
Clustering huge number of financial time series:

A panel data approach with high-dimensional predictors and

factor structures 1

May 13, 2016

Tomohiro Ando and Jushan Bai

Abstract

This paper introduces a new procedure for clustering a large number of financial

time series based on high-dimensional panel data with grouped factor structures. The

proposed method attempts to capture the level of similarity of each of the time series

based on sensitivity to observable factors as well as to the unobservable factor structure.

The proposed method allows for correlations between observable and unobservable fac-

tors and also allows for cross-sectional and serial dependence and heteroskedasticities

in the error structure, which are common in financial markets. In addition, theoret-

ical properties are established for the procedure. We apply the method to analyze

the returns for over 6,000 international stocks from over 100 financial markets. The

empirical analysis quantifies the extent to which the U.S subprime crisis spilled over to

the global financial markets. Furthermore, we find that nominal classifications based

on either listed market, industry, country or region are insufficient to characterize the

heterogeneity of the global financial markets.
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1 Introduction

The U.S. subprime crisis of 2007, which was triggered by the collapse of the U.S.

housing market, subsequently spilled over to the entire U.S. and the European financial

markets, resulting in bankruptcies, forced mergers, and bailouts for many large firms.2

These financial shocks further spread to the global financial markets, and led to massive

declines in worldwide asset values.

Thus, identifying the sources of the co-movement of international stock returns

is one of the most important issues in finance. Portfolio managers explore investment

opportunities not only in applicable domestic markets but also in foreign financial mar-

kets. In the field of asset pricing, researchers have been searching for those factors that

explain the cross-sectional variations in global stock returns (See, e.g., Griffin (2002),

Hou. et al. (2011) and references therein). Previous studies that have attempted to

identify the factors influencing the determination of international stock returns have

arrived at mixed results. Fama and French (1998) emphasized a more globally in-

tegrated market, while Griffin (2002) argued that only local, country-specific factors

matter in explaining global stock returns. This paper attempts to address these im-

portant questions by introducing a new statistical modeling procedure for building an

empirical asset pricing model.

An internationally diversified portfolio often requires that the most influential fac-

tors in a variety of regions, countries, markets and industries be assessed and evaluated

(See for e.g., Heston and Rouwenhorst (1994)). Thus, comparing a geographic diversi-

fication approach and its alternatives – such as country-, industry-, and market-based

diversification strategies, to name a few – is also an important issue for international

portfolio managers. Moreover, it is sometimes difficult to assign a nationality to a

multinational company. In other words, industry classification can be a subjective

undertaking, particularly for large conglomerates.

Motivated by these important issues, this study analyzes a large number of financial

industry stock returns, i.e., over 6,000 returns from more than 100 international stock

markets. In particular, we seek to answer the following empirical questions:

(1) How many groups are there among the large number of assets returns?

(2) In each group, how many group-specific common factors are there that explain the

2The firms affected include AIG, Bear Stearns, BNP Paribas, Fannie Mae, Freddie Mac, Lehman
Brothers, and Merrill Lynch.
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cross-sectional and time-series variations in stock returns?

(3) Do the co-movements within a market, industry, country, or region constitute the

only sources of cross-sectional and time series variations in the stock markets?

(4) What are the different characteristics of the markets that can be observed during

the recent financial crisis?

To address these questions, we introduce a new procedure for clustering a large

number of financial time series based on high-dimensional panel data with grouped

factor structures. Clustering is based on similarity measures using past stock returns.

In particular, we introduce panel data models with heterogeneity, and these models

have many attractive features. First, heterogeneity is captured by using a factor er-

ror structure and heterogeneous regression coefficients. Second, our method allows for

a large number of observable factors, while the set of relevant observable factors are

selected automatically. Third, observable factors can be correlated with unobservable

factors or factor loadings or both. Fourth, the group membership of each unit is un-

known, and these memberships will be estimated from historical stock returns. Finally,

the number of groups remains unknown and is to be determined using a novel model

selection criterion. We note that our asymptotic theory is developed for the optimal

solution, which is obtained by minimizing the penalized objective function. In terms

of computation in practice, the exact optimal solution can be time consuming due to

the nature of the NP-hard problem. We therefore consider an algorithm that quickly

searches approximate solutions.

Our empirical analysis indicates that the country-specific factor is one of the sources

of co-movement in the cross-sectional and time-series variations of stock returns. This

result is consistent with that of Fama and French (2012), who reported that global

models fare poorly, while local versions of their three- and four-factor models for each

of four regions – North America, Europe, Japan, and Asia Pacific – capture local

average returns rather well.

The remainder of this paper is organized as follows. In the next section, we in-

troduce asset pricing model and its assumptions. We also briefly review the related

literature. Section 3 lays out the proposed statistical framework, discusses the param-

eter estimation, and explains how the best model is chosen to capture the underlying

market structures. Section 4 establishes new asymptotic results, including the consis-

tency of the proposed estimator and its asymptotic behaviors. A number of theoretical
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results are established. Additional theoretical results are provided in the Appendix.

The Appendix also contains simulation results that demonstrate that the proposed

method works well. Section 5 describes the dataset. Empirical results are given in

Section 6. Finally, Section 7 provides some concluding remarks.

2 Asset pricing model and related literature

2.1 Asset pricing model

Let t = 1, ..., T be the time index and i = 1, ..., N be the index of financial asset. Let

S be the number of asset groups (which is unknown, finite and independent of N and

T ), and let G = {g1, ..., gN} denote the group membership such that gi ∈ {1, ..., S}.
A distinctive feature of the model is that group membership is not specified. Let

Nj be the number of cross-sectional assets within group Gj (j = 1, ..., S) such that

N =
∑S

j=1Nj. To capture the underlying market characteristics, we assume that the

return of the i-th asset, observed at time t, yit, is expressed as

yit = x′
itβi + f ′

c,tλc,i + f ′
gi,t

λgi,i + εi,t, i = 1, . . . , N, t = 1, . . . , T, (1)

where xit is a pi × 1 vector of observable factors, f c,t is an r × 1 vector of unobserv-

able common factors that affect the returns of all securities in all groups, λc,i is the

corresponding factor loading; f gi,t
is an rgi × 1 vector of unobservable group-specific

factors that affect the returns only of asset group gi, λgi,i is the unknown sensitivity to

unobservable group-specific factors, and εit is the asset-specific error. The pi×1 vector

βi represents the unknown sensitivity to the explanatory variables (observable factors).

It is assumed that εit is independent of f c,t, f gi,t
and xit. Depending on applications,

the unobserved factor components may be specified as an exact dynamic factor model,

as a static approximate factor model, or as a special case of the generalized dynamic

factor model. Technical assumptions are specified in Section 2.3. The factor structures

in the model (1) considered here is similar to Hallin and Liška (2011), Wang (2010).

However, the group membership here is unknown.

The unobservable term, f ′
c,tλc,i + f ′

gi,t
λgi,i + εi,t, is typically treated as the overall

error term that embodies cross-sectional/serially dependence and heteroskedasticity.

However, ignoring the unobservable factor structure, f ′
c,tλc,i + f ′

gi,t
λgi,i, in general,

does not work due to the endogeneity problem (the regressors are correlated with the

factors and factor loadings). Under such circumstances, the dependency between the
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regressors and unobservable factor structures should be captured simultaneously. Our

model building procedure takes this important issue into account.

