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Abstract. Chentsov’s theorem characterizes the Fisher information metric on statistical
models as the only Riemannian metric (up to rescaling) that is invariant under sufficient
statistics. This implies that each statistical model is equipped with a natural geometry, so
Chentsov’s theorem explains why many statistical properties can be described in geometric
terms. However, despite being one of the foundational theorems of statistics, Chentsov’s
theorem has only been proved previously in very restricted settings or under relatively strong
invariance assumptions. We therefore prove a version of this theorem for the important case
of exponential families. In particular, we characterise the Fisher information metric as the
only Riemannian metric (up to rescaling) on an exponential family and its derived families
that is invariant under independent and identically distributed extensions and canonical
sufficient statistics. We then extend this result to curved exponential families. Our approach
is based on the central limit theorem, so it gives a unified proof for discrete and continuous
exponential families, and it is less technical than previous approaches.

1. Introduction

Chentsov’s theorem is a foundational theorem of statistics that characterizes the Fisher
information metric on statistical models as the only Riemannian metric (up to rescaling)
that is invariant under certain, statistically important transformations [10, 20, 9, 2, 7]. This
effectively means that the Fisher information metric is the only natural metric on a statistical
model, so many statistical properties of these models should be describable in terms of this
metric. Known examples of this correspondence between statistical and geometric properties
include: the Cramér-Rao lower bound for the variance of an unbiased estimator in terms
of the inverse of the Fisher information metric [1, Thm. 2.2]; orthogonality as a criterion
for first-order efficiency of estimators [1, Thm. 4.3]; the central role of statistical curvature
in the information loss of an efficient estimator [13, §3.3] and in second-order efficiency [13,
§3.4]; and the spontaneous emergence of the Fisher information volume [18] in the minimum
description length (MDL) approach to statistical model selection [6].

The original version of Chentsov’s theorem [10, 20, 9] or [1, Thm. 2.6] only applied in the
restricted setting of statistical models with finite data spaces. This version of the theorem says
that the Fisher information metric is the only metric (up to a multiplicative constant) that
is defined on all models with finite data spaces and is invariant under all sufficient statistics.
Recall that a statistical model M is a (sufficiently regular) set of probability measures on the
same measurable space X , which we call the data space of M, and that a sufficient statistic
for M is a function on X for which the conditional distribution of any measure P in M, given
the sufficient statistic, is the same for all P . Sufficient statistics induce corresponding maps on
statistical models (the measure-theoretic push-forward maps) and the invariance assumption
above is that all of these maps are isometries (i.e., distance-preserving maps).

Since the assumption of finite data spaces is very restrictive, Ay et al. [2] proved a version
of Chentsov’s theorem that applies to models whose data spaces are measurable subsets of a

Date: July 26, 2018.

1



2 JAMES G. DOWTY

smooth manifold X (though in later work [19], X is allowed to be an arbitrary measurable
space). Their version says that the Fisher information metric is the only metric (up to
rescaling) that firstly exists on all statistical models with this underlying space X and secondly
is invariant under all sufficient statistics, including discontinuous ones. These results have
subsequently been generalised to higher-order Amari-Chentsov tensors [19] and proved using
an alternative approach [15]. The version of Chentsov’s theorem in [2] applies to many
interesting statistical models but it assumes the existence of metrics on a large class of models
and very strong invariance properties for these metrics. Therefore Bauer et al. [7] proved a
version of Chentsov’s theorem that says the Fisher information metric is the only metric (up
to rescaling) that firstly is defined on the space of all smooth, positive densities on a compact
manifold X of dimension 2 or higher and secondly is invariant under all diffeomorphisms from
X to itself (where diffeomorphisms are smooth maps with smooth inverses, so they are a
special type of sufficient statistic). The proof of Bauer et al. [7] was based on results from
the theory of generalized functions, especially the Schwartz kernel theorem [12, §6.1], and it
made far weaker invariance assumptions than the proof of Ay et al. [2]. The assumption that
X is a compact manifold without boundary excludes many cases of interest to statisticians,
though Bauer et al. [7] say this assumption can be weakened.

Despite their beauty and generality, the results of Ay et al. [2] and Bauer et al. [7] leave
open the possibility that there might exist a natural metric other than the Fisher information
metric on an individual statistical model M. This could occur, for example, if there is a nat-
ural metric on M that does not (invariantly) extend to a metric on the infinite-dimensional
models of [2] and [7] that contain M and many unrelated models. Also, exponential fam-
ilies have a distinguished, finite-dimensional set of sufficient statistics, called the canonical
sufficient statistics, which are related to their natural affine structures ([1, Thm. 2.4] and [3,
Lemma 8.1]). Therefore, the invariance assumptions of [2] and [7] are arguably too strong
for exponential families, and instead it would be more natural to consider invariance under
canonical sufficient statistics rather than all sufficient statistics.

In this paper, we prove a refined version of Chentsov’s theorem in the important case of
(curved) exponential families. Instead of considering metrics defined on an infinite-dimensional
statistical model, as in [2] and [7], we consider metrics defined only on a given exponential
family M and some of its derived families, namely its independent and identically distributed
(IID) extensions and their corresponding natural exponential families. Instead of assuming
these metrics are invariant under all sufficient statistics or all diffeomorphisms, we assume
invariance under canonical sufficient statistics and IID extensions. This assumption of invari-
ance under IID extensions has no analogue in previous work, but IID extensions are natural
and important transformations between statistical models (perhaps more so than sufficient
statistics), so this invariance assumption is arguably more natural than invariance under suf-
ficient statistics. Also, this extra invariance assumption is offset by the fact that we restrict
our sufficient statistics to the canonical ones. Then, under a mild regularity condition, we
prove that metrics with these invariance properties are multiples of the Fisher information
metric (see Theorem 5.1 in Section 5). This result therefore gives a new characterisation of
the Fisher information metric as the only metric on an exponential family and its derived
families that is invariant under canonical sufficient statistics and IID extensions.

