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Mapping connectomes with diffusion MRI:

deterministic or probabilistic tractography?

Abstract
Purpose

Human connectomics necessitates Higloughput, wholéorain reconstruction of multiple white matter
fiber bundlesScalingup tractography to meetiése higkthroughput demandgelds new fiber tracking
challenges, such as minimizing spurious connecténts controlling forgyral biasesThe aim of this
study isptomdetermine which of the two broadest classes of tractography algeriletesministic or

probabilistie—is most suited to mapping connectomes.
M ethods

This study ‘developsumerical connectome phantoms that featesdistic network topologiesndthat are
matched togsthe,fiber complexity of vivo diffusion magnetic resonance imaging (dMRI) data. The
phantoms ‘are_utilized to evaluate the performance of tdrasmd and mulfiber implementations of

deterministic'ad probabilistic tractography.
Results

For connectome phantoms that are representative of the fiber complexitywiod dMRI, multi-fiber
deterministiestractography yields the most accurate connectome reconsguffioreasure=0.35).
Probabilistieralgorithms are hampered by an abundance of false @agtimections, leading to lower
specificity (F=0.19). While omittingannections with the fewest number of streamlines (thresholding)
improves the performance of probabilistic algorithms (F=0.38), ffinéir deterministic tractography

remains optimal when it benefits from thresholding (F=0.42).

Conclusions
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Multi-fiber deteministic tractography is well suited to connectome mapping, while connectome

thresholding is essential when using probabilistic algorithms.

Keywords: connectome, phantom, ground truth, tractography, diffusion MRI, network

| ntr oduction

Mapping the humarconnectome 1, 2) is a major goal in neuroscienc&he connectome refers to a
comprehensive network description of the brain, often representedrapla where nodes denote brain
regions and, edges represent twhnattermpathways &-5). Tractography can be used to reconstrulcitav
matter pathwaysin vivo using diffusionweighted Magnetic Resonancelmaging (dMRI) 6, 7).
Tractographyswas originally developed to reconstruct and virtually dissdetdual orsmall groups of
white matter fascicles( 9), whereasonnectomicsequireshigh-throughputwhole-brain reconstruction
of thousands of connectionScalingup tractography to meet thehigh-throughput demands has given
rise to new challenges, such as minimizing spurious connecfifpddentifying fiber terminations and
acceptance_criteridl{, 12), andcontrolling for gyral biase¢l3, 14). Which of the manytractography

algorithms available can best address these important challemggisas uncleafl5s, 16).

Tractography in\connectomics is a process that comprises three steps: (i) estimdtoal diber
orientations; (ii) linking together these local fiber orientations to genetra@ndines that represent the
long-range‘trajectories of white matter fibers; and, (iii) assigningrsiieas to pairs of nodes to build a
connectivity*matrix. Numerous models have been developed to estimate locabridrgations.The
classicaldiffusion tensor 17-19) is one such model that ismable to estimate multiple fiber orientations.
To overcome this limitatigra probability distribution of aentationscan be fittedusing any of a number

of models, including deconvolution metho@0, 21), g-ball imaging (22-25) or diffusion spectrum
imaging (26). Their utility hasbeen demonstrated in tracking deep white maftér &énd the transition
between gray=and white matt&8]. Once local fiber orientations have been estimated, tractography is
used to link'tegether these local orientations to generate streamlingsi¢tkaduthe trajectories of fiber

bundles.

Tractography can be broadly categorized tmto classes: determistic andprobabilisticalgorithms The
salient feature that distinguishes ¢héwo categories ishe sampling of fiber directionfor streamline
propagation With deterministic tractographgtreamlines are steered according fixed (deterministic)
directionat each voxelDeterministic methods can be uded both single 9, 29-31) andmultiple fiber
orientations estimated per vox@l criticism leveled against deterministitethods is that thegreunable
to account for inherent uncertainty in estimates of fiber orienta(i®8s are sensitive to the estimated

principal direction 833) and susceptible to nois@4). In contrast, with probabilistic tractography, a
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distribution of fiber orientations is estimated for each vox&l, (35 36), wherea sample is randomly
drawn from this distribution to determine the direction of streamline propag®&tioimabilistic methods

are usually moreomputationally expensive, but can better accountificertaintyin data(33, 37, 39).

Probabilistictractography is generally considered a superior method for reconstructingissedting
individual white matter fascicles, particularly if there is a need to quangfgdhfidence (pradbility) of
each reconstructed pathw#g). However, for higkthroughput applications of tractography such as
connecteme,mapping, where spuriously reconstructed fibers can rapidly multiply ttheenboiltiplicity

of testing, ifremains unclear whether deterministic or probabilistic tractography is supeEactography

in connectomicsyinvolves seeding millions of streamlines throughout the entire méiiter volume.
With probabilistic methods, each of these streamlines can traverse a uniqueryragactdf a sufficient
number of streamlines is generated, it is likely that streamlines will be faiwedn virtually all pairs of
nodes, resulting_in a fullgonnected connectome. To reduce connection density, thresholding can be
performed to eliminate connections comprising the fewest numbers of streamfidesthe assumption
that these cennections are spurio@, 40). While eliminating connections with a low streamline count
can improve,connectome gjiecity, not all eliminated connections are necessarily spurious, and tiius an
gain in speegificity is inevitably traded for a loss in sensitivitii-43). Given these difficulties,
deterministie fiber trackingnight be considered a viable alternative for kigioughput applications such
as connectome mapping. Indeed, a recent study that compared a plethora of pfactatgarithms
found that deterministic methods can sometimes outperform their prehabiibunterpartsl). It is
important to remark that several advanced fiber tracking methods are not bntenalassification as
either deterministic or probabilistic tractography algorithms. These includmlgi®d-51) and graph
theoretic tractographynethods(52-55), machine learning approachdst,(57), fiber tracking based on
anatomical modelslé) and fast marching methods8 59). Advanced methods are not evaluated in the

present study.