When building the model, there are two issues to address. One is how to estimate

the unknown parameters, including the regression coefficients {β1, ...,βN}, the unob-

servable factor structure {Fc, F1, ...., FS}, its corresponding loadings {Λc,Λ1, ....,ΛS},
and the unknown group membership of each of theN units. Here, Fc = (f c,1,f c,2, ...,f c,T )

′

is the T×r matrix of common factors, Λc = (λc,1, ...,λc,N)
′ is the N×r matrix of factor

loadings for Fc, Fj = (f j,1,f j,2, ...,f j,T )
′ is the T × rj matrix of factors for group Gj,

and Λj = (λj,1, ...,λj,Nj
)′ is the Nj × rj matrix of factor loadings for group Gj. These

quantities can be determined under the given values of the number of groups S and the

dimension of the unobservable factors structure. Given S and the dimension of factor

structure for each group, our method jointly estimates the optimal grouping of the

cross-sectional stocks, the regression coefficients, the factors and the factor loadings.

This part of the modeling is called the estimation problem. To improve the speed of

computation, the shrinkage method is incorporated into the estimation algorithm.

The other issue is determining the number of groups (S) and the dimension of

factors in each group. We will also determine the relevant explanatory variables (ob-

servable factors). We refer to this part of the modeling as the model selection problem.

2.2 Related literature

Our modeling procedure and empirical investigation are related to several disparate

strands in the statistics and finance literature. In terms of methodology, we propose a

new modeling procedure for asset pricing. The proposed statistical inference procedure

is a combination of high-dimensional grouped factor analysis and shrinkage methods.

In particular, a large panel data model is considered for cases in which both the number

of stocks, N , and the length of time periods, T , are large.

Factor models have attracted substantial research interest in recent years. In the

econometric and statistical literature, a number of studies have been devoted to factor

models that analyze high-dimensional data, including a dynamic exact factor model

(Geweke, 1977; Sargent and Sims, 1977), a static approximate factor model (Chamber-

lain and Rothschild, 1983), and a generalized dynamic factor model (Forni et al., 2000;

Forni and Lippi, 2001; Amengual and Watson, 2007; Hallin and Liska, 2007), among

others.
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Previous studies have considered panel data models with factor error structures

to address cross-sectional and serial dependence, including Bai (2009) and Pesaran

(2006). Bai (2009) estimated panel data models with interactive effects, permitting

the predictor to be correlated with unobserved heterogeneity. These papers considered

homogeneous regression coefficients over cross-sectional units, which is somewhat re-

strictive. Ando and Bai (2015) relaxed Bai (2009)’s model to allow for heterogeneous

regression coefficients that vary for each stock. In addition, some previous studies fea-

tured “grouped” factor structures with known group membership, including Moench

et al. (2012), Diebold et al. (2008), Kose et al. (2008), Hallin and Liška (2011),

Moench and Ng (2011), and Wang (2010). Under “grouped” factor structures, each

group is subject to its own unobservable factors that vary by group. In the context of

asset pricing models, each asset group is exposed to unobservable factors, which are

group-specific. Although these methods are useful under known group memberships,

the group membership of each unit is often unknown,

Some studies consider unknown group memberships without factor structures, e.g.,

Lin and Ng (2012), Su et al., (2014) and Sun (2005). The model by Bonhomme

and Manresa (2015) may be considered as a special factor model with a single fac-

tor and known factor loadings being one. Ando and Bai (2016) considered unknown

group memberships with factor structure under the common or group-heterogeneous

coefficients, in which the slope parameters are either the same or vary only across

the groups. Although their procedure captures underlying market structure well,

group-heterogeneous coefficients remain restrictive. In fact, these authors applied their

method to the analysis of the two Chinese mainland stock markets – the Shanghai

and Shenzhen stock exchanges – and found that group-heterogeneous coefficients are

acceptable for some groups, whereas other groups show that group-heterogeneous coef-

ficients are a too strong assumption. In this paper, we allow heterogeneous regression

coefficients that vary for each stock.

Recently, various types of shrinkage methods have been proposed, including the

lasso method (Tibshirani, 1996) and its variants (Zou, 2006; Yuan and Lin, 2006, Park

and Casella, 2008), least-angle regression (Efron et al., 2004), elastic net (Zou and

Hastie, 2005), the smoothly clipped absolute deviation approach (SCAD; Fan and Li,

2001), the minimax concave penalty method (MCP; Zhang 2010), and the Dantzig

selector (Candes and Tao, 2007), among many others. As with these studies, we aim
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to select an appropriate set of observable factors among the huge number of possible

variables. More specifically, we use the smoothly clipped absolute deviation (SCAD)

penalty approach (Fan and Li, 2001). Thus, the non-zero coefficients are estimated as

if the zero coefficients were known and were imposed (the so called “oracle property’).

This result is obtained despite the existence of many unobservable factors.

In empirical finance, identifying the sources of international stock returns’ co-

movements is of central importance. Some studies are based on factors that can explain

the cross-sectional variation in global stock returns (See for e.g., Griffin (2002), Hou et

al. (2011) and references therein). There is a substantial body of literature that has

attempted to identify the influential factors that determine international stock returns,

but these studies have yielded only mixed results. Griffin (2002) argues that country-

specific factors are important to explaining global stock returns and voiced doubts

about the benefits of extending the Fama and French (1993) three-factor model to a

global context. By contrast, Fama and French (1998) demonstrated the applicability

of the global version of multifactor models. In regards to the influences of country and

industry factors, a number of studies emphasize the dominance of the country factor

over the industry factor (Heston and Rouwenhorst (1994, 1995), Beckers et al. (1996),

Griffin and Karolyi (1998), Kuo and Satchell (2001)), whereas Roll (1992) reported

that industry factors are the most important. Baca et al. (2000) and Cavaglia et al.

(2000) argued that the relative influence of the country factor and the industry fac-

tor depend on the time period. In this paper, we investigate this important issue by

analyzing the impact of the U.S. financial crisis on international financial markets.

Our theoretical and empirical contributions are summarized as follows. First, the

model to be introduced in the next section is new and very general. Under unknown

group membership, the model allows heterogeneous regression coefficients that vary

with each stock (asset-dependence coefficients). Moreover, the number of regressors

can increase as the size of the panel increases. In the context of a cross sectional

regression, Fan and Peng (2004) and Lam and Fan (2008) considered the case of in-

creasing number of regressors. However, this is the first study to consider a divergent

number of regressors under the panel data models with a grouped factor structure.

Second, a number of theoretical results – including consistency, asymptotic nor-

mality, oracle property, and model selection consistency – are established. Because

of the more general model structure, establishing the inferential theory requires non-
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trivial arguments. Although Ando and Bai (2015) and Ando and Bai (2014) considered

heterogeneous regression coefficients, they assumed that group membership is known

and also that the number of regressors is fixed. In contrast, the group membership is

unknown in this paper. While Ando and Bai (2016) considered unknown group mem-

bership, the regression coefficients in their model only vary over the groups, and the

number of regressors is fixed. Here in this paper, the group membership is unknown,

the regression coefficients are asset dependent, and the number of regressors can in-

crease with the sample size. We provide a theoretical analysis for these results. To our

knowledge, this is the first study that investigates a divergent number of regressors for

“heterogeneous” regression coefficients in panel data with a factor structure.

This paper also makes an empirical contribution in analyzing the recent U.S. fi-

nancial crisis (Longstaff (2010), Diebold and Yilmaz (2014) and so on). The results

provide insightful information on the grouping of financial assets and its evolution prior

to and during the financial crisis.

