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ABSTRACT 

Quantum advances have occurred in the field of human genetics in the six decades 

since Watson and Crick expressed their “wish to suggest a structure for the salt of 

deoxyribose nucleic acid”. These culminated with the human genome project, which 

has opened up myriad possibilities, including that of individualized genetic medicine, 

the ability to deliver medical advice, management, and therapy tailored to an 

individual’s genetic blueprint. Advances in genetic diagnostic capabilities have been 

rapid, to the point where the genome can be sequenced for several thousand 

dollars. Crucially, it has facilitated the identification of targets for “precision” 

treatments to combat genetic diseases at their source. This manuscript will review 
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the innovative, pathogenesis-based therapies that are revolutionizing management 

of skeletal dysplasias, giving patients and families new options and outcomes.  

 

Key words: skeletal dysplasia, pharmacologic therapy, targeted treatment. 

 

INTRODUCTION 

The inherited disorders of the skeleton (skeletal dysplasias) are individually rare but 

collectively common conditions caused by abnormal development, growth and 

maintenance of the human skeleton [Krakow et al., 2010]. To date, medical and 

surgical management of these disorders has been symptomatic due to lack of 

pathogenesis-based treatments. Over the past three years, disruptive innovations in 

the form of targeted therapies have emerged that are dramatically changing the 

natural history of these conditions. This review will focus on the most promising of 

these therapies in clinical practice, and touch upon possible future therapeutic 

options for skeletal dysplasias.  

Achondroplasia 

Achondroplasia (OMIM 100800) is the most common form of human dwarfism, with 

an estimated prevalence of 4-6 per 100,000 [Ireland et al., 2014]. It is caused by a 

gain-of-function mutation in the fibroblast growth factor receptor 3 (FGFR3) gene 

resulting in abnormal endochondral ossification. Almost all individuals affected by 

achondroplasia harbor a c.1138G>A (p.G380R) or c.1138G>C (p.G380R) mutation in 

the transmembrane domain. FGFR3 consists of extracellular (ligand-binding), 

transmembrane and intracellular (kinase) components, linked intricately to the 

signaling pathways involving signal transducer and activator of transcription (STAT) 
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and mitogen-activated protein kinase (MAPK) (Figure 1). Activation of FGFR3 has an 

inhibitory effect on the proliferation and terminal differentiation of growth plate 

chondrocytes, and synthesis of extracellular matrix [Hart et al., 2000; Choi et al., 

2001; Murakami et al., 2004]. The negative regulatory role of FGFR3 is essential for 

physiological longitudinal bone growth by slowing the rate of cartilage template 

formation and turnover during the growth phase [Horton and Degnin, 2009; Ornitz, 

2005].  

Advancements in understanding the pathophysiology of achondroplasia have 

prompted efforts in treatment strategies targeting the FGFR3-mediated signaling 

pathway. Early pharmacologic therapies were based on the principles of successful 

oncology treatment, using kinase inhibitor and antibody blockade, modified to 

selectively target FGFR3 and its activation [Aviezer et al., 2003; Rauchenberger et al., 

2003]. Although, these therapies were shown to have positive effects on bone 

growth in vitro, the results have not been replicated in vivo. 

Second generation pharmacologic therapies appeared more promising with 

amelioration of the skeletal phenotype, at least in the murine models. They 

comprise of strategies that interfere with the binding of FGFR3 to its ligands and 

blockade of MAPK signaling pathway. P3 is a 12-amino acid peptide designed to 

target extracellular component of FGFR3 with high affinity. The binding of P3 to 

FGFR3 interferes with ligand binding, inhibiting receptor activation and subsequent 

signallng pathways [Jin et al., 2012]. A decoy receptor in the form of soluble FGFR3 

isoform competes with physiologic ligands to reduce FGFR3 signaling. The isoform 

lacks the trans-membrane component rendering it impotent in signal transmission 

[Garcia et al., 2013]. 
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Meclozine is an antihistamine commonly used as antiemetic. It promotes 

longitudinal bone growth by a mechanism that is not fully delineated, but possibly by 

blocking downstream FGFR3 signaling pathway at the MEK-ERK level [Matsushita et 

al., 2013; Matsushita et al., 2015]. Statins have been shown to promote significant 

bone growth in one study involving three patients. Yamashita et al. [2014] used 

induced pluripotent stem cells derived from the fibroblast cells of patients with 

thanatophoric dysplasia type 1 (TD1) and achondroplasia to investigate the effect of 

statins as treatment. The authors proposed statin decreases the signaling life span of 

mutant FGFR3 receptors, therefore ameliorating the skeletal phenotype of these 

conditions [Yamashita et al., 2014].  

