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36 Short title: The melon thrips genome

37 Abstract

38 Thrips are tiny insects from the order Thysanoptera (Hexapoda: Condylognatha), including 

39 many sap-sucking pests that are causing increasing damage to crops worldwide. In contrast 

40 to their closest relatives of Hemiptera (Hexapoda: Condylognatha), including numerous 

41 sap-sucking species, there are few genomic resources available for thrips. In this study, we 

42 assembled the first thrips genome at the chromosomal level from the melon thrips, Thrips 

43 palmi, a notorious pest in agriculture, using PacBio long-read and Illumina short-read 

44 sequences. The assembled genome was 270.43 Mb in size, with 4,120 contigs and a contig 

45 N50 of 426 kb. All contigs were assembled into 16 linkage groups assisted by the Hi-C 

46 technique. In total, 16,333 protein-coding genes were predicted, of which 88.13% were 

47 functionally annotated. Among sap-sucking insects, polyphagous species (e.g., T. palmi and 

48 Bemisia tabaci) usually possess more detoxification genes than oligophagous species (e.g., 

49 Diaphorina citri). The polyphagous thrips genomes characterized so far have relatively more 

50 detoxification genes in the GST and CCE families than polyphagous aphids, but they have 

51 fewer UGTs. HSP genes, especially from the Hsp70s group, have expanded in thrips 
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52 compared to other hemipterans. These differences point to different genetic mechanisms 

53 associated with detoxification and stress responses in these two groups of sap-sucking 

54 insects. The expansion of these gene families may contribute to the rapid development of 

55 pesticide resistance in thrips, as supported by a transcriptome comparison of resistant and 

56 sensitive populations of T. palmi. The high-quality genome developed here provides an 

57 invaluable resource for understanding the ecology, genetics, and evolution of thrips as well 

58 as their relatives more generally.

59

60 Keywords: Thysanoptera, Thrips palmi, pesticide resistance, de novo assembly, genome 

61 annotation

62

63 Introduction

64 Many insects feed on plant sap by using their sucking and piercing mouthparts. A 

65 sap-sucking lifestyle evolved mainly in the superorder Condylognatha, including thrips from 

66 the order Thysanoptera, and psyllids, whiteflies, aphids, mealybugs and true bugs from the 

67 order Hemiptera. Sap-sucking insects include a large number of notorious agricultural pests 

68 that have developed pesticide resistance, such as the western flower thrips Frankliniella 

69 occidentalis, whitefly Bemisia tabaci, green peach aphid Myzus persicae and brown 

70 planthopper Nilaparvata lugens (De Barro, Liu, Boykin, & Dinsdale, 2011; Reitz et al., 2020). 

71 Understanding the genomic basis of a sap-sucking lifestyle may help in developing targets to 

72 reduce damage from outbreaks of these pests as well as provide information on convergent 

73 and divergent evolution in these diverse groups.

74 Among the sap-sucking insects, thrips species are causing increasing damage and 

75 economic losses to agricultural and horticultural crops worldwide (Morse & Hoddle, 2006; 

76 Reitz et al., 2020). Due to their small body size and cryptic habits, thrips are easily 

77 transferred across regions, leading to them becoming global invaders outside their native 

78 ranges (Morse & Hoddle, 2006). Although many methods have been applied to counter 

79 outbreaks of pest thrips (Mouden, Sarmiento, Klinkhamer, & Leiss, 2017), field control 

80 remains heavily reliant on pesticides (Mouden et al., 2017), leading to pesticide resistance 

81 problems (Y. L. Gao, Lei, & Reitz, 2012). Despite the increasing economic impact of thrips, 
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82 there is a lack of understanding about their genetics, ecology, and evolution (Mound, 2005). 

83 For example, it was only established in the 1990s that thrips feed by sucking the sap from 

84 individual plant cells, whereas prior to this time it was assumed that thrips fed by rasping the 

85 surface of plants (Heming, 1993; Mound, 2005).

86 One of the challenges in developing a further understanding of thrips is that there is a 

87 lack of genomic resources for these organisms. Only one scaffold-level genome from F. 

88 occidentalis is available for thrips (Thomas et al., 2018). In contrast, for sap-sucking insects 

89 from the Hemiptera, there are useful genomic resources available, with published genomes 

90 for the whitefly B. tabaci (Chen et al., 2016), psyllid Diaphorina citri (Saha et al., 2017), 

91 aphids Aphis gossypii (Quan et al., 2019), Aphis glycines (Wenger et al., 2017), Diuraphis 

92 noxia (Nicholson et al., 2015), M. persicae (Ramsey et al., 2007), and Acyrthosiphon pisum 

93 (International Aphid Genomics, 2010), scale insect Ericerus pela (Cryan & Urban, 2012), and 

94 planthopper N. lugens (Xue et al., 2014). These genomic resources in Hemiptera provide an 

95 opportunity to compare the evolution of the sap-sucking lifestyle in thysanopteran and 

96 hemipteran insects. A well-assembled reference genome is also essential in understanding 

97 other aspects of the ecology, evolution and control of thrips, and can be used to build on 

98 transcriptomic studies that have examined pesticide resistance and virus transmission in 

99 thrips (Berger et al., 2016; Gamage, Rotenberg, Schneweis, Tsai, & Dietzgen, 2018; 

100 Schneweis, Whitfield, & Rotenberg, 2017; Y. Wan et al., 2018). 

101 The melon thrips, Thrips palmi Karny, is one of the most important pest thrips damaging 

102 a variety of vegetables, such as eggplant and melons (Fig. 1) (Cannon, Matthews, & Collins, 

103 2007). It is native to Southeast Asia and has become established in South and East Asia, 

104 South America, the Caribbean, Florida, Australia, and West Africa during the second half of 

105 the twentieth century (Cannon et al., 2007; Kawai, 2001), becoming one of the most 

106 important pests of vegetables (Y. F. Gao et al., 2019; Kawai, 2001; Przybylska, Fiedler, 

107 Kucharczyk, & Obrepalska-Steplowska, 2015). In Japan and China, some populations of T. 

108 palmi have rapidly developed a high level of resistance to spinetoram (Bao et al., 2014; Y. F. 

109 Gao et al., 2019). This species, therefore, provides an ideal model to understand the genetic 

110 basis of sap-sucking lifestyle and pesticide resistance in thrips.

111 In the present study, we report the first genome of thrips determined from T. palmi. 

112 The genome was de novo assembled based on sequences obtained from the PacBio and 

113 Illumina platforms and assembled at the chromosome level assisted by the Hi-C technique, 
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114 joining the growing list of insect genomes that have been sequenced and assembled to a 

115 high level. It also provides a reference for the study of small insect genomes. We compared 

116 genome features between thrips and several sap-sucking hemipteran insects (whitefly, 

117 psyllid, aphid, and planthopper) to explore the evolution and genomic signatures of a 

118 sap-sucking lifestyle. The genomic resource developed here for T. palmi provides an 

119 invaluable resource for understanding the genetics, ecology and evolution of insects, as well 

120 as providing information for the eventual development of novel management options for 

121 thrips pests.

