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Abstract: Background. Lynch syndrome is the most common genetic predisposition for hereditary
cancer. Carriers of pathogenic changes in mismatch repair (MMR) genes have an increased risk
of developing colorectal (CRC), endometrial, ovarian, urinary tract, prostate, and other cancers,
depending on which gene is malfunctioning. In Lynch syndrome, differences in cancer incidence
(penetrance) according to the gene involved have led to the stratification of cancer surveillance.
By contrast, any differences in penetrance determined by the type of pathogenic variant remain
unknown. Objective. To determine cumulative incidences of cancer in carriers of truncating and
missense or aberrant splicing pathogenic variants of the MLH1 and MSH2 genes. Methods. Carriers
of pathogenic variants of MLH1 (path_MLH1) and MSH2 (path_MSH2) genes filed in the Prospective
Lynch Syndrome Database (PLSD) were categorized as truncating or missense/aberrant splicing
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according to the InSiGHT criteria for pathogenicity. Results. Among 5199 carriers, 1045 had missense
or aberrant splicing variants, and 3930 had truncating variants. Prospective observation years for
the two groups were 8205 and 34,141 years, respectively, after which there were no significant
differences in incidences for cancer overall or for colorectal cancer or endometrial cancers separately.
Conclusion. Truncating and missense or aberrant splicing pathogenic variants were associated with
similar average cumulative incidences of cancer in carriers of path MLH1 and path_MSH2.

Keywords: MLH1; MSH2; penetrance; cancer incidence; truncating; missense; aberrant splicing;
Lynch syndrome

1. Introduction

Lynch syndrome (LS) is a common, dominantly inherited cancer syndrome caused by
pathogenic variants of mismatch repair genes (path_MMR) [1–4] and affects an estimated
1 in 300 individuals. Path_MMR carriers have increased incidences of cancers of the colon,
rectum (often grouped as colorectal cancer, CRC), endometrium, ovaries, stomach, small
bowel, bile duct, pancreas, and upper urinary tract [1,4–6]. The cancers may occur much
earlier in life than their sporadic counterparts, and penetrance and expression vary by
gene and by gender from very high to not measurable [7]. Factors considered likely to
contribute to both incomplete penetrance and variation in cancer incidence in different
organs include environmental factors, modifying genetic factors, and the nature of the
pathogenic variants themselves. Genetic association studies have examined the relationship
between variants elsewhere in the genome and cancer incidence in LS individuals and have
suggested that SNPs at 8q23.3 (rs16892766) and 11q23.1 (rs3802842) are associated with
increased LS CRC risk, especially for female MLH1 carriers [8,9]. By contrast, a recent study
did not find any risk-modifying effects of these SNPs in a cohort of 507 PMS2 carriers [10].
Additional factors implicated in phenotypic variability in LS include epigenetic regulators,
microRNAs, hormonal factors, acetyl-salicylic acid prophylaxis, smoking, and body mass
index. In the current study, which addresses the question of whether penetrance varies
according to the type of path_MMR variant, such modifying factors are not expected be
stratified by the type of path_MMR variant.

According to the InSiGHT database (https://www.insight-group.org/variants/databases/,
accessed on 12 February 2021), more than 3000 different pathogenic or likely pathogenic
(class 5 or 4 and, therefore, clinically actionable) germline sequence variants have been
deposited for the MMR genes, of which 40% have been identified in MLH1, 34% in MSH2,
18% in MSH6, and 8% in PMS2 [11,12]. Approximately 50% of those in MLH1 are missense
variants [13–16], whereas most affecting MSH2 are nonsense, frameshift, or splice site
changes, which can be considered a priori to be pathogenic [13–16]. Pathogenic variants
that result in aberrant splicing may be associated with lower penetrance compared to
truncating variants of the same gene [17]. Recent studies have shown that some exonic
missense variants (and some synonymous variants) cause disease through interference
with the splicing machinery, adding complexity to the classification of variants [18–20].
The potential for clinically relevant associations with different types of germline variants
in LS was illustrated by a recent study that reported a significantly better prognosis for
CRC in LS patients who had missense or splice site path_MMR variants compared to those
with frameshift or nonsense variants or large genomic rearrangements (overall survival
132.5 vs. 82.5 months) [21]. In contrast, one retrospective study suggested an increased risk
for endometrial cancer in carriers of missense path_MLH1 variants, but this was not seen in
other cancers [6].

