Federated Stochastic Process Discovery Using
Grammatical Inference

Hootan Zhian'!, Rajkumar Buyya', and Artem Polyvyanyy'

'The University of Melbourne, Victoria 3010, Australia
hzhian @student.unimelb.edu.au
{rbuyya;artem.polyvyanyy} @unimelb.edu.au

Abstract. Process discovery studies algorithms for constructing process mod-
els that describe control flow of systems that generated given event logs, where
an event log is a recording of executed traces of a system, with each trace cap-
tured as a sequence of executed actions. Traditional process discovery relies on
an event log recorded and stored in a centralized repository. However, in dis-
tributed environments, such as cross-organizational process discovery, this cen-
tralization raises concerns about data availability, privacy, and high communica-
tion and bandwidth demands. To address these challenges, this paper introduces
a novel Federated Stochastic Process Discovery (FSPD) approach. FSPD avoids
centralized event logs by retaining them in decentralized silos, at organizations
where they were originally recorded. Process discovery is then performed lo-
cally within each organization on its event log, and the resulting local models are
shared with a central server for aggregation into a global model. Our evaluations
on industrial event logs demonstrate that FSPD effectively constructs global pro-
cess models while preserving organizational autonomy and privacy, providing a
scalable and robust solution for process discovery in distributed settings.
Keywords: Stochastic process mining, federated process discovery, cross-silos
process discovery, grammatical inference

1 Introduction

Process mining studies ways to use data generated by information systems when exe-
cuting business processes to understand historical and to improve future processes [2].
Process discovery is one of the core problems in process mining. Given an event log,
a collection of recorded traces, each captured as a sequence of executed actions, a pro-
cess discovery algorithm aims to construct a process model that faithfully describes the
traces the system that generated the event log can support [5]. A good discovered pro-
cess model should describe as many traces from the input event log as possible (good
recall), not describe many traces that are not in the event log (good precision), describe
traces the system is likely to execute in the future (good generalization), and be as sim-
ple as possible (good simplicity) [7].

Most commercial process discovery tools construct Directly-Follows Graphs (DFGs)
from event logs [3]. A DFG is a directed graph with nodes representing actions, edges
capturing the “can follow” ordering constraints between the actions, and numeric weights
attached to nodes and edges specifying indicative frequencies of observing the corre-
sponding actions and their adjacent executions in the event log. The level of detail in

https://orcid.org/0000-0002-7672-1643
mailto:hzhian@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au;artem.polyvyanyy@unimelb.edu.au

2 Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

the constructed DFG is typically controlled by a threshold, which specifies how much
information from the event log can be disregarded in the model [3]. Business analysts
study the system by exploring models constructed at various thresholds and, thus, dif-
ferent levels of detail [15]. To support interactive adjustments of the threshold, most
DFG discovery algorithms aim to meet tight runtime requirements, often operating in
linear time relative to the size of the input event log.

Alkhammash et al. [6] present a genetic algorithm for stochastic process discovery
(GASPD) that can construct DFGs that are Pareto-superior in interesting qualities over
DFGs constructed by the state-of-the-art techniques proposed by academia, which con-
struct models of similar qualities as process discovery tools from major process mining
vendors [14]. GASPD is based on ALERGIA, a grammatical inference technique with
linear empirical and cubic worst-case runtime complexity relative to the size of the event
log [9]. However, GASPD searches the parameter space of the grammatical inference
using a genetic strategy, which substantially increases the overall runtime requirements.

In this paper, we present an extension of GASPD capable of federated process
discovery. GASPD, like other traditional process discovery algorithms, operates over
a centralized event log. Federated GASPD works over a distributed event log in two
phases. First, GASPD discovers models of various quality characteristics on each part
of a distributed event log, where the distributed event log can be seen as a collection of
local event logs, with each local event log stored on a dedicated device. Then, superior
DFGs discovered from each local event log are sent to the server, where they are ag-
gregated into a (collection of) sound [6], that is, correct, DFG(s) that describe the over-
all system. This distributed divide-and-conquer process discovery approach supports
cross-organizational process discovery, which aims to analyze processes that span mul-
tiple organizations that may be reluctant to share raw data and instead exchange event
log abstractions [4,12]. Furthermore, federated process discovery in the cross-silos set-
ting improves data privacy and security [12, 16], reduces data transfer costs [12, 17],
and supports scalability and efficiency [1, 8, 17].

Concretely, this paper contributes:

1. An efficient algorithm for merging a deterministic frequency finite automaton (DFFA)
into a target DFFA, where a DFFA is an abstract model of an event log constructed
by ALERGIA that can be translated to a DFG by a technique used by GASPD.

2. A discussion of formal properties of merged DFFAs (and the practical consequences
of these properties), including consistency, similarity of the DFFAs involved in merg-
ing, and morphism between the merged DFFA and the input target DFFA.

3. The FedGASPD and FedCGASPD algorithms (federated versions of GASPD) that
adapt GASPD to discover DFFAs using ALERGIA from local event logs and then
merge superior discovered DFFAs into, respectively, a single DFFA and a collection
of DFFAs that can be translated to sound DFGs, thus implementing FSPD.

4. An evaluation over industrial event logs confirming that FedGASPD and FedC-
GASPD can discover process models from distributed event logs that have simi-
lar quality characteristics as process models constructed by GASPD from the cor-
responding centralized event logs and work substantially faster than GASPD, with
FedCGASPD constructing interesting models of smaller sizes.