122 Materials and methods

123 Samples and DNA extraction

124 For genome sequencing, about 100 individuals of T. palmi were collected from cultivated 

125 cucumber at Shouguang, Shandong province, and reared for about 20 generations in the 

126 laboratory. Adults were reared with cucumber seedlings at 25 ± 1 °C under a relative 

127 humidity of 70% and a photoperiod of 14 h:10 h L:D. During rearing, adults laid eggs in 

128 cucumber leaves and the mature nymphs were transferred to bean pods for pupation. 

129 Genomic DNA for the Illumina paired-end DNA library construction was extracted from 

130 one female adult with DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany), following the 

131 manufacturer’s instructions. Genomic DNA used for the SMRTbell library preparation was 

132 extracted from about 2,000 adults with Blood & Cell Culture DNA Midi Kit (Qiagen, Hilden, 

133 Germany), following the manufacturer’s protocol. All DNA extracts were verified with 

134 NanoDrop (NanoDrop products, Wilmington, DE, USA) and a Qubit 3.0 Fluorometer (Life 

135 Technologies Corporation, Eugene, OR, USA) using the QubitTM dsDNA HS Assay Kit (PN# 

136 Q32851) (Life Technologies Corporation, Eugene, OR, USA) to quantify purity and 

137 concentration.

138 For pesticide resistance analysis, we collected one field population (BJ) of T. palmi from 

139 a cucumber crop in the Fangshan District, Beijing (Y. F. Gao et al., 2019) and another 

140 population (SD) from an eggplant crop in Jitai town, Shouguang city, Shandong province, 

141 with about 3,000 individuals collected from each population. Based on previously collected 

142 data, the BJ population was expected to be more sensitive to spinetoram than the SD 
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143 population (Gao et al., 2019). The field-collected generations of the two populations are 

144 referred to as BJF0 and SDF0.

145 In total 640 of these field-collected adults per population were used for bioassays 

146 according to a published method (Y. F. Gao et al., 2019) to test the susceptibility of thrips to 

147 6% spinetoram suspension concentrate (SC) (Dow AgroSciences Company, USA), a spinosyn 

148 class pesticide widely used in thrips control. Another 400 adults per population were 

149 preserved in liquid nitrogen for transcriptome library construction. For each transcriptome 

150 library, 100 adults were used; four biological replicates were set up for each population. The 

151 remaining individuals from the two field populations were used to set up cultures that were 

152 then reared in the laboratory for five generations (BJF5 and SDF5) as described above, 

153 without contact with any pesticide. These were then used for further bioassays and 

154 transcriptome analyses carried out as described for the field populations, to examine 

155 changes in susceptibility to spinetoram and transcription patterns following multiple 

156 generations of laboratory culture. 

157 Library construction and sequencing

158 For long-read sequencing, SMRTbell libraries were constructed with Sequel® Sequencing Kit 

159 3.0 (Pacific Biosciences, Menlo Park, CA, USA). Long DNA fragments of the approximately 20 

160 kb library were sequenced on a PacBio Sequel sequencer (Pacific Biosciences, Menlo Park, 

161 CA, USA). Three SMRT cells were processed. After filtering, we obtained 17.67 Gb of short 

162 clean reads from the Illumina platform (coverage: 65.34X) and 33.49 Gb subreads (mean 

163 subread length: 6.44 kb, subread N50 length: 8.77 kb, coverage: 123.84X) from the PacBio 

164 platform for contig-level genome assembly (Table S1).

165 For short-read sequencing, a paired-end library with short insert sizes of about 500 bp 

166 was constructed using VAHTSTM Universal DNA Library Prep Kit for Illumina® V2 (Vazyme, 

167 Nanning, China). After passing quality inspection, the paired-end library was sequenced on 

168 an Illumina NovaSeq platform with the standard protocol offered by Illumina (San Diego, CA, 

169 USA).

170 To assist the chromosome-level assembly, the Hi-C (High-throughput chromosome 

171 conformation capture) technique was applied to capture genome-wide chromatin 

172 interactions (Belaghzal, Dekker, & Gibcus, 2017). After nearly 1,000 pupae were ground in 2% 
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173 formaldehyde to allow cross-linking of cellular protein, 50 μg DNA was extracted and the 

174 chromosome integrity and cross-linked protein residue were assessed. Chromatin digestion 

175 was performed with the restriction enzyme MboI, then Hi-C samples were extracted by 

176 biotin labeling, flat end ligation and DNA purification. After passing the DNA quality 

177 detection test, we performed the standard Hi-C library construction process. The Hi-C library 

178 was sequenced using the Illumina NovaSeq platform with paired-end 150-bp reads.

179 For transcriptome sequencing, total RNA was isolated from spinetoram-resistant and 

180 susceptible populations of T. palmi with TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) and 

181 quantified with a NanoDrop ND-2000 spectrophotometer (NanoDrop products, Wilmington, 

182 DE, USA). A cDNA library was constructed using a VAHTSTM mRNA-seq V3 Library Prep Kit for 

183 Illumina (Vazyme, NR611, Nanjing, China). After validation by quantitative real-time PCR with 

184 a library quantification kit/Illumina GA Universal (KAPA, Wilmington, MA, USA), libraries 

185 were sequenced on an Illumina NovaSeq instrument (Illumina, San Diego, CA, USA) at the 

186 BerryGenomics company (Beijing, China).

187 Genome assembly and evaluation

188 The quality of Illumina raw reads from the above two libraries was checked by FastQC 

189 (Andrews, 2010) and the low-quality reads were filtered by Trimmomatic v0.38 (Bolger, 

190 Lohse, & Usadel, 2014). The long reads were used for genome de novo assembly. Raw reads 

191 were corrected using wtdbg v2.2 (Ruan & Li, 2020) to generate a draft assembly. A 

192 consensus assembly was obtained through running wtpoa-cns implemented in wtdbg2 

193 based on corrected reads and the draft assembly. The assembly was further polished by 

194 Pilon v1.22 (Walker et al., 2014) based on Illumina short reads four times to obtain the 

195 contig-level assembly. Clean reads sequenced from the Hi-C library were aligned to the 

196 contig-level genome with an end-to-end algorithm implemented in bowtie2 according to 

197 HiC-Pro strategy (Langmead & Salzberg, 2012; Servant et al., 2015). Juicer v1.5 and 3D de 

198 novo assembly (3D-DNA) pipelines were used to assemble the scaffolds into a 

199 chromosome-level genome (Dudchenko et al., 2017; Durand et al., 2016).

200 The completeness of the genome was evaluated through estimating the genome size, 

201 mapping the Illumina reads to a reference genome using Burrow-Wheeler Aligner (BWA) 

202 v0.7.17 (Li & Durbin, 2009), calculation of coverage and BUSCO analysis of single-copy 

203 orthologs (Simao, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015). Size, 

204 heterozygosity, and duplication of the genome were estimated by the K-mer method. 
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205 K-mers were counted by jellyfish v2.2.9 (Marçais & Kingsford, 2011) with 17-base 

206 oligonucleotide based on Illumina short reads. Parameters were determined by 

207 GenomeScope v1.0 (Vurture et al., 2017). Benchmarking Universal Single-Copy Orthologs 

208 (BUSCO) v3.0.2 (Simao et al., 2015) was used to evaluate the completeness of the assembly 

209 based on the insecta_odb9 database (1,658 genes). We compared the genome assembly 

210 features among 10 insect species (Table 1).

