comparing the lengths of the reconstructed and ground 

truth streamlines. We generated 100 phantoms with the same parameters as in Methods section except 

that each phantom was limited to only one fiber. This ensured the absence of interference from other 

fibers. Fiber length was estimated as the average length of all streamlines produced by tractography. 

Length bias was then defined as the difference between the ground truth and tractography estimated fiber 

length, shown in Figure 8.  Prob CSD introduced the largest bias, whereas tensor-based tractography and 

Det CSD produced comparable bias.  The streamlines produced by Prob CSD could be post-processed, 

smoothing or filtering, to potentially reduce the length bias under the constraint of minimal change in 

spatial position or geometry of the fiber bundle. However, these post-processing steps increase the 

computational burden of the tractography pipeline and necessitate somewhat arbitrary choices about the 

extent to which the streamline trajectory is smoothed. 

Spherical Connectome Phantom 

Two-dimensional connectome phantoms might be considered unrealistic given that brain networks are 

embedded in three-dimensional space. To investigate the impact of omitting a spatial dimension in our 

models, we developed a simple three-dimensional connectome phantom in which nodes were positioned 

on the surface of a sphere and fiber bundles traversed the sphere’s interior. Fiber bundle generation and 

simulation of synthetic dMRI data followed the same models described above for the two-dimensional 

case.  We generated a spherical phantom comprising 60 nodes and a connection density of 15% to achieve  �� = 0.5 and �� = 0.7. We found that our key conclusions were consistent between the two- and three-

dimensional phantoms; namely, Det CSD produced the highest F-measure and probabilistic methods were 

hampered by an abundance of false positive connections. Supporting Information S9 provides further 

details about the simulation and analysis of the spherical phantom. 
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Discussion 

In this study, we developed numerical connectome phantoms to specifically evaluate the performance of 

four tractography algorithms with respect to reconstructing binary connectivity matrices. The connectome 

phantoms we generated were based on realistic ground truth connectivity matrices and matched to the 

fiber complexity of in vivo dMRI data. We utilized our phantoms to evaluate the performance of two 

popular implementations (tensor-based and multi-fiber) of the two broadest classes of tractography 

algorithms (deterministic and probabilistic). Many alternative implementations of these tractography 

algorithms have been developed, rendering an exhaustive evaluation intractable, although the recent study 

of Maier-Hein and colleagues (15) provides a very comprehensive assessment. Therefore, it is important 

to remark that our conclusions do not necessarily generalize to all available algorithms.  

The primary aim of this study was to assess whether deterministic or probabilistic tractography is best 

suited to connectome mapping. We found that multi-fiber deterministic tractography (Det CSD) provided 

superior performance in mapping connectome phantoms that were matched to the fiber complexity of in 

vivo dMRI data. However, for connectome phantoms with a fiber complexity that exceeded the 

complexity of in vivo dMRI data, we found that multi-fiber probabilistic tractography (Prob CSD) 

outperformed the other three algorithms evaluated. The performance of Prob CSD deteriorated for the 

lower complexity phantoms due to reconstruction of an abundance of spurious (false positive) 

connections. While connectome thresholding substantially reduced this problem, selecting an optimal 

threshold to eliminate connections with the fewest streamlines is challenging. We thus recommend 

stringent connectome thresholding when using Prob CSD for connectome mapping and advocate Det 

CSD as a viable alternative. This deviates from conventional tractography dogma suggesting that 

probabilistic algorithms are generally superior to their deterministic counterparts. While this may indeed 

be true for classic applications of tractography that involve virtual dissection of individual fibers, our 

findings suggest that probabilistic algorithms are not necessarily superior for high-throughput applications 

such as connectomics. More specifically, we hypothesize that the fiber complexity of the human brain 

might not be sufficiently high to warrant probabilistic tractography algorithms. Probabilistic algorithms 

were only warranted when fiber complexity substantially exceed the complexity of the human brain.  

We generated connectome phantoms with varying connection density and fiber complexity (Figure 7). 

The ground truth connectivity matrices were generated using a generative network model (Methods) to 

produce networks with topological attributes that are characteristic of nervous systems. While the 

connectome phantoms comprised only 25 nodes, we have verified that the ground truth topologies 

comprised hubs and evidence of small-world organization. Specifically, high clustering between nodes 

and the presence of short path lengths were verified by calculating the small-world index for the 
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generated networks. The calculated index was always greater than 1, e.g. phantom with connection 

density of 20% had small-world index ≈ 1.2.  