C-natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B 

(NPR-B) play major regulatory roles in endochondral ossification and longitudinal 

bone growth [Yasoda et al., 1998; Miyazawa et al., 2002]. Both molecules are 

expressed in the proliferative and terminal differentiation zones of the growth plates 

[Yasoda et al., 1998]. Interaction between CNP and NPR-B causes accumulation of 

intracellular cGMP, resulting in increased downstream NPR-B signaling, which 

intersects with the FGFR3 downstream signaling at the RAF level within the MAPK 

pathway (Figure 1). CNP/NPR-B activation downregulates the inhibitory effects of 

FGFR3 signal [Miyazawa et al., 2002; Krejci et al., 2005]. The delicate regulation 

between the FGFR3 and CNP systems are essential for endochondral ossification and 

longitudinal bone growth.  

NPR-B has been implicated in the pathogenesis of rare phenotypes involving 

longitudinal bone growth or height, exemplified by conditions such as 

acromesomelic dysplasia, Maroteaux type (OMIM 602875) and NPR-B-associated 
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short stature, caused by homozygous or compound heterozygous and heterozygous 

inactivating mutations in NPR-B, respectively. [Bartels et al., 2004; Vasques et al., 

2013; Amano et al., 2014] NPR-B gain-of-function mutations have been associated 

with bone overgrowth and tall stature [Miura et al., 2012; Hannema et al., 2014; 

Miura et al., 2014].  

The discovery and understanding of physiological functions of CNP and NPR-B 

in promoting longitudinal bone growth have opened avenues for a targeted 

therapeutic strategy in achondroplasia. Researchers have demonstrated that CNP 

knockout mice developed severe growth deficiency, with restoration of normal 

growth when these mice were crossed with transgenic mice overexpressing CNP in 

cartilage [Suda et al., 1998; Chusho et al., 2001]. The skeletal phenotype was 

ameliorated when mice with achondroplasia were crossed with CNP overexpressing 

transgenic mice [Yasoda et al., 2004; Naski et al., 1998]. These findings formed the 

basis for human clinical studies.  

The CNP analogue, named vosoritide by the World Health Organization has 

an extended half-life attributed to its resistance to neutral endopeptidase. 

Vosoritide administered subcutaneously once daily was shown to stimulate bone 

growth in murine models [Suda et al., 1998; Wendt et al., 2015]. Vosoritide is the 

only targeted pharmacologic therapy for achondroplasia that has proceeded to 

human clinical trial. The results from the Phase 1 trial showed that vosoritide is 

generally well tolerated with no dose-limiting, clinically significant toxicities in 

healthy adult males. The phase 2 trial was an open-label, sequential cohort dose-

escalation study involving children aged 5-14 years with a molecularly confirmed 

diagnosis of achondroplasia. Patients were randomized for one of three doses (2.5, 
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7.5 or 15 microgram/kilogram) of vosoritide, given as daily subcutaneous injection 

for 6 months (see ClinicalTrials.gov). Data from these studies showed favorable 

safety profile and efficacy at higher dosage, with a 50% increase in growth velocity 

over individual baseline in the 15mcg/kg cohort. The trial has now proceeded to an 

18-month extension study. All participating patients have been switched to 

15mcg/kg dose for duration of 18 months. 

Klag and Horten [2015] discussed the challenges faced in the development of 

targeted therapies for achondroplasia, in particularly the delivery of potential 

therapeutic agents to the avascular growth plates. The advancement of gene 

therapy in other condition such as osteoarthritis may shed light in overcoming such 

obstacles.  

Osteogenesis imperfecta 

Osteogenesis imperfecta (OI) is associated with bone fragility and fractures. The 

prevalence of OI is approximately 5-10 in 100,000 [Monti et al., 2010]. The 

phenotype commonly associated with OI includes osteoporosis with increased 

tendency for fractures, skeletal deformity, scoliosis, and joint laxity. Extra-skeletal 

features encompass hearing impairment, abnormal dentition, sclera discoloration, 

hypercalciuria, aortic root dilatation and neurologic manifestations, including 

hydrocephalus and basilar invagination [Harrington et al., 2014; Shaker et al., 2015]. 

Most features of OI can have variable severity, ranging from adult-onset aches, pains 

and fractures to early perinatal lethality. Common medical complaints of affected 

individuals in mild to moderate OI are fractures and pain.    