211 Repetitive elements and noncoding RNA annotation

212 Repetitive elements in scaffolds longer than 1,000 bp were detected by RepeatMasker 

213 v4.0.7 (Tarailo‐Graovac & Chen, 2009) against the Insecta repeats within RepBase Update 

214 (http://www.girinst.org). The assembled genome was analyzed for potential DNA transposon 

215 sequences using the program RepeatModeler 

216 (http://www.repeatmasker.org/RepeatModeler.html, RRID: SCR_015027). Most noncoding 

217 RNAs (ncRNA) were annotated by aligning the genomic sequence against RFAM 

218 (http://rfam.xfam.org/) with BLASTN. Three types of noncoding RNAs (ncRNA) - transfer RNA 

219 (tRNA), ribosome RNA (rRNA), and small nuclear RNA - were annotated. Among them, tRNAs 

220 and rRNAs were predicted by tRNAscan-SE and RNAmmer (Lagesen et al., 2007; Lowe & 

221 Eddy, 1997).

222 Protein-coding gene annotation

223 Protein-coding genes were annotated under three lines of evidence including ab initio, 

224 RNA-seq-based, and homolog-based methods. For the ab initio method, we used the 

225 software packages Augustus v3.2.3 (Stanke & Waack, 2003) and SNAP v2013-02-16 (Korf, 

226 2004) employed with default parameters. The homologous genes from Drosophila 

227 melanogaster and F. occidentalis were employed to predict gene structures. All the known 

228 genes of T. palmi in the database were used to train Augustus and SNAP three times. For the 

229 RNA-seq-based method, short reads from transcriptome sequencing were aligned to the 

230 genome with TopHat v2.1.1 (Trapnell, Pachter, & Salzberg, 2009) and the gene structure was 

231 built by PASA v2.0.2 (M. A. Campbell, Haas, Hamilton, Mount, & Buell, 2006) with default 

232 settings. For the homolog-based approach, Gene Model Mapper (GeMoMa) v1.4.2 

233 (Keilwagen et al., 2016) was used with the protein sequences of D. melanogaster, F. 

234 occidentalis, Acyrthosiphon pisum and Pediculus humanus as references. Results from three 
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235 methods were integrated with EVidenceModeler (EVM) v1.1.1 (Haas et al., 2008). All analysis 

236 was conducted in Maker v2.31.10 genome annotation pipeline (Cantarel et al., 2008).

237 The gene set was annotated by aligning protein sequences to NR (non-redundant 

238 sequence databases) (Deng et al., 2006), UniRef (Suzek et al., 2014), UniprotKB/Swiss-prot 

239 (Bairoch & Boeckmann, 1991), UniProtKB/TrEMBL (Boeckmann et al., 2003) and COG 

240 (Cluster of Orthologous Groups of proteins)/KOG (eukaryotic orthologous groups of proteins) 

241 (Tatusov et al., 2001) using BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) with a 

242 threshold of 1e-5. The software eggnog-mapper v1.0.3 was applied to annotate gene 

243 functions in the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) 

244 databases (Kanehisa & Goto, 2000).

245 Identification of orthology and inference of phylogenetic relationships

246 OrthoFinder (Emms & Kelly, 2015) was used to find orthologues and orthogroups. 

247 Phylogenetic relationships within Condylognatha, including thrips (Thysanoptera), psyllid, 

248 whitefly, aphid and planthopper (Hemiptera) were reconstructed based on single-copy 

249 orthologs of protein-coding genes (Table 2). Two dipteran species were used as outgroups. 

250 MAFFT v7.450 (Katoh & Standley, 2013) was employed to align amino acid sequences of 

251 1:1:1 orthologous gene with the G-INS-I algorithm. The phylogenetic tree was inferred using 

252 an approximately-maximum-likelihood method implemented in FastTree v2.1.10 (Price, 

253 Dehal, & Arkin, 2009) under default settings. FastTree uses the JTT (Jones-Taylor-Thorton) or 

254 WAG (Whelan Goldman) models of amino acid evolution. The most likely category for each 

255 site was set using a Bayesian approach with a gamma prior. This method is a standard 

256 workflow in OrthoFinder, which rapidly infers the species tree from a concatenated multiple 

257 sequence alignment (MSA) of single-copy genes.

258 Gene family annotation

259 To facilitate both the curation of inaccurate annotations and the identification of previously 

260 undetected gene family copies directly from DNA sequences, we manually annotated seven 

261 gene families, including detoxification genes of cytochrome P450 monooxygenase (P450s), 

262 glutathione S-transferase (GSTs), carboxyl/cholinesterases (CCEs), UDP-glycosyltransferases 

263 (UGTs) and ATP-binding cassette (ABC) transporter, heat shock proteins (HSPs), and nicotinic 

264 acetylcholine receptors (nAChRs). Hidden Markov models (HMMs) and orthologs from 

265 related species of F. occidentalis and model species of D. melanogaster provided evidence 

266 for gene identification, run with HMMER v3.3 (Finn, Clements, & Eddy, 2011) and BLAST 
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267 v2.2.31 (Altschul et al., 1990). The HMMs were downloaded from Pfam 32.0 (September 

268 2018, 17,929 entries) (El-Gebali et al., 2018). We used the bioinformatic pipeline BITACORA 

269 (full mode) to conduct HMMER and BLAST analyses (Vizueta, Sánchez-Gracia, & Rozas, 2019). 

270 Hits were filtered with a default cut-off E-value of 10e-5. The annotated genes were further 

271 filtered manually based on gene length and the presence of conserved domains. We 

272 removed genes with a length shorter than 80% of the average gene length. Orthologs were 

273 aligned with the G-INS-I algorithm implemented in MAFFT v7.450 (Katoh & Standley, 2013). 

274 A neighbor-joining tree was constructed for each gene family using MEGA7 (Kumar, Stecher, 

275 & Tamura, 2016) with 500 bootstrap replicates.

276 Transcriptome analysis of resistant and susceptible strains of T. palmi

277 Illumina short reads sequenced from transcriptome libraries were filtered by Trimmomatic 

278 v0.38 (Bolger et al., 2014) and then mapped to the assembled genome of T. palmi using 

279 STAR v2.6.0c with default parameters (Dobin et al., 2013). To detect differentially expressed 

280 genes (DEGs), we applied the empirical Bayes hierarchical model EBSeq (Leng et al., 2013). In 

281 this analysis, we adopted the well-established Benjamini-Hochberg method to calibrate p 

282 values from the original assumption test (Ferreira & Zwinderman, 2006). After calibration, 

283 the p-value was determined using the false discovery rate (FDR) approach to decrease false 

284 positives caused by independent statistical hypothesis testing on expression changes in a 

285 large number of genes. We used an FDR < 0.001 and a |log(fold-change (FC))| ≥ 2 as the 

286 criteria for a significant difference in expression. Hierarchical clustering analysis of DEGs was 

287 performed to cluster genes that exhibited the same or similar expression levels. DEGs were 

288 mapped to GO terms and KEGG pathways, and an enrichment analysis was performed to 

289 identify any over-representation of GO terms and KEGG pathways.