We matched the fiber complexity (�� and ��) of our connectome phantoms to the complexity of in vivo 

dMRI data. Jeurissen and colleagues (88  used classical FA based single-fiber response function to 

estimate the FODs using CSD and suggested a complexity �� = 90% for single-shell dMRI data. In this 

study, the response function was calculated using supervised (

)

87) and unsupervised co-registered T1 

image (89) methodologies for a HCP multi-shell dataset of five subjects. The FODs were estimated using 

the MSMT technique, which suggested �� = 52% . This difference in complexity is due to the 

overestimation of number of crossings in a single-shell dataset used by Jeurissen and colleagues (88).  

Using the bedpostx fiber estimation method, Jeurissen and colleagues (88) suggested �� = 63%, whereas 

using the same methodology and parameters the current study approximated �� = 46% . This 

dissimilarity is again due to the usage of a multi-shell dataset in the current study.  

In the following, we specifically discuss results pertaining to the connectome phantoms that were most 

representative of the in vivo dMRI data. The connection density of these phantoms was 10%. The 

classical tensor model cannot resolve multiple fiber configurations, which resulted in the lowest TPR, 

regardless of the tractography algorithm (Figure 5). In contrast, multi-fiber models (CSD) yielded the 

highest TPR. The FPR of Det CSD coincides with the tensor model (Figure 5(e)), but its TPR is 

substantially higher. Both Det and Prob Tensor have similar TPR and FPR, whereas a substantial 

difference can be observed for Det and Prob CSD. Det CSD has comparatively low TPR and FPR to Prob 

CSD, whereas Prob CSD has the highest TPR but at the expense of high FPR.  

Is connectome thresholding necessary? Zalesky and colleagues (10) recommended the 2:1 rule of thumb 

for a connectome i.e. FNs should be twice the number of FPs. This ratio is not achievable if the generated 

streamlines are not thresholded (Table 2). Like F-measure, Prob CSD required the highest streamline 

threshold to achieve FN/FP ratio of 2:1 (Table 2).  The optimal threshold value was obvious here because 

the ground truth was known, but for in vivo data approximation of this threshold is challenging.  

The tractography algorithms are dependent on angle threshold and variation in outcome is observed by 

changing angle threshold (39, 63, 71, 77).   The investigate the impact of angle threshold, the nominal 

angle thresholds were swapped between the algorithms, 9o with 45o (Supporting Information S7) and the 

simulations were repeated. Det CSD with default angle threshold however produced the highest F-

measure, though the outcome of Prob CSD notably improved (Supporting Information; Figure S10). The 

SNR and b-value were also varied but a substantial change in the performance of Det CSD could not be 

observed.  
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Streamline weighting and filtering methods such as COMMIT (90) and SIFT (91) can potentially improve 

the accuracy of connectome reconstruction. However, SIFT can potentially yield spurious between-group 

differences when comparing streamline counts across all pairs of nodes with methods such as the 

network-based statistic (92). An example of this phenomenon is shown in Supplementary Figure S14

Several important limitations require consideration. First, conclusions derived from numerical phantoms 

do not necessarily generalize to in vivo dMRI data. In this respect, our connectome phantoms are 

relatively simplistic with respect to fiber geometry and spatial embedding of the connectome. For 

example, our phantoms are effectively two-dimensional with nodes positioned along a circular 

circumference, whereas the human brain is three-dimensional with a convoluted cortical geometry.  

However, we ensured that that our two-dimensional phantoms were matched to the fiber complexity of 

three-dimensional in vivo dMRI data. Moreover, we developed a three-dimensional spherical phantom 

and found that inclusion of a third spatial dimension is consistent with the conclusions of our performance 

evaluation. Future work will focus on developing three-dimensional connectome phantoms with fiber 

configurations that resemble the human brain more closely. Second, for computational tractability, our 

connectome phantoms comprised only 25 nodes. In practice, connectome mapping is undertaken with a 

greater number of nodes. Despite this, we found that the topology of our ground truth connectivity 

matrices exhibited topological attributes that are characteristic of nervous systems. Thirdly, although our 

connectome phantoms were produced using generative models (

.  

77), which aim to recapitulate brain 

network topologies, the geometrical configuration of the simulated fiber bundles does not map to the true 

geometry of the brain fiber bundles. The impact of fiber bundle geometry has previously been well 

studied (61, 62, 64-66, 69, 72, 74). Fourth, we studied binary connectivity matrices (absence/presence of a 

connection), whereas connectome mapping also focuses on the strength of connections (i.e. number of 

streamlines per connection) in practice. But the connectivity strength is dependent on data quality, 

tractography algorithm and its inherent limitations (6). Finally, we evaluated only four tractography 

algorithms, which are not necessarily representative of alternative algorithms. Therefore, our conclusions 

do not necessarily generalize to all implementations of deterministic and probabilistic tractography.  