The absence=ofsa ground truth limits thieility to assess the accuracy and precision of connectomes
reconstrueted=with tractography. The current gold standard in quantitativegtegehy evaluation is
axonal tract tracingl3, 42, 43, 60-62), but tract tracing is highly invasive and yields a micron resolution
that is orders™of magnitude finer than the millimeter resolution afforded byl.dM#&s mismatch in
spatial scale"can complicate the comparison between the two modalitiegercome the shortcomings

of using tracttracing as a benchmark for tractography, dMRI phantoms have been developéatiim the

of physical (63-67) and numerical §8-749 dMRI phantoms The majority ofthese phantomswere
developed tcevaluate the accuracy with which fiber bundle geometry, spatial extent and curvature is

reconstructedby tractographyHowever, faithful reconstruction of these geometric attributes is not a key
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consideration for connectomics. When mapping a connectome, the most important cimsidera
whether a fiber bundle is present/absent between a pair of brain regions, and the ctriiivgyts that are
present. Most phantorrbased evaluations undertaken to date have not assessed the important step of
assigning streamlinendpointgo pairs of nodes to build a connectivity matéxnotable exception is the
recent study oMaier-Hein and colleagued®), where a numerical phantofoomposed of 25 manually
segmented white matter bundlesas used to evaluate tractography performance with respect to the
number of valid (true positives) and invalid (false positiveahdles. These two metrics explicitly
quantify the accuracy and precision with which connectomes (connectivity matéresg reconstructed
with tractography. These connectivity measures were first developed in the Tractetady 75,76), a
tractography_evaluation and validation system, which evaluated valithealdd bundles estimated by
tractography algorithms under the simplified conditions of the realistic IdMRercup phantom,
comprising only“sevefibers ©3). SubsequentlyGirard andcolleagueg77) used a numerical phantom
comprising 27 fibers ¥3,_79, to show that connectivity measures derived from Tractometer can be
improved by seeding streamlines from the white/grafter interface, usingartial volume as stopping

and streamline filtering criteria.

Here, we aimto develop numerical connectome phantoms to evaluate which of singleltifithen
implementations’ of deterministic or probabilistic tractography can recetshinary conndvity
matrices with the greatest accuracy and precisia. develop connectome phantoms with realistic
topological attributes, at the expense of a more rudimentary modeling ofjéibaretry. Fibebundles
are modeled as curved tubular structures of fixed diameter, and nodes areng@dsdlong the
circumference of a circle and interconnected with realistic network topologies. Watgesresembles of
ground truth connectivity matrices, simulateresponding dMRI signals, estimate local fiber orientations
in the simulated data, perform tractography and finally reconstruct conteuotatrices. We evaluate the
performance of connectivity matrix reconstruction with respect to the preseabseamcef connections,

without considering connectivity strength.
M ethods

Connectome Phantom Generation

This sectiarprovides an overview dhe construction and simulation of the connectome phanitails

can be found'isupporting InformationS1and a schematic is shownhkigure Xa).

i. Node Delineation: The phantonwasinstantiated in thredimensionswherefiber trajectories and
node locations were fixed across the third dimension for simplicity and ease of vigualidat

circle was positioned at the centerafl40x 140x 5 grid of voxelsand fiber trajectories were
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only permitted to traverse the interior of the cird@e circumference of the circle wasiformly
subdivided intoNr sectors, where each sector represented a single lRodkhe current studywe
usedNg=25.

ii. Connectivity Matrix Generation: The absence/presence of connections was encoded with a
symmetric connectivity matri$é (N X Ni) wheredement(i, j) was set to one if a connection was
present between nodeandj, otherwisethis element was sé&b zero. The connectivity matrix was
sampled.from a generative model that yielded networks with topologicdautds comparable to
empirieal_brain network (7879). Specifically, the relative probability of connection formation
betweéen nodes and j was given byP(i,j) < E(i,j)"x K(i,j)¥ where E(i,j) denotes the
Euclidean distance ani(i,j) represents a negeometric relationship between nodeand j.
Betzel and colleague9) tested different nogeometric models faK (i, j) and found that the
matching-index resulted in networks with the greatest topological resemblancapioca
connectomes. We thus generated networks based on the matching index model, with exponents
that have“previously been found to yield realistic topologies ¢0.98 andy = 0.42; 79). The
numbersof:connectionsasvaried to generate phantoms with connection dessanging from 2
to 20%.

iii. Fiber Bundles: Tubular fibers with varying curvature and diameter were generated bealeen
pairs of'mededi,j) for which G = 1. For each such pair of nodes, a curved trajectory was drawn
between_randomlghosen voxal in nodesi andj. Specifically, control points were positioned
along the straight line between the two endpoints, each of which defined the afeateircle
around which the straight line was deformed to yield a curved tiigjectory Eigure 16)). For a

fiber withmanly a single bend={gure S.1i0)-left imagg, the midpoint of the line connecting the

two endpoints was computed, which served as the center of curvature. The point located
perpendicularly with distancefrom this center acted as a control point for the fiber. Afterwards
cubic'spline interpolatio of the end points and control point was performed to generate
intermediate points defining the complete fiber. Similarly, for a fiber withiptelbends Eigure

1(b)-right image, three center of curvature points were equidisyaotated on the line joining the

two end points. A local tangent vector, denoted witlwas estimated for each of 1000 points
parameterizing the length of each fiber trajectory. Each trajesi@sytherdilated crosssectionally
to endowit'with volume, thus resuihg in a tubularbundle (Figure 1(c). Tangent vectors were

used to simulate the dMRI signal for each voxel.

iv. Synthetic dMRI Generation: The compartment model was used to genetM®&l data Each

fiber that traversed a voxel contributed an anisotropic compartment and voxels thatowere
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traversed by any fiber comprised an isotropic compartrivéatused the “ball” modeBg) for the
isotropic and the zeppelin mod&0¢82) for anisotropic compartments, with volume fractfaand