Our approach has a number of advantages: as discussed above, we only assume that the
metric is defined on an individual model and its related models, and our invariance assump-
tions respect the natural affine structures of exponential families; we only consider metrics on
a collection of finite-dimensional models (similar to the original version of Chentsov’s theorem
[10, 20, 9]), which allows us to avoid the technicalities encountered in [2] and [7] because of the
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infinite-dimensionality of their statistical models; our proof is unified for discrete and contin-
uous distributions, unlike the proofs of [10, 20, 9] and [7], so there is some hope of extending
our proof to general statistical models; our proof shows that Chentsov’s theorem is a corol-
lary of the central limit theorem, which makes this result more understandable and intuitive;
and our results complement those of [7], since curved exponential families are essentially the
only statistical models with smooth sufficient statistics that are not diffeomorphisms, by the
Pitman–Koopman–Darmois theorem [5].

The rest of this paper is set out as follows. In Section 2 we define the Fisher information
metric and some relevant notions from differential geometry, as they apply in our main case
of interest. In Section 3 we briefly recall the definition of an exponential family and some of
its derived families. We then give precise descriptions of our assumptions in Section 4, before
using these assumptions and the central limit theorem to prove our characterisation of the
Fisher information metric in Section 5. Section 6 then describes extensions of our results to
curved exponential families and higher-order symmetric tensors. We compare our version of
Chentsov’s theorem with previous versions in Section 7 before finishing with a discussion of
our results and a non-technical summary of our proof in Section 8.

2. The Fisher information metric

This section briefly recalls the definitions of tangent vectors and the Fisher information
metric of a statistical model. General references for the notions from Riemannian geometry
described here are [13, Appendix C] and, for infinite-dimensional manifolds, [14].

In all later sections of this paper, we will take M to be a regular exponential family and Θ to
be its natural parameter space, but in this section we let M be a more general statistical model
and let Θ be the parameter space for any smooth parameterisation of M. More precisely,
suppose Θ is an open subset of R

d and that µ is a measure on R
m with support X . Then our

statistical model is M = {pθµ | θ ∈ Θ}, where each pθ : X → R>0 is a µ-integrable, strictly
positive function that is normalized, meaning 1 =

∫
pθdµ. Note that M is a set of probability

measures on R
m. We assume that the parameterisation of M by Θ is smooth, in the sense

that θ 7→ pθ(x) is a smooth (i.e., infinitely differentiable) function for µ-almost all x. We also
assume that the parameterisation is non-singular, meaning that the parameterisation map
Θ → M given by θ 7→ pθµ is injective and that it maps non-zero tangent vectors to non-zero
tangent vectors, in a sense that will become clear below.

Because Θ is an open subset of R
d, any tangent vector u to Θ is a pair u = (θ, a) for some

θ ∈ Θ and some a ∈ R
d, where θ is called the base-point of u. The set of all such tangent

vectors, which is denoted TΘ and is called the tangent bundle of Θ, is therefore TΘ = Θ×R
d.

The tangent bundle is not a vector space in general, but the set of all tangent vectors with
the same base-point is. The vector space TθΘ consisting of all vectors with base-point θ is
called the tangent space to Θ at θ. Addition and scalar multiplication in this vector space
are given by

su + tv = (θ, sa + tb) (2.1)

for any u, v ∈ TθΘ and any s, t ∈ R, where u = (θ, a) and v = (θ, b). Note that addition and
scalar multiplication in TθΘ effectively ignore the shared base-point θ.

Similarly, we can view each tangent vector to the statistical model M as a pair (P,A),
where the base-point P is an element of the model M and A is essentially the score in a
particular direction [17, §3.3]. More precisely, for each tangent vector u = (θ, a) to Θ, there
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is a corresponding tangent vector ũ = (P,A) to M given by

P = pθµ and A =

d∑

i=1

ai
∂pθ

∂θi
µ. (2.2)

(The function taking u to ũ is the differential, or tangent map, of the parameterisation θ 7→ pθµ
[14, p. 52].) Let the tangent bundle TM of M be the set of all such tangent vectors, i.e., let
TM = {ũ | u ∈ TΘ}. Also, let the tangent space TP M to M at P ∈ M be the vector space
consisting of all tangent vectors (P,A) ∈ TM with base-point P . Even though we have used
a particular parameterisation of M to define TP M, this tangent space is natural, in the sense
that TP M is the same for all smooth parameterisations [14, p. 52].

The Fisher information metric gF on M is given by

gF (ũ, ṽ) =

∫
dA

dP

dB

dP
dP (2.3)

for any tangent vectors ũ = (P,A) and ṽ = (P,B) in the tangent space TP M [7, §3], where
dA/dP and dB/dP are Radon-Nikodym derivatives [8, §3.2]. It is straightforward [11, Ap-
pendix A] to show that definition (2.3) for the Fisher information metric reduces to the usual,
parameterisation-dependent definition [1, eq. 2.6]. However, the formulation (2.3) will be
more useful to us than the usual definition. Also, because (2.3) is phrased only in terms
of natural constructions, this formula makes it clear that gF does not depend on arbitrary
choices, such as the choice of parameterisation.

A Riemannian metric on a set is just a function that puts an inner product on each of the
set’s tangent spaces (if the set is suitably regular and the inner products vary smoothly with
the base-point). For example, a Riemannian metric on Θ can be thought of as a smooth,
matrix-valued function on Θ whose value at θ ∈ Θ is a d × d, symmetric, positive-definite
matrix ḡθ, since this defines an inner product on each TθΘ with the inner product of any
u, v ∈ TθΘ being g(u, v) = aT ḡθb, where u = (θ, a) and v = (θ, b).

In our main case of interest, where M is an exponential family, the integral in (2.3) always
converges [13, Thm. 2.2.5]. Then it is not hard to see that (2.3) defines an inner product
on each tangent space to M (and this varies smoothly with the base-point), so the Fisher
information metric gF is a Riemannian metric on M.

3. Exponential families and their derived families

Partly to establish our notation, this section briefly recalls the definitions of an exponential
family, its IID extensions and their corresponding natural exponential families.