2.3 Assumptions

Here, we state the assumptions and then provide comments concerning these assump-

tions. Throughout, the norm of matrix A is defined as ∥A∥ = [tr(A′A)]1/2, where

“tr” denotes the trace of a square matrix. The equation an = O(bn) states that the

deterministic sequence an is at most of order bn, cn = Op(dn) states that the random

variable cn is at most of order dn in probability, and cn = op(dn) is of smaller order in

probability. All asymptotic results are obtained under N, T → ∞. Restrictions on the

relative rates of convergence of N and T are specified in later sections.

The true regression coefficient is denoted by β0
i . Further, F 0

c = (f 0
c,1, ...,f

0
c,T )

′

and λ0
c,i are the true common factor and its factor loading of individual i, and F 0

g0i
=

(f 0
g0i ,1

, ...,f 0
g0i ,T

)′ and λ0
g0i ,i

are the true factor and factor loading of individual i with

true group membership g0i .

Assumption A: Common and group-specific factors

The common factors satisfy E∥f 0
c,t∥4 < ∞ and T−1

∑T
t=1 f

0
c,tf

0
c,t

′ → ΣFc as T →
∞, where ΣFc is an r × r positive definite matrix. The group-specific factors satisfy

E∥f 0
j,t∥4 < ∞ j = 1, ..., S. Furthermore, T−1

∑T
t=1 f

0
j,tf

0
j,t

′ → ΣFj
as T → ∞, where

ΣFj
is an rj × rj positive definite matrix. Although correlations between f 0

j,t and f 0
k,t
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(j ̸= k) are allowed, they are not perfectly correlated. Also, we assume orthogonality

between the common and group-specific factors 1
T

∑T
t=1 f

0
c,tf

0
j,t

′
= 0 for j = 1, ..., S.

Assumption B: Factor loadings

(B1): The factor loading matrix for the common factors Λ0
c = [λ0

c,1, . . . ,λ
0
c,N ]

′ satisfies

E∥λ0
c,i

4∥ < ∞ and ∥N−1Λ0
c
′
Λ0

c − ΣΛc∥ → 0 as N → ∞, where ΣΛc is an

r × r positive definite matrix. The factor loading matrix for the group-specific

factors Λ0
j = [λ0

j,1, . . . ,λ
0
j,Nj

]′ satisfies E∥λ0
gi,i

4∥ < ∞ and ∥N−1
j Λ0

j
′
Λ0

j − ΣΛj
∥ →

0 as Nj → ∞, where ΣΛj
is an rj × rj positive definite matrix, j = 1, ..., S.

We also assume that ∥λ0
g0i ,i

∥ > 0.

(B2): For each i and j, f 0
j,t

′
λ0

g0i ,i
is strongly mixing processes with mixing coefficients

that satisfy r(t) ≤ exp(−a1t
b1) and with tail probability P (|f 0

j,t

′
λ0

gi,i
| > z) ≤

exp{1− (z/b2)
a2}, where a1, a2, b1 and b2 are positive constants.

Assumption C: Error terms

(C1): E[εit] = 0, var(εit) = σ2
i , and εit is independent over i and over t.

(C2): A positive constant, C < ∞, exists such that E[|εit|8] < C for all i and t.

(C3): εit is independent of xks, λ
0
c,ℓ, λ

0
g,ℓ, f

0
c,s and f 0

j,s (j = 1, ..., S) for all i, k, ℓ, t, s.

Assumption D: Observable factors

(D1): The vector of predictor xit satisfies max1≤i≤N T−1∥Xi∥2 = Op(N
α) with α < 1/8.

We also assume N/T 2 → 0.

(D2): Define MFc,Fj
= I−F ′

c(F
′
cFc)

−1Fc−F ′
j(F

′
jFj)

−1Fj. Let Xi,β0
i ̸=0 be the submatrix

of Xi, corresponding to the columns of nonzero elements of the true parameter

vector β0
i . We use qi to denote the number of nonzero elements of β0

i . Suppose

that the i-th financial asset belongs to the g-th group (i.e., g0i = g). We assume

the qi × qi matrix

1

T

[
X ′

i,β0
i ̸=0MF 0

c ,F
0
g
Xi,β0

i ̸=0

]
is positive definite.

(D3): Define Ai =
1
T
X ′

iMFc,Fgi
Xi, Ci = (Cci, Cgi),

Bi =

(
Bci Bcgi

B′
cgi Bgi

)
,
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with

Bci = (λ0
c,iλ

0
c,i

′
)⊗ I, Bgi = (λ0

g0i ,i
λ0

g0i ,i

′
)⊗ I, Bcgi = (λ0

c,iλ
0
g0i ,i

′
)⊗ I,

Cci =
1√
T
λ0

c,i

′ ⊗X ′
iMFc,Fgi

, Cgi =
1√
T
λ0

g0i ,i

′ ⊗X ′
iMFc,Fgi

.

LetA be the collection of (Fc, Fg) such thatA = {(Fc, Fg) : F
′
cFc/T = I, F ′

gFg/T =

I}. We assume, for j = 1, ..., S,

infFc,Fj∈A

[ 1
N

∑
i;g0i =j

Ei(Fc, Fj)
]

is positive definite,

where Ei(Fc, Fj) = Bi − C ′
iA

−
i Ci and A−

i is a generalized inverse of Ai.

Assumption E: Number of units in each group

All units are divided into a finite number of groups S, each containing Nj units, such

that 0 < a < Nj/N < ā < 1, which implies that the number of units in the j-th group

increases as the total number of units N grows.

Some comments on the assumptions are provided. Assumptions A and B are usual

and imply the existence of r common factors and rj group-specific factors, j = 1, ..., S.

The last part of the assumption A assumes that the common factors f 0
c,t and the

group-specific factors f 0
g,t are orthogonal. This assumption is needed to separately

identify the common and the group-specific factors (Wang (2010)). In Assumption C,

heteroskedasticity is allowed. Although it is outside the scope of this paper, the errors

are also allowed to have cross-sectional correlation, serial correlation, or both. This

allows us to address various types of dependency. However, it will require more techni-

cal conditions such as those in Bai (2009), thus its discussion is omitted. Assumption

D1 requires some moment conditions on the observable factors. The observable factors

can be correlated with group-specific factors, factor loadings or both. The number of

cross-sectional units N can be much greater than the number of time periods T . In

practice, most of the applications are carried out in the case of N > T , as the number

of assets N is much larger than the length of the time series. However, N should grow

less than T 2 and especially N = O(exp(T )) is not allowed. The true number of groups,

S, is assumed to be finite and independent of N and T . Assumption D2 is analogous to

the full rank condition in standard linear regression models and that is made in Ando

and Bai (2015). Assumption D3 is similar to a condition used in Bai (2009), where only
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a single group exists. The assumption is used for proof of consistency when factor and

factor loadings are also estimated. Note that if Ai = 0, then Ci must be zero because

X ′
iMFc,Fg = 0. As a result, the term C ′

iA
−
i Ci becomes C ′

iA
−
i Ci = 0. Thus, C ′

iA
−
i Ci is

well defined even if Ai = 0. This assumption is also used in Ando and Bai (2015).

3 Model building

In this section, we describe our modeling framework, which involves identifying the

number of groups and group-specific factors, and estimating model parameters from

a large panel data. The goal of our procedure is to identify the underlying market

structure.