1-f respectively ThedMRI signalfor theith voxelfor gradent directiong andb-valueb was given

by (71),

b= feta =p) ) [ o Preos dx )

pep; " P
wheredsis:the diffusivity of the isotropic compartme®} is the set of all fiber paths insidee ith
voxeland.D,y is the prolate tensor defining the anisotropic diffusarpointx of pathp € P;,
given by
Dpy = awvv” + I 2)

wherewv denoteghe local tangent vector of the fiber trajectatypointx (Stepiii), | is the identity
tensor,a andg are diffusivity parameters. i andd, arethe apparent diffusivigs paralleland
perpendicularto the principal directiorrespectively then dy=a+ and d.=g. The integral in
Equation(1) was evaluated by sampling at m@stangent vectors within each voxel along the
length of each fiber path. Therefore, for a given fiber patmultiple tangent vectors were often

estimated within the same voxel.

v. Naise: Finally, Rician noise(83) was added to the dMRI signdlhe sgnakto-noiseratio (SNR)
was computed a&VR = S, /g, whereS, is thenon-gradient weightedignal p=0) averaged across

voxels traversed by fibers
Phantom Simulation

We generated phantoms with connection densi@@gjingfrom 2 to 20% in increments of 2%. For each
connection density, we generate@D phantomswhere for each phantom a new connectivity matrix was
sampled using thgenerativemodel. Diffusivity parameters were chosen to matalman brain tissue
(71); namely d;= 1.5x10° mn¥/s andd,= 0.2x10° mn¥/s for the zeppelin compartmenihereasd=
0.9x10° mnv/s for the ball compartmentThe choice of the volume fraction valug) for compartment
models is somewhat arbitrar84 85). In this study, we used a volume fractionfo 0.2 for all voxels.

We also evaluated a range of alternative volume fraction values and found thattihe peldormance
ranking lof the four tractography algorithms was not substantially affected by this parametee choi

(Supporting Information 94

Nominal dMRI acquisition parameteff®r this study were2x2x2 mni-voxel resolution, 60 diffusion

gradients distributed equally over the spherealie of 2000 s/mfiand an SNR of 10 dB for the non
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gradient weightedmage. Investigation of alternativeacquisition parametersb-{alue= 100Q 3000
s/mnfand SNR= 20, 30 dB) can be found ilBupporting InformationS2andS3.

Tractography

We utilized our phantoms to evaluate which of deterministic or probabilistic tractggcaphreconstruct
binary connectivity matrices with the greatest accuracy and precision. We consaleré@dtography
implementations i) deterministic tensebasedtracking (Det Tensor) with Euler integration Z9); ii)
probabilistic tensebased trackingProb Tensor) using bootstrapping3(); iii) deterministic tracking
steered accerding tmeaks in the fiber orientation distributi(ifOD) estimated with constrained spherical
deconvolution (et C3D; 36); and, iv) probabilistc CSD trackingP{ob CSD; 35. We used

implementationof these four algorithmgrovided bythe MRtrix t ckgen function (www.mrtrix.org

tensor _det,tensor_prob,sd _streamandi f od2, respectively.

A spherical_harmonic order of 8 was used for C81d 1 million streamlinesvere generated for each
phantom Default“parameter settingecommended in the MRtrikckgen function were used for the
angle thresholdystep size, FA (fractional anisotropy) and FOD thre@radite 1).

Evaluation Methdology

Tractography was performed on the phantoms to infer connectivitycesgtiwhich were then compared

to the groundstruth connectivity matrice%.connection was defined as the set of all streamlines with
endpoints residing in the same pair of nhodiseamines with one pboth endpoints terminating before
reaching a_node were discarded. Each connection was associatedstnétimiine count, defined as the
number of“streamlines that it comprised. Connections that were present in bgtouhd truth and
reconstructed connectivity matrices were called true positives (TPs), while consetttainwvere only
present in reconstructed matrices were called false positives (FPs). False negatives (FNs) were
connections that were absent in the reconstructed conbectiatrices, but present in the ground truth

matrices.

Before computing TPs, FPs and FNs, the streamline count for each connection wasdtdéslyeld
binary conneetivity matriceB. The streamlinethreshold was increased incrementally freeroto the
maximumgstreamline coumf a connecting pair of nodéseported as percentage of streamlindsthe
connection between regionsindj comprised fewer streamlines than the threshold, weB;set 0;

otherwiseB;; = 1. The binary matriceB wereused to computthe FP and TP rate

HTP = Xij 1{BijﬂGij} , #FP = 3 1{Bij—Gij} L HEN = 3y 1{Gij—3ij} 3)
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#TP #FP (4)

TPR = i FPR = ———
Zij 16,5 2ij(1-Gij)

The F-measure wasomputed for the reconstructed connectivity matrices to atisegadeoff between

TPs and FPwith a single index

2 X #TP

= 5
F 2X #TP + #FN + #FP ®)

We usedthe Fmeasureprimarily because this indewas not overwhelmed byhe disproportionate
numberof true negativeghat was characteristic dfie relatively sparse connectivity matrices considered

here
Phantom Complexity

To quantifythe impact of variationg connection densities, fiber configurations and network topolpgies
we defined"measures wbxel and fiber complexity. Voxel complexiiC,, was defined as the proportion
of voxels intersected biyore than one fiber bundle out of the set of all voxels intersecteat ksast one

fiber bundle Complementarily, fiber complexitCr was defined gs

_ pr>1 fp
B przl fp

wheref,, denotes the number of fibers traversingtievoxelin the ground truthForC,, complexity is

(6)

measured categorically, with amgxel comprisingnore tharonefiber considered complexn contrast,
Cr quantifies thepercentageof multiple fibers in a phantomand together these two measures help

understand the impact of multiple fiber configurasion tractography

Using our measures of voxel and fiber complexity, we benchmahieedomplexityof each phantonto

the complexity*ofn vivo dMRI data from the Human Connectome Project (H88); To measur«, and