290 Results

291 Summary of sequencing and assembly of T. palmi genome

292 Based on the Illumina reads, the genome size of T. palmi is estimated to be 202-223 Mb 

293 through k-mer analysis (k = 17, 21, 27, 31). The k-mer distributions show double peaks, 

294 indicating that this genome has a high rate of duplication and heterozygosity. The estimated 

295 heterozygosity ranges from 1.01% to 1.32% and duplication ranges from 1.37 to 1.96% (Fig. 

296 2b, Fig. S1).
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297 At the contig level, we assembled the T. palmi genome into 270.43 Mb sequences, 

298 including 4,120 contigs, with a contig N50 length of 426.28 Kb (Table 1). When we mapped 

299 the Illumina short reads to the assembled genome, 97.21% of reads could be mapped, 

300 covering 97.31% of the assembled genome. The BUSCO analysis showed that 97.17% 

301 (single-copied gene: 95.78%, duplicated gene: 1.39%) of 1,658 single-copy genes in the 

302 insecta_odb9 database were identified as complete, 0.60% of genes were fragmented, and 

303 2.23% of genes were missing in the assembled genome (Table S2).

304 For the chromosome-level assembly, we obtained 86.43 Gb of clean reads after filtering 

305 from 101.29 Gb raw reads (150 bp paired-end) from the Hi-C library (coverage: 319.60X). 

306 There were 33.62% normal paired reads while the others were chimeric paired (0.1%) or 

307 chimeric ambiguous (66.28%) among the 50 million paired reads. All read pairs were 

308 properly mapped to the genome, and 19.29% of the read pairs showed Hi-C contacts (Table 

309 S3). Based on contig interaction frequency calculated from the pairs aligned to the contigs, 

310 the 4,120 contigs were clustered into 16 linkage groups (Fig. 2a). The longest contig group 

311 was 22.82 Mb while the shortest one was 9.98 Mb, with an N50 of 14.67 Mb. BUSCO analysis 

312 showed that 97.10% (single-copied gene: 96.32%, duplicated gene: 0.78%) of 1,658 genes 

313 were identified as complete, 0.60% of genes were fragmented, while 2.29% of genes were 

314 missing in the assembled genome (Table S2).

315 Genome annotation

316 We identified 16,333 protein-coding genes and 16,386 annotated proteins from the genome 

317 of T. palmi using de novo, homology- and transcriptome sequencing-based methods. The 

318 number of genes in the T. palmi genome is comparable to other insect species (Table 1). 

319 BUSCO analysis showed that 95.2% (single-copied gene: 94.1%, duplicated gene: 1.1%) of the 

320 evaluated single-copy genes were identified as complete, 1.6% of the genes were 

321 fragmented, while 3.2% of the genes were missing in the annotated genes. Functional 

322 annotation found that 14,357 (87.90%), 14,359 (88.13%), and 13,139 (80.44%) genes had 

323 significant hits with proteins catalogued in NR, SwissProt, and TrEMBL, respectively. There 

324 were 7,247 (44.37%) and 6,773 (41.47%) genes annotated to GO terms and KEGG KOs, 

325 respectively (Fig. S2). We predicted 309 rRNAs, 1,171 tRNAs, 67 small nuclear RNAs, and 114 

326 micro RNAs in the T. palmi genome based on Rfam databases (Table S4).

327 In total, 15.34 Mb (6.45%) of the genome was identified to be repeat DNA, and the T. 

328 palmi genome comprised approximately 54.06% GC base pairs. Overall, 15,558 transposable 
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329 elements (TEs) including 4,823 retroelements (446 short interspersed nuclear elements 

330 (SINEs), 2,105 long interspersed nuclear elements (LINEs) and 2,272 long terminal repeats 

331 (LTR)) and 10,735 DNA transposons were identified. There were 58 satellites and 232,896 

332 simple repeats identified as tandem repeats (TRs), accounting for 4.74% of the T. palmi 

333 genome (Table S5).

334 Orthology and phylogenetic relationships among sap-sucking insects

335 OrthoFinder assigned 220,436 genes (83.5% of total) to 15,694 orthogroups for the 12 

336 species compared (Fig. 3). Fifty percent of all genes were in orthogroups with 17 or more 

337 genes (G50 was 17) and were contained in the largest 4,238 orthogroups (O50 was 4,238). 

338 There were 4,145 orthogroups with all species present and 102 of these consisted entirely of 

339 single-copy genes. We identified 13,806 genes specific to T. palmi, fewer than in the case of 

340 F. occidentalis (14,755) (Fig. 3). 

341 For the phylogenetic analysis, 1,224 single-copy genes were used (Table S6). The result 

342 supports the sister relationship between Thysanoptera and Hemiptera and monophyly of 

343 Sternorrhyncha, including psyllids, aphids and whiteflies (Fig. 3), congruent with currently 

344 accepted topologies of these lineages (Cryan & Urban, 2012; Johnson et al., 2018).

345 Evolution of detoxification genes in sap-sucking insects

346 Detoxification genes are key genes that allow herbivorous insects to adapt to their host plant 

347 chemicals (Heckel, 2018). We identified 96 P450s, 25 GSTs, 39 CCEs, 17 UGTs, and 49 ABCs in 

348 the T. palmi genome (Table 2; Fig. 5, Figs. S3-S5). Previous research has shown that the 

349 number of detoxification genes is associated with phenotypes of host usage in insects (Rane 

350 et al., 2019). We compared the number of detoxification genes among evolutionarily related 

351 species from Condylognatha. There are more detoxification genes in polyphagous species 

352 than in oligophagous species except for the ABC genes that shows the opposite pattern (Fig. 

353 4a, Table 2). We also compared the number of detoxification genes among polyphagous 

354 species of thrips, aphids and whitefly. The whitefly has the highest number of P450 and CCE 

355 genes followed by thrips; thrips have the highest number of GST genes and lowest number 

356 of UGT genes; aphids have the highest number of ABC genes but the lowest number of P450, 

357 GST and CCE genes (Fig. 4b, Table 2). Compared with the cockroach, termite and fruit fly, the 

358 sap-sucking insects have a low number of detoxification genes as noted previously (Gloss, 

359 Abbot, & Whiteman, 2019; Rane et al., 2019) (Table 2). 
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360 We further analyzed the number of genes in subfamilies of P450 and ABCs among 

361 polyphagous species. For P450s, the CYP3 and CYP4 subfamilies comprise a large number of 

362 genes as compared to the CYP2 and Mito families. In comparison to T. palmi, F. occidentalis 

363 and B. tabaci have higher numbers of P450 genes, particularly in the subfamilies CYP3 and 

364 CYP4. The CYP2 and Mito subfamilies in thrips show obvious expansion. Compared with F. 

365 occidentalis (26 genes), the CYP4 subfamily has expanded in T. palmi (49 genes) (Fig. 4c). For 

366 ABCs, subfamilies ABCG and ABCH have a higher number of genes than the other subfamilies. 

367 Thrips palmi and F. occidentalis have a relatively higher number of genes in the subfamily 

368 ABCC. F. occidentalis has more ABC genes than T. palmi, B. tabaci, M. persicae and A. 

369 gossypii (Fig. 4e).