Federated Stochastic Process Discovery Using Grammatical Inference 3

The remainder of the paper proceeds as follows. The next section discusses related
work. Then, presents preliminaries necessary to understand the subsequent
discussions. introduces FedGASPD and FedCGASPD, while pre-
sents results of an evaluation of these algorithms based on their open-source implemen-
tationﬁ Finally, Section 6| closes the paper with a discussion of the limitations of our
approach and directions for future work, and states concluding remarks.

2 Related Work

This section discusses existing works in federated process mining, divided-and-conquer
strategies for process discovery, and cross-organizational process mining.

Van der Aalst [4] introduces a federated process mining approach to create a unified
view of cross-organizational processes. This is achieved by mapping multiple organiza-
tion-specific event logs into a single federated event log. The paper distinguishes be-
tween two types of federated process mining: organizations share filtered event data,
and organizations share abstractions, such as DFGs, to maintain higher levels of con-
fidentiality. However, it does not propose a solution for merging these abstractions,
leaving this as an open problem for future research, which is addressed in this work.

Rojo et al. [17] explore federated process mining techniques that leverage dis-
tributed devices, such as smartphones, to analyze human actions and interactions (in-
cluding those with other individuals). These techniques conceptualize human behavior
as a process and focus on event logs collected from individual devices. The authors pro-
pose two approaches: discovering process models directly from the data of individuals
and integrating event logs from multiple devices into a centralized dataset to construct
process models. While the latter approach involves aggregating traces from multiple
devices to a central repository, it often incurs substantial data transfer costs. In contrast,
our approach discovers models locally on each device and merges them into a final
model, significantly reducing communication overhead.

Khan et al. [12] present a federated approach for cross-silo process mining, uti-
lizing a dependency graph to analyze distributed process logs while maintaining data
privacy collaboratively. The authors design a protocol for federated process discovery
tailored to the Heuristic Miner process discovery algorithm that relies on a centralized
trusted server to orchestrate communication between the parties that own parts of the
entire event log. Our approach can be embedded into similar protocols for federate pro-
cess discovery. Rafiei and van der Aalst [16] propose an abstraction-based approach
for privacy-aware federated process discovery in inter-organizational settings, utiliz-
ing directly-follows relations as abstractions of event logs. The approach highlights the
importance of enabling organizations to collaborate while safeguarding sensitive infor-
mation through mechanisms such as handover relations and risk-aware reveal methods.
A handover occurs when the execution of a trace transitions from one organization to
another. Their method constructs event log abstractions from trace fragments visible
to each organization, which are then aggregated into a unified abstraction representing
the entire event log. By contrast, we partition the event log into groups of complete

! https://github.com/HzhianUnimelb/FederatedProcessDiscovery

https://github.com/HzhianUnimelb/FederatedProcessDiscovery

4 Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

traces—for example, those managed by subsidiaries or business units within an organi-
zation—and derive abstractions for each group prior to merging them.

Carmona et al. [8] presents two techniques for decomposing process discovery us-
ing the theory of regions. The first technique performs a local search for regions rather
than globally, and constructs model components from these local regions. The second
technique involves selecting groups of related events from the event log, projecting
the log onto these groups, and then discovering model components from each of these
projections. In both cases, the identified components are then combined into the fi-
nal process model using parallel composition. Van der Aalst [1] introduces a divide-
and-conquer framework for process discovery based on partitioning of actions. This
framework also proceeds by splitting the actions into (possibly overlapping) groups,
projecting the event log onto these groups, discovering model components from the
projections, and composing the components into the resulting process model. Sev-
eral strategies for decomposing event logs are discussed. For example, one strategy
is based on single-entry-single-exit (SESE) fragments, which split the actions based on
well-defined sub-processes with unique entry and exit points. Yan et al. [19] present
a five-step framework for decomposing process discovery. First, an action relationship
graph is derived from the event log, representing the dependencies between actions.
This graph is then decomposed into smaller subgraphs, each representing a subset of
the process. These subgraphs are used to create corresponding sublogs, which serve
as input for constructing submodels. Finally, the submodels are composed to form the
complete process model. An instantiation of the framework based on SESE decompo-
sition and heuristic miner is proposed. Different from the existing techniques, we work
with multiple collections of complete traces rather than their projections, discover mod-
els from these collections, each capturing aspects of the overall process based on a data
subset, and, finally, merging, rather than assembling, the intermediate models.

3 Preliminaries

This section presents concepts necessary to understand the contributions discussed in
the subsequent sections. A Deterministic Frequency Finite Automaton (DFFA) is a
mathematical model that describes traces and their frequencies.

Definition 3.1 (Deterministic Frequency Finite Automata)

A Deterministic Frequency Finite Automaton (DFFA) is a tuple (Q, A, qo, L, F, §), where:

— Qs a finite nonempty set of states;

— Ais afinite set of actions, called the alphabet;

— I: Q — N is the initial state frequency function, with one initial state qo € Q for
which it holds that I(gg) > 0 and for all g € Q, g # qo, it holds that I(g) = O;

— F: Q — Nis the final state frequency function; and

0 : O X AXQ — Nis the transition frequency function, such that

Vge QVae AVq € QVq" € Q: ((6(q,a,9") >0AN6(q,a,9g")>0)= (¢ =4¢")). 2

The notation 6(q,a,q’) = n indicates that there is a transition from state g to state ¢’
labeled with a, occurring n times. Figure 1 shows a DFFA with states {po, . . . , p4}, initial

Federated Stochastic Process Discovery Using Grammatical Inference 5

state po, [(po) = 10, F = {(po, 1), (p1,4), (P2, 1), (p3,2),(p4,2)}, and 6(po, a, p1) = 4,
6(po, b, p1) = 5, 6(p1.a, p2) = 3. 6(p1, b, p3) = 2, 6(p2, a, pa) = 2, and 6(pa4. a, ps) = 2.