Cr in thesHCP=datathe number of fiber orientations per voxehs estimate with two complementary
methodsi)‘€stimation of the FOD using mtikisue constrained spherical deconvolution for rrakigll

dMRI (MSMT;87); and, ii) the bdpostx routine provided by FSL3§). Further details are pvided

in Supporting InformationS5

Results

Figure Za-d) shows thelMRI image for a typical connectonpdantom with connection density of 12%
including an axial slice of the nediffusion weighted §=0) image and FA imagekigure 3 shows

representative streamlines generated by the four tractography algorithmsRorird&dyes with varying
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connection densityFigure 4 shows representative streamlines generated by the four tractography
algorithms for the dMRI images shown Figure Zc), togetherwith the diffusion tensor and FOD
estimates for a slice of voxels in a region of intersecting fibkkrsan be seen that Det Tensor generated
several broken streamlines that failed to traverse the intersecting, fildegreas the CSBased tracking
algorithms navigated this region with greater success. However, Prob CSD yietdexlise trajectories

that were somewhaippled (i.e. trajectory oscillates from sitteside). We quantify this rippling artifact

below.

For brevity,we only report performance for the case of dMRI images withvalbe of 2000 s/mfnand
SNR of 10,dB Alternativeb-values (10003000 s/mrf) and/or SNR20, 30 db affected performance but
did notsubstantiallyaffect the relative performancankingof each tractography algorith(®upporting

Information S2 and S3). Performance wagjuantified usingthree criteria i) receiver operating

characteristic (ROC) curves, which were parameterized by the streamline thrdsbote §; ii) F-
measure evaluatess a function of the streamline threshdiiy(re 6); and iii) FN-to-FP ratioevaluated

as a functionsefithe streamline threshdiaigporting Informatior§6) For eachof the four tractography

algorithms we quantified performance in terms of the mean and standard deviation over 100 phantom
realizationssfor<0 casedrresponding to distinct connection densities (2,.420%).Finally, C,, andCr

were usedoevaluate the complexity oh vivo dMRI data from theHCP. We compared the compléxi

of our phantoms with thien vivo dMRI datato determine which phantom wawost representative of the

complexity ofthehuman connectom@igure 7).
Evaluation of Connectome Reconstruction Performance

ROC curvesiforsthéour tractography algorithms are presentedrigure 5 Prob CSDyieldedthe highest

TPR for all'connection densitiesvhereasDet Tensoryielded the lowest However, Prob CSDalso
yieldedthe highestFPR. Therefore,in the absence of streamline threslvadd Prob CSD provideshigh
sensitivity (but poor specificityConversely Det CSDyielded improvedspecificity compared to Prob
CSD but lower sensitivity. This emphasizes the tradeoff between connectome sensitivity and specificity.
Increasing” connection density, and hetive number of crossing fibers, decrehske TPR for all
algorithms andbet CSD beeme comparable with tensbased tractography fa connection density of
20%. At this density, Prob CSBontinuel to yield the highestTPR but at the expense of a vehjgh

FPR

To quantify the tradeoff between TPR and FPR, we evaluated -theaBure as a function of the
streamline threshold for each tractography algorifiigure §. Det CSD achieved the maximum F
measure for all connection densities in the rang6%. For phantoms with connection densities

exceeding 16%, Prob CSD either rivaled or exceeded the performance of Det CSD.
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We therefore conclude thalhe choice betweedet and ProbCSD should be guided by connection
density. Det CSD is well suited to mappirgdatively sparse connectomes, whereas Prob CSD achieves a
superior Fmeasure once the ground truth connection density exceeds a given thrgékoltbr( our
phantans). While streamline thresholding can be used to imprineeperformance of Prob CSD by
eliminating FPconnections, the choice streamlinethreshold to maximizeaccuracyis unknown in
practice. However, if an appropriate streamline trolesban bechosenjt can be seen théte connection
density at whichProb CSDfirst rivals the performance &et CSDis reduced to 14%Tlhe advantage of
Det CSD is thahearoptimal performance can be achieved without the need for streamlinieaidiag

In summay,,our performance evaluation indicates that: i) Det CSD is optimal for mgmparse
connectomes with connection densities below 20%; ii) Prob CSD can achieve comparabntegpedo
Det CSD, 4f streamline thresholding is enforced; and iii) €f#Bedmethods generally outperform
tensorbased‘tractography

It hasbeen suggested that connectorsiesuld be reconstructedth anFN-to-FP ratio of approximately
2 (10). We therefore investigated the RAbIFP ratio as a complementary measure to assess algorithm
performance..in.addition to the-rReasurewhich suggests that streamline thresholdniandatoryto

achieve a 2:1eENo-FP ratio(Supporting InformationFigure 8B).

Complexity Estimation

Having evaluated a range of connectoph@ntoms with different connection densities, fiber curvatures
and networkstepologies, we next sought to identify which of our phantoms most resembled the human
connectomdsy comparing their complexity witim vivo dMRI data.Figure 7showsC,, (blue bars) anCp

(red) for ounphantoms and the HCP dMRI data. It can be seen that complexitydsareastonically
with density, since the number of intersecting fibers also increases with ddtigitye(7(a)). The
complexity ‘estimated under different FOD thresholds using the supervised respuism fare shown

in Figure qb) whereaghe estimation usinginsupervised response function can be foun8Bupporting
Information S8 For bedpostbbasedcomplexityestimationthevolume fraction of fibers was thresholded
to estimate the number of multiple fibers, showrFigure 4c). A FOD threshold of 0.1 and a volume
fraction of 0.05has been previously recommend@®, 88). Based on these suggested thresholds, we
estimatecC,, = 0.52 andCr = 0.71 with MSMT. With bedpost, we estimate C,, = 0.46 andCr = 0.67
(dashed'boxes iRigure 7(b) and 7(c) respectively). We were able to generate this level of complexity in
our phantoms when using a ground truth connection density of approximately 10% (dasheHitnanein
7(a). This providel a rationale for centering the rangegsbund truthconnection densities evaluatat
10%.
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Table2 shows the maximum-Feasure achieved by each tractography algorithm for the set of phantoms
with a ground truth connection density of 10%, with and without application of a $itreahreshold.