Ninety percent of OI cases are caused by heterozygous mutations in COL1A1 

and COL1A2 [Lindahl et al., 2014]. These genes are important for the production of 
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type 1 collagen, which is the most abundant type of connective tissue that 

constitutes the bone and skin. Mutations impair the gene function resulting in a 

qualitative and quantitative reduction in type 1 collagen [Shaker et al., 2015; Lindahl 

et al., 2014]. The remaining proportions of OI are inherited in an autosomal recessive 

manner, and PLS3 (plastin 3) has been implicated in X-linked osteoporosis [van Djik 

et al., 2013; Laine et al., 2015]. 

Rarer molecular causes for OI have emerged, involving genes that code for 

modification enzymes, chaperone proteins and signaling proteins essential for 

production of type 1 collagen. [Shaker et al., 2015] The discovery of additional OI-

associated genes provides explanation for the wide phenotypic spectrum of this 

entity. Management of OI involves a multidisciplinary approach including 

rehabilitation, surgical and pharmacologic intervention, aiming to maximize mobility 

and daily competencies, and decrease bone fragility and pain [Harrington et al., 

2015].  

The most studied and widely used pharmacologic treatment for OI is 

bisphosphonate, a synthetic pyrophosphate analogue with long skeletal half-life that 

binds to hydroxyapatite crystals in mineralized bone. Bisphosphonates reduce the 

number of osteoclasts and antagonize osteoclastic activity resulting in diminished 

bone resorption [Reyes et al., 2016]. 

Bisphosphonates are used in the treatment of moderate to severe OI in 

children. The superiority of bisphosphonates in increasing bone mineral density 

(BMD) was consistently demonstrated in controlled and observational studies, with 

most gain in the first 3-4 years of treatment [Rauch et al., 2003]. Benefits of 

bisphosphonates documented in observational trials include decreased fractures and 
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bone pain, improved vertebral shape, strength and improved activities of daily living. 

[Glorieux et al., 1998; Land et al., 2006; Lowing et al., 2007]. These results were not 

consistently replicated in randomized controlled trials. Intravenous bisphosphonates 

were shown to reduce peripheral fracture rates, increase vertebral height and 

mineral density but showed no difference in decreasing pain when compared to no 

treatment [Letocha et al., 2005; Gatti et al., 2005]. Palomo et al. [2015] reviewed the 

outcome of long-term (10-year) intravenous bisphosphonates therapy, and 

concluded that this therapy was associated with higher Z-scores for BMD in the 

lumbar spine and improvement of vertebral shape. The long-bone fracture rates 

remain high and the majority of patients developed scoliosis. 

Two studies on oral bisphosphonates as treatment for OI by Seikaly et al. 

[2005] and Bishop et al. [2013] demonstrated reduction in fractures and bone pain, 

respectively. Meta-analysis of bisphosphonates’ role in preventing fractures in OI 

was inconclusive [Hald et al., 2015].  

There is currently no consensus on the optimal bisphosphonate dosing and 

duration of treatment. The well-recognized side effects of bisphosphonates are 

atypical femur fractures, most likely secondary to impaired bone resorption, and 

osteonecrosis of the jaw. The latter side effect has not been observed in the 

pediatric group. Other potential extra-skeletal effects include gastrointestinal 

symptoms, atrial fibrillation and increased risk for esophageal tumor [Reyes et al., 

2016]. Flu-like symptoms and transient hypocalcemia are common especially after 

the first dose [Munns et al., 2004], but may be reduced with antihistamine coverage. 

Other pharmacologic therapies trialed in OI include anabolic agents that 

stimulate bone growth, such as growth hormone and teriparatide (PTH 1-34), a 
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recombinant parathyroid hormone. Growth hormone was shown in one study to 

increase BMD and growth velocity when use in conjunction with bisphosphonates 

[Antoniazzi et al., 2010]. Teriparatide was trialed in a study involving adults with OI 

and shown to increase BMD and vertebral strength but only in the mild form of OI 

[Orwoll et al., 2014].  