We here report prospectively observed, cumulative incidences of cancer in path_MLH1
and path_MSH2 carriers with truncating versus predicted missense and non-canonical
aberrant splicing pathogenic variants to explore the hypothesis that carriers of truncating
variants have higher cancer incidence.

https://www.insight-group.org/variants/databases/
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2. Methods
2.1. The Prospective Lynch Syndrome Database (PLSD) Design

We analysed carriers of path_MLH1 and path_MSH2 variants from the PLSD. The
PLSD design and its inclusion criteria have been described previously in detail [1–4,7].
In brief, the PLSD is an international prospective observational study including centres
from 18 countries worldwide. Data were collected from the first prospectively planned and
completed colonoscopy onwards, and all recruits had subsequent follow-up of one year or
more. A detailed discussion of methods is given in Moller et al. and Seppälä et al. [7,22].
Time to first cancer after inclusion was calculated for each organ or group of organs. When
calculating the time to any cancer (penetrance), only patients without any cancer prior to or
at inclusion were counted. For each calculation, each patient was censored at the first event
or last observation, whichever came first. The number of observation years and cancers in
the 5-year groups were counted from 25 to 75 years and the corresponding annual cancer
incidence rates by age group were calculated.

2.2. MMR Gene Variant Categorization

Path_MLH1 and path_MSH2 variants that were classified as clinically actionable
(class 4 and 5) in the InSIGHT database [23] were grouped as: (1) truncating (including
frameshift, nonsense, deletion of exon(s), and canonical splicing); (2) missense/aberrant
splicing (aberrant splicing determined by splicing assay of intronic variants outside the
canonical +/− 2(3) positions or exonic variants), and (3) others (including in-frame dele-
tions or duplications, duplications of whole exons, initiation codon variants, intronic
variants, and variants not compliant with any of the categories described). The groups of
truncating and missense/aberrant splicing variants were used for calculations. As previ-
ously reported [1], the number of carriers with path_MSH6 or path_PMS2 variants were
limited and considered insufficient for the analyses presented in this report.

2.3. Cancer Risk by Gene and Type of Genetic Variant

The cumulative incidence (Q) and the annual incidence rates (AIRs) by age were
calculated as previously described [1]. In brief, Q was computed starting at age 25, as-
suming zero incidence rate before age 25, using the formula Q (age) = Q (age − 1) +
(1 − Q (age − 1)) × AIR (age), where AIR (age) is the annual incidence rate as estimated
from the corresponding 5-year interval. Confidence intervals were calculated as previously
described [1].

2.4. Ethics Statement

All reporting centers exported de-identified data to the PLSD, and the patients had
been followed up prospectively according to local clinical guidelines, as previously de-
scribed [1–4,24,25].

3. Results
3.1. Characterization of Path_MLH1 and Path_MSH2 Genetic Variants

Numbers of carriers and follow-up times by gene, variant type—missense/aberrant
splicing or truncating or other—are detailed in Table 1. In sum, 1045 carriers with mis-
sense/aberrant splicing variants were followed for an average of 7.9 years (95% CI (7.6–8.2)),
3930 carriers with truncating variants were followed for an average of 8.7 years (95% CI (8.5–8.9)),
and 224 carriers had other types of variants (Table 1). Because carriers of path_MLH1 and
path_MSH2 have different incidences of cancers [1], the incidences in this report were
calculated for each gene separately.
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Table 1. Categorization of the path_MLH1 and path_MSH2 carriers having inherited variants causing truncating or mis-
sense/aberrant splicing clinically actionable variants as defined in the InSiGHT database.