3.1. Exponential families. Let µ be a measure on R
m and let T : X → R

d be a measurable
function, where X ⊆ R

m is the support of µ. Let

Θ =

{
θ ∈ R

d

∣∣∣∣
∫

exp(θ · T )dµ < ∞
}

,

where the dot (·) denotes the Euclidean inner product on R
d. For each θ ∈ Θ, define pθ :

X → R>0 by

pθ(x) = exp(θ · T (x))/Z(θ) (3.1)

for any x ∈ X , where Z : Θ → R is the partition function Z(θ) =
∫

exp(θ · T )dµ. Assume

that Θ is a non-empty, open subset of R
d and that T is full rank, in the sense that the image

of T is not contained in any (d − 1)-dimensional hyperplane in R
d. Then M = {pθµ | θ ∈ Θ}
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is a regular exponential family of order d with dominating measure µ and canonical sufficient
statistic T , and all regular exponential families are of this form [3, §8.1]. Note that each
element of M is a probability measure on R

m.

3.2. IID extensions. The n-fold IID extension Mn of M is the set Mn = {Pn | P ∈ M}
of all measures of the form Pn for some P ∈ M, where Pn = P × · · · × P (with n copies of
P ) is the product measure on X n [8, §3.3]. In terms of the parameterisation (3.1), Mn is the

set of all measures of the form p
(n)
θ µn for some θ ∈ Θ, where p

(n)
θ : X n → R>0 is given by

p
(n)
θ (x1, . . . , xn) = pθ(x1) . . . pθ(xn) and µn = µ × · · · × µ is the product measure on X n [3,

Example 8.12(ii)]. So by (3.1),

p
(n)
θ = exp(nθ · Tn − n log Z(θ)), (3.2)

where Tn : X n → R
d is given by Tn(x1, . . . , xn) = (T (x1)+ · · ·+T (xn))/n for any x1, . . . , xn ∈

X . Therefore Mn is an exponential family with dominating measure µn and sufficient statistic
Tn (and natural parameter nθ, see [13, Thm. 2.2.6]). Note that M1 = M, T1 = T and

p
(1)
θ = pθ.

3.3. Natural exponential families. Recall that if Y and Z are measurable spaces, φ : Y →
Z is a measurable function and P is a measure on Y then the push-forward of P via φ is the
measure φ∗P on Z given by

(φ∗P )(U) = P (φ−1(U)) (3.3)

for any measurable set U in Z [8, §3.6]. This immediately implies that if Y is a Y-valued ran-
dom variable with distribution P then φ(Y ) is a Z-valued random variable with distribution
φ∗P , which in symbols we write as

Y ∼ P implies φ(Y ) ∼ φ∗P. (3.4)

Then the natural exponential family corresponding to Mn and Tn is the set Nn = {Tn∗P
n |

Pn ∈ Mn} of measures on R
d. By [3, Examples 8.12(ii) and 8.12(iii)], Nn = {qn

θ νn | θ ∈ Θ},
where νn is a measure on R

d that does not depend on θ and qn
θ : R

d → R>0 is given by

qn
θ (y) = exp(nθ · y − n log Z(θ)) (3.5)

for any y ∈ R
d. The formula (3.5) shows that the superscript in qn

θ is actually an exponent,
so we will write qθ for q1

θ (and then the notation qn
θ is unambiguous).

Note that even though M,M2,M3, . . . and N1,N2,N3, . . . are families of measures on
different spaces (namely, X ,X 2,X 3, . . . and R

d, Rd, Rd, . . . , respectively), they are all param-
eterised by Θ ⊆ R

d so they are all d-dimensional families of measures.

3.4. The family of Bernoulli distributions. To illustrate the general framework above,
let M be the family of all Bernoulli distributions. This is the 1-dimensional exponential family
with data space X = {0, 1}, the counting measure on X as its dominating measure, the log-
odds θ as a natural parameter, canonical sufficient statistic T : X → R given by T (x) = x and
partition function Z on the natural parameter space Θ = R given by Z(θ) = 1 + eθ (though
this description of M is not unique). So by (3.1), the distribution P in M corresponding to θ
puts a mass of pθ(1) = eθ/(1 + eθ) on the data-point 1 ∈ X (so θ is the log-odds, as claimed).
Then the n-fold IID extension Mn of M has data space X n = {0, 1}n consisting of all binary
sequences of length n and the distribution Pn in Mn corresponding to θ puts a mass of

pθ(1)
nx̄(1 − pθ(1))

n−nx̄
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on x = (x1, . . . , xn) ∈ X n, where x̄ = (
∑n

i=1 xi)/n and pθ(1) = eθ/(1 + eθ), as above. Lastly,
the sufficient statistic Tn is given by Tn(x) = x̄ for any x ∈ X n, so the distribution Qn in Nn

corresponding to θ is the binomial distribution Bin(n, pθ(1)) up to a linear transformation of
the data space (so that Qn has support {0, 1/n, 2/n, . . . , 1} instead of {0, 1, 2, . . . , n}). Since
M, Mn and Nn are all parameterised by Θ = R, they are all 1-dimensional statistical models.

4. Invariance and regularity conditions

Let M, Mn and Nn be as in Section 3 and suppose now that these spaces have been
equipped with Riemannian metrics g, gn and gn, respectively. In this section, we will give
precise conditions that formalize the notion of these metrics being invariant under IID exten-
sions and canonical sufficient statistics, as well as giving a mild regularity condition. These
conditions will then be used in Section 5 to prove our main theorem. See Section 4.4 for a
number of remarks about these assumptions.

Assumptions 1. We make the following assumptions, which are described precisely in the
subsections below:

A1 The metrics g and gn are invariant under IID extensions (up to a factor of n)
A2 The metrics gn and gn are invariant under canonical sufficient statistics
A3 The norms corresponding to the metrics gn can all be calculated by a function that

satisfies a weak continuity condition

4.1. A1: Invariance under IID extensions. Let IIDn : M → Mn be the function that
maps each P ∈ M to the product measure Pn = P ×· · · ×P (see Section 3.2). Then our first
assumption is that this map is an isometry (i.e., distance-preserving map) up to a factor of n.