A DFFA is consistent if for each of its states the sum of frequencies of entering and
leaving (or terminating at) that state is identical.

Definition 3.2 (Consistency [11])
A DFFA (Q, A, qo, L F, §) is consistent if and only if it holds that:

VgeQ: [H(q) +),8(da, q)] = [F(q) +) 8(g.a, q’)].

q'€Q,acA q'€Q,acA

-

The DFFA in Fig. 1 is consistent. The simulation relation associates automata that be-
have in a similar way, that is, one automaton can “mimic” the actions of the other.

Definition 3.3 (Similarity [18])

DFFA A, = (Q',A',¢).1',F', 6') simulates DFFA Ay = (0%, A, g3, 12, F, %), denoted

by A, < Ay, if and only if there exists a relation S € Q' x Q? such that:

- (q(l),q(z)) €S, and

— forevery (p, q) € S, if there exists a € A' and p’ € Q! such that 6’ (p,a,p’) > 0, then
it holds that there exists ¢’ € Q° such that 6°(q,a,q’) > O and (p’,¢’) € S. 4

Our approach to federated process discovery is based on GASPD, an evolutionary
stochastic process discovery algorithm grounded in grammatical inference [6]. GASPD
uses ALERGIA to extract accurate stochastic language models of traces recorded in an
input event log. ALERGIA operates by first constructing the prefix automaton of the
event log and then iteratively reduces it through recursive merging of states that spawn
similar sequences of actions into a consistent DFFA [9].

Algorithm 1|summarizes GASPD in pseudocode.

1

(=1

Algorithm 1: GASPD [6]

Data: Initial population size p, number of generations m, number
of parents k to generate offspring, and event log L
b5 Result: Pareto-optimal DFGs defines by parameter triples
8§« 0;
P «— POPULATION(p);
while g < m do
F « SELECT(P, L),
U < CROSSOVER-MUTATION(Fk);
P «— REPLACE-ELITE(U, F, L);
geg+ 1l

a2

=2
)
8
o
N v R W N =

Fig. 1: DFFA A; 8 return SELECT(P, L);

GASPD uses a multi-objective genetic search to discover interesting DFGs from the
input event log. It begins by generating a population P of p parameter triplets (Line 2).

6 Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

Each triplet defines a DFG, with one parameter determining which infrequent traces
to exclude from the event log and two parameters guiding ALERGIA in constructing
a DFFA from the remaining frequent traces. Using its native translation mechanism,
GASPD converts these DFFAs into sound DFGs. In the selection phase (Line 4), the
most “fit” population members F are chosen. Fitness is defined by Pareto optimality
concerning model size (smaller models are preferred) and entropic relevance of dis-
covered models (lower relevance values are preferred). Relevance serves as a quality
criterion because it enables rapid model scoring, balances precision and recall relative
to the event log, and quantifies how well the model captures the likelihood of observed
traces [6]. Next, in the crossover phase (Line 5), offspring U are generated by apply-
ing crossover and mutation operations to k randomly selected parents from F. These
operations aim to ensure that offspring inherit the best features of prior generations. Fi-
nally, in the replacement phase (Line 6), GASPD updates the population by preserving
Pareto-optimal members in F and incorporating new, superior members from U.

4 Federated Process Discovery

This section presents the problem of federated (stochastic) process discovery, a tech-
nique for merging DFFAs, the FedGASPD algorithm that discovers one DFFA from
each input event log and then merges them into the final discovered process model, and
the FedCGASPD algorithm that refines FedGASPD to merge similar models to obtain
a range of models of different characteristics.

4.1 Definition

Let X be a set. By B8(X), we denote the set of all finite multisets over X, while, by X*,
we denote the set of all finite sequences over X. Let X € X* be a sequence over X. Then,
by X (i), i € [1.. |X]], we denote the element at position i in X.

Let A be the universe of actions. Then, £ = B(A*) is the universe of event logs.
Let M be the universe of process models. Given an event log L € L, the conventional
process discovery problem studies ways to construct a process model that describes the
system that generated L. A solution to the process discovery problem can be captured
as a function d : L — M. The federated process discovery problem studies ways to
construct a process model from a list of event logs, where each event log from the list
can be stored on a dedicated device at a particular organization. That is, a solution to
the federated process discovery problem can be given as a function f : £ — M.

Letq : £ x M — [0, 1] be a function that measures quality g(L, M), L€ L, M € M
of model M discovered from event log L. For instance, measure ¢ can be precision,
recall, simplicity, or generalization [7]. Such a measure usually associates larger val-
ues with models that describe the system better. A good federated process discovery
approach f should construct a model from multiple event logs that is comparable in
quality to the model constructed from the corresponding centralized event log:

VL e L : q(Lf(L)) ~ g(L,d(L)), where L =4 L(i).