3.1 Estimation

Given the number of groups S, the number of common factors r, the number of factors

in group rj (j = 1, 2, ..., S), and the size of penalty κi in pi(βi) = pκi,γ(βi), the estimator

{β̂1, ..., β̂N , Ĝ, F̂c, F̂1, ..., F̂S, Λ̂c, Λ̂1, ..., Λ̂S} is defined as the minimizer of

L(β1, ..,βN , G, Fc, F1, ..., FS,Λc,Λ1, ...,ΛS)

=
N∑
i=1

∥yi −Xiβi − Fcλc,i − Fgiλgi,i∥2 + T
N∑
i=1

pi(βi), (2)

subject to normalization restrictions on Fc and Fj (j = 1, ..., S), to be discussed below.

Here, Λc = (λc,1, ....,λc,N)
′ is the N × r factor loading matrix for the common factors

Fj, Λj = (λj,1, ....,λj,Nj
)′ is the Nj × rj factor loading matrix (j = 1, ..., S) for the

group-specific factors Fj (Connor and Korajzcyk (1986), Stock and Watson (2002),

Bai and Ng (2002)). The first term is the fitness term and the second term is the

penalty.

For the penalty function pi(βi) in (2), we can consider the ridge penalty, the lasso

penalty (Tibshirani, 1996) and its variants (Zou, 2006; Yuan and Lin, 2006), the elastic

net (Zou and Hastie, 2005), the minimax concave penalty (Zhang 2010) the SCAD

penalty of Fan and Li (2001), and so on. To explain the estimation procedure, we here

use the SCAD penalty of Fan and Li (2001), which is given by

pi(βi) ≡ pκi,γ(βi) =

pj∑
j=1

pκi,γ(|βi,j|)
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with

pκi,γ(|βi,j|) =


κi|βi,j| (|βi,j| ≤ κi)

γκi|βi,j| − 0.5(β2
i,j + κ2

i )

γ − 1
(κi < |βi,j| ≤ γκi)

κ2
i (γ

2 − 1)

2(γ − 1)
(γκi < |βi,j|)

for κi > 0 and γ > 2. Following Fan and Li (2001), we use the value γ = 3.7, which

minimizes a Bayesian risk criteria for the regression coefficients. The regularization

parameter κi controls the size of the penalty and varies over the cross-sectional asset.

In contrast to the previous studies where the common regularization parameter is

employed for each of the cross-sectional units (for e.g., Ando and Bai (2015)), this

paper allows the flexibility to the regularization parameter. This flexibility makes

sense because some assets may be subject to a small number of factors, whereas the

other group may be influenced by a large number of factors. To our best knowledge,

this is the first panel study that allows the regularization parameter to vary over the

cross-sectional units. Later in this section, we provide an algorithm that searches the

best values of the regularization parameters {κ1, ..., κN} over a pre-specified candidate

space.

To obtain the minimizer of L(β1, ..,βN , G, Fc, F1, ..., FS,Λc,Λ1, ...,ΛS), we can use

an iterative scheme. Given the group membership G, the common factor structures

Fcλc,i, and the group-specific factor structures Fjλgi,i, we define the variable y∗
i =

yi−Fcλc,i−Fgiλgi,i for i = 1, ..., N . Then, the objective function for βi can be viewed

as ∥y∗
i −Xiβi∥2 +Tpκi,γ(βi). Thus, the estimator of βi can be obtained by the SCAD

approach.

Given the group membership G, the common factor structures Fcλc,i, and the value

of the regression coefficient β1, ...,βN , we define the variable Zj = (zj,1, . . . , zj,Nj
) with

zj,i = yi − Xiβi − Fcλc,i for gi = j. Then, model (1) reduces to zj,i = Fjλgi,i + εi.

Because this implies that matrix Zj has a pure factor structure, we can use the pre-

viously established factor analysis methods. We can obtain the principal components’

estimate of Fj, subject to the normalization F ′
jFj/T = Irj , is

√
T times the eigenvectors

corresponding to the rj largest eigenvalues of the T × T matrix Z ′
jZj. Given F̂j, the

factor loading matrix can be obtained as Λ̂j = ZjF̂j/T . See also Bai and Ng (2002,

pp197∼198), Connor and Korajzcyk (1986) and Stock and Watson (2002).

Given the group membershipG, the group-specific factor structures Fgiλgi,i, and the

value of the regression coefficient β1, ...,βN , we define the variable Zc = (zc,1, . . . , zc,N)
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with zc,i = yi −Xiβi − Fgiλgi,i for gi = j. The model (1) reduces to zc,i = Fcλc,i + εi.

The principal components’ estimate of Fc subject to the normalization F ′
cFc/T = Ir,

is
√
T times the eigenvectors corresponding to the r largest eigenvalues of the T × T

matrix Z ′
cZc. Given F̂c, the factor loading matrix can be obtained as Λ̂c = ZcF̂c/T .

For any given values of βi, Fcλc,i and Fgiλgi,i (j = 1, ..., S), the optimal assignment

for each individual unit is given as g∗i = argminj∈{1,...,S}∥yi −Xiβi − Fcλc,i − Fjλj,i∥2.
The final estimated individual membership satisfies

ĝi = argminj∈{1,...,S}∥yi −Xiβ̂i − F̂cλ̂c,i − F̂jλ̂j,i∥2, (3)

which minimizes the sum of squared residuals among the S possible groups. Here

λ̂j,i = F̂ ′
j(yi −Xiβ̂i − F̂cλ̂c,i)/T .

Because the estimates of β1, ...,βN , {Fc,Λc}, {Fj,Λj; j = 1, ..., S}, and G ∈
{g1, ..., gN} depend on one another, we update the set of parameters sequentially.

Moreover, we have to employ this strategy to capture the dependency between the

regressors and unobservable factor structures simultaneously due to the endogeneity

problem.

Estimation algorithm

Step 1. Fix κ1,...,κN , r, {r1, ..., rS} and S. Initialize the unknown parameters β
(0)
1 , ...,β

(0)
N ,

{F (0)
c ,Λ

(0)
c }, {F (0)

j ,Λ
(0)
j ; j = 1, ..., S}, G(0) ∈ {g(0)1 , ..., G

(0)
N }.

Step 2. Given the values of β1, ...,βN , {Fc,Λc}, and {Fj,Λj; j = 1, ..., S}, update gi

for i = 1, ..., N based on (3).

Step 3. Given the values of {Fc,Λc}, {Fj,Λj; j = 1, ..., S} and G, update βi for

i = 1, ..., N .

Step 4. Given the values of β1, ...,βN , {Fj,Λj; j = 1, ..., S} and G, update {Fc,Λc}.
Step 5. Given the values of β1, ...,βN , {Fc,Λc} and G, update {Fj,Λj} for j = 1, ..., S.

Step 6. Repeat Steps 2 ∼ 5 until convergence. Then we obtain the estimators

{β̂1, .., β̂N , Ĝ, F̂c, F̂1, ..., F̂S, Λ̂c, Λ̂1, ..., Λ̂S}.

Remark 1 In Step 1, starting values are needed. To obtain initial group membership

G(0), we use the well-known K-means algorithm (Forgy (1965)) that divides the data

set {yi; i = 1, ..., N} into S clusters that correspond to the number of groups. An

initial estimate of β
(0)
i (i = 1, ..., N) is obtained via the SCAD approach by ignoring

the factor structures. Given G(0) and β
(0)
i (i = 1, ..., N), the common factor structure

13



{F (0)
c ,Λ

(0)
c } is then obtained. Finally, given the values of β(0), {F (0)

c ,Λ
(0)
c } and G(0), we

obtain the starting values {F (0)
j ,Λ

(0)
j } for j = 1, ..., S by the principal components.