Categorization
Group Variant Type Gene Number of

Carriers
Sum of the
FUP Years

Mean of the
FUP Years 95% CI

Missense or
aberrant
splicing

Aberrant Splicing MLH1 233 1829 7.8 (7.1–8.5)

Aberrant Splicing MSH2 350 2778 7.9 (7.4–8.4)

Missense MLH1 345 2715 7.9 (7.4–8.4)

Missense MSH2 117 883 7.5 (6.7–8.3)

Total 1045 8205 7.9 (7.6–8.2)

Truncating

Canonical Splicing MLH1 501 4709 9.4 (8.9–9.9)

Canonical Splicing MSH2 185 1635 8.8 (8.0–9.6)

Exon Deletion MLH1 688 7643 11.1 (10.6–11.6)

Exon Deletion MSH2 579 4207 7.3 (6.9–7.7)

Nonsense MLH1 324 2880 8.9 (8.3–9.5)

Nonsense MSH2 608 4929 8.1 (7.7–8.5)

Frameshift MLH1 482 3722 7.7 (7.3–8.1)

Frameshift MSH2 563 4416 7.8 (7.4–8.2)

Total 3930 34,141 8.7 (8.5–8.9)

Others

Exon Duplication MLH1 1 1 1 (1.0–1.0)

Exon Duplication MSH2 16 71 4.4 (2.7–6.1)

Inframe Indel MLH1 85 790 9.3 (8.3–10.3)

Inframe Indel MSH2 93 811 8.7 (7.7–9.7)

Initiation Codon MLH1 8 36 4.5 (1.5–7.5)

Intronic MSH2 3 25 8.3 (2.1–14.5)

Undefined MLH1 18 249 13.8 (10.7–16.9)

Total 224 1983

FUP, follow-up years.

For the MLH1 gene, missense variants were more frequent (60.7%, 345/578) than
aberrant splicing variants (40.3%, 233/578), while for the MSH2 gene, aberrant splicing
variants were more common than missense variants (75%, 350/467 vs. 26%, 117/467)
(p > 0.05). Truncating variants affected both genes in an equal proportion (50% each).
Within the set of truncating variants (n = 3930), the most common types with respect to
variant consequence were exon or multi-exon deletions (32%, 1267/3930), followed by
frameshift (27%, 1045/3930) and nonsense (24%, 932/3930). By the type of truncating
variant and gene, exon or multi-exon deletions were the more frequent variant in MLH1
(34.5%, 688/1995), followed by canonical splicing variants (25.1%, 501/1995), frameshift
(24.1%, 482/1995), and nonsense variants (16.2%, 324/1995), while for the MSH2 gene,
nonsense variants were the most frequent (31.4%, 608/1935) (p > 0.05) (Table 1).

3.2. Cumulative Cancer Incidence by Gene and Type of Genetic Variant

The cumulative incidences by gene for any cancer, CRC, and endometrial cancer are
detailed in Table 2 and illustrated in Figure 1. There were no significant differences between
carriers with missense/aberrant splicing versus truncating variants at any age in any group.
Moreover, no differences which could be considered non-significant trends were observed
(p > 0.05 for all comparisons).
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Table 2. Cumulative cancer incidences stratified by age, gene, variant, and organ.

Cumulative Incidences (95% CI)

Age
MLH1

Missense/Aberrant
Splicing

MLH1 Truncating
MSH2

Missense/Aberrant
Splicing

MSH2 Truncating

Any cancer 30 0 (0–0) 2.5 (0.3–4.7) 3.1 (0–9.1) 2.2 (0–4.6)

40 17.9 (9.3–26.5) 17.3 (13.1–21.6) 13.8 (4.1–23.5) 13.6 (8.9–18.2)

50 36.5 (26.6–46.5) 39.5 (34.5–44.5) 36.0 (23.9–48.0) 35.2 (29.3–41.1)

60 56.6 (44.6–68.4) 58.6 (53.4–63.9) 61.6 (49.5–73.6) 57.8 (51.4–64.1)

70 76.4 (63.6–89.2) 71.0 (65.1–76.7) 87.1 (75.6–98.6) 71.6 (64.4–78.8)

75 83.5 (71.4–95.6) 75.4 (69.1–81.8) 87.1 (75.6–98.6) 80.3 (73.3–87.4)

Colorectal cancer 30 0 (0–0) 2.5 (0.3–4.6) 0 (0–0) 2.1 (0–4.4)