Federated Stochastic Process Discovery Using Grammatical Inference 7

10 20

v

‘ b:1 a2 || b:1
Fig.2: DFFA A, Fig.3: DFFA A

In this paper, we solve the federated process discovery problem by first constructing
process models from individual event logs using the conventional approach and then
merging the obtained models into the final process model. Let m : M x M — Mbe a
function that merges models. Specifically, given a non-empty, finite list of event logs
(Ly,..., L,y € L*, n € N, we first discover the sequence of models (My,..., M,),
M; = d(L;), i € [1..n], using the conventional approach on each event log. Each such
model can be constructed on a dedicated device at the organization that owns the data
and is an abstract, and thus more confidential [4], representation of the corresponding
event log. We then merge the models incrementally using function F,, : M* — M:

Fm(<Ml>) = Ml and Fm(<M19M2" .. aMn>) = F(<m(M13M2)s' .. ’Mn>)'

In general, different orders and approaches to model merging can lead to different re-
sulting models. Next, we discuss an approach to merging DFFAs.

4.2 Model Merging

We refer to the procedure for merging a DFFA A; into a DFFA A, as MergeDFFA. In
addition to the two automata, the procedure takes as input a parameter d € N. The first
step is to construct the (prefix of the) unfolding of A, truncated at the d + 1 occurrences
of its states [10]. In this prefix automaton, state and transition frequencies are derived
from those in A, by propagating frequencies along the unfolding branches, using prob-
abilities estimated based on the original frequencies in A,. MergeDFFA then “embeds”
this prefix automaton into A; by reusing the structure of A; and extending it as neces-
sary to incorporate any remaining parts of the prefix. During this embedding process,
the frequencies from A; and the constructed prefix of A, are aggregated. We denote the
result of merging A, into A using parameter d as A; <4 A;.

DFFA A in|Fig. 3|is the result of merging A, in|[Fig. 2|into A; in[Fig. 1/using d = 1,
that is, A = A <1 A,. In the figure, the khaki-colored states represent states from A;
that were reused during the embedding of the prefix unfolding of A, into A;. The green
state p,4 corresponds to a state of A; that was not visited during the embedding, while
the orange state gs originates from A, and was used to extend the structure of A;.

8 Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

i @
@ 2:20 b:80
a:70 b:10 0

@ b:20 a:75
a:10
b:10 b:10

Fig.4: DFFA A; Fig.5: DFFA A4

b:100

Since A; is acyclic and has no states with multiple incoming transitions, the prefix
of its unfolding for any k € N is structurally identical to A,. The merged automaton
A incorporates all transitions from both A; and A;, and it permits termination in the
same states as these two automata. Consequently, A simulates both A; and A;. When
embedding A, into Ay, the transitions from A, “follow” those of A; as closely as pos-
sible accumulating transition and state termination frequencies from both automata,
effectively merging their behaviors. After executing b twice, both A; and A, reach a
common merged state p3. At this point, A terminates, while A, is capable of perform-
ing an additional b transition. This leads to the introduction of a new state gs, extending
the behavior of A beyond A; to simulate the behavior of A,.

shows the prefix of the unfolding of the DFFA A4 from computed for
d = 2. The construction begins at the initial state of the input automaton and proceeds

iteratively: at each step, a state in the current prefix is selected and extended using one
of its outgoing transitions from the input automaton. Each extension introduces a fresh
state to represent the target of the chosen transition, ensuring that the unfolding forms
a tree. To guide the construction, only states with unexplored transitions are selected
for expansion. If the target state of a transition has already appeared d times among
the ancestors of the current node in the prefix, the expansion is halted; otherwise, if the
input DFFA has a cycle, the prefix construction will continue forever. In the example
prefix shown in the state ¢/, corresponds to state g4 in A4. However, it is not
expanded via transition a because doing so would introduce a third occurrence of state
q> along the path from ¢, to the root (state go). To ensure the consistency of the prefix
automaton, the frequency of a pruned state is accumulated in the parent state (state g,
in the example). The frequencies of states and transitions in the prefix automaton are
computed by multiplying the frequency of each concept in the input automaton by the
probability of reaching its corresponding occurrence during the execution of the input
automaton. This probability is estimated based on the state and transition frequencies
in the input automaton.

DFFA B in is the result of merging A4 from into A3 from using

d = 2, that is, B = A3 < A4. The khaki-colored states indicate states from A3 that were

Federated Stochastic Process Discovery Using Grammatical Inference 9

b:130

Fig. 6: Prefix of DFFA A4 (d = 2) Fig.7: DFFA B

reused during the embedding of the prefix of A4 from Fig. 6|into A3. The green states
correspond to the original states of A3 not visited during the embedding of the prefix,
while the orange states are the states of the prefix that do not “fit” into As.

MergeDFFA terminates after it explores the necessary pairs of states from the two
input automata starting from the pair of the initial states. The procedure always termi-
nates because the number of all possible such state pairs is finite. The runtime of the
merging process is primarily determined by the size of the prefix of the unfolding of
DFFA A,, which, in the worst case, can be exponential in the size of A,. When the
parameter d is set to a small value, the size of the prefix unfolding is typically only a
few times larger than that of A,. However, increasing d allows the behavior of A, to be
captured more accurately in the resulting merged automaton.

The automaton that results from merging two consistent automata is consistent.

Lemma 4.1 (Consistency)
If A and A, are consistent DFFAs, then DFFA A, such that A = A; <4 Ay, d € N, is
consistent. a

Lemma 4.1 holds because the prefix automaton that MergeDFFA embeds into A; is, by
construction, consistent. Furthermore, each time a state from the prefix of the unfolding
is embedded into the resulting automaton, the MergeDFFA procedure updates both the
termination frequency of the merged state and the frequencies of its outgoing transitions
to preserve consistency.

The automaton produced by MergeDFFA is in the following simulation relations
with the input automata.