In conclusion, we developed numerical connectome phantoms to evaluate whether deterministic and 

probabilistic tractography algorithms are suited to connectome mapping. We identified which of our 

phantoms were most closely matched to the fiber complexity of in vivo dMRI data and found that multi-

fiber deterministic tractography was best able to recover the ground truth connectivity matrices for these 

phantoms. Single-fiber methods based on the diffusion tensor generally performed poorly in most cases. 

We showed that the performance of probabilistic tractography is burdened by a high FPR. In the future, 

the use of multi-shell multi-tissue methods (85) can potentially reduce the FPR of probabilistic 
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tractography. In the meantime, we recommend stringent connectome thresholding if probabilistic 

tractography is used to map connectomes.  
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Main Figures 

Figure 1. Schematic of phantom generation for a 10-node connectome. Nodes are delineated on the 

circumference of a circle (colored segments) and interconnected via fiber bundles. A ground truth 

connectivity matrix dictates whether a fiber bundle is present/absent between each pair of nodes. 

Fiber bundles are modeled as curved tubular structures with fixed diameter. A multi-compartment 

dMRI model is used to generate dMRI signals for each voxel, such that each fiber bundle 

traversing a given voxel contributes an independent anisotropic compartment to the signal. Finally, 

Rician noise is added. (b) Example fiber bundle segments comprising one (left) and three (right) 

control points.  Fiber trajectories are denoted with solid black lines. Black circles denote 

endpoints, yellow circles represent control points situated at perpendicular distances r from the 

center of curvatures represented by green solid circles and red solid circles are the intermediate 

points generated using cubic-spline interpolation. To generate a tube, the fiber trajectory is 

extended perpendicularly to yield a prescribed bundle diameter. Gray shading denotes the tubular 

bundle (c) Example fiber bundle architecture for 10-node phantoms comprising 10 distinct fibers. 

Fiber color is determined by diameter. Fibers are tubular (three-dimensional) and fiber curvature is 

confined to the two-dimensions on which the circle resides.   

Figure 2. Simulated dMRI images of a representative connectome phantom with connection 

density of 12% (a-d), d||=1.5x10-3 mm2/s and d⊥=0.2x10-3 mm2/s for the zeppelin compartment and 

a diffusivity D=0.9x10-3 mm2

Figure 3. Tractograms of ground truth model (a) with connection density (i) 4% (j) 8% (k)12% (l) 

16% (m) 20%. The ground truth tractography is generated using tensor deterministic tractography 

on individual fibers and merging the individual fibers to produce tractogram. Streamlines in the 

region encapsulated by the blue rectangular box are shown for (b) Det Tensor (c) Prob Tensor (d) 

Det CSD (e) Prob CSD. For visualization purposes, a ground truth reconstruction was determined 

by generating a separate dMRI image for each fiber. Each of these dMRI images only included the 

signal from a single fiber. Deterministic tensor-based tractography was performed independently 

on each dMRI image and the streamlines reconstructed for each fiber were merged to form a single 

set of streamlines (a). 

/s for the ball compartment.  Acquisition parameters listed in 

“ Methods”.   (a) Non-diffusion weighted signal without noise, (b) FA image without noise, (c) 

non-diffusion weighted volume with noise (SNR=10db), (d) FA image with noise.  

Figure 4. Streamline trajectories (a-e), diffusion tensors (f) and FODs (g) for a representative 

connectome phantom with connection density of 12%. Streamlines in the region encapsulated by 
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the blue rectangular box are shown for (b) Det Tensor (c) Prob Tensor (d) Det CSD (e) Prob CSD 

tractography algorithms.  

Figure 5. Receiver operating characteristic (ROC) curves for connectome phantoms with 

connection density 2% - 20% (a-j; increments of 2%). Curves are parameterized by the streamline 

threshold. The rightmost point on each curve corresponds to a threshold of zero, while the most 

severe threshold corresponds to the leftmost point. Insets characterize behavior for false positives 

rates below 0.05. Note that Prob CSD typically generates a diffuse streamline distribution, 

resulting in TPR and FPR combinations that cannot be achieved with the other algorithms. This is 

evidenced by the red curve terminating at a higher position than the others. For the connection 

density of 10% (e), the CSD-based algorithms (Det CSD, Prob CSD) yield better performance than 

their tensor-based counterparts (Det Tensor, Prob Tensor). If streamline thresholding is used, Prob 

CSD can achieve the same performance at Det CSD. Without thresholding, the FPR of Prob CSD is 

approximately 1 for a connection density of 20%.   