More precisely, let u = (θ, a) ∈ TΘ be any tangent vector to Θ, as in Section 2. Then
similarly to (2.2), u corresponds under the smooth parameterisation (3.2) to a tangent vector

ũn to Mn, where ũn = (Pn, A(n)), Pn = p
(n)
θ µn and A(n) =

∑d
i=1 ai(∂p

(n)
θ /∂θi)µ

n. Let
TMn = {ũn | u ∈ TΘ} be the set of all such tangent vectors to Mn. Then our first
assumption is that

gn(ũn, ṽn) = ng(ũ, ṽ) (4.1)

for all tangent vectors u, v ∈ TΘ with the same base-point. Here, ṽ and ṽn are the tangent
vectors to M and Mn (respectively) corresponding to v ∈ TΘ, as for u above. Note that
(4.1) just says that gn = ng under the identification of M with Mn via IIDn.

The Fisher information metric is invariant under IID extensions in the sense of (4.1) by [1,
eq. 4.2], so assumptions (A1)–(A3) cannot characterize the Fisher information metric unless
the factor of n is included in (4.1) (though see Remark 4).

4.2. A2: Invariance under canonical sufficient statistics. Let Tn : X n → R
d be the

canonical sufficient statistic from Section 3.2 and let Tn∗ : Mn → Nn be the corresponding
(measure-theoretic) push-forward map of Tn, see Section 3.3. Then our second assumption
is that this map Tn∗ is an isometry (and that all other canonical sufficient statistics are
isometries, in a sense that will be made precise in Section 4.3).

More precisely, let u = (θ, a) ∈ TΘ be any tangent vector to Θ, as in Section 2. Then
similarly to (2.2), u corresponds under the smooth parameterisation (3.5) to a tangent vector
ũn = (Qn, An) to Nn, where

Qn = qn
θ νn and An =

d∑

i=1

ai(∂qn
θ /∂θi)νn. (4.2)
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Let TNn = {ũn | u ∈ TΘ} be the set of all such tangent vectors. Then our second assumption
is that

gn(ũn, ṽn) = gn(ũn, ṽn) (4.3)

for all tangent vectors u, v ∈ TΘ with the same base-point. Here, ṽn and ṽn are the tangent
vectors to Mn and Nn (respectively) corresponding to v ∈ TΘ, as for u above. Note that
(4.3) just says that gn = gn under the identification of Mn with Nn via Tn∗.

4.3. A3: Calculability of norms by a function that satisfies a weak continuity

condition. Let h be the norm corresponding to g, so h(ũ) =
√

g(ũ, ũ) for any ũ ∈ TM.
Note that h determines g by the polarisation formula,

g(ũ, ṽ) =
[
h2(ũ + ṽ) − h2(ũ − ṽ)

]
/4

for any ũ, ṽ ∈ TM with the same base-point (which follows from the bilinearity of g), so
any question about g can be phrased in terms of h. However, it will be more convenient to
work with h than g, because h is a function defined on TM, whereas g is only defined on
certain pairs of tangent vectors (those with the same base-point). Similarly, let hn be the

norm corresponding to gn, so hn(ũn) =
√

gn(ũn, ũn) for any ũn ∈ TNn.

Let T ′ be the set of all pairs (P,A), where P is a probability measure on R
d and A is a

signed measure on R
d, and note that TNn ⊆ T ′ for every n. Then our regularity condition

(A3) is, partly, that there is subset T of T ′ and a function H : T → R so that, for each n,
TNn ⊆ T (i.e. H is defined on each TNn) and

hn(ũn) = H(ũn) (4.4)

for every ũn ∈ TNn. In other words, we assume that there is some function H whose restriction
to each TNn is the norm hn. For instance, we could take T = ∪∞

n=1TNn and then define H
by the requirement that (4.4) holds, which gives a well-defined H whenever the functions hn

agree on any overlaps between the spaces TNn.
Further, we assume that H has the following weak continuity property. Firstly, we require

that H is defined on all pairs of the form (Φ, fΦ), where Φ is the probability measure for
the standard normal distribution on R

d and f : R
d → R is a linear function (with f(0) = 0).

Secondly, we require that

H(Pn, fPn) = H(Φ, fΦ) (4.5)

for any sequence Pn of probability measures on R
d for which H(Pn, fPn) is constant in n,

Pn ⇒ Φ and each Pn is standardized (i.e., Pn has 0 mean and identity variance-convariance
matrix), where H(Pn, fPn) is the value of the function H at (Pn, fPn) ∈ T and Pn ⇒ Φ
means Pn converges to Φ in the sense of the weak convergence of measures [16, Def. 1.2.1].
This condition is an extremely weak form of continuity, see Remark 1.

Lastly, as a consequence of our assumption (A2) that the metrics should be invariant under
all canonical sufficient statistics, we assume that H is affine invariant (see Remark 6). Here,
an invertible affine transformation of R

d is a map L : R
d → R

d of the form L(x) = Mx + c
for some invertible d × d matrix M and some c ∈ R

d. The push-forward L∗A of any signed
measure A on R

d is defined in a similar way to the push-forward of an (unsigned) measure, see
(3.3). We define the push-forward L∗∗(P,A) of any (P,A) ∈ T to be L∗∗(P,A) = (L∗P,L∗A).
(In this notation, L∗ is the measure-theoretic push-forward, which is a map from the space of
signed measures on R

d to itself, and L∗∗ is the differential of this map if (P,A) is interpreted
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as a tangent vector.) Then our condition that H is affine invariant means that L∗∗(P,A) ∈ T
and

H(L∗∗(P,A)) = H(P,A) (4.6)

for every (P,A) ∈ T and every invertible affine transformation L of R
d.

For future reference, we note that if L is an invertible affine transformation, P is a proba-
bility measure and f is a P -integrable, real-valued function then

L∗(fP ) = (f ◦ L−1)L∗P (4.7)

by the change of variables formula [8, Thm. 3.6.1].