Remark 2 Our asymptotic theory is developed for the optimal solution {β̂1, .., β̂N , Ĝ,

F̂c, F̂1, ..., F̂S, Λ̂c, Λ̂1, ..., Λ̂S}. In terms of computation in practice, the exact optimal so-

lution can be time consuming because the possible combinations of the group member-

ship G is large. Approximate solutions are relatively quick to obtain. Our computation

is approximate, as is mostly done in practice for clustering analysis. Group membership

G is updated sequentially in the algorithm instead of brute-force enumeration.

Remark 3 In a simulation study, we also consider the standard lasso

pκi
(βi,j) = κi|βi,j|

and the minimax concave penalty (MCP)

pκi,γ(βi,j) =

{
κiβi,j − β2

i,j/(2γ) (βi,j ≤ γκi)
κ2
i γ/2 (βi,j > γκi)

for γ > 1. Breheny and Huang (2011) suggested that MCP and SCAD are worth-

while alternatives to the lasso. The supplemental document contains more details for

comparison.

Remark 4 As discussed in Bai and Ng (2002, p.198), we can consider either one of the

following two procedures when estimating the factor structure. To explain the idea, we

focus on extracting the common factor structure from the matrix Zc. In procedure 1, we

first estimate Fc from the T ×T matrix Z ′
cZc to obtain F̂c subject to the normalization

of F ′
cFc/T = I. Then, the corresponding factor loading is obtained Λ̂c = ZcF̂c/T .

As an alternative procedure, we can first extract eigenvectors of the N × N matrix

ZcZ
′
c to obtain the estimate Λ̃c subject to the normalization of Λ′

cΛc/N = I. This

normalization implies F̃c = Z ′
cΛ̃c/N . Even when N > T , the spiked eigenvalues and

related eigenvectors are consistently estimated (Fan et al., 2013). As suggested by

Bai and Ng (2002, p.198), the first procedure is computationally less intensive when

T < N , which is the case in our application. The second procedure is preferred when

N < T because the computation is less costly. Thus, the size of panel will be useful in

determining the procedure for extracting factor structures. Either procedure produces

the same common components (the multiplication of factor and factor loadings).
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3.2 Model selection

In practice, however, the number of groups, S, and the number of common factors,

r, the number of group-specific factors, {r1, ..., rS}, are unknown. Moreover, we have

to select the size of the regularization parameters such that the relevant observable

factors are included, while excluding irrelevant observable factors. We propose a new

criterion to select these quantities.

PICC(S, k, k1, ..., kS, κ1, ..., κN)

=
1

NT

S∑
j=1

∑
i;gi=j

∥∥∥yi −Xiβ̂i − F̂cλ̂c,i − F̂ĝiλ̂ĝi,i

∥∥∥2 + C × 1

N

N∑
i=1

σ̂2 log(T )p̂i

+C × k × σ̂2

(
T +N

TN

)
log (TN) +

G∑
j=1

C × kj × σ̂2

(
T +Nj

TNj

)
log (TNj) (4)

where p̂i is the number of non-zero elements of β̂i, C is some positive constant and σ̂2 is

an estimate of 1
NT

∑N
i=1

∑T
t=1 E(ε2it). Note that the effect of the regularization param-

eters κi (i = 1, ..., N) is measured through p̂i. Too large of a regularization parameter

will lead p̂i = 0 for i = 1, ..., N , while too small of a regularization parameter causes an

over-fitting problem. In the next section, we show that our proposed panel information

criterion, PIC, can select the true non-zero regression coefficients. By minimizing PIC,

we can choose the number of groups S, the number of common factors k, the number

of group-specific factors kj (j = 1, ..., S), and the size of the regularization parameters

κ1,...,κN .

The criterion has incorporated the procedure of Hallin and Liška (2007), i.e., the

criterion (4) has the theoretical property that a penalty function on the number of

common factors k× σ̂2(T+N
TN

) log(TN) leads to a consistent estimate of the true number

of common factors, r, even when multiplying the penalty by some positive constant C.

However, for given finite N and T , the value of C affects the model selection result.

A very large value of C over penalizes the number of common factors and vise versa.

Similar arguments also apply to the penalty functions on the dimension of regression

coefficients as well as to the number of group-specific factors.

To optimize the value of C, we use the suggestion of Hallin and Liška (2007) and

Alessi et al. (2010). We investigate the asymptotic behavior of the selected number of

groups S, number of common factors r, and number of group-specific factors k1, ..., kS,

from considering subsamples of sizes (N (a), T (a)) with a = 1, ..., A such that 0 < N (1) <
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N (2) < · · · < N (A) = N and 0 < T (1) < T (2) < · · · < T (A) = T For any (N (a), T (a)) and

C, we can compute the number of groups SC(N (a), T (a)), number of common factors

rC(N (a), T (a)), and number of group-specific factors kC
1 (N

(a), T (a)), ..., kC
S (N

(a), T (a)).

Hallin and Liška (2007) pointed out that between the extreme small values and too

large values, there exist a range of moderate values of C such that the selected model is

a stable function of the subsample size (N (a), T (a)). They measured the stability with

respect to sample size by the empirical variance of the selected values of SC(N (a), T (a)),

rC(N (a), T (a)), and kC
1 (N

(a), T (a)), ..., kC
S (N

(a), T (a)). In our case, it is measured by

V 2
C =

1

A

A∑
a=1

(
rC(N (a), T (a))− A−1

A∑
b=1

rC(N (b), T (b))

)2

+
Smax∑
j=1

 1

A

A∑
a=1

(
rCj (N

(a), T (a))− A−1

A∑
b=1

rCj (N
(b), T (b))

)2
 , (5)

where the first term measures the variability of selected common factors, and the second

term measures the variability of selected number of groups as well as the number of

group-specific factors.

Under the given value of C, N (a), T (a), the following provides a model search algo-

rithm.

Model search algorithm

Step 1. Prepare the candidate values of regularization parameters {κ1, ..., κN}, the
number of groups S and the numbers of group-specific factors {k1, ..., kS}.

Step 2. Fix S and initialize the values of regularization parameters {κ1, ..., κN}, the
numbers of common factors k, and the numbers of group-specific factors

{k1, ..., kS}.
Step 3. Given the current values of S, k and {k1, ..., kS}, optimize each of the regular-

ization parameters, κi (i = 1, ..., N) by minimizing PIC

Step 4. Given the values of S, the numbers of group-specific factors {k1, ..., kS} and κi

(i = 1, ..., N), optimize the numbers of common factors k by minimizing PIC

Step 5. Given the values of S, the numbers of common factors k, and κi (i = 1, ..., N),

optimize the numbers of group-specific factors {k1, ..., kS} by minimizing PIC

Step 6. Repeat Steps 3 and 5 until convergence. Then, store the value of PIC.

Step 7. Change the value of S and implement Steps 2 ∼ 6.
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Step 8. Select the best model based on the stored values of PIC.

Using the above algorithm, we calculate the stability measure V 2
C in (5). The final

model is obtained under the optimized C, which is a moderate value such that the

selected model is stable. Simulation results show that the proposed algorithm perform

well. For more details, see supplementary materials.