Receptor activator of nuclear factor (NF-kappaβ) ligand (RANKL), its cellular 

receptor, receptor activator of NF-kappaβ (RANK), and the decoy receptor 

osteoprotegerin (OPG) constitute a cytokine system that is essential for bone 

resorption. RANKL produced by osteoblastic cells, plays a crucial role in osteoclast 

formation, fusion, activation, and survival [Hofbauer et al., 2001]. Denosumab is a 

monoclonal antibody that binds RANKL and disrupts bone resorption. Hoyer-Kunh et 

al. [2014] published results of the use of Denosumab in four pediatric patients with 

OI type IV, showing increased BMD with reduced fracture rate, normalization of 

vertebral shape and increased mobility. They also published data of Denosumab use 

on two patients with OI and known COL1A1/COL1A2 mutations. Denosumab 

effectively increased BMD and has long lasting effect in promoting bone growth 

[Hoyer-Kunh et al., 2014].  

Shaker et al. [2015] summarized future pharmacologic agents in the 

treatment of OI, including anti-sclerostin and anti-transforming growth factor-β 

(TGF-β) antibodies that disrupt the LRP5/WnT and TGF-β signaling pathways, 

respectively to increase bone formation and decrease bone resorption. These 

antibodies were shown to rescue the skeletal phenotype of CRTAP-related 

autosomal recessive OI in mice [Grafe et al., 2015; Grafe et al., 2014]. Gene therapy 

with allele silencing and cell-based therapy involving bone marrow and 
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mesenchymal cell transplantation have rapidly attracted attention in the research of 

OI treatment, and may prove useful future therapeutic options. (Table I) 

Hypophosphatasia 

Hypophosphatasia (HPP) is caused by a deficiency in tissue-nonspecific alkaline 

phosphatase (TNSALP) due to mutations in the ALPL gene. The condition is 

characterized by mineralization defects of the bones and teeth causing 

osteomalacia, increased risk of fracture, bone pain, and loss of dentition. Extra-

skeletal manifestations involving the central nervous, respiratory and renal systems 

are common in the severe form of this widely variable condition [Mornet, 2007]. HPP 

is clinically heterogeneous and classified according to the age of onset and 

phenotypic severity [Mornet, 2007; Whyte, 2010]. In general, the childhood and 

adult forms have a milder phenotype that may present with only premature loss of 

dentition (odontohypophosphatasia). The infantile and perinatal forms (OMIM 

241500) are at the severe end of the spectrum. Affected individuals rarely survive 

beyond infancy without intervention, mainly secondary to respiratory failure and 

seizures [Whyte, 2010; Nakamura-Utsunomiya et al., 2010]. The estimated 

prevalence of severe HPP is 0.3-1 in 100,000 [Fraser, 1957; Mornet et al., 2011.  

The TNSALP protein converts inorganic pyrophosphate (PPi) to phosphate (Pi) 

by hydrolysis. Pi is essential for hydroxyapatite formation, whereas PPi inhibits the 

process. The lack of TNSALP leads to accumulation of PPi and antagonization of the 

bone mineralization process [Harmey et al., 2004; Orimo, 2010] (Figure 2). Enzyme 

replacement therapy using exogenous TNSALP was effective in rescuing the life-

threatening skeletal and functional phenotype in mice with severe HPP [Waymire et 

al., 1995; Narisawa et al, 1997]. These findings led to clinical trials in treating severe 
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forms of HPP in human using recombinant TNSALP, now known as asfotase alfa.  

Whyte et al. [2012], in a clinical trial involving 10 patients with life-

threatening HPP published the promising primary results of asfotase alfa. The 

therapy effectively improved bone mineral density, fracture healing and radiological 

features, increased membranous bone formation and decreased deformities. 

Improved pulmonary function, growth and reduction in plasma PPi and pyridoxal 5’ 

phosphate were also reported. The agent was well tolerated with no significant 

drug-related adverse events. Three-year follow-up showed a survival rate of 90% 

[Whyte et al., 2014], a life-changing improvement. These results were supported by 

other similar clinical trials by Madson et al. [2014] and Rockmann-Greenberg et al. 

[2014] in terms of clinical safety and effectiveness. Reports of similar clinical trials in 

adolescent and adult cohorts are scarce. Kishnani et al. [2012] reported asfotase alfa 

decreased TNSALP substrate accumulation and improved functional outcome in one 

adult cohort. Efforts to ensure targeted delivery of therapy agents to the skeletal 

system have been attempted with promising results both in mice and human clinical 

trials. [Whyte et al., 2012; Nishioka et al., 2006; Millán et al., 2008]. These 

approaches optimize drug deliverance to targeted tissue and minimize the potential 

side effects of therapy. Asfotase alfa (STRINSIQTM) is now an FDA-approved drug, and 

commercially available treatment option for HPP.  