Lemma 4.2 (Similarity)
If Ay and A, are consistent DFFAs and A = A} <4 Ay, d € N, it holds that:

10 Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

— A simulates Ay, that is, Ay < A; and
— if Ay is acyclic, then A simulates A,, that is, A, < A. a

Lemma 4.2 holds based on the following observations. Each automaton produced by
MergeDFFA is constructed by extending the structure of DFFA A1, thus preserving all
of its transitions. Also, MergeDFFA ensures that all transitions from the prefix of the
unfolding of A, are retained in the resulting DFFA. If A, is acyclic, the unfolding of A,
simulates A,. Finally, the unfolding of an acyclic automaton is isomorphic to the prefix
of the unfolding of this automaton for any truncation depth d > 0.

Notably, given DFFAs A| and A; and d € N, it is not always the case that A <; A, =
A, <4 Ay that is, the merging operation is not commutative. This fact suggests that if
MergeDFFA is used to merge models when solving the federated process discovery
problem, different orders of mergings will indeed lead to different discovered models.

4.3 Discovering Single Model

Given parameters to configure the GASPD algorithm and a collection of event logs,
each stemming from the same process but possibly recorded by different organizations
or different departments within a single organization, the FedGASPD algorithm solves
the federated process discovery problem by constructing one model from each event

log and then merging them into the final process model; refer to|Algorithm 2

Algorithm 2: FedGASPD

Input: Initial population size p, number of generations m, number of parents k to
generate offspring, and a non-empty list of event logs L = (L,,...,L,)
Output: A DFFA discovered from L
1 M« (),
2 parallelfor i € [1..n] do
3 L M — M o (SELECTDFFA(GASPD(p, m, k, L,)));

4 return Fiyreeprra (M);

To discover a model from an input event log, we first use the GASPD algorithm (Al-]
to identify Pareto-optimal models based on their size and entropic relevance.
From the set of Pareto-optimal models, one is selected using the SELECTDFFA func-
tion. The selected model is then added to the list of constructed DFFAs, M, using the
sequence concatenation operator “o” (Line 3). Since the above-outlined procedure for
obtaining a model can be performed independently for each input event log, we execute
all such procedures for all input event logs in parallel (Line 2). Various model selec-
tion policies can be implemented by different implementations of the SELECTDFFA
function. Finally, once all models are selected, they are merged pairwise using the
MergeDFFA procedure (Line 4); cf.[Section 4.2/for details on the merging procedure.

The discovery of Pareto-optimal models and the selection of one optimal model for
each input event log can be performed locally on devices at the respective organiza-

Federated Stochastic Process Discovery Using Grammatical Inference 11

tions where the input event logs are stored. Once the models are selected, they can be
transmitted to a central server, where the merging process takes place.

Note that GASPD identifies parameter triplets that trigger ALERGIA to construct
automata that can be translated into interesting DFGs. The SELECTDFFA function,
thus, selects one parameter triplet identified by GASPD and constructs the correspond-
ing DFFA using ALERGIA. After merging all DFFAs into a final model, this model
can be trivially translated into a probabilistic automaton using Algorithm 16.1 by de la
Higuera [11], which, in turn, can be trivially converted into a DFG model following
the procedure outlined in Definition 4.2 by Alkhammash et al. [6]. To ensure brevity
of presentation and because the quality of DFFAs directly impacts the quality of the
resulting DFGs, here, we design the core techniques to operate with DFFAs.

4.4 Discovering Multiple Models

FedGASPD solves federated process discovery in a straightforward manner: it discov-
ers one model from each input event log and merges them. This approach gives a basic
baseline for federated process discovery. However, when the discovered models exhibit
diverse characteristics, merging them may result in a loss of distinctiveness and dilute
their strong individual features due to the averaging effect. To address this limitation,
we propose a variation of FedGASPD that avoids merging all models into one. Instead,
it groups similar models into clusters and merges the models within each cluster, yield-
ing multiple models that retain similar, strong characteristics of the merged models. We
refer to this variant as FedCGASPD, which is summarized in/Algorithm 3|

Algorithm 3: FedCGASPD

Input: Initial population size p, number of generations m, number of parents k to
generate offspring, and a non-empty list of event logs L = (L,,...,L,)
Output: A list of DFFAs discovered from L
1 M—OsMe ()
2 parallelfor i € [1..n] do
3 L M — M o (SELECTDFFA(GASPD(p,m,k, L,)));

4 C « KMeansCluster (M, n);
5 forie[l..n]do
6 | if|C@)| = 0 then M — M o (Fereeprm (C(0)) :

7 return M;

After discovering models from input event logs (Lines 2| and 3| in |Algorithm 3),
they are clustered using the k-means algorithm [13] via the KMeansCluster function
(Line 4). The KMeansCluster function takes as input the list of models, M, and the
desired number of clusters, n, and outputs a list of clusters, C, where each cluster is
stored as a list of models. We specify n as the number of desired clusters and ini-
tialize n random centroids (initial cluster centers), each represented as a point in the
space [0, 1] x [0, 1]. If there are fewer than n meaningful clusters, the k-means algo-
rithm identifies these clusters by iteratively refining the centroids while allowing some

12 Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

centroids to remain unused. For clustering, each DFFA is represented as a point in a
two-dimensional space, defined by its normalized size and entropic relevance. Normal-
ization is achieved by dividing the size and entropic relevance of each model by the
respective maximum values across all models in M. Then, the MergeDFFA procedure
is applied to each non-empty cluster. All models within a cluster are merged, and the
resulting merged model is appended to the list of discovered models (Line 6).