370 Evolution of HSP genes in sap-sucking insects

371 HSPs function in adaptation to proteotoxic stresses (Bedulina et al., 2013; Colinet, Siaussat, 

372 Bozzolan, & Bowler, 2013). We identified 51 HSP genes in T. palmi, including 11 Hsp60s, 32 

373 Hsp70s, two Hsp90s, and six sHSPs (small heat shock protein genes) (Fig. 4b, Fig. 5b). 

374 Compared to hemipteran insects, thrips have high numbers of HSPs comparable to the 

375 cockroach (Fig. 4b, Table 2). The expansion of HSP genes in thrips is mainly attributed to an 

376 expansion of Hsp70 genes relative to B. tabaci, M. persicae and A. gossypii (Fig. 4d). Hsp70s 

377 represent one of the most conserved protein subfamilies of HSPs. They can respond to 

378 stimuli and interact with other proteins, resulting in changes in stress response phenotypes 

379 (Bettencourt, Hogan, Nimali, & Drohan, 2008).

380 Evolution of spinosyn-targeted nAChR genes in sap-sucking insects

381 The spinosyns are a class of spinosad insecticides, and spinetoram is effective against various 

382 insect pests, especially lepidopterans, thysanopterans, and dipterans, but not hemipterans 

383 (Thomas C Sparks, Crouse, & Durst, 2001). The spinosyns targets on the nicotinic 

384 acetylcholine receptor (nAChR) (T. C. Sparks, Dripps, Watson, & Paroonagian, 2012). We 

385 analyzed the evolution of nAChRs in sap-sucking insects. In T. palmi, a total of 10 nAChR 

386 genes were identified (Fig. 6a). The two thrips species have a complete set of α1-6 and beta1 

387 subunit genes. Compared to F. occidentalis, T. palmi has two more nAChR beta2 and beta3 

388 genes (Fig. 6b). Mutation of the α6 subunit gene was reported to be associated with 

389 spinosyn resistance of several pests (Bao et al., 2014; Y. Wan et al., 2018); there is no 
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390 evidence of this subunit gene in the two aphids M. persicae and A. gossypii (Fig. 6b). In other 

391 sap-sucking hemipteran insects, two or three of the α8, α9 and α10 subunits are present (Fig. 

392 6b). We also found that α5, α6 and α7 form a monophyletic lineage in the phylogenetic 

393 analysis (Fig. 6a).

394 Pesticide resistance and the reference T. palmi genome 

395 Based on our assembled genome as a reference, we identified genes differentially expressed 

396 between populations with different levels of resistance to spinetoram. Bioassay results 

397 showed the LC50 value of the BJF0 field population to spinetoram was 1.69 (1.326-2.139) 

398 mg/L (Y. F. Gao et al., 2019) while the more resistant SDF0 field population had an LC50 of 

399 759.34 (433.741-1,916.574) mg/L. After rearing both populations in the laboratory for five 

400 generations, the LC50 of BJF5 was reduced to 0.37 (0.191-0.557) mg/L, and that of SDF5 was 

401 reduced to 33.12 (18.437-137.664) mg/L. While the resistance levels of the two populations 

402 were therefore significantly decreased by laboratory culture, there remained a significant 

403 difference between the populations. We first compared DEGs between the BJF0 and SDF0 

404 field populations. A total of 1,892 DEGs were detected, including 461 up-regulated and 1,431 

405 down-regulated genes in the relatively more resistant population (SDF0) (Figs. S6a, S6b, and 

406 S7, Table S7). The GO system classified genes involved in three categories: biological process, 

407 cellular component and molecular function. Among the up-regulated genes in the SDF0 

408 population, 22 were mapped to P450s, Hsp20/α crystallin family and Hsp70 proteins. For the 

409 down-regulated genes, 11, 7, and 11 genes were mapped to functions related to P450s, CCEs 

410 and ABC transporters, respectively. Moreover, nine genes mapped to the neurotransmitter 

411 gated ion channel, and four of them were nAChR genes.

412 Next, we compared the two populations after rearing them for five generations in the 

413 laboratory (BJF5 and SDF5) which had reduced resistance levels. A total of 86 DEGs were 

414 detected, including 27 up-regulated and 59 down-regulated genes in the relatively more 

415 resistant population (SDF5). We searched for genes that might be related to pesticide 

416 resistance and found that one CCE and three P450 genes were identified as up-regulated in 
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417 SDF5 compared to BJF5 (Figs. S6c, S6d, and S7, Table S7). The number of DEGs was 

418 significantly decreased compared to the comparison between the two field populations.

419 To compare changes in DEGs between the field and laboratory-reared populations, 

420 DEGs were identified between SDF0 and SDF5, and between BJF0 and BJF5. A total of 821 

421 DEGs (153 up-regulated and 668 down-regulated genes in SDF0) were detected in the 

422 comparison between SDF0 and SDF5 (Figs. S6e, S6f and S7, Table S7), among which seven 

423 up-regulated DEGs were mapped to the Hsp20/α crystallin and Hsp70 families, while 20 

424 down-regulated DEGs were mapped to nAChRs, CCEs and ABC transporters. A total of 258 

425 DEGs (77 up-regulated and 181 down-regulated genes in BJF0) were detected in the 

426 comparison between BJF0 and BJF5, including one up-regulated CCE and one up-regulated 

427 P450, as well as three down-regulated CCEs and four down-regulated p450s (Figs. S6g, S6h 

428 and S7, Table S7).

429 Discussion

430 Chromosome-level assembly of a heterozygous genome for T. palmi

431 We report the first chromosome-level genome sequence for a thrips based on Illumina and 

432 PacBio sequencing platforms and Hi-C technology. The k-mer analysis showed that the T. 

433 palmi genome harbors a high degree of complexity with high heterozygosity (1.01% to 1.32%) 

434 compared to the beet armyworm, Spodoptera exigua (0.59%) (Zhang, Zhang, Yang, & Wu, 

435 2019), the invading fall webworm (0.75% and 0.83%) (Wu et al., 2018) and the caddisfly 

436 Stenopsyche tienmushanensis (1.05%-1.10%) (Luo, Tang, Frandsen, Stewart, & Zhou, 2018). 

437 Genome assembly has usually been challenged by high heterozygosity and duplication, 

438 especially for small invertebrates that need multiple individuals to be processed for DNA 

439 extraction to construct sequencing libraries (Chen et al., 2016; You et al., 2013), and this 

440 includes the genome of T. palmi. We, therefore, used long-read sequencing strategies 

441 involving PacBio and Hi-C to assemble the T. palmi genome, which has been proven 

442 previously to produce high completeness and continuity in genome assembly (F. Wan et al., 

443 2019; Yin et al., 2018; L. Zhang et al., 2019). Controlled breeding may help to reduce genome 

444 heterozygosity for genome assembly; however, it is often unfeasible in small insects such as 

445 T. palmi, which are difficult to rear and need a large sample size for sequencing library 
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446 construction. Nevertheless, we demonstrate that current methods are appropriate for high 

447 quality de novo assembly of the genome of small organisms.