4.4. Remarks on the assumptions.

Remark 1. Assumptions (A1) and (A2) say that the metrics on M, Mn and Nn are in-
variant under a countable set of transformations and, in a certain sense, under the finite-
dimensional group of affine transformations of R

d. The third assumption (A3) is an extremely
weak form of continuity. Firstly, this condition says that the norms hn agree on any overlaps
between the spaces TNn, so that these functions can be pieced together into a single function
H. Secondly, this condition says that if f is linear and Pn ⇒ Φ is a sequence for which
(Pn, fPn) all have the same norms then this shared norm must be H(Φ, fΦ). By comparison,
full continuity of H would require that limn→∞ H(Pn, fnPn) = H(P, fP ) for every sequence
(Pn, fnPn) in T that converges to (P, fP ) (with respect to some notion of convergence). So
our third assumption is the condition for the continuity of H in the very special case where
P = Φ, H(Pn, fnPn) is constant in n, fn = f for every n and f is a linear function.

Remark 2. Recent versions of Chentsov’s theorem [2, 7] consider metrics on infinite-dimensional
statistical models that are invariant under infinite-dimensional sets of transformations. This
infinite dimensionality introduces technical complications and it makes strong assumptions
about both the space on which the metric is defined and its symmetries. By contrast, our
approach allows us to only consider metrics on a collection of finite-dimensional models, as
in the original version of Chentsov’s theorem [10, 20, 9]. This allows our characterisation of
the Fisher information metric to be relatively free from technicalities and it allows us to make
relatively weak invariance and regularity assumptions.

Remark 3. It is not hard to see that the Fisher information metric satisfies assumptions
(A1)–(A3). For it is well known that the Fisher information metric is invariant under both
IID extensions (in the sense of (4.1)) and sufficient statistics [1, eq. 4.2 and Thm. 2.1].
Also, given any probability measure P on R

d, let TP = {(P, fP ) | f ∈ L2(Rd, P )}, and let
T be the union of these spaces TP as P ranges over the set of all probability measures on
R

d. Then by (2.3), the Fisher information norm HF (P, fP ) of any (P, fP ) ∈ T is just the
L2(Rd, P )-norm of f . So if f is a linear function on R

d, say f(y) = c · y for some c ∈ R
d,

and Q is any standardized probability measure on R
d then

HF (Q, fQ) =

√∫
(c · y)2dQ(y) =

√
cT

(∫
yyT dQ(y)

)
c =

√
cT Ic = ‖c‖,

where ‖c‖ is the Euclidean norm of c ∈ R
d. So for any sequence Pn of standardized probability

measures (whether weakly convergent to Φ or not), HF (Pn, fPn) = ‖c‖ = HF (Φ, fΦ), so HF

satisfies the weak continuity condition (4.5). Also, this function HF is affine invariant (4.6)
by the change of variables formula (4.7).
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Remark 4. In some ways the factor of n in (4.1) is not essential, since we could instead
formulate our assumptions and theorems in terms of the metrics ġn = gn/n and ġn = gn/n,
in which case (4.1) would be equivalent to the equation that describes exact invariance under
the map IIDn, rather than invariance up to a factor of n (though H as in (4.4) might
not exist without the factor of n). However, it is natural to include the factor of n in our
formulation of IID invariance, firstly because the Fisher information metric is IID invariant
in the sense of (4.1) [1, eq. 4.2], so assumptions (A1)–(A3) would not characterise the Fisher
information metric without this factor, and secondly because the factor of n arises from a
natural construction from differential geometry (see Remark 5).

Remark 5. Given an arbitrary Riemannian metric g on M, a natural construction from
differential geometry gives a metric on the n-fold IID extension Mn of M equal to the metric
gn satisfying (4.1), as follows. The Cartesian product

∏n M of M with itself n times is the
space whose points are n-tuples (P1, . . . , Pn) of measures P1, . . . , Pn ∈ M on X . Given such
an n-tuple, there is a corresponding product measure P1 × · · · × Pn on X n, and conversely
we can recover each Pi from P1 × · · · × Pn by marginalizing, so we can identify (P1, . . . , Pn)
with the product measure P1 × · · · × Pn on X n. This product measure is the joint distribution
of independent random variables X1, . . . ,Xn whose marginal distributions are P1, . . . , Pn, re-
spectively. So if (P1, . . . , Pn) ∈ ∏n M satisfies P1 = · · · = Pn then P1 × · · · × Pn is the joint
distribution of IID random variables X1, . . . ,Xn. Therefore we can identify the diagonal

∆ =

{
(P1, . . . , Pn) ∈

n∏
M

∣∣∣∣∣ P1 = · · · = Pn

}

of
∏n M with the n-fold IID extension Mn of M. But a Riemannian metric on M induces

a Riemannian metric on the Cartesian product
∏n M, and then ∆ inherits a metric from∏n M. Under the above identification between ∆ and Mn, this metric is the metric gn on

Mn that satisfies (4.1).

Remark 6. The canonical sufficient statistics for an exponential family are only unique up to
affine transformations [3, Lemma 8.1], meaning that if L is an invertible affine transformation
of R

d and Tn : X n → R
d is a canonical sufficient statistic then L ◦ Tn is also a canonical

sufficient statistic (and every canonical sufficient statistic is of this form). Replacing Tn by
L ◦ Tn effectively replaces each tangent vector ũn ∈ TNn by L∗∗ũn, so (4.3), (4.4) and the
analogous equations for L ◦ Tn imply H(L∗∗ũn) = H(ũn) for every ũn ∈ TNn. So since L is
arbitrary, H is affine invariant.

5. The main theorem

We can now prove our version of Chentsov’s theorem. This theorem characterises the Fisher
information metric as the only metric (up to a multiplicative constant) on an exponential
family that is invariant under IID extensions and canonical sufficient statistics.

Let gF , gnF and gF
n be the Fisher information metrics on M, Mn and Nn, respectively.

Theorem 5.1. Suppose that assumptions (A1)–(A3) of Section 4 hold. Then there is some
c > 0 so that g = cgF , gn = cgnF and gn = cgF

n for every integer n ≥ 1.