40 14.5 (6.5–22.6) 14.6 (10.6–18.6) 7.0 (0.3–13.6) 8.3 (4.5–12.1)

50 23.8 (14.6–33.0) 28.0 (23.3–32.7) 15.1 (6.4–23.8) 18.1 (13.3–22.9)

60 38.4 (26.5–50.4) 38.9 (33.7–44.0) 30.6 (19.7–41.5) 28.9 (23.3–34.5)

70 53.7 (39.0–68.3) 47.0 (41.2–52.8) 49.9 (36.4–63.4) 41.1 (34.2–48.0)

75 61.6 (45.9–77.4) 50.3 (43.8–56.8) 49.9 (36.4–63.4) 47.3 (39.6–55.1)

Endometrial cancer 30 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

40 5.2 (0–10.9) 0.5 (0–1.5) 2.5 (0–7.2) 2.4 (0–5.0)

50 11.8 (3.5–20.0) 15.0 (10.1–19.9) 13.3 (2.4–24.2) 19.5 (12.9–26.1)

60 27.0 (13.9–40.1) 27.7 (21.0–34.3) 34.5 (17.6–51.3) 39.2 (30.3–48.1)

70 34.9 (19.2–50.6) 35.9 (27.6–44.2) 45.6 (25.6–65.6) 48.0 (37.4–58.5)

75 34.9 (19.2–50.6) 38.2 (29.0–47.4) 45.6 (25.6–65.6) 50.9 (39.5–62.3)

CI, confidence interval.
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There were no significant differences between carriers with missense/aberrant splicing versus truncating variants at any
age in any groups (p > 0.05 for all comparisons).

Cumulative incidences for any cancer at 50 years in path_MLH1 carriers with trun-
cating or missense/aberrant splicing variants were 39.5% (95% CI (34.5–44.5)) and 36.5%
(95% CI (26.6–46.5)), respectively, and in path_MSH2 carriers, 35.2% (95% CI (29.3–41.1))
and 36.0% (95% CI (23.9–48.0)), respectively. Corresponding cumulative incidences for
CRC were 28.0% (95% CI (23.3–32.7)) versus 23.8% (95% CI (14.6–33.0)) for path_MLH1
carriers and 18.1% (95% CI (13.3–22.9)) versus 15.1% (95% CI (6.4–23.8)) for path_MSH2 car-
riers with truncating or missense/aberrant splicing variants, respectively. Corresponding
cumulative incidences for endometrial cancer were 15.0% (95% CI (10.1–19.9)) versus 11.8%
(95% CI (3.5–20.0)) for path_MLH1 carriers and 19.5% (95% CI (12.9–26.1)) versus 13.3%
(95% CI (2.4–24.2)) for path_MSH2 carriers with truncating or missense/aberrant splicing
variants, respectively.
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Cumulative incidences for any cancer at 75 years in path_MLH1 carriers with truncat-
ing or missense/aberrant splicing variants were 75.4% (95% CI (69.1–81.8)) versus 83.5%
(95% CI (71.4–95.6)), respectively, and in path_MSH2 carriers 80.3% (95% CI (73.3–87.4))
versus 87.1% (95% CI (75.6–98.6)), respectively. Corresponding cumulative incidences for
CRC were 50.3% (95% CI (43.8–56.8)) versus 61.6% (95% CI (45.9–77.4)) for path_MLH1
carriers and 47.3% (95% CI (39.6–55.1)) versus 49.9% (95% CI (36.4–63.4)) for path_MSH2
carriers with truncating or missense/aberrant splicing variants, respectively. Correspond-
ing cumulative incidences for endometrial cancer were 38.2% (95% CI (29.0–47.4)) versus
34.9% (95% CI (19.2–50.6)) for path_MLH1 carriers and 50.9% (95% CI (39.5–62.3)) versus
45.6% (95% CI (25.6–65.6)) for path_MSH2 carriers with truncating or missense/aberrant
splicing variants, respectively.