448 The assembled genome of T. palmi was larger than the estimated genome size, as is 

449 found in other cases (Quan et al., 2019), which might be caused by the assembly of highly 

450 heterozygous regions into different genomic regions or problems in accurate size estimation 

451 given heterozygosity. The proportion of the T. palmi genome involving duplicated 

452 single-copy genes evaluated in BUSCO was very low (0.8%), indicating that duplication was 

453 not a major issue in assembling the genome. Among species of Blattodea, Thysanoptera, and 

454 Hemiptera, this is the second genome assembled to the chromosomal level following A. 

455 gossypii. At the contig-level, the contig N50 of T. palmi is higher compared to other genomes 

456 of species of Thysanoptera and Hemiptera (Table 1). The completeness estimated using 

457 BUSCO is higher than for all species of Hemiptera (Table 1), providing confidence in the 

458 quality of the assembled genome.

459 Varied genomic basis of detoxification and stress response in sap-sucking insects

460 Detoxification is one of the major strategies that insects have evolved to counter toxins in 

461 their foods (Despres, David, & Gallet, 2007). Insects feeding on different food resources have 

462 evolved a variable number of detoxification genes (Gloss et al., 2019; Rane et al., 2019). In 

463 general, insects feeding on chemically complex tissues tend to have relatively more 

464 detoxification genes than those on relatively simple diets (Rane et al., 2019). Among species 

465 using the same food type, detoxification of plant chemicals can be based on a variety of 

466 pathways that determine host plant adaptation (Heckel, 2018). Thrips and hemipteran 

467 insects provide useful systems to understand these diverse responses because they 

468 represent sister groups of Condylognatha that include many sap-sucking species.

469 When we compared the polyphagous thrips with whitefly and aphids, we found that 

470 thrips and whitefly have relatively more detoxification genes than aphids. In sap-sucking 

471 hemipteran species, there is a close association between insects and endosymbionts 

472 (Baumann, 2005) which may play a role in dealing with plant toxins and this might lead to 

473 loss of detoxification genes that have evolved in aphids. Our comparisons of sap-sucking 

474 Condylognatha support the notion that polyphagous species usually have more 

475 detoxification genes than oligophagous species, although for polyphagous sap-sucking thrips 

476 and aphids a more extensive range of host plant may not necessarily translate into more 

477 detoxification genes. Based on the CABI database (https://www.cabi.org/), there are > 28 
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478 plants from 11 families used by T. palmi, compared to > 250 plants from > 65 families for F. 

479 occidentalis, > 600 plants from 89 families for B. tabaci, > 120 species from > 40 families for 

480 M. persicae, and >93 species from > 92 families for A. gossypii. These host plant numbers do 

481 not correlate with differences in numbers of detoxification genes (Table 2).

482 Phylogenetic analysis indicated that thrips (Thysanoptera) are the closest living relatives 

483 to Hemiptera, with divergence times before the Carboniferous period, over 365 million years 

484 ago (Johnson et al., 2018). Phylogenetic and fossil evidence suggest that the earliest 

485 hemipterans fed on detritus, pollen, fungi, or spores, and sap-sucking evolved convergently 

486 in thrips and hemipterans (Johnson et al., 2018). Our results suggest that a different genetic 

487 basis of detoxification may have evolved in thrips and aphids although more species need to 

488 be included in comparisons. 

489 The HSP family represents stress proteins and molecular chaperones (King & MacRae, 

490 2015) and appears to be expanded in thrips when compared to hemipteran insects. Aphids 

491 may be adapted to cold climates, with the species richness of this group being relatively 

492 greater in temperate regions (Heie, 2013). Aphids are generally sensitive to changes in 

493 temperature (Hullé, d’Acier, Bankhead-Dronnet, & Harrington, 2010) and may rely on 

494 endosymbionts for high-temperature resistance (Dunbar, Wilson, Ferguson, & Moran, 2007). 

495 There are few studies of temperature effects on thrips, although F. occidentalis can survive 

496 temperatures as high as 41 °C for 12 hours (J. C. Wang, Zhang, Li, Wang, & Zheng, 2014) and 

497 perhaps HSPs play a role in high-temperature tolerance in thrips species. 

498 Implications for pesticide resistance

499 Some detoxification enzymes in insects are involved in both metabolizing plant toxins and 

500 insecticides (Despres et al., 2007). Given the high number of cytochrome P450s, GSTs and 

501 CCEs found in thrips, there is a high potential for this group to evolve pesticide resistance 

502 through detoxification. In thrips, enhanced activity of metabolic enzymes is usually involved 

503 in resistance to broad-spectrum pesticides, such as the organochlorine endosulfan and 

504 carbamate methiocarb (Jensen, 2000; Maymo, Cervera, Sarabia, Martinez-Pardo, & Garcera, 

505 2002). Resistance in thrips to other pesticides has also been related to metabolic detoxifying 

506 enzyme activity (Bao, Kataoka, Fukada, & Sonoda, 2015; Bao et al., 2014; Bao & Sonoda, 

507 2012; Maymo et al., 2002). Although both thrips sequenced so far show an abundance of 

508 detoxification genes, we found the CYP4 subfamily was expanded in T. palmi compared to F. 

509 occidentalis; this may contribute to the relatively high level of resistance of T. palmi to 
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510 spinetoram when compared to F. occidentalis as well as Frankliniella intonsa (Y. F. Gao et al., 

511 2019). Detoxification genes have also been important for resistance in aphids, with the 

512 green peach aphid Myzus persicae and the cotton aphid A. gossypii being particularly 

513 well-known agriculture pests that have evolved metabolic resistance to multiple chemicals 

514 (Chris Bass et al., 2014; Cao, Zhang, Gao, Liang, & Guo, 2008). We predicted more P450 and 

515 ABC genes in F. occidentalis than predicted in a different study (Rotenberg et al., 2020), 

516 although this paper was only available in a preprint form and used different analyses. We 

517 combined HMMER and BLAST analyses using the bioinformatic pipeline BITACORA (full mode) 

518 to ensure the accuracy of identification results. However, the relative abundance of the 

519 identified genes is similar between the two studies (Rotenberg et al., 2020).

520 The relatively high number of HSP genes in T. palmi may also have an impact on 

521 pesticide resistance. Several studies have shown that HSP family genes are highly expressed 

522 under exposure to pesticides (Lu et al., 2017; Nazir, Mukhopadhyay, Saxena, & Kar 

523 Chowdhuri, 2001; Yoshimi et al., 2009), such as the five HSP genes induced by exposure to 

524 avermectin in F. occidentalis, and the marked up-regulation of HSP70 transcripts in the 

525 brown planthopper N. lugens treated with imidacloprid (Si et al., 2019; H. H. Wang et al., 

526 2014). 

527 The spinosyn class of pesticides has provided alternatives to broad-spectrum pesticides 

528 for the control of thrips in the past few years (Cannon et al., 2007; Mouden et al., 2017; 

529 Reitz et al., 2020). However, resistance of several thrips to spinosyns has now been reported 

530 in many areas (Bao et al., 2014; Espinosa, Bielza, Contreras, & Lacasa, 2002; Fu et al., 2018; Y. 