Proof. Let any integer n ≥ 1 and any θ ∈ Θ be given, and let Q1 = qθν1 ∈ N1 and Qn =
qn
θ νn ∈ Nn be the corresponding distributions in N1 and Nn. By Theorem 2.2.6 of [13] and

the comments preceding it, if Y1, . . . , Yn are independent random variables all distributed
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according to Q1 then their mean is distributed as Qn, which we write as

(Y1 + · · · + Yn)/n ∼ Qn. (5.1)

Alternatively, it is not hard to prove (5.1). For if X1, . . . ,Xn ∼ P are IID, where P = pθµ,
and if Y ′

i = T (Xi) then Y ′

1 , . . . , Y
′

n ∼ Q1 are IID, since Q1 = T∗P by definition. Therefore
Y1, . . . , Yn and Y ′

1 , . . . , Y
′

n both have the same joint distribution, so their means have the same
distribution, by an application of (3.4). But (Y ′

1 + · · · + Y ′

n)/n = Tn(X1, . . . ,Xn) ∼ Qn, by
(3.4) and since Qn = Tn∗P

n by definition, so (5.1) follows.
By (5.1), the mean τθ for Q1 is the same as that for Qn, i.e.

τθ =

∫
ydQ1(y) =

∫
ydQn(y), (5.2)

and the variance-covariance matrix Σθ for Q1 is n times that for Qn, i.e.

Σθ =

∫
(y − τθ)(y − τθ)

T dQ1(y) = n

∫
(y − τθ)(y − τθ)

T dQn(y). (5.3)

Now, let u = (θ, a) ∈ TθΘ be any tangent vector to Θ at θ, and define f : R
d → R by

f(y) = (Σ
1/2
θ a) · y for any y ∈ R

d. Here, the square root Σ
1/2
θ is defined in the standard way

via a diagonalisation of the symmetric, positive-definite matrix Σθ. As before, let ũ and ũn,
respectively, be the tangents to M and Nn that correspond to u under the parameterisations
(3.2) and (3.5).

Claim 1: h(ũ) = H(Φ, fΦ). By (3.5), (4.2) and the fact that τθ is the gradient of log Z at
θ [13, Thm. 2.2.1], ũn = (Qn, An) with Qn = qn

θ νn and

An =

d∑

i=1

ai
∂qn

θ

∂θi
νn =

d∑

i=1

ain

(
ιi − ∂ log Z

∂θi

)
qn
θ νn = na · (ι − τθ)Qn, (5.4)

where ιi(y) = yi and ι(y) = y for any y ∈ R
d.

Let L be the affine transformation on R
d given by L(y) =

√
nΣ

−1/2
θ (y − τθ), and note that

the inverse Σ
−1/2
θ exists because Σθ is positive-definite. By (5.2) and (5.3), this choice of L

ensures that L∗Qn is standardised, i.e., that L∗Qn has mean 0 and variance-covariance matrix
equal to the d × d identity matrix. Note that L depends on n, so we could instead write this
as Ln, but for notational simplicity we will drop the subscript. Then by (4.7) and (5.4),

L∗An = na · (ι ◦ L−1 − τθ)L∗Qn =
√

nfL∗Qn, (5.5)

where f is as in the statement of the claim.
So recalling the notation L∗∗ũn = L∗∗(Qn, An) = (L∗Qn, L∗An), we have

h(ũ) = n−1/2hn(ũn) by (4.1) and (4.3)

= hn(n−1/2ũn) by the bilinearity of gn

= H(n−1/2ũn) by (4.4)

= H(n−1/2L∗∗ũn) by (4.6)

= H(L∗Qn, fL∗Qn) by (2.1) and (5.5). (5.6)
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By (5.1), the central limit theorem (e.g. see [16, Cor. 8.1.10]) and the fact that L∗Qn is
standardised, L∗Qn ⇒ Φ. Therefore,

h(ũ) = H(L∗Qn, fL∗Qn) for all n, by (5.6)

= H(Φ, fΦ) by (4.5), (5.7)

so the claim is proved.
Now, let v = (φ, b) ∈ TΘ be any tangent vector to Θ, not necessarily with the same

base-point as u, and let ṽ ∈ TM be the corresponding tangent vector to M.
Claim 2: aT Σθa = bT Σφb implies h(ũ) = h(ṽ). To prove this, assume that aT Σθa = bT Σφb,

i.e. that Σ
1/2
θ a and Σ

1/2
φ b have the same Euclidean norm. Then there exists a d×d orthogonal

matrix M so that

MΣ
1/2
θ a = Σ

1/2
φ b. (5.8)

Also, M∗Φ = Φ because M is orthogonal, so

M∗∗(Φ, fΦ) = (M∗Φ,M∗(fΦ)) = (M∗Φ, (f ◦ M−1)M∗Φ) = (Φ, eΦ) (5.9)

by (4.7), where e : R
d → R is given by

e(y) = f(M−1(y)) = (Σ
1/2
θ a) · M−1y = (Σ

1/2
θ a)T M−1y = (Σ

1/2
φ b) · y (5.10)

for any y ∈ R
d, by (5.8) and M−1 = MT (since M is orthogonal). So

h(ṽ) = H(Φ, eΦ) by Claim 1 applied to v and by (5.10)

= H(M∗∗(Φ, fΦ)) by (5.9)

= H(Φ, fΦ) by (4.6)

= h(ũ) by Claim 1,

which proves Claim 2.
Claim 3: There is some c > 0 so that h(ṽ) = c hF (ṽ) for all tangent vectors ṽ ∈ TM. It

is well known [13, Thms. 2.2.1 and 2.2.5] that the Fisher information metric on the natural
parameter space is the variance-covariance matrix of the corresponding sufficient statistic, so
gF (ũ, ũ) = aT Σθa. Alternatively, this follows easily from setting n = 1 in (5.4) and combining
this with (2.3) and the invariance of gF under sufficient statistics [1, Thm. 2.1], since these
give

gF (ũ, ũ) = gF
1 (ũ1, ũ1) = aT

(∫
(y − τθ)(y − τθ)

T dQ1(y)