Figure 6. F-measure as a function of the streamline threshold for connectome phantoms with 

connection density 2% - 20% (a-j; increments of 2%). The leftmost point on each curve 

corresponds to the absence of a streamline threshold, where a connection is assumed to be present 

for any pair of regions interconnected by at least one streamline. For the connection density of 10% 

(e), Det CSD outperforms the other three algorithms by a factor of approximately 2 if streamline 

thresholding is not used (leftmost data points). While the performance of Prob CSD can be 

substantially improved with thresholding, Det CSD yields the maximum F-measure across all 

threshold values for connection densities 2%-12% (a-f). 

Figure 7. Complexity of simulated and in-vivo dMRI data. Complexity was quantified with voxel 

(red bars: ��) and fiber (blue bars: ��).  (a) Complexity of the connectome phantoms (simulated 

dMRI data) for varying connection density. Complexity of in-vivo dataset estimated using (b) 

MSMT (c) Bedpostx. Dashed boxes in (b) and (c) indicate the recommended FOD and volume 

fraction thresholds, respectively.  Dashed box in (a) indicates the connection density that achieves 

a complexity that is best matched to the complexity of the in vivo data.       

Figure 8. Distribution of bias in reconstructed fiber lengths. Bias was computed as the ground 

truth fiber length subtracted from the reconstructed fiber length. Reconstructed fiber length was 

estimated based on the average streamline length of all streamline comprising a fiber. Distribution 

of this bias across multiple fibers is shown for four tractography algorithms. 
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Main Table 

Table 1: Tractography Parameters 

Table 2:  Performance of deterministic and probabilistic tractography algorithms for a connectome 

phantom with connection density of 10%. Performance quantified as the maximum F-measure 

achievable with and without streamline thresholding. The streamline threshold required to 

maximize the F-measure and achieve an FN/FP ratio of 2 are also shown. 
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Supporting Figures 

Figure S1. (a) Example fiber with tangent vectors v represented in blue. To obtain an effective 

diameter of 5 voxels (m=4), the vectors v are replicated to neighboring voxels in 2 iterations (b) 

Iteration 1: The vectors v represented by blue are replicated to their neighboring voxels (orange) 

(c) Iteration 2: The vectors v in orange are replicated again to their neighboring voxels (green), 

resulting in a fiber with effective diameter of 5 voxels. Vectors are not replicated to voxels that 

already comprise a fiber. The length of the fiber is not affected as the end points of the fibers 

reside on the circular connectome and any replication outside the circumference is discarded. 

Figure S2. Receiver operating characteristic (ROC) curves for ground truth model of connection density 

10%, with b-value (s/mm2

Figure S3. F-measure as a function of the streamline threshold for connectome phantoms of connection 

density 10%, with b-value (s/mm

) (a) 1000 (b) 2000 (c) 3000. Curves are parameterized by the streamline 

threshold 

2

Figure S4. Receiver operating characteristic (ROC) curves for ground truth model of connection density 

10%, with SNR (db) (a) 10 (b) 20 (c) 30. Curves are parameterized by the streamline threshold. 

) (a) 1000 (b) 2000 (c) 3000 

Figure S5. F-measure as a function of the streamline threshold for connectome phantoms of connection 

density 10%, with SNR (db) (a) 10 (b) 20 (c) 30 

Figure S6. Receiver operating characteristic (ROC) curves for ground truth model of connection density 

10%, with volume fraction � (a) 0 (b) 0.3 (c) 0.7  

Figure S7. F-measure as a function of the streamline threshold for connectome phantoms of connection 

density 10%, with volume fraction � (a) 0 (b) 0.3 (c) 0.7  

Figure S8. FN/FP ratio as a function of streamline threshold for connectome phantoms with 

connection density 2% - 20% (a-j; increments of 2%). To achieve a prescribed FN/FP ratio, more 

streamlines must be thresholded as the connection density of the phantom is increased. Prob CSD 

mandates the most severe streamline threshold to achieve an FN/FP ratio of 2, whereas the other 

three algorithms achieve this recommended value for approximately the same streamline threshold.     

Figure S9. Receiver operating characteristic (ROC) curves for ground truth model of connection density 

10%. Curves are parameterized by the streamline threshold. Tractography with angle threshold (a) Tensor 

(Det and Prob) and Det CSD=9o and Prob CSD=45o (b) Tensor (Det and Prob) and Det CSD =45o and 

Prob CSD=9o. 
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Figure S10. F-measure as a function of the streamline threshold for connectome phantoms of connection 

density 10% Tractography with angle threshold (a) Tensor (Det and Prob) and Det CSD=9o and Prob 

CSD=45o (b) Tensor (Det and Prob) and Det CSD =45o and Prob CSD=9o

Figure S11. Complexity of HCP dMRI dataset of five subjects estimated from MSMT using response 

function (a) supervised (b) unsupervised 

. 