531 F. Gao et al., 2019; Z. H. Wang et al., 2016), which has led to difficulties in thrips control and 

532 may be contributing to an acceleration of the displacement of local species by resistant 

533 thrips (Y. F. Gao et al., 2019; Zhao et al., 2017). Previous studies showed that spinosad 

534 targets the α subunit of nAChR (Cisneros et al., 2002; Connolly & Wafford, 2004; Jones & 

535 Sattelle, 2006). Mutation of nAChR α6 subunit transmembrane region (G275E) confers 

536 resistance to spinosad in F. occidentalis, T. palmi, and Tuta absoluta (Povolny) (Bao et al., 

537 2014; Puinean, Lansdell, Collins, Bielza, & Millar, 2013; Silva et al., 2016). Truncated 

538 transcripts of nAChR α6 subunit caused by alternative splicing can also lead to pesticide 

539 resistance (Y. Wan et al., 2018). Alternative splicing is a novel mechanism for organisms to 

540 quickly respond to environmental stresses (Filichkin, Priest, Megraw, & Mockler, 2015). 

541 More subunit genes in thrips may compensate for the function of nAChR when the target 
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542 gene is transcribed in an alternative pattern under stresses produced by pesticides, but this 

543 remains to be tested.

544 Conclusions

545 We successfully assembled a genome for the pest thrips T. palmi, providing the first 

546 chromosome-level genome for a species from the insect order Thysanoptera. This novel 

547 genomic resource allowed us to compare genomic changes in the evolution of sap-sucking 

548 insects from the Thysanoptera and Hemiptera. We found differences in the two groups for 

549 the number of genes potentially involved in detoxification across multiple detoxification 

550 gene families. We also noted differences in HSP gene numbers between the groups. The high 

551 diversity of detoxification genes in thrips may contribute to the rapid evolution of pesticide 

552 resistance in this species, and the diversity in HSPs may contribute to its broad geographic 

553 distribution. Thrips have completely different types of mouthparts and physically interact 

554 with plant cells in a different manner compared to hemipterans (Steenbergen et al., 2018). 

555 The genomic resource provide here may help to understand this different interaction 

556 between thrips and plants. Thrips are important vectors of viral disease (Whitfield, Ullman, 

557 & German, 2005), and the genome also may provide insights into viral interactions, 

558 especially with regard to horizontal gene transfer which plays an important role in 

559 adaptation and evolution of insects. Based on the genes we have identified that may be 

560 involved in insecticide resistance, the genome described here will also be useful in 

561 understanding the evolution of resistance in thrips, such as by investigating the differential 

562 expression of genes following sub-lethal insecticide exposure and through resequencing of 

563 resistant strains. Overall, the T. palmi genome provides a useful resource for understanding 

564 the genetic basis of traits that underlie the ecology of thrips and evolutionary divergence 

565 and convergence of sap-sucking insects more generally. This genomic resource may also 

566 ultimately be useful for the management of T. palmi such as through the identification of 

567 novel targets for chemical control and resistance monitoring.

568
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572 SRR11601864) under NCBI BioProject PRJNA607431. Raw RNA-seq reads have been 

573 deposited in the SRA repository under NCBI BioProject PRJNA607377. 
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1 Tables

2 Table 1 Assembly features for genomes of Thrips palmi and other insect species

Feature Tpal Focc Bger Znev Nlug Btab Apis Mper Agos Agly Dnox Epel Dcit Dmel

Level Chr. Scaf. Scaf. Scaf. Scaf. Scaf. Chr. Scaf. Scaf. Scaf. Scaf. Scaf. Scaf. Chr.

Size (Mb) 270.43 262.25 1,942.92 462.56 1,087.96 586.53 541.14 331.22 280.65 289.11 376.77 660 463.20 137.07

No. Scaf./Chr. 16 18,479 24,818 31,663 46,559 19,751 5 4,021 4,718 941 5,637 1,979 161,988 7

Scaf. N50 (Mb) 14.67 0.418 1.007 0.716 0.340 3.083 126.41 0.426 0.428 2.391 0.379 0.375 0.105 24.116

No. contig 4,120 34,226 317,827 64,772 121,137 31,571 68,187 6,044 12,178 1,022 50,913 2,173 176,470 2,442

Contig N50 (Mb) 0.426 0.024 0.012 0.022 0.022 0.081 0.025 0.214 0.075 1.907 0.013 0.660 0.033 20.490

Completeness (%) 97.2 98.5 97.7 99.2 96.8 94.4 94.0 94.5 93.5 95.5 94.4 83.2 88.4 99.7

No. gene 16,333 17,546 28,774 15,876 27,571 15,664 20,601 16,352 14,694 19,182 19,097 12,022 22,786 17,468

3 Tpal: Thrips palmi (Thysanoptera: Thripidae); Focc: Frankliniella occidentalis (Thysanoptera: Thripidae) (Thomas et al., 2018); Bger: Blattella 

4 germanica (Blattodea: Ectobiidae) (Harrison et al., 2018); Znev: Zootermopsis nevadensis (Blattodea: Termopsidae)(Terrapon et al., 2014); Nlug: 

5 Nilaparvata lugens (Hemiptera: Delphacidae) (Xue et al., 2014); Btab: Bemisia tabaci (Hemiptera: Aleyrodidae) (Chen et al., 2016); Dcit: 

6 Diaphorina citri (Hemiptera: Liviidae) (Saha et al., 2017); Apis: Acyrthosiphon pisum (Hemiptera: Aphididae)(International Aphid Genomics, 

7 2010); Dnox: Diuraphis noxia (Hemiptera: Aphididae) (Nicholson et al., 2015); Mper: Myzus persicae (Hemiptera: Aphididae) (Ramsey et al., 

8 2007); Agos: Aphis gossypii (Hemiptera: Aphididae) (Quan et al., 2019); Agly: Aphis glycines (Hemiptera: Aphididae) (Wenger et al., 2017); Epel, 

9 Ericerus pela (Hemiptera: Coccidae) (Cryan & Urban, 2012). Completeness was estimated by BUSCO. Scaf., scaffold; Chr., chromosome.
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1 Table 2 Statistics on detoxification, heat-shock protein (HSP) and nicotinic acetylcholine receptor (nAChR) genes across sap-sucking insects and 

2 other insects

Common name Species code Feeding pattern P450 GST CCE UGT ABC HSP nAChR

Thrips Tpal Polyphagous 96* 25* 39* 17* 49* 51* 10*

Focc Polyphagous 66* 27* 28* 17* 125* 55* 8 [1]

Cockroach Bger Oligophagous 135* 33* 76* 50* 118* 48* 9*

Termite Znev Polyphagous 76* 16* 35* 32* 60* 28* 10*

Planthopper Nlug Oligophagous 67 [2] 11 [2] 25* 18* 76* 27* 13 [2]

Whitefly Btab Polyphagous 130 [3] 22 [3] 51 [3] 81 [3] 50 [3] 33* 11*

Psyllid Dcit Oligophagous 60* 19* 20* 17* 53 [4] 22* 11*

Aphid Apis Oligophagous 83 [5] 20 [5] 29 [5] 58 [6] 117* 19* 11 [7]