5 Evaluation

We implemented the GASPD, FedGASPD, and FedCGASPD algorithms and made
them publicly available Using this implementation, we evaluated the performance of
these algorithms using nine real-world event logs, which we sourced from the IEEE
Task Force on Process Mining (https://www.tf-pm.org/resources/logs). For experiments,
we selected event logs that exhibit a wide range of characteristics, such as the number
of (distinct) actions, the number of (distinct) traces, and trace length. This diversity is
essential for evaluating the robustness of our algorithms in various real-world scenarios.
summarizes the characteristics of the nine event logs.

Table 1: Characteristics of the event logs used in our experiments
[Event log [#Actions [#Traces [#Distinct traces [Max. trace length [Avg. trace length]

BPI-2012 24 13,087 4,366 175 20.03
BPI-2013 4 7,554 1,511 123 8.67
BPI-2017 26 31,509 15,930 180 38.15
BPI-2018 34 2,861 2,498 680 61.58
BPI-2019 42 251,734 11,973 990 06.33
BPI-2020-1 34 6,449 753 27 11.18
BPI-2020-2 19 6,886 89 20 05.34
Sepsis Cases 16 1,050 846 185 14.48
nasa-cev 47 2,566 2,513 50 28.69

All experiments were executed on a computer featuring a 13th Gen Intel® Core™
17-1355U processor running at 1.70GHz using 16.0GB of RAM (15.7GB of effective
memory). The aim of the experiments is twofold. Firstly, we study the feasibility of us-
ing federated process discovery in industrial settings. Secondly, we compare the quality
of the models generated by FedGASPD and FedCGASPD to those produced using
the centralized GASPD method. For each event log, GASPD, FedGASPD, and FedC-
GASPD were initialized the initial population size, p, and the number of generations,
m, to 50. To construct human-readable models, we controlled the parameter responsible
for the exclusion of infrequent traces. Consequently, we constructed models of at most
1,000 nodes and arcs, with many models substantially smaller than this target size.

To simulate cross-organizational environments, each event log was split randomly
among a requested number of computational nodes, ensuring that each node has approx-
imately the same portion of the event log traces. We implemented the SELECTDFFA
function from and 3| by selecting one DFFA from a Pareto-frontier of
DFFAs that minimizes this objective function: (1 — size*) + (1 — relevance™)/2, where
size” and relevance” are the normalized size and entropic relevance of the model, with

2 https://github.com/HzhianUnimelb/FederatedProcessDiscovery

 https://www.tf-pm.org/resources/logs
https://github.com/HzhianUnimelb/FederatedProcessDiscovery

Federated Stochastic Process Discovery Using Grammatical Inference 13

Table 2: Execution times of GASPD, FedGASPD, and FedCGASPD algorithms

Execution time (in seconds)
Event log GASPD FedGASPD FedCGASPD
2 nodes [4 nodes [8 nodes | 2 nodes [4 nodes [8 nodes

BPI-2012 416 178 83 61 166 81 58
BPI-2013 84 35 26 11 43 22 17
BPI-2017 3,120 | 1,459 514 342 1,401 499 367
BPI-2018 2,898 | 1,325 165 76 1,317 173 78
BPI-2019 2,288 2,216 471 251 2,224 480 260
BPI-2020-1 1402 685 331 229 676 342 236
BPI-2020-2 175 94 57 46 92 53 42
Sepsis Cases 421 234 64 31 237 60 36
nasa-cev 3,820 575 329 136 568 332 142

normalization performed as described in This way, we select a model that
balances the two competing objectives equally.

Table 2|presents the execution times of GASPD and its federated alternatives. Note
that FedGASPD and FedCGASPD are substantially faster than GASPD. For example,
for the nasa-cev event log, the federated discovery techniques are up to 26 times faster
than GASPD and, at a minimum, 5 times faster, refer to BPI-2013 event log. This
observation can be explained by the fact that FedGASPD and FedCGASPD perform
computationally demanding GASPD genetics on many smaller event logs in parallel
and then apply a computationally efficient merging of the resulting models.

shows the characteristics of the Pareto-optimal models discovered from the
nine event logs by the three algorithms for the different numbers of computation nodes,
while|Tables 3/and 4 summarize the ranges of the sizes and entropic relevance values of
the discovered models. These results further support our contention that federated ap-
proaches yield useful new models compared to the centralized solution. When compar-
ing the two federated approaches, FedCGASPD results more often in smaller models
than FedGASPD, as it tends to merge models of similar characteristics and, hence,
preserve the distinctive sizes of the various groups of similar models. FedGASPD,
however, tends to discover models of lower entropic relevance, hence describing the
traces and their frequencies from the input event logs more accurately. This observation
confirms the trade-off between the size and quality of the discovered models [14] and
suggests that the two proposed methods prioritize different aspects of this trade-off.

We conclude that FedGASPD and FedCGASPD discover models of comparable
characteristics as GASPD. presents Pareto dominance counts for the various
techniques. Note that the centralized solution, GASPD, does not consistently dominate
across different datasets. Specifically, it delivers a good share of Pareto-optimal solu-
tions for BPI-2017, BPI-2020-2, Sepsis Cases, and nasa-cev event logs, but not for other
event logs, where FedCGASPD discovers the lion’s share of Pareto-optimal models.