)
a = aT Σθa, (5.11)

where ũ1 ∈ TN1 is the tangent vector to N1 corresponding to u ∈ TΘ. So Claim 2 is equivalent
to

hF (ũ) = hF (ṽ) implies h(ũ) = h(ṽ), (5.12)

for all tangent vectors ũ, ṽ ∈ TM, even if they have different base-points.
Now, fix ũ to be some non-zero vector with hF (ũ) = 1, and let c = h(ũ). Note that c > 0

because g is an inner product on each tangent space so the norm of any non-zero tangent
vector is strictly positive. Then for any non-zero ṽ, hF (ṽ/hF (ṽ)) = hF (ṽ)/hF (ṽ) = 1 by
the bilinearity of gF . So hF (ũ) = hF (ṽ/hF (ṽ)) and hence, by (5.12), h(ũ) = h(ṽ/hF (ṽ)).
Therefore c = h(ũ) = h(ṽ/hF (ṽ)) = h(ṽ)/hF (ṽ) by the bilinearity of g, so rearranging this
equation proves the claim for all non-zero tangent vectors ṽ ∈ TM. But the claim holds
trivially for any zero tangent vector ṽ, since 0 = h(ṽ) = hF (ṽ) by the bilinearity of g and gF ,
so the claim is proved.
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The theorem now follows from Claim 3 and by (4.1), (4.3) and the analogous equations for
the Fisher information metrics gF , gnF and gF

n , which hold by [1, eq. 4.2 and Thm. 2.1]. �

6. Extensions

6.1. Extensions to curved exponential families. The proof of Theorem 5.1, without
any essential changes, also characterises the Fisher information metric on curved exponential
families.

For suppose that M̃ is a submanifold of the exponential family M of Section 3, meaning

that M̃ = {pθµ | θ ∈ Θ̃}, where Θ̃ is a submanifold of the natural parameter space Θ ⊆ R
d

of M (so Θ̃ is either an open subset of Θ or a submanifold of lower dimension). The tangent

bundle T Θ̃ of Θ̃ is usually more complicated than TΘ (see standard textbooks such as [13,

Appendix C] or [14]) but the tangent vectors to Θ̃ are a subset of the tangent vectors to Θ.

So given any θ ∈ Θ̃ and a tangent vector u ∈ TθΘ̃, there is a corresponding tangent vector ũ

to M̃ given by (2.2). The n-fold IID extension M̃n of M̃ is defined as in Section 3.2, and M̃n

is clearly a submanifold of Mn (since it can be parameterised by Θ̃). The natural exponential

family Ñn is defined as in Section 3.3, and it is again clear that Ñn is a submanifold of Nn.
Assumptions (A1) and (A2) then just become equations (4.1) and (4.3) for all tangent vectors

u, v ∈ T Θ̃ with the same base-point. Assumption (A3) is also the same except that T Ñn

replaces TNn, so the weak continuity property (4.5) is essentially unchanged. Also, given any
invertible affine transformation L of R

d, if Tn : X n → R
d is a canonical sufficient statistic

then so is L ◦ Tn, hence H is affine invariant (as in Remark 6).
The statement of Theorem 5.1 is exactly the same, though all metrics are now understood

to be on M̃, M̃n and Ñn rather than M, Mn and Nn. For any Q1 ∈ M̃1 and any IID
Y1, . . . , Yn ∼ Q1, we have

(Y1 + · · · + Yn)/n ∼ Qn,

as in (5.1). Therefore the mean and variance formulas ((5.2) and (5.3)) hold, and we can also

apply the central limit theorem to prove Claim 1 for any u ∈ T Θ̃. Claim 2 then follows for

any tangent vector v ∈ T Θ̃. Lastly, (5.11) holds for any ũ in TM and hence for any ũ in the

subset TM̃ of TM, so Claim 3 follows and hence so does the theorem.

6.2. Extensions to higher-order symmetric tensors. The proof of Theorem 5.1 also
extends with almost no changes to characterise symmetric, order-k tensors ĝ and ĝn on M
and Nn, respectively, that satisfy conditions closely analogous to assumptions (A1)–(A3) of

Section 4. Given such tensors ĝn, define ĥn(ũn) = k

√
ĝn(ũn, . . . , ũn), where there are k copies

of ũn in the right-hand side of this equation. Assume that

ĝn(ũn, . . . , ũn) = nk/2ĝ1(ũ1, . . . , ũ1), (6.1)

which is a generalisation of (4.1) from k = 2 to general k. Then as in the proof of Theorem 5.1,

ĥn(ũn) =
√

nĥ1(ũ1) and ĥn(αũn) = αĥn(ũn) for any α ≥ 0 (by (6.1) and the multi-linearity

of ĝn). So with ĥ in place of h, the proof of Theorem 5.1 implies that ĥ(ũ) = c hF (ũ) for
some c ∈ R, where hF is the norm of the Fisher information metric. Raising this equation to
the power of k gives

ĝ(ũ, . . . , ũ) = ck
[
gF (ũ, ũ)

]k/2
. (6.2)

If k is odd then the left-hand side is an odd function of ũ (i.e. it changes sign when ũ is
replaced by −ũ) while the right-hand side is an even function, which is a contradiction unless
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both sides vanish, so c = 0. If k is even, then since ĝ is determined by (6.2) (by the polarisation

formula for symmetric tensors), ĝ must be a constant times the symmetric part of (gF )k/2.
For example, when k = 4 then there is some c′ ∈ R so that

ĝ(ũ, ṽ, w̃, m̃) = c′
[
gF (ũ, ṽ)gF (w̃, m̃) + gF (ũ, w̃)gF (ṽ, m̃) + gF (ũ, m̃)gF (ṽ, w̃)

]

for any ũ, ṽ, w̃, m̃ ∈ TM.

Remark 7. It might also be possible to adapt the proof of Theorem 5.1 to characterise the
higher-order Amari-Chentsov tensors, which are symmetric, order-k tensors that coincide with
the Fisher information metric when k = 2 and in general are given by an equation similar to
(2.3), e.g. see [2, eq. 2.4] for the k = 3 case. Claim 1 in the proof of Theorem 5.1 does not
seem to hold for these tensors in general. However, if we replace the k/2 in (6.1) by other
powers and strengthen the weak continuity condition on H then it might be possible to replace
Claim 1 by ĥ(ũ) = H(KΦ, fKΦ), where K is an Edgeworth polynomial (see [4] or [13, §4.5]).
Then a symmetry argument, similar to the one in the proof of Theorem 5.1, should give the
desired characterisation.