We also show the number of streamlines that need to be discarded to #ohaximum Fmeasure

and to obtain a 2:1 Fi-FP ratio.From Table 2, a clear difference in thresholder maximum F
measure"and Fib-FP suggests that there is no universal choice of thresholdahaiecused to study the
connectome.The significance (twsample itest) and percentage difference irmEasure (with and

without threshold) are reported in Supporting InformafiableS3

Fiber Length,Estimation

Prob CSD|yielded streamlisevith rippledtrajectories(Figure 4. We considered this rippling behavior
an artifact, given that it was evident in simulated fibers with an entirely lirggactiory. We therefore
aimed to quantify the magnitude of the faitt by comparinghe lengths of the reconstructed and ground
truth streamlines: We generat&d0 phantomsvith the same parameters as Methodssection except
that each phantonwas limited toonly one fiber. This ensureithe absencef interferencefrom other
fibers. Fiber lengthwas estimated athe areragelength of all streamlines produced by tractography
Length bias'was'then definedtag difference between the ground truth and tractography estimated fiber
length shownin Eigure8. ProbCSD introducd the largest bigasvhereagensorbased tractography and
Det CSD producd comparable bias The streamlines produced by Prob CSD could bemostessed,
smoothing orfiltering, to potentially reduce the length bias undecdhstraint of minimal change in
spatial pasition or geometry of the fiber bundle. However, theseppostssing steps increase the
computational burden of the tractography pipeline and necessitate somewhatyachiieges about the

extent to which the streamline trajectory is smoothed
Foherical Connectome Phantom

Two-dimensional connectome phantoms might be considered unrealistic given that brain nateorks
embedded in thredimensional space. To investigate the impacbroftting a spatial dimensiom our
models weydeveloped a simple thrdanensional connectome phantom in which nodes were positioned
on the surface.of a sphere and fiber bundles traversed the sphere’s interior. Fibergboadition and
simulation of sythetic dMRI data followed the same models described above for thdirvemsional
case We generated gBerical phantonsomprising 60 nodes and a connection derdit}5% to achieve

C, = 0.5andC; = 0.7. We found that our key conclusions were consistent between theahsahree
dimensional phantoms; namelet CSD produagthe highest Fmeasureand probabilistic methods were

hampered by an abundance of false positive connect8upporting Information $% provides further

details about the simulation and analysis of the spherical phantom
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Discussion

In this study, we developed numerical connectome phantosyeficallyevaluate the performance of
four tractography algorithms with respectrezonstructing binargonnectivity matrices. The connectome
phantoms we_generated were based on realistic ground truth conpeugiices and matched to the
fiber complexity,ofin vivo dMRI data. We utilized our phantoms to evaluate the performahétso
popular implementations (tensbased and mukHiber) of the two broadest classes of tractography
algorithms "(deterministic and probabilistidylany alternative implementations of these tractography
algorithmsthaverbeen developed, rendering an exhaustive evaluation intractable, althagagant study

of Maier-Hein and colleague@5) provides avery comprehensive assessmentierefore, it is important

to remark that our conclusions do not necessarily generalize to all availablthaigor

The primary<aim of this study was to assess whether deterministic or probabdistogtaphy is best
suited to connectome mapping. Weihd that multfiber deterministic tractography (Det CSD) provided
superior performancie mapping connectome phantothsit were matched to the fiber complexityiof

vivo dMRI| data. However, for connectome phantoms with a fiber complexity that exceegled th
complexity of in vivo dMRI data, we found that muifiber probabilistic tractography (Prob CSD)
outperformed thé other three algorithms evaluated. The performance of Prob CB@radetefor the
lower complexity phantoms due to reconstruction of an abundance of spurious (falsee)posit
connections. While connectome thresholding substantially reduced this problentingein optimal
threshold  to,eliminate connectiongth the fewest streamlines is challenging. We thus recommend
stringent connectome thresholding when using Prob CSD for connectome mapping andeadeocat
CSD as a wiable alternativ8his deviates from conventional tractography dogma suggesting that
probabilisticralgerithms are generally superior to their deterministim@yparts. While this may indeed

be true fortelassic applications of tractography that involve virtual diseeof individual fibers, our
findings suggest that probabilistic algorithare not necessarily superior for higtroughput applications
such as"connectomics. More specificallye twpothesize that the fiber complexity of the human brain
might not be sufficiently high to warrant probabilistic tractography algoriti®tnsbabilisic algorithms

were only warranted when fiber complexity substantially exceed the complexity ofritas twain.

We generatedsconnectorphantoms with varying connection densiétyd fiber complexity(Figure 7.

The groundytruthconnectivity matrices were generatesinga generativanetwork model (Methodg to
produce networks with topologicalttributesthat are characteristic of nervous systems. While the
connectome phantoms comprised only 25 nodeshauwee verified that the ground truth topologies
comprised hubs and evidence of savadlrld organizationSpecifically, high clusterindgpetweennodes

and the presence of short path lengths were verified by calculating thewarldllindex for the
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generated networksThe calculated index was always greater tham.@. phantom withconnection

density of 20%hadsmallworld index= 1.2.