Figure S12. (a) Division of a spherical surface into cells using 20 longitudinal and latitudinal bands. 

Nodes are defined by contiguous clusters of cells, with the red outline delineating an example node. (b) 

Tractogram of ground truth spherical phantom with connection density of 15%.  The ground truth 

tractography was generated using tensor-based deterministic tractography on individual fibers and 

merging the individual fibers to produce the tractogram shown. 

Figure S13. Performance evaluation based on the spherical connectome phantom with connection density 

15%   (a) Receiver operating characteristic (ROC) curve parameterized by the streamline threshold       

(b) F-measure as a function of the streamline threshold.  

Figure S14. Toy example demonstrating the emergence of a spurious between-group difference after 

processing with SIFT (19). Each ellipse denotes the fiber orientation distribution (FOD). For Bundle 1, 

one of the FODs (colored red) encapsulates a substantially smaller volume than the others due to localized 

pathology. Streamlines encounter difficulty traversing this pathology, and thus Bundle 1 is traversed by 

half as many streamlines as Bundle 2. The total streamline density of Bundle 1 is therefore half that of 

Bundle 2. To reconcile the discrepancy between FOD volume and total streamline density between the 

two bundles, SIFT eliminates streamlines from Bundle 2. In particular, half of the streamlines traversing 

Bundle 2 are eliminated to minimize the cost function. However, Bundle 2 comprises no pathology. 

Therefore, if the SIFT-adjusted streamline count for Bundle 2 is compared between groups with and 

without pathology in Bundle 1, a spurious reduction in the streamline count will be found in Bundle 2 

when in fact the true pathology is circumscribed to Bundle 1.  
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Supporting Tables 

Table S1: F-measure for ground truth model of connection density 10%. The listed streamline threshold 

gives the maximum achievable F-Measure  

Table S2: F-measure for ground truth model of connection density 10%. The listed streamline threshold 

gives the maximum achievable F-Measure 

Table S3: Testing the null hypothesis of equality in F-measures between tractography algorithms. 

Leftmost tables show p-values for all pairs of tractography algorithms, where 0 indicates a p-value 

smaller than 0.00001. Rightmost tables show percentage difference in performance, as measured by 

the F-measure. Positive percentages indicate the method in the row outperformed the method in the 

column, and conversely for negative percentages. Tables S3.1 and S3.2 quantify performance 

without connectome thresholding, while Tables S3.3 and S3.4 quantify performance with 

application of the streamline threshold that maximized performance. All results pertain to 

connectome phantoms that were best matched to the in vivo dMRI data with respect to fiber 

complexity.  

Table S3.1: P-values for F-measure in the absence of threshold 

Table S3.2: Percentage difference in F-measure in the absence of threshold 

Table S3.3: P-values for maximum F-measure computed using threshold 

Table S3.4: Percentage difference in maximum F-measure computed using threshold 

Table S4: Fraction of streamlines connecting TP’s (valid connection), FP’s (invalid connection) and 

terminating before reaching a node (no connection). Tractography generated 1,000,000 streamlines for a 

phantom 
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Tables 

 

Table 1: Tractography Parameters 

Tractography 

Algorithm and Fiber 

Reconstruction Model 

Parameters Values 

Det Tensor 

Prob Tensor 

Det CSD 

Step Size (0.1 x voxel size) 0.2 

Angle threshold (90o x step size / voxel size) 9o 

FA threshold 0.1 

Prob CSD 

 

Step Size (0.5 x voxel size) 1 

Angle threshold (90o x step size / voxel size) 45o 

FOD threshold 0.1 

 

Table 2:  Performance of deterministic and probabilistic tractography algorithms for a connectome 

phantom with connection density of 10%. Performance quantified as the maximum F-measure 

achievable with and without streamline thresholding. The streamline threshold required to maximize 

the F-measure and achieve an FN/FP ratio of 2 are also shown.   

Algorithm 

Maximum F-measure Streamline 

Threshold for 

F-measure 

(%) 

Streamline 

Threshold Required 

for FN/FP Ratio of 

2:1 (%) 

Without 

Threshold 

With 

Threshold 

Det Tensor 0.185 0.196 1 12 

Prob Tensor 0.185 0.198 3 9 

Det CSD 0.345 0.415 3 8 

Prob CSD 0.192 0.382 14 30 
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