4 Theoretical Analysis

In this section, we consider the asymptotic analysis. In particular, we derive the

asymptotic properties of the proposed estimator and show that the proposed estimator

is consistent, as N and T go to infinity simultaneously. We also develop the variable

selection consistency of the proposed estimator for the regression coefficients. Ando and

Bai (2015) established an oracle property for the finite parameter case, under the known

group membership. In the context of cross-sectional regression, Fan and Li (2001)

demonstrated that penalized likelihood estimators based on SCAD are asymptotically

as efficient as the oracle estimator. In this paper, the group membership is unknown

and thus the establishment of variable selection consistency is a challenge.

We also consider the situation in which the number of predictors tends to infinity.

In Appendix B, we provide the consistency of the estimated regression coefficients, the

consistency of the estimated group membership, and the variable selection consistency

under the diverging number of parameters.

We use F 0
c , {F 0

j , j = 1, ..., S} to denote the true parameter values of the common

and group-specific factors from the data-generating process. As T increases, the number

of elements in Fc and Fj (j = 1, ..., S) is also increasing. We first show that the

estimated factors are consistent in the sense of some averaged norm, which will be

specified below. First, we have the following theorem.

Theorem 1 : Consistency. Under Assumptions A–E, κ = max{κ1, ..., κN} → 0

and T ×κi → ∞ (i = 1, ..., N) as T,N → ∞. The estimators F̂c and {F̂j, j = 1, ..., S}
are consistent in the sense of the following norm

T−1∥F̂c − F 0
c Hc∥2 = op(1), T−1∥F̂j − F 0

j Hj∥2 = op(1), j = 1, ..., S, (6)

where H−1
c = Vc,NT (F

0
c F̂c/T )

−1(Λ0′
c Λ

0
c/N)−1, H−1

j = Vj,NjT (F
0
j F̂j/T )

−1(Λ0′
j Λ

0
j/Nj)

−1,
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and Vc,NT and Vj,NjT satisfy

[ 1

NT

N∑
i=1

(yi −Xiβ̂i − F̂ĝiλ̂ĝi,i)(yi −Xiβ̂i − F̂ĝiλ̂ĝi,i)
′
]
F̂c = F̂cVc,NT ,

[ 1

NjT

Nj∑
i;ĝi=j

(yi −Xiβ̂i − F̂cλ̂c,i)(yi −Xiβ̂i − F̂cλ̂c,i)
′
]
F̂j = F̂jVj,NjT .

The following theorem shows that the estimated group membership converges to

the true group membership as T and N grow.

Theorem 2 : Consistency of the estimator of group membership. Suppose

that the assumptions in Theorem 1 hold. Then, for all τ > 0 and T,N → ∞, we have

P

(
sup

i∈{1,...,N}

∣∣ĝi − g0i
∣∣ > 0

)
= o(1) + o(N/T τ ).

Theorem 2 implies that if for some b > 0, N/T b → 0, as both N and T tend to infin-

ity simultaneously, the true group membership g0i and the proposed group membership

estimator ĝi are asymptotically equivalent. Theorem 2 is similar to a result obtained

by Bonhomme and Manresa (2015) and Ando and Bai (2016). But these studies do

not allow heterogeneous regression coefficients.

Next, we establish the variable selection consistency of the estimated regression

coefficients. Let β0
i = (βi10

′,βi20
′)′ be the true parameter value, and β̂i = (β̂

′
i1, β̂

′
i2)

′

be the corresponding parameter estimate. Without loss of generality, we assume that

βi20 = 0. We also assume that the dimension of βi10 is small (uniformly bounded over

i) but the dimension of βi20 can be large. We show that the estimator possesses the

sparsity property, β̂i2 = 0. We denote β̂i1 as the parameter estimate of non-zero true

coefficients βi10.

Before we provide the theorem that establishes the oracle property of our estimator,

we introduce the following assumption.

Assumption F: Regression coefficients

Each element of βi10 satisfies

min |βi10,k|/κi → ∞ as T → ∞

for k = 1, ..., qi with qi being the dimension of βi10. This assumption is required for

obtaining the variable selection consistency.
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Theorem 3 : Variable selection consistency. Suppose that the assumptions A∼F

hold. Let β̂i2 be the parameter estimate of zero true coefficients βi20. The following

variable selection consistency holds:

P (β̂i2 = 0) → 1, N, T → ∞.

Also, the parameter estimate of non-zero true coefficients βi10, β̂i1, is consistent,

∥βi10 − β̂i1∥ → 0.

In Theorems 1∼3, we assumed that the number of observable factors is fixed. We

note that similar results still hold even when the number of observable factors goes to

infinity, as N, T → ∞. All theoretical proofs relating to these arguments are provided

in Appendix B.

Finally, we must determine the number of groups, S, the number of group-specific

factors, kj (j = 1, ..., S), and the size of the regularization parameters, κ1,...,κN . The

following theorem justifies the use of our proposed PIC in (4) for selecting these quan-

tities.

Theorem 4 : Consistent model selection. Suppose that the assumptions of The-

orem 3 hold. Moreover, the difference between the diverging speed of N and T are not so

extreme such that (T+N)/(TN) log(TN) → 0 and min{T,N}×(T+N)/(TN) log(TN) →
∞. Then, the proposed PIC provides a consistent estimation of the true number of

groups, the true number of group-specific factors, and the set of true observable fac-

tors.

Note that the conditions (T + N)/(TN) log(TN) → 0 and min{T,N} × (T +

N)/(TN) log(TN) → ∞ are not strong. As discussed in Bai and Ng (2002), examples

such as N = exp(T ) or T = exp(N) are rare situations that will violate the conditions.

5 Data

The data employed in this paper cover publicly traded firms and firms traded at over-

the-counter trading markets. The firms in our dataset belong to the following indus-

tries: Banking, Life Insurance, Nonlife Insurance, Financial Services, and Real Estate

Investment and Services. All data are collected from the Datastream database, and we

followed the industry assignment for each firm from this database.
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We analyze the stock returns of over 6,000 firms from more than 100 financial

markets. Following Forbes and Rigobon (2002), market returns are calculated as the

rolling average, two-day returns of each of the firms. We use the two-day average

returns because the worldwide financial markets do not have the same trading hours.

For example, the business hours of the New York Stock Exchange (NYSE) and stock

markets in East Asia (Tokyo, Hong Kong, Shanghai, etc.) do not overlap at all.

Notably, the performance of financial markets in the Asia Pacific region may influence

the financial markets in North America. Conversely, the U.S. stock exchange often

influences the next day’s performance of the Tokyo Stock Exchange, as described in

Ohno and Ando (2014). Following Forbes and Rigobon (2002), we calculate stock

returns in U.S. dollars. To study the dynamic characteristics of the worldwide stock

market during the subprime financial crisis, we analyze the following 5 periods, in

addition to the whole period (July 1, 2006 to November 31, 2009).

Period 1: July 1, 2006 to December 31, 2006
Period 2: July 1, 2007 to December 31, 2007
Period 3: February 1, 2008 to August 31, 2008
Period 4: October 1, 2008 to March 31, 2009
Period 5: May 1, 2009 to November 31, 2009

Based on the information summarized by Reuters and Federal Reserve Bank of St.