We matched the fiber complexi{C, andCr) of our connectome phantoms to the complexitynofivo
dMRI data.Jeurissen and colleagueB8) used classical FA based sindjileer response functiomo
estimate the .FODs using CSD and suggested a comfC, = 90% for singleshell dMRI dataln this
study, the'response functionasvcalculatedusing supervised &7) and unsupervised coegistered T1
image 89) methedologies foa HCP multishell dataset of five subjects. The FODs were estimated using
the MSMT \technique which sugge®d C, = 52% . This difference in complexity is due to the
overestimation of number of crossgip a singleshell dataset used hleurisserand colleagues8g).
Using the bedpostfiber estimation methodleurissermndcolleaguesg8) suggestelC,, = 63%, whereas
using thel same methodologgnd parameterghe current study approximateC, = 46% . This

dissimilarityis.again due to the usageaxiulti-shell datasein thecurrent study.

In the following; we specifically discuss results pertaining to the connectoargqgpis that were most
representative of then vivo dMRI data. The connection density of these phantoms was T@%.
classical tensor modedannotresolve multiple fiber confuratiors, which resuléd in the lowest TPR,
regardless of|the tractography algorithRig(re 5). In contrast multi-fiber modes (CSD)yielded the
highest TPR. The FPR of Det CSD coincides with théensor model(Figure 5(e), but its TPR is
substantiallyhigher. Both Det and Prob Tensdnave similar TPR and FPRwhereas a substantial
difference*€an be observed et and ProlCSD. Det CSD has comparatively low TPR and FPRrab
CSD, whereas ProkeSD has the highest TPR but at the expen$egdfFPR.

Is connectemesthresholding neces&afpleskyand colleague§l0) recommended the 2:1 rule of thumb
for a connectome i.e. FNs should be twice the number of FPs. This ratio is noahlehitthe generated
streamlines “‘are ndhresholéd (Table 2). Like F-measureProb CSD require the higheststreamline
threshold to achieve FN/FP ratio of 2Tlable2). The optimal threshold value wabvioushere because

the ground_truth was knowhut for in vivo dataapproximation of this threshold is challenging.

The tractography: algorithms are dependent on angle thresimolgariationin outcomeis observedy
changing angle<threshol@9, 63, 71, 77). The investigate the impact of angle threshtthe, nominal
angle thresholslere swapped between the algorithm8wath 45° (Supporting Informatior87) and the

simulatiors*were repeated. Det CSD with default angle threshiotdvever producel the highest F
measurethough the outcome of PrabSD notably improvedSupporting InformationFigure 3.0). The

SNR and kbvalue were also varieut a substantial change in the performance of Det CSD could not be

observed.
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Streamline weighting arfiltering methods such as COMMIB(@) and SIFT 91) can potentially improve
the accuracy of connectome reconstruction. However, SIFT can potentially yialslsphetweergroup
differences when comparing streamline counts across all pairs of nodes with methods sueh as t

networkbased statistic9@). An example of this phenomenon is shown in Supplementary Fiddre S

Several important limitations require consideration. Figeficlusions derived from numerical phantoms
do not necessarily generalize o vivo dMRI data. In this respect, our connectome phantoms are
relatively, simplistic with respect to fiber geometry and spatial embedding eottdhnectome. For
example, our_phantoms are effectively #tdimensional with nodes positioned along a circular
circumference, "whereas the humhbrain is threadimensionalwith a convoluted cortical geometry
However, wesensured that that our tdimmensional phantomsere matchedo the fiber complexity of
threedimensionalin vivo dMRI data.Moreover, we developed threedimensional spherical phantom
and found that inclusion of a third spatial dimensgoonsistent witlthe conclusions of our performance
evaluation.Future work will focus on developing threémensional connectome phantomvih fiber
configuratiomthat resemble the human brain more clos8gcond, for computational tractability, our
connectome,phantoms comprised only 25 nodes. In practice, connectome mapping ékemadéth a
greater number:of nodes. Despite this, we found that the topologurofiround truth connectivity
matrices exhibited topological attributes that are characteristic of nervous syBtémily, although our
connectome_phantoms were produced using generative m@dglsmhich aim to recapitulatérain
network topolegiesthe geometrical configuration of the simulated fiber bundles does not map to the true
geometry of the brain fiber bundles. The impact of fiber bundle georhesypreviously been well
connection)whereasconnectome mappinglsofocuses orthe strength of connections (i.e. number of
streamlines per jconnectiom practice But the connectivity strength idependenton data quality,
tractography algorithm ands inherent limitations ). Finally, we evaluatednly four tractography
algorithms'whichare not necessarily representative of alternative algorithms. Therefore holustons

do not necessarily generalize to all implementations of deterministic and igticaibactography.

In concluson, we developed numerical connectome phantoms to evaluate whether deterministic and
probabilistie*tractography algorithms are suited to connectome mappindgdantfied which é our
phantomsswere most closely matched to the fiber complexity wo dMRI dataand found that muki

fiber deterministic tractography was best able to recover the ground truth ceityectitrices for these
phantomsSinglefiber methods based on the diffusion tensor generally performed poorly in most cases
We showedhatthe perfemance of probabilistic tractography is burdegda highFPR In the future,

the use of multshell multitissue methodg85) can potentially reduce th&PR of probabilistic
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tractography. In the meantime, we recommend stringent connectoresholding if probabilistic

tractography is used to map connectomes.
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Main Figures

Figure 1. Schematic of phantom generation for aridide connectome. Nodes are delineated on the
circumference of a circle (colored segments) and interconnected via fiber bundles.nd gmati
connectivity matrix dictates whether a fibleundle is present/absent between each pair of nodes.
Fiber bundlessare modeled as curved tubular structures with fixed diameter.tiAcarapartment
dMRI model is' used to generate dMRI signals for each voxel, such that each fiber bundle
traversingsa=givewoxel contributes an independent anisotropic compartment to the signal. Finally,
Rician noise.is.addedb) Example fiber bundle segments comprising one (left) and three (right)
control paints., Fiber trajectories are denoted with solid black lines. Btackes denote
endpoints, yellow circles represent control points situated at perpendicularcéistaftom the
center of curvatures represented by green solid circles and red solid circles are thediaterm
points generated using cubspline interpolation. To generate a tube, the fiber trajectory is
extended perpendicularly to yield a prescribed bundle diameter. Gray shading denotdsilie t
bundle (c) Example fiber bundle architecture for-b@de phantoms comprising 10 distinct fibers.
Fiber colaissdetermined by diameter. Fibers are tubular (Hdiesensional) and fiber curvature is

confined to'thetwalimensions on which the circle resides.