6 Conclusions

This paper presents the FedGASPD and FedCGASPD algorithms for stochastic process
discovery in distributed environments. These algorithms are built upon the robust foun-
dation of GASPD, a stochastic process discovery algorithm that operates over central-
ized event logs. The new algorithms discover process models from several local event

14

(a) BPI-2012

(b) BPI-2013

Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

(c) BPI-2017

1,000 , T T , T T
800 800 |- ™ 1 8oof |
o 600 o 600 - o 600 .
N N N []
“ 400 “ 400 - * - 400 = s -
200 200 " og'. = 200 - e,
0 0 | | 0 | |
17 18 19 20 80 90 100 110
Entropic relevance Entropic relevance Entropic relevance
(d) BPI-2018 (e) BPI-2019 (f) BP1-2020-1
1,000 —— 1,000 — ; ;
800 s m = 800 - =
o o 600 = - o 600 -
N N DY N %
«n “ 400 - - 400 =
2 e
200 - om | 200 -
0 | | | 0 | | |
180 190 200 60 70 80 90 100 16 17 18
Entropic relevance Entropic relevance Entropic relevance
1000 (%) BP 1-%020-2 1,000 (h) Sepsis Cases 1,000 (i) nasa-cev
800 - .
o 600 H= =
N
“ 400 |- =
200| ‘eo =
0 l 0 0 - .
13 13.5 14 4 46 48 50 60 70 80 90

Entropic relevance Entropic relevance Entropic relevance

B GASPD 4 FedGASPD(2) @ FedGASPD(4) ® FedGASPD(8) A FedCGASPD(2) & FedCGASPD(4) O FedCGASPD(8)

Fig. 8: Size and entropic relevance of DFFAs discovered by GASPD, FedGASPD, and
FedCGASPD; smaller sizes and entropic relevance values signify better models. The
numbers in the parenthesis signify the numbers of computation nodes.

logs, possibly scattered across different organizations, and aim to preserve the autonomy
and privacy of each party and to decrease data communication requirements and the
overall model discovery time. Our experiments with real-world event logs demonstrate
the effectiveness of FedGASPD and FedCGASPD, providing scalable alternatives for
process discovery in distributed environments. The algorithms discover DFFAs that can
be translated, using the native translation of GASPD, into sound DFGs.

Although the presented results suggest that the models constructed by FedGASPD
and FedCGASPD are comparable in quality to those discovered by GASPD, several av-
enues exist to further enhance the findings. First, a systematic exploration of the impact
of different orders of merging DFFAs discovered from local event logs on the qual-
ity of the constructed global DFFAs and, consequently, DFGs, could provide valuable

Federated Stochastic Process Discovery Using Grammatical Inference 15

Table 3: Size of DFFAs discovered by GASPD, FedGASPD, and FedCGASPD

Size
GASPD FedGASPD FedCGASPD
Event Log
min max|— 2 nodes ' 4 nodes A 8 nodes ‘ 2 nodes ' 4 nodes A 8 nodes

min max|min max|min max |min max |min max|min max
BPI-2012 |185 930]128 856(173 361(52 249162 44650 315(11 205
BPI-2013 (486 760]143 715(174 373130 2911107 311|167 218|147 190
BPI-2017 |143 460]166 507(100 18498 121]125 7500(56 15448 121
BPI-2018 |196 4031120 339(81 282(59 125198 31827 218(8 66
BPI-2019 158 8081481 766(171 503(127 2301229 632|116 572|147 218
BPI-2020-1 (313 5091314 515|221 465|187 3691195 421(173 321|151 235
BPI-2020-2 |275 6291234 459|247 362(196 283|213 345(153 266(90 241
Sepsis Cases|179 786]201 549(179 673|132 3911132 189149 314(43 133
nasa-cev |155 746|171 514|160 576(157 29411 260(172 241|1 155

Table 4: Relevance of DFFAs discovered by GASPD, FedGASPD, and FedCGASPD

Entropic relevance

GASPD FedGASPD FedCGASPD
Event Log
. 2 nodes 4 nodes 8 nodes 2 nodes 4 nodes 8 nodes
min max |— - - - - -
min max |min max|min max |min max |min max|min max
BPI-2012 |65.11 76.89164.84 79.13|70.00 75.17|72.32 84.23]165.47 87.19(72.91 92.90{72.05 98.00

BPI-2013 |17.40 18.10§17.72 18.25|17.65 18.46|17.82 18.71]16.33 18.29({17.70 ~ 18.83|17.51 20.77
BPI-2017 |82.01 93.34]89.79 95.42|{92.63 103.04/100.88 105.45]89.69 100.18({93.88 106.57|101.31 110.33
BPI-2018 |185.26 187.42)187.77 193.08{191.87 194.16/190.44 197.13]1189.25 193.34(192.33 198.58|193.01 205.07
BPI-2019 |61.01 87.27)64.77 87.39|69.51 88.59|70.65 89.66]76.40 88.69(81.56 92.22|83.39 94.73
BPI-2020-1 |15.80 16.39]|15.75 16.30{16.59 17.13|16.30 17.61]16.00 16.75{16.18 17.33|16.70 18.35
BPI-2020-2 |12.95 13.78|13.07 13.47|13.09 13.85(13.40 13.53]13.06 13.25{13.17 13.44{13.40 13.75
Sepsis Cases|44.01 46.66]45.23 46.67|45.24 47.45|46.6 4751|4745 48.32|47.01 48.85[48.12 50.03
nasa-cev [57.21 64.37]60.25 7298|5891 74.21{62.95 66.39]61.23 91.95/66.11 69.52|67.91 91.59