Louis, Table 1 provides a timeline of the U.S. subprime crisis. Longstaff (2010) investi-

gated the pricing of subprime asset-backed collateralized debt obligations and contagion

effects arising from the U.S. sub-prime market in a worldwide framework. In that study,

the sample period is divided into three distinct periods: the 2006 pre-crisis period, the

2007 subprime-crisis period, and the 2008 global financial crisis period. During Period

1, particularly during late 2006, the US housing markets had peaked, and delinquency

rates for subprime mortgages were on the rise, setting up the subprime crisis. Period 1,

Period 2, and Period 3 are considered the pre-crisis period, the subprime-crisis period,

and the global financial crisis period, respectively. As shown in Table 1, conditions

worsened during Period 4, including the Lehman Brothers bankruptcy. So Period 4

is also a global financial crisis period. In October, 2009, the Dow Jones Industrial

Average closed above 10,000 for the first time since October 3, 2008. Thus, Period 5

contains the recovery of the U.S. financial markets.

Stocks with missing returns are excluded from our analysis. In addition, stocks

with no variation at all were deleted from our sample. This operation leads to the final
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sample for each period as follows, Period 1: N = 6066 firms, Period 2: N = 6100 firms,

Period 3: N = 6087 firms, Period 4: N = 6010 firms and Period 5: N = 6003 firms,

respectively. For the whole period, there are N = 5813 firms without missing values.

Table 2 shows the distribution of our sample stocks across the markets. Financial

markets with fewer than 50 stocks in our sample are merged together and denoted as

“Others” in Table 2. Table 3 presents the distribution of our sample stocks across

markets and industries during the whole period. The distribution of our sample stocks

across markets and industries for the other periods are similar to Table 3 and thus

omitted.

For each of the 31 markets (with more than 50 stocks), we compute the average

return. Then, the lagged average returns xlag,t = (xlag,1t, xlag,2t, ..., xlag,31t)
′ are used as

the predictors xit. Also, their interactions (products) are also added to the predictors.

Thus, the dimension of the observable factors xit is pi = 31+(31× 30)/2 = 496, which

is more than three times larger than the length of time series T for period 1 ∼ period 5.

Figure 1 shows the correlation matrix of the set of 31 lagged average returns xlag,t, and

the magnitude of correlation increases as time passes. In particular, the correlation

in Period 4 exhibits the highest dependency among the 5 periods. The magnitudes of

correlation decrease in Period 5.

6 An empirical analysis

We estimate the model parameters in (1) by minimizing the objective function. Then,

we apply the proposed model-selection criterion, PIC, to simultaneously select the

number of groups, S, the number of group-specific pervasive factors, and the size of

the regularization parameters, {κ1, ..., κN}. We set the maximum number of groups

to Smax = 30. The possible number of group-specific pervasive factors rj ranges from

0 to 16. Possible candidates for the regularization parameter, κi i = 1, ..., N are

κi = 101−(k−1)/2 with k = 1, ..., 11. To determine the value of C in PIC, we prepared

its candidate values as C = 0.1 × k for k = 1, ..., 20. When we calculate the V 2
C score

in (5), we prepared the subsamples of sizes (N (a), T (a)) = (N − a × 100, T − a × 10)

with a = 0, 1, ..., 5. We then optimized the value of C by minimizing V 2
C .

Figure 2 shows the behavior of V 2
C as a function of C under the period 1. Noting

that too small C (i..e, C) leads V 2
C ≈ 0 (because the maximum model will be identified)

and too large C leads also V 2
C ≈ 0 (because the model with no factor structure will
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be identified), Figure 2 indicates that the stable range of V 2
C is around C = [0.9, 1.4].

Similarly we can identify the stable range of V 2
C for the other periods. Using the value

of C that achieves the minimum value of V 2
C under the stable range, the proposed

criterion PIC selects the best model among the set of candidate models.

6.1 Grouping results

The estimated number of groups, the number of common factors, and the number

of group-specific factors for each of the periods are summarized in Table 4. In this

table, the number of groups in Period 1 is determined to be S = 7 because it achieved

the smallest value of the proposed model-selection criterion, PIC, which suggests that

there are approximately S = 7 asset groups in Period 1. The table shows that the

number of groups is increasing as time goes by. In addition, the total number of group-

specific unobservable factors (
∑7

j=1 rj) in Period 1 is much smaller than that in other

periods, which implies that the degree of market heterogeneity has increased during

the financial crisis. Thus, investors’ behaviors may be more varied due to the increase

in the degree of uncertainty of future events. The empirical results also show that the

number of factors varies across groups. There exist one common factors in each period.

To explore the economic meanings of the constructed common factors, we regress the

extracted common factor on Thomson Reuters Global Financial Index. We found that

the factor is relating to the index; the estimated regression coefficients are statistically

significant at the 1% level.

We investigated how much variation is left in the error term ε̂it = yit − xitβ̂i −
f̂ cλ̂c,i − f̂ ĝi

λ̂ĝi,i. Here, we reported the following two ratios:

R1 =

∑N
i=1

∑T
t=1(ε̂it)

2∑N
i=1

∑T
t=1 y

2
it

, and R2 =

∑N
i=1

∑T
t=1(ε̂it)

2∑N
i=1

∑T
t=1(yit − xitβ̂i)

2
, (7)

where R2 adjusts the contribution by the observable factors. Table 4 also reports the

values of R1 and R2 for each period. It can be seen that period 4 has larger R1 values

among the five sub-periods, while R2 achieves the smallest. This implies that the

relative explanatory power of unobservable factor structure increased in period 4. We

can also see that R1 and R2 under the whole period is much larger than the other sub-

periods. One of the possible reasons may be that the number of groups S is changing

over the sub-periods, a single common factor structure is too restrictive for the entire

period.
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The size of the groups is summarized in Table 5. In Period 1, Group G7 is subject

to a total of two factors. In contrast, Group G5 is subject to one group-specific factor.

Notably, the size of G5 is more than 1,100 and is two times larger than G7. This implies

that Group G7’s degree of heterogeneity is much larger than that of G5. Such contrast

can also be observed in Period 2. Group G3 is subject to a single group-specific factor,

while Group G8 is subject to three group-specific factors.

Because the industry classifications and listed markets are known, a two-way table of

the estimated group membership ĝi against these classifications is investigated. Figure

3 shows the distribution of the firms in each sector. An (i, j)-th element denotes %

of firms in industry i such that they belong to j-th group. More specifically, let ni,j

denote the number of firms that belongs to sector i and to group j. Then, the (i, j)-th

element mij is calculated as mij = ni,j/{
∑S

k=1 ni,k}. In Period 1 and Period 2, Banking

and Insurance (Life, Non-life) sectors seem to be in large clusters. However, due to the

subprime crisis, stocks in the real estate investment sector diverged more in Period 3.

In particular, we find a large cluster in Period 4, whereas we found a large cluster in the

Banking, Life insurance and Real estate sectors in Period 5. These investigations imply

that the industry factor by itself is an important factor pre-financial crisis or during the

financial crisis, but industry may not matter after a large shock. This finding, derived

form our general procedure, is a useful insight for institutional investors.

Figure 4 shows the distribution of the firms in each of the stock exchanges. An

(i, j)-th element denotes % of firms listed at stock exchange i such that they belong to

the j-th group. We can thus make the following observations. First, the magnitudes

of similarity between the New York Stock Exchange and the NASDAQ are stable

over the periods. In contrast, non-NASDAQ OTC market exhibits different behavior.

This implies that the investor’s behaviors at the New York Stock Exchange and the

NASDAQ are different from those at non-NASDAQ OTC market. Thus, investors

should consider such market characteristics although all three markets are located in

the U.S. Second, an increase in the dissimilarity of the Shanghai and Shenzen stock

exchanges from the rest of the exchanges is observed after Period 3. Third, the stocks

listed on the Tokyo stock exchange tend to be in the same group, even in Period 1, which

indicates that it is difficult to diversity the portfolio risk that consists purely of stocks

listed on the Tokyo stock exchange. Portfolio managers who are willing to diversify

their portfolio should consider taking positions in stocks in different exchanges. These
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results imply that country and listed markets are important factors to be considered.