On a research level, gene therapy in murine models of HPP involving trans-

uterine, intraperitoneal injection of adeno-associated viral (AAV) expressing bone-

targeted TNSALP appeared promising [Sugano et al., 2012]. These authors 

documented that HPP murine fetuses that mimic the severe infantile phenotype 

were rescued by fetal gene therapy from early gestation, evident postnatally by 
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normal bone mineralization, good weight gain and seizure-free survival until age 8 

weeks. The authors proposed gene therapy as potential in utero therapy following 

antenatal diagnosis.  

Other emerging skeletal dysplasia therapies 

Fibrodysplasia ossificans progressiva (FOP) (OMIM 135100) and Morquio syndrome 

(Mucopolysaccharidosis type IVa) (OMIM 253000) are debilitating and potentially 

life-threatening skeletal dysplasias with unmet needs in terms of targeted therapies. 

The prevalence of FOP and Morquio syndrome is 1 in 1,000,000 and 0.2-0.6 in 

100,000, respectively [Pignolo et al., 2011; Leadley et al., 2014]. The genetic and 

disease mechanisms of these conditions are well researched and documented. 

[Pignolo et al., 2011; Shore et al., 2006; Tomatsu et al., 2014]. Most pharmacologic 

therapies for FOP and Morquio syndrome aim at preventing the progression of 

disease and associated complications.  

Corticosteroids and retinoic acid were tested in patients with FOP in the late 

1990s. The effectiveness of these agents in inhibiting heterotopic ossification was 

inconclusive from the studies [Brantus and Meunier, 1998; Chakkalakal et al., 2016]. 

The use of palovarotene, a retinoic acid receptor gamma (RARϒ) agonist effectively 

inhibited spontaneous and injury-induced ectopic chondrogenesis and osteogenesis 

in murine models, as well as restoring and maintaining bone growth and 

musculoskeletal functions [Chakkalakal et al., 2016]. A clinical trial using 

palovarotene is now in Phase 2 studies. Sinha et al. [2016] documented that 

corticosteroids and palovarotene act on distinct pathways, and share several 

common steps and phases in inhibiting chondrogenesis and osteogenesis with no 

significant interference between the agents. These authors have proposed the 
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potential benefits of combined therapy. 

Tomatsu et al. [2014] reviewed treatments available for Morquio syndrome, 

and most only partially improve the clinically phenotype. In particular, the skeletal 

phenotype is irreversible. Elosulfase alfa (VIMIZIM®) is a recombinant human N-

acetylgalactosamine-6-sulfate sulfatase (GALNS), an FDA-approved drug available for 

treatment of Morquio syndrome. A 24-week, randomized, double-blind, placebo-

controlled phase 3 trial demonstrated that elosulfase alfa was clinically well 

tolerated and safe, with statistically significant improvement in a primary efficacy 

measurement of endurance (distance of 6-minute walk) and reduction in urinary 

keratan sulphate, the main contributory factor to the pathogenesis of disease 

manifestations. Elosulfase alfa also reported to improve respiratory function, growth 

in height and activities of daily living [Hendriksz et al., 2014; Hendriksz et al., 2015]. 

The potential of cell-based therapy 

Successful intervention with bone marrow transplantation in cases of severe 

infantile HPP has been reported in two patients; both developed sustained bone 

mineralization and clinical improvement [Whyte et al., 2003; Cahill et al., 2007]. 

Three other infants with severe HPP have been treated with bone marrow and 

mesenchymal stem cell transplantation [Tadokoro et al., 2009; Taketani et al., 2014]. 

The interventions yielded promising results with sustained improvement on skeletal 

phenotype and functional outcome at the time of reporting. Such methods are not 

without side effects, evident by development of Philadelphia-positive acute 

lymphoblastic leukemia in one of the infants, presumably attributed to the pre-

transplant immunosuppressive therapy [Taketani et al., 2013]. The infant was 

reported to have achieved complete histological and molecular remission following a 
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second transplantation.  

The mortality rate of malignant infantile osteopetrosis (OMIM 259700) is 

approximately 70% by 6 years of age in untreated patients [Orchard et al., 2015]. 