Table 5: Pareto dominance counts

Event log GASPD FedGASPD FedCGASPD Total score
2nodes | 4nodes | 8nodes | 2nodes | 4nodes | 8nodes
BPI2012 |2 (10.52%) |4 (21.05%)|2 (10.52%)]0 (00.00%)| 3 (15.78%) |0 (00.00%)| 4 (21.05%)| 19 (100.00%)
BPI-2013 0 (00.00%)] 0 (00.00%) |1 (25.00%)|0 (00.00%)] 1 (25.00%) |0 (00.00%)|2 (50.00%)]04 (100.00%)
BPI-2017 {3 (30.00%)] 0 (00.00%) |0 (00.00%)|0 (00.00%)]3 (30.00%)|1 (10.00%)|3 (30.00%)] 10 (100.00%)
BPI-2018 |3 (15.00%) | 1 (05.00%)|3 (15.00%)|3 (15.009%)| 3 (15.00%) |3 (15.00%)|4 (20.00%)|20 (100.00%)
BPI-2019 2 (20.00%)] 1 (10.00%) |0 (00.00%)|2 (20.00%)]3 (30.00%) |0 (00.00%)|2 (20.00%) |10 (100.00%)
BPI-2020-1 |1 (10.00%) {2 (20.00%) |2 (20.00%){0 (00.00%)]3 (30.00%)|1 (10.00%)| 1 (10.00%) |10 (100.00%)
BPI-2020-2 |4 (57.14%)| 1 (14.28%)|0 (00.00%)|0 (00.00%)| 0 (00.00%) [0 (00.00%)| 2 (28.58%) |07 (100.00%)
Sepsis Cases|5 (38.46%)]2 (15.38%) |1 (07.69%)|1 (07.69%)| 2 (15.38%) |0 (00.00%)|2 (15.38%) |13 (100.00%)
nasa-cev 4 (28.57%)] 1 (07.14%) |3 (21.42%)|0 (00.00%)] 3 (21.42%) |0 (00.00%)|3 (21.42%) |14 (100.00%)

insights. Similarly, investigating clustering techniques that improve the performance
of FedCGASPD may lead to significant advancements. Additionally, optimizing the
discovered models for other quality criteria than size and relevance could further re-
fine their applicability. Finally, exploring alternative policies for selecting superior local
models represents an interesting direction for future research.

References

[1] van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic approach.
Distributed Parallel Databases 31(4), 471-507 (2013)

[2] van der Aalst, W.M.P.: Process Mining—Data Science in Action. Springer Berlin Heidel-
berg, 2nd edn. (2016)

16

(3]
(4]

(3]

(6]
(7]

(8]

(9]

(10]

(1]
(12]

[13]

[14]
(15]
(16]

(17]

(18]

(19]

Hootan Zhian, Rajkumar Buyya, and Artem Polyvyanyy

van der Aalst, W.M.P.: A practitioner’s guide to process mining: Limitations of the directly-
follows graph. Procedia Computer Science 164, 321-328 (2019)

van der Aalst, W.M.P.: Federated process mining: Exploiting event data across organiza-
tional boundaries. In: SMDS, pp. 1-7, IEEE (2021)

van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. Transactions on Knowledge and Data Engineering 16(9), 1128—
1142 (2004)

Alkhammash, H., Polyvyanyy, A., Moftat, A.: Stochastic directly-follows process discovery
using grammatical inference. In: CAiSE, LNCS, vol. 14663, pp. 87-103, Springer (2024)
Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in process
discovery: The importance of fitness, precision, generalization and simplicity. International
Journal of Cooperative Information Systems 23(01), 1440001 (2014)

Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-conquer strategies for process
mining. In: BPM, LNCS, vol. 5701, pp. 327-343, Springer (2009)

Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merg-
ing method. In: Grammatical Inference and Applications, LNCS, vol. 862, pp. 139-152,
Springer (1994)

Esparza, J., Heljanko, K.: Unfoldings: A Partial-Order Approach to Model Checking.
EATCS Monographs in Theoretical Computer Science, Springer (2008)

de la Higuera, C.: Grammatical Inference. Cambridge University Press, Cambridge (2010)
Khan, A., Ghose, A., Dam, H.K.: Cross-silo process mining with federated learning. In:
ICSOC, LNCS, vol. 13121, pp. 612-626, Springer (2021)

MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.
In: Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281-297,
University of California Press (1967)

Polyvyanyy, A., Moffat, A., Garcia-Banuelos, L.: An entropic relevance measure for
stochastic conformance checking in process mining. In: ICPM, pp. 97-104, IEEE (2020)
Polyvyanyy, A., Smirnov, S., Weske, M.: Process model abstraction: A slider approach. In:
EDOC, pp. 325-331, IEEE Computer Society (2008)

Rafiei, M., van der Aalst, W.M.P.: An abstraction-based approach for privacy-aware feder-
ated process mining. IEEE Access 11, 33697-33714 (2023), ISSN 2169-3536

Rojo, J., Garcia-Alonso, J., Berrocal, J., Herndndez, J., Murillo, J.M., Canal, C.: SOWCom-
pact: A federated process mining method for social workflows. Information Sciences 595,
18-37 (2022)

Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.
Syst. 31(4), 15:1-15:41 (2009)

Yan, Z., Sun, B., Chen, Y., Wen, L., Hu, L., Wang, J., Yang, M., Wang, L.: Decomposed
and parallel process discovery: A framework and application. Future Gener. Comput. Syst.
98, 392-405 (2019)

	Federated Stochastic Process Discovery Using Grammatical Inference
	Introduction
	Related Work
	Preliminaries
	Federated Process Discovery
	Definition
	Model Merging
	Discovering Single Model
	Discovering Multiple Models

	Evaluation
	Conclusions