Figure 2. Simulated dMRI images of a representative connectome phantom with connection
density of 12%a-d), d;=1.5x10° mm?s and d=0.2x10° mn¥/s for the zeppelin compartment and

a diffusivity D=0.9x10° mm?/s for the ball compartment. Acquisition parameters listed in
“Methods’. (a) Non-diffusion weighted signal without noiséh) FA image without noise(c)

non-diffusion weighted volume with noise (SNR=10d{J) FA image with noise.

Figure 3. Tractograms of ground truth mod@) with connection densityi) 4% (j) 8% (k)12% (1)

16% (m) 20%:=The ground truth tractography is generated using tensor deterministogtegdy

on individual fibers and merging the individual fibers to produce tractogram. Streanitinbe
region encapsulated by the blue rectangular box are showi)f@et Tensor(c) Prob TensoKd)

Det CSD(€) Prob CSD For visualization purposes, a ground truth reconstruction was determined
by generating a separate dMRI image for each fiber. Each of these idMBé&s only included the
signal from a_single fiber. Deterministic tendmased tractography was performed inelegently

on each. dMRI image and the streamlines reconstructed for each fiber were mergea &osfogle

set of streamline&).

Figure 4. Streamline trajectoriega-e), diffusion tensorg(f) and FODs(g) for a representative
connectome phantom with connection density of 12%. Streamlines in the region enteapbyla
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the blue rectangular box are shown b} Det Tensor(c) Prob TensoKd) Det CSD(e) Prob CSD

tractography algorithms.

Figure 5. Receiver gerating characteristic (ROC) curves for connectome phantoms with
connection density 2%20% (a-j; increments of 2%). Curves are parameterized by the streamline
threshold. The _rightmost point on each curve corresponds to a threshold of zero, whilesthe m
severe threshold corresponds to the leftmost point. Insets characterize behavabsefqositives
rates below,,0:05. Note that Prob CSD typically generates a diffuse streadiBtribution,
resulting in, TPR and FPR combinations that cannot be achmitedhe other algorithms. This is
evidencedsby ‘the red curve terminating at a highesition than the others. For the connection
density of 10%€), the CSDBbased algorithms (Det CSD, Prob CSD) yield better performance than
their tensotbased counterpts (Det Tensor, Prob Tensor). If streamline thresholding is used, Prob
CSD can achieve the same performance at Det CSD. Without thresholding, the PRi® GfSD is

approximately 1 for a connection density of 20%.

Figure 6. (FF-measure as a function of tletreamline threshold for connectome phantoms with
connection—density 2% 20% (a-j; increments of 2%). The leftmost point on each curve
corresponds to the absence of a streamline threshold, where a connection is assumedstnbe pr
for any pair of regias interconnected by at least one streamline. For the connection density of 10%
(e), Det CSbyoutperforms the other three algorithms by a factor of approximately 2 if Btream
thresholding is not used (leftmost data points). While the performance of ®8&b can be
substantially improved with thresholding, Det CSD yields the maximumeBsure across all

threshold values for connection densities-2286 (a-f).

Figure 7. Gomplexity of simulated and imivo dMRI data. Complexity was quantified with voxel
(red barsCy)wand fiber (blue bar<Lp). (a) Complexity of the connectome phantoms (simulated
dMRI data) for varying connection density. Complexity ofvimo dataset estimated usin®)
MSMT (c) Bedpostx. Dashed boxes {ip) and (c) indicate the recommended FOD and volume
fraction thresholds, respectively. Dashed boXanindicates the connection density that achieves

a complexity that is best matched to the complexity ofithévo data.

Figure 8. Distribution of bias in reconstructed fiber lengths. Bias was computed as thedgroun
truth fiberslength subtracted fromme reconstructed fiber length. Reconstructed fiber length was
estimated based on the average streamline length of all streamline comprising BiSbrébution

of this bias across multiple fibers is shown for four tractography algorithms.
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Main Table
Table 1: Tractography Parameters

Table 2: Performance of deterministic and probabilistic tractography algorithms for actmme
phantomsWwith.connection density of 10%. Performance quantified as the maxirmgadure
achievable”with and without streamline thresholding. The streamline thdeskquired to

maximize thesFmeasure and achieve an FN/FP ratio of 2 are also shown.
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Supporting Figures

Figure S1. (a) Example fiber with tangent vectorsrepresented in blue. To obtain an effective
diameter of 5 voxelsnf=4), the vectory are replicated to neighboring voxels in 2 iteratigh¥
Iteration 1z Thepvectors represented by blue are replicated to their neighboring voxels (orange)
(c) Iteration2:Ihe vectorsy in orange are replicated again to their neighboring voxels (green),
resulting in,a_fiber with effective diameter of 5 voxels. Vectors are not replicated to vibetls
alreadyrcomprise a fiber. The length of the fiber is not affectech@snd points of the fibers

reside on thescircular connectome and any replication outside the circumference is discarded

Figure S2. Receiver operating characteristic (ROC) curves for ground truthlmbdennection density
10%, with bvalue (s/mrf) (a) 1000 (b) 2000 (c) 3000. Curves are parameterized by the streamline
threshold

Figure S3. F-measure as a function of the streamline threshold for connectome phantoms of @onnecti
density10%, with bvalue (s/mm) (a) 1000(b) 2000(c) 3000

Figure $4. Receiver operating characteristic (ROC) curves for ground truthlrobdennection density
10%, with SNR(dbja) 10 (b) 20(c) 30. Curves are parameterized by the streamline threshold.