Hematopoietic stem cell transplant (HSCT) offers a cure to malignant infantile 

osteopetrosis, and is most effective when performed early. The most common cause 

of death in the first year post-transplant is graft failure, and pre-transplant 

conditioning carries a high risk of adverse outcomes [Orchard et al., 2015]. Natsheh 

et al. [2016] reported that fludarabine-based pre-transplant conditioning improved 

morbidity and mortality related to HSCT. The long-term (10-year) survival rate was 

higher among the HLA-matched sibling compared to alternative donor transplants 

(62% vs. 39%) [Orchard et al., 2015. An HLA-matched sibling donor HSCT is the 

standard of care, but not feasible for the majority of patients. Disease-specific 

pharmacologic therapy is not yet available for malignant infantile osteopetrosis, 

although early clinical trials of interferon gamma are planned (ClinicalTrials.gov 

Identifier: NCT02666768). 

The new era of genomic technology and understanding has brought with it 

the tantalizing possibility of treatment for genetic diseases. Skeletal dysplasias serve 

as a model for this brave new paradigm with several treatments already in clinical 

use, and many others working their way through the clinical trial pipeline. These 

pathogenesis-based therapies promise to be disease modifying and, in some cases, 

life changing for individuals affected by these conditions and provides families with 

new options and hope. The challenges for the future will be to determine the 

optimal therapy, timing, and dosage for each patient and condition (individualized 

medicine). In addition, as these therapies modify the native phenotypes and natural 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

history of skeletal dysplasias, new management challenges will need to be identified, 

tools developed to measure quantitative and qualitative improvements in function 

and quality of life, and updated counseling provided to patients and their families. 
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Table I. Summary of drug therapies in osteogenesis imperfecta.  

 

Drug therapy Mode of action Effects 

1. Bisphosphonates • Reduce number of 
osteoclasts 

• Reduce bone 
resorption 
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• Antagonism of 

osteoclast activities  

2. Anabolic agents  

(e.g. Growth hormone and 

teriparatide) 

 

• Stimulate bone 

formation 

• Increase BMD and 

strength 

3. Denosumab • Monoclonal 

antibodies that bind 

RANKL and disrupt 

osteoclast 

formation, activation 

and survival  

 

• Decrease bone 

resorption 

4. Anti-sclerostin antibody • Inhibition of 

LRP5/WnT signaling 

pathway 

 

• Increase bone 

formation 

5. Anti-TGF-β antibody • Inhibition of TGF-β 

signaling pathway 

 

• Decrease bone 

resorption 

6. Gene silencing • Allele-specific gene 
silencing by 

inhibitory RNA 

directed towards 

dominant negative 

mutations 

 

• Reduce defective 
protein/collagen 

Key: BMD, bone mineral density; RANKL, Receptor activator of nuclear factor (NF-

kappaβ) ligand; LRP5/WnT, low density lipoprotein receptor-related protein/ 
wingless-type MMTV (mouse mammary tumor virus) integration site; TGF-β, 

transforming growth factor-β. 

 

LEGENDS 

Figure 1. Targets for pharmacological intervention in the treatment for 

achondroplasia. A. P3 blocking peptide and decoy receptor; B. The CNP-mediated 

antagonism of downstream FGFR3 signaling; C. Downstream signal interruption of 

mutant FGFR3 (e.g., meclozine, statin). Diagram is modified from Klag and Horton 

[2015]. 
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Key: FGF, fibroblast growth factor; FGFR3, fibroblast growth factor receptor 3; CNP, 

C-natriuretic peptide; NPR-B, natriuretic peptide receptor-B; STAT, signal transducer 

and activator of transcription; MAPK, mitogen-activated protein kinase. 

 

Figure 2. Bone mineralization commences with intracellular hydroxyapatite 

formation within matrix vesicles. Hydroxyapatite crystals then bud from the surface 

of the matrix vesicle and propagate into extracellular matrix where they are 

elongated and finally deposited between collagen fibrils. The PPi/Pi balance is 

essential in bone mineralization. Tissue-nonspecific alkaline phosphatase (TNSALP) 

functions as ecto-enzyme that converts extracellular PPi to Pi. ALPL mutations in 

severe hypophosphatasia result in production of mutant TNSALP proteins that fail to 

migrate to the surface of cellular membrane. The lack of Pi and accumulation of PPi 

cause decreased and further inhibit bone mineralization. Asfotase alfa restores bone 

mineralization. Diagram adapted from Orimo H [2010]. 

Key: HA, hydroxyapatite; PPi, inorganic pyrophosphate; Pi, inorganic phosphate; ATP, 

adenosine triphosphate; TNSALP, tissue non-specific alkaline phosphatase; NPP1, 

ectonucleotide pyrophosphatase phosphodiesterase 1; ANKH, ankylosis protein. 
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Figure 1 AJMG  . 
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Figure 2 AJMG  . 

 