7. Comparison to previous versions of Chentsov’s theorem

The original version of Chentsov’s theorem applied to statistical models with finite data
spaces, and these models are all (curved) exponential families. So in this section we compare
our version of Chentsov’s theorem to the original version.

The original version of Chentsov’s theorem [10, 20, 9] characterises the Fisher information
metric as the only metric (up to rescaling) that firstly is defined on all models with finite
data spaces and secondly is invariant under (the measure-theoretic push-forwards of) all suf-
ficient statistics. By comparison, our version characterises the Fisher information metric as
the only metric (up to rescaling) that firstly is defined on an individual exponential family
and its derived families and secondly is invariant under IID extensions and (the measure-
theoretic push-forwards of) canonical sufficient statistics. We now show that the two versions
of Chentsov’s theorem differ in both respects, i.e. they differ in both the set of models on
which the invariant metric is defined and on the assumed invariance properties of the metric.

Because IID extensions strictly increase the Fisher information metric (by a factor of n) [1,
eq. 4.2], these transformations of statistical models cannot be induced by sufficient statistics
(or any other Markov morphism) due to the monotonicity property of the Fisher information
metric, e.g. see [1, p. 30–31]. So the invariance assumption of our version of Chentsov’s
theorem and the original version are different. Also, the original version applies to metrics
defined on a countable collection of models of dimension 1, 2, 3, . . . whereas our version applies
to a countable collection of models that all have the same dimension (the dimension of Θ).
So our assumption about the set of models on which the invariant metric is defined is also
different from the original version of the theorem.

More concretely, the original version of Chentsov’s theorem concerns a metric that is defined
on each probability simplex

△n−1 =

{
(p1, . . . , pn) ∈ R

n

∣∣∣∣∣pi > 0 and 1 =

n∑

i=1

pi

}

(with (p1, . . . , pn) ∈ △n−1 putting mass pi on the ith point of the data space) and is invariant
under all sufficient statistics of all submodels of these probability simplices, e.g. see [9] or [1,
Thm. 2.6]. By contrast, our result applies to a metric that is only defined on an individual
exponential family M and its derived families. For example, let M be the family of all
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Bernoulli distributions and let Mn and Nn be the corresponding the derived families, as
in Section 3.4. Then M, Mn and Nn are all parameterised by Θ = R so they are all 1-
dimensional statistical models. In fact, M, Mn and Nn are 1-dimensional submodels of △1,
△2n

−1 and △n, respectively. Our invariance assumptions (A1) and (A2) say that the maps
between these 1-dimensional submodels given by P 7→ Pn and Pn 7→ Qn are isometries (up
to a factor of n, for the first map), where P , Pn and Qn are as given in Section 3.4 and all
correspond to the same value of θ. The map Pn 7→ Qn is induced by a sufficient statistic
but, as argued above, the map P 7→ Pn is not, by the monotonicity of the Fisher information
metric.

This shows that our version of Chentsov’s theorem and the original version differ in both
the set of models on which the invariant metric is defined and on the assumed invariance
properties of the metric. Similar considerations also apply to the more recent versions of
Chentsov’s theorem [2, 7].

8. Discussion

Our version of Chentsov’s theorem characterises the Fisher information metric as the unique
Riemannian metric (up to rescaling) on a curved exponential family M that is invariant under
IID extensions and canonical sufficient statistics. We proved this by considering metrics g on
M, gn on the n-fold IID extension Mn of M, and gn on the natural exponential family
Nn corresponding to Mn. Then, under the above invariance conditions, g can be calculated
in terms of gn, for any n. But for large n, the central limit theorem and a property (5.1)
of exponential families imply that Nn consists of distributions that are all approximately
normally distributed, so each distribution in Nn is determined to a good approximation by
its mean and variance-covariance matrix. Further, each tangent vector to Nn is essentially
a linear function f times a distribution in Nn. Combining these facts shows that (the norm
corresponding to) g is approximately equal to a simple function of f and the mean and
variance-covariance matrix of the relevant distribution in Nn. Our regularity condition implies
that this approximation becomes exact in the limit as n → ∞. Then our main result follows
from an identity (5.11) relating the variance-covariance matrix to the Fisher information
metric on an exponential family.

In general, Chentsov’s theorem characterizes the Fisher information metrics on statisti-
cal models as the only Riemannian metric (up to rescaling) that is invariant under certain,
statistically important transformations. Previous studies have taken these transformations
to be either all sufficient statistics or a large, regular subset of these. By contrast, we take
these statistically important transformations to be the IID extensions and canonical sufficient
statistics. This class of transformations is arguably more natural than the class of all suf-
ficient statistics, it is more appropriate for exponential families and it is a relatively small
class so our invariance assumptions are weaker than those of previous studies. Our regularity
assumptions also appear to be weaker than previous studies, ultimately due to the fact that
our approach only requires us to study a collection of finite-dimensional models, rather than
an infinite-dimensional model.

We have given a new characterisation of the Fisher information metric on an (curved)
exponential family and we have shown that this result is an intuitive consequence of the
central limit theorem. The main limitation of this paper is that our main result is only
proved for exponential families. However, these families are an important class of statistical
models, being well studied and widely used in applications. Also, our proof treats discrete
and continuous models in a uniform way, so there is some hope that our approach can be
adapted to give a proof of Chentsov’s theorem for general statistical models. Lastly, our focus
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on exponential families complements the focus of Bauer et al. [7] on diffeomorphism-invariant
metrics, since curved exponential families are essentially the only statistical models that have
smooth sufficient statistics that are not diffeomorphisms, by the Pitman–Koopman–Darmois
theorem [5].

References

[1] S. Amari and H. Nagaoka. Methods of Information Geometry, volume 191 of Translations
of mathematical monographs. American Mathematical Society, Providence, 2000.

[2] N. Ay, J. Jost, H. V. Lê, and L. Schwachhöfer. Information geometry and sufficient
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