Figure S5. F-measure as a function of the streamline thresholddonectome phantoms of connection
density10%, with. SNR (dbja) 10 (b) 20(c) 30

Figure S6."Receiver operating characteristic (ROC) curves for ground truth model of camdetisity
10%, with volume fractiorf (a) O (b) 0.3 (c) 0.7

Figure S7. F-measure as a function of the streamline threshold for connectome phantoms of aonnecti
density10%, with volume fractiotf (a) 0 (b) 0.3 (c) 0.7

Figure S8¢'FN/FP ratio as a function of streamline threshold for connectome phantoms with
connection‘density 2%20% (a-j; increments of 2%). To achieve a prescribed FN/FP ratio, more
streamlines ' must be thresholded as the connection density of the phantomadsedcierob CSD
mandates the most severe streamline threshold to achieve an FN/FP ratioh&r@asvthe other

three algorithms achieve this recommended value for approximately the sameisgganmishold.

Figure S9;,Receiver operating characterisfROC) curves for ground truth model of connection density
10%. Curves are parameterized by the streamline threshold. Tractographggiétthaesholda) Tensor
(Det and Prob) and Det CSD=and Prob CSD=45(b) Tensor (Det and Prob) and Det CSD %4&d
Prob CSD=8
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Figure S10. F-measure as a function of the streamline threshold for connectome phantoms ofi@onnect
density10% Tractography with angle threshd) Tensor (Det and Prob) and Det CSD=d Prob
CSD=45 (b) Tensor (Det and Prob) and Det CSD %46d Prob CSD=9

Figure S11. Complexity of HCP dMRI dataset of five subjects estimated from MSMT using nespo

function (a) supervisedb) unsupervised

Figure S12.(a)«Division of a spherical surface into cells using 20 longitudinal and latitudisrads.
Nodes are"defined by contiguous clusters of cells, with the red outline delineatingrgrieerade (b)
Tractogram of“ground truth spherical phantom with connection density of 15%. The ground truth
tractography was generated using termmsed deterministic tractography on individual fibers and
merging the individual fibers to produce the tractogram shown.

Figure S13."Performance evaluation based on the spherical connectome phantom with connection density
15% (a) Recelver operating characteristic (ROC) curve parameterized by the streamlineldhresh

(b) F-measure as a function of the streamline threshold.

Figure S14.,Toy example demonstrating the emergence of a spurious begrnman difference after
processingwithsSIFT (19). Each ellipse denotes the fiber orientation distnil{&i@D). For Bundle 1,

one of the FODs (colored red) encapsulates a substantially suwdllare than the others due to localized
pathology.. Streamlines encounter difficulty traversing this pathology, andBtimdie 1 is traversed by

half as many.streamlines as Bundle 2. The total streamline density of Bundleetefere half that of
Bundle 2. To reconcile the discrepancy between FOD volume and total streamline density bedween th
two bundles, SIFT eliminates streamlines from Bundle 2. In partjduddir of the streamlines traversing
Bundle 2 are eliminated to minimize the cost functioowidver, Bundle 2 comprises no pathology.
Therefore,(if the SIFFRdjusted streamline count for Bundle 2 is compared between groups with and
without pathology in Bundle 1, a spurious reduction in the streamline count will hd folBundle 2

when in fact tle true pathology is circumscribed to Bundle 1.
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Supporting Tables

Table S1: F-measure for ground truth model of connection density 10%. The listed streanisteottir

gives the maximum achievableNfeasure

Table S2;.F-measure for ground truth model of connection density 10%. The listed streanisteottir

gives the maximum achievableMeasure

Table S3: Testing the null hypothesis of equality innfreasures between tractography algorithms.
Leftmost tables show-values for all pairs of tractography algorithms, where 0 indicaiesaue
smaller than 0:00001. Rightmost tables show percentage difference in perfoymsnteasured by

the Fmeasure./Positivpercentages indicate the method in the row outperformed the method in the
column, and/conversely for negative percentages. $§aBl@&1 and S3.2 quantify performance
without connectome thresholding, while Tables S3.3 and S3.4 quantify performaitice
application of the streamline threshold that maximized performance. All resultsinpeota
connectome phantoms that were best matcteedhe in vivo dMRI data with respect to fiber

complexity.

Table S3.1:/Pvalues for Fmeasure in the absence of threshold

Table S3.2: Percentage difference inrkeasure in the absence of threshold

Table S3.3: P-values for maximum fneasure computed usitigreshold

Table S3.4. Percentage difference in maximunrmteasure computed using threshold

Table $4:. Eraction of streamlines connecting TP’s (valid connection), FP’s (invalideobion) and
terminating before reaching a node (no connection). Tractography generated 1,000,00hes$réamnma

phantom
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Tables

Table 1: Tractography Parameters

Tractography
Algorithm and Fiber Parameters Values
Reconstruction M odel

Det Tensor Step Size (0.1 x voxel size) 0.2
Prob Tensor Angle threshold (90x step size / voxel size 9°
Det CSD FA threshold 0.1
Step Size (0.5 x voxel size) 1
Prob CSD

Angle threshold (90x step size / voxel sizg 45’

FOD threshold 0.1

Table 2: Performance of deterministic and probabilistic tractography algorithms for a connectome
phantomawith connection density of 10%. Perfor mance quantified as the maximum F-measure
achievablewith and without streamline thresholding. The streamline threshold r equired to maximize

the F-measur e and achieve an FN/FP ratio of 2 are also shown.

Maximum F-measure Streamline Streamline
Ry Threshold for | Threshold Required
orithm ; ;
S Without With F-measure for FN/FP Ratio of
Threshold Threshold (%) 2:1 (%)

Det Tensor 0.185 0.196 1 12
Prob=Tensor 0.185 0.198 3 9
Det CSD 0.345 0.415 3 8
Preb CSD 0.192 0.382 14 30
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