4. Discussion and Conclusions

In contrast to expectations for the hypothesis we tested, carriers of truncating variants
of either path_MLH1 and path_MSH2 had similar average cumulative incidences of cancers
to carriers of missense or aberrant splicing variants affecting the corresponding gene. On
average, carriers of both categories of pathogenic variants had the same high cumulative
incidences of any cancer for both genes. The numbers of carriers in each of the groups
were large enough to detect any major differences. Our findings will be of clinical interest
when interpreting the results of genetic testing, and in planning preventive health care
interventions in carriers. As reported previously [1,4], path_MSH2 carriers have higher
incidence of other cancers than in the colorectum and endometrium, which is also reflected
in the current results for carriers of both truncating and missense path_MSH2 variants.
The cumulative cancer incidences for missense path_MSH2 carriers in the two highest age
groups showed variation that was considered likely to be stochastic, reflecting the limited
number of observation years.

We have previously reported that pathogenic variants in each of the MMR genes result
in different risks for cancers in organs, including the colorectum, endometrium, ovaries,
stomach, small bowel, bile duct, pancreas, and upper urinary tract [1]. Previously, only one
study with a very limited number of cases attempted to address the issue of whether the
type of pathogenic variant also resulted in different cancer risks but was inconclusive [13].

Some MMR gene variants may be associated with partial but compromised function.
The POLYPHEN and SIFT algorithms [26,27] attribute distinct degrees of malfunctioning to
different missense variants, and there are examples of aberrant splicing and missense vari-
ants in the BRCA-genes that are associated with intermediate cancer incidences [22,28,29].
We cannot rule out the possibility that the criteria applied by the InSiGHT database to
classify variants lack the sensitivity to identify low-risk variants in MLH1 and MSH2. In-
deed, a functional study showed that the MLH1 variant p.K618T that was classified benign
by InSIGHT had an intermediate repair capacity of ~35% to 50% [30]. Carriers of such
variants may be at moderately increased risk for cancer, but may not be offered appropriate
health care. Less penetrant path_MMR variants may also present clinically as the autosomal
recessive constitutional mismatch repair deficiency syndrome (CCMRD), but path_PMS2
and path_MSH6 variants account for the majority of such cases. Path_PMS2 variants associ-
ated with a milder heterozygous phenotype may be overrepresented, since it was shown
that heterozygous relatives of CMMRD patients had a lower cumulative colon cancer risk
(8.7%) than reported for path_PMS2 as a whole by the PLSD and others [1,31]. A difference
in age at CRC diagnosis was found for path_PMS2 carriers when stratifying variants into
those that lead to loss of RNA expression compared to those for which expression was
preserved [32,33], but a similar relationship was not observed in a CMMRD family cohort.
Host immune factors may also be involved in determining cancer incidence in LS. Carriers
of path_MLH1 and path_MSH2 variants develop thousands of mismatch repair-deficient
and potentially precancerous gastrointestinal crypts [34,35]. The frequency at which they
progress to infiltrating cancers may be largely determined by the host immune system,
rather than the nature of the inherited path_MMR variant [34,36]. Genetic modifiers may
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also contribute to the variation in cancer risk and phenotypic variability in path_MMR
carriers, leading those with such genetic modifiers to be at increased risk of having further
cancers [9].

The strengths of our study include its large sample size and its prospective design,
but a potential weakness is selection bias at contributing centres that may have failed
to identify some low-penetrance variants. We are also aware that there are many other
possible categorizations of path_MMR variants that could be investigated for differences in
associated cancer incidences using the PLSD data, but we hesitate to do so until we have
other plausible hypotheses to test. Similarly, we did not test for differences between class 4
and class 5 variants in relation to cancer incidence, as numbers were not large enough to
make this comparison.

The penetrance of the pathogenic MMR variants has no bearing on the classification
of their pathogenicity. Having recruited sufficient numbers of carriers into PLSD to reach
robust conclusions, we examined the hypothesis that missense or aberrant splicing variants
may have lower incidence of cancer than truncating path_MLH1 and path_MSH2 variants. In
contrast to our hypothesis, we found no difference. The results are of practical interest when
presenting preventive health care options to carriers of path_MLH1 and path_MSH2 variants.
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