Dnox Oligophagous 55 [5] 10 [5] 20 [5] 43 [5] 66 [5] 24* 8*

Mper Polyphagous 115 [5] 21 [5] 22 [5] 60 [8] 59* 32* 6 [9]

Agos Polyphagous 62 [8] 7 [8] 20 [8] 56 [8] 64* 32* 7 [10]

Agly Oligophagous 64 [5] 11 [5] 23 [5] 49 [5] 87 [5] 20* 7*

Fruit fly Dmel Polyphagous 85 [11] 38 [12, 13] 39 [14] 36 [15] 56 [16] 41 [17, 18] 10 [19]

3 See Table 1 for the abbreviation of species names. * indicates that the number of genes was annotated in this study; [1] (Rotenberg et al., 

4 2020), [2] (Xue et al., 2014), [3] (Chen et al., 2016), [4] (Z. Wang et al., 2019), [5] (Ramsey et al., 2010), [6] (Ahn, Vogel, & Heckel, 2012), [7] 
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1 (Dale et al., 2010), [8] (Quan et al., 2019), [9] (C. Bass et al., 2011), [10] (Koo, An, Park, Kim, & Kim, 2014), [11] (Waters, Zelhof, Shaw, & Ch'ang, 

2 1992), [12] (Marco, Cuesta, Pedrola, Palau, & Marin, 2004), [13] (Wongtrakul, Janphen, Saisawang, & Ketterman, 2014), [14] (P. M. Campbell et 

3 al., 2003), [15] (Parker, Fessler, Nelson, & Fessler, 1995), [16] (Ueoka et al., 2018), [17] (Ratheesh et al., 2012), [18] (Vos et al., 2016), [19] 

4 (Dupuis, Louis, Gauthier, & Raymond, 2012).
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1 Figure legends

2 Fig. 1 Image of adult Thrips palmi (a) and the damage symptoms on the fruit of eggplant (b) 

3 and the leaf of cucumber (c). Photos were taken by Shu-Jun Wei.

4

5 Fig. 2 GenomeScope analysis of genome size, heterozygosity and duplicate rate (a) and 

6 genome-wide all-by-all Hi-C interaction (b) of Thrips palmi genome. The Illumina short-read 

7 sequencing data was used to count k-mers in DNA by using the software Jellyfish with K = 17. 

8 The estimated genome size of Thrips palmi was 202 Mb, heterozygosity was 1.34%, and the 

9 duplicate rate was 1.96% (a). In total 16 linkage groups were identified based on Hi-C contact, 

10 indicated by blue boxes (b).

11

12 Fig. 3 Orthology and phylogenetic relationships among thrips and hemipteran insects. The 

13 maximum-likelihood phylogenetic tree was built using the single-copy orthologs (a). 

14 Relationships of ortholog genes were compared among 12 insect species (right). "1:1:1” 

15 indicates single-copy genes in all species; “N:N:N” indicates multi-copy genes in all species; 

16 “Thrips” indicates thrips-specific genes and presence in two thrips species; “Diptera” 

17 indicates dipteran-specific genes; “Hemiptera” indicates hemipteran-specific genes; “SD” 

18 indicates species-specific duplicated genes; “ND” indicates species-specific genes; “Other” 

19 indicates all other orthologous groups.

20

21 Fig. 4 Boxplots of the number of genes in four detoxification families (P450, GST, CCE, UGT 

22 and ABC), HSPs and nAChRs in Thysanoptera and Hemiptera. Bar graphs comparing gene 

23 numbers in subfamilies are also included. (a) Numbers of genes in five oligophagous and five 

24 polyphagous species (Table 2); (b) number of genes among two thrips, two aphids and one 

25 whitefly species (Table 2); number of P450 (c), HSP (d) and ABC genes (e) among two thrips, 

26 two aphids, and one whitefly species compared at the subfamily level. See Table 1 for 

27 abbreviations of species names.
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1 Fig. 5 Phylogenetic relationships of Thrips palmi (TP) cytochrome P450 (P450) (a), heat shock 

2 protein (HSP) (b) and ATP-binding cassette (ABC) transporter gene families (c) in comparison 

3 with Drosophila melanogaster (DM) and Frankliniella occidentalis (FOCC).

4

5 Fig. 6 Phylogenetic tree (a) and gene number (b) of nicotinic acetylcholine receptors (nAChRs) 

6 in sap-sucking insects. DM/Dmel, Drosophila melanogaster; TP/Tpal, Thrips palmi; FO/Focc, 

7 Frankliniella occidentalis; NL/Nlug, Nilaparvata lugens; BT/Btab, Bemisia tabaci; AG/Agos, 

8 Aphis gossypii; Dcit, Diaphorina citri; Apis, Acyrthosiphon pisum; Dnox, Diuraphis noxia; 

9 Mper, Myzus persicae; Agly, Aphis glycines.

10

11 Supplemental informations

12 Table S1 Statistics for sequencing data for Thrips palmi genome assembly

13 Table S2 Completeness of Thrips palmi genome assembly and annotation evaluated by 

14 BUSCO based on insecta_odb9 database (1658 genes)

15 Table S3 Summary of Hi-C data for chromosome-level assembly of Thrips palmi genome

16 Table S4 Statistics for noncoding RNA genes in the genome of Thrips palmi

17 Table S5 Statistics for repeat elements in the genome of Thrips palmi

18 Table S6 Gene orthology comparison involving Thrips palmi and eight other insect species

19 Table S7 Differentially expressed genes in populations of Thrips palmi potentially related to 

20 resistance to spinetoram

21 Figure S1 GenomeScope analysis of genome size, heterozygosity and duplicate rate of Thrips 

22 palmi genome. 

23 Figure S2 Venn diagram of functional annotation of protein-coding genes in the genome of 

24 Thrips palmi based on five databases.

25 Figure S3 Phylogenetic tree of Thrips palmi carboxylesterase (CCE) gene family in 

26 comparison with other insects. DM, Drosophila melanogaster; tp, Thrips palmi; FOCC, 

27 Frankliniella occidentalis.
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1 Figure S4 Phylogenetic tree of Thrips palmi glutathione S-transferase (GST) gene family in 

2 comparison with other insects. DM, Drosophila melanogaster; tp, Thrips palmi; Ag, 

3 Anopheles gambiae.

4 Figure S5 Phylogenetic tree of Thrips palmi UDP-glycosyltransferases (UGT) family in 

5 comparison with other insects. DM, Drosophila melanogaster; tp, Thrips palmi; FOCC, 

6 Frankliniella occidentalis.

7 Figure S6 Dot plot of GO (a, c, e, g) and KEGG enrichment (b, d, f, h) of DEGs between SDF0 

8 and BJF0 (a, b), SDF5 and BJF5 (c, d), SDF0 and SDF5 (e, f) and BJF0 and BJF5 (g, h).

9 Figure S7 Venn diagram of up- (pink, light orange, green and light blue) and down-regulated 

10 (dark blue, purple, dark orange and gray) DEGs and resistant genes that were differentially 

11 expressed (SDF0 vs BJF0, SDF5 vs BJF5, SDF0 vs SDF5 and BJF0 vs BJF5) in populations of 

12 Thrips palmi.
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