However, we also note that these factors are not able to fully capture the underlying

market behavior.

When we compare the distribution of firms in each of the stock exchanges in Figure

4, period 4 indicates co-movements owing to financial crisis because many stocks in

different stock exchanges congregate in the same group G4. In fact, G4 is the biggest

cluster in table 5, which indicates stronger comovements as a result of the financial

crisis. On the other hand, this phenomenon is relatively much weaker in the other

sub-periods. Thus, our estimation result is consistent with the idea that in crisis co-

movements are stronger.

We also implemented Fisher’s Exact Test for the independence between our group-

ing results and these two nominal classifications. These two null hypothesis of inde-

pendence were rejected for all periods. Although this rejection implies that the our

grouping results are relating to industry and listed exchange, the nominal classifica-

tions are not sufficient to capture the complicated market characteristics. In summary,

these investigations imply that while industry, market, country, and region are sources

of the co-movement of the cross-sectional and time-series variations in stock returns,

they are not the only sources of the co-movement.

6.2 Price of risk

In the APT framework, the expected returns on assets are approximatively linear in

their sensitivities to the factors E[r] = ν0 + γ ′ν, where ν0 is a constant, ν is a vector

of factor risk premiums, and γ is a vector of factor sensitivities. In our model, factor

sensitivities correspond to the regression coefficients βi, and factor loadings λc,i and

λgi,i for i = 1, ..., N . Here, we partition the excess returns into the identified groups

and investigate the subset pricing relations based on the Fama and MacBeth (1973)

approach. This subgroup two-stage approach was also used in Goyal et al. (2008) and

Ando and Bai (2015) for example.

Through the model building process, we have already estimated the matrix of factor

sensitivities Λ̂c (common factors), Λ̂j (group-specific factors with respect to j-th group).

Following Ando and Bai (2015), we then run the following cross-sectional regression

for each group:

r̂j = ν0,j1+ Λ̂c,jνc,j + Λ̂jνg,j + ξj, (j = 1, 2, ..., S),
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where 1 is a vector of ones, ξj is a vector of pricing errors, Λ̂c,j corresponds to the sub-

element of Λ̂c associated with the j-th group, r̂j is a vector of average excess returns,

which are observable-risk adjusted, i.e., for the i-th security, T−1
∑T

t=1(yit − x′
itβ̂i) is

used. Table 6 reports the results of this cross-sectional regression. The estimates for

the risk premium on the common and group-specific factors are statistically significant

in each group. Almost all factors seem to be priced. This indicates that our method

extracted factors that are priced.

One of the main characteristics of the proposed method is selecting the set of rele-

vant observable factors. Figure 5 provides the histogram of the percentages (%) of non-

zero estimated regression coefficients for each of the observable factors
∑N

i=1 I(β̂ik ̸=
0)/N for k = 1, ..., 496. That is, the histogram is based on 496 values of percentages.

Because the histograms under the periods 2, 3, and 5 are similar to that under period

1, these figures are omitted. We can see that each of the observable factors are relevant

for at most 5% of stocks’ returns for period 1. The relevance is further reduced for the

whole period, implying that the sensitivities to the observable factor are likely to be

time varying (because the percentage becomes smaller under longer time series T ).

It is also interesting to see whether these selected observable factors are priced in

the cross-section of asset returns. Similar to the above analysis, we run the following

cross-sectional regression for the observable factors:

r̂ = ν01+ Λ̂βνβ

where 1 is a vector of ones, Λ̂β is the matrix of sensitivities to the observable factors

and r̂ is a vector of average excess returns, which are unobservable common/group-

specific factors adjusted, i.e., for the i-th security, T−1
∑T

t=1(yit − f̂
′
c,tλ̂c,i − f̂

′
ĝi,t

λ̂ĝi,i)

is used. Figure 5 also provides the histogram of the p-values of estimated νβ. Again,

the histograms under the periods 2, 3, and 5 are similar to that under period 1, and

thus omitted. When we set the critical level as α = 0.05, more than 50% of observable

factors are priced under the period 1. This indicates that our method detected relevant

observable factors for explaining stock returns. In contrast, 5% of observable factors are

priced under the whole period. As shown in Figure 5, our proposed method estimated

almost all of regression coefficients as zero. This indicates that most of observable

factors are priced in a short time period, while it may not be true in the whole sample

period. In contrast, the extracted unobservable factor structures are priced even for

the whole sample period. Thus, the unobservable factor structure, f ′
c,tλc,i + f ′

gi,t
λgi,i,
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plays an important role in modeling asset returns.

6.3 Robustness check

Finally, the five periods split the sample into pre-crisis, and during-crisis subsets. Dif-

ferent specifications can be used for these sub-periods. However, we note that the

different sub-period specifications still lead to similar results.

To treat the differences in international market trading hours, we used the rolling

two-day average of returns. It is also possible to implement the proposed modeling

procedure for daily returns instead of a two-day rolling average. Again, similar results

are obtained. Thus our results are robust in different subperiod specifications and in

using either daily returns or two-day averages.

7 Conclusion

This paper proposed a novel and a general approach that simultaneously implements

the following features: (1) detecting a set of relevant observable factors, (2) extracting

unobservable common and group-specific factors, (3) automatically determining the

number of groups, and (4) clustering a huge number of assets.

To study the global financial crisis caused by the collapse of the U.S. sub-prime

mortgage market, we analyzed the daily stock returns of several industries related

to financial services for over 6,000 stocks from more than 70 countries and over 100

financial markets. We found that the number of groups during the financial crisis is

much larger than during the pre-crisis period. We also found that industry, market,

country, and region are sources – but not the only sources – of the co-movement of

cross-sectional and time-series variations in stock returns during the financial crisis and

that other sources of co-movement extend beyond these usual classifications.

Although grouping stocks based on nominal classifications (industry, market, coun-

try, and region) is convenient and simple, the market structure is not simple enough

for portfolios to be well diversified based on these nominal classifications alone. We

recommend that investors looking for global investment opportunities consider diver-

sifying their portfolios broadly based on our grouping results. Our empirical findings

may be useful for paired trading, valuation of firms, etc.

This paper analyzes stocks relating to the financial industry. Our method is also

applicable to stocks of other industries. In addition, the proposed methods can be ap-
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plied to the analysis of international bond markets and to the analysis of high-frequency

trading data. Because the proposed method can handle hundreds and thousands of

asset returns simultaneously, the scope of its applicability is wide.
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Table 2: Distributions of the number of listed financial firms. Period 1: July 1, 2006 to
December 31, 2006. Period 2: July 1, 2007 to December 31, 2007. Period 3: February
1, 2008 to August 31, 2008. Period 4: October 1, 2008 to March 31, 2009. Period 5:
May 1, 2009 to November 31, 2009. Whole period: July 1, 2006 to November 31, 2009.
NYSE: New York Stock Exchange. PSE: Philippine Stock Exchange.

Period 1 Period 2 Period 3 Period 4 Period 5 Whole
Amman 67 68 68 66 66 64
Australian 99 97 97 96 100 92
Bangkok 87 87 85 84 85 81
Berlin 145 146 148 142 144 135
BSE Ltd 285 283 282 283 278 262
Dhaka 68 69 69 68 69 67
Euronext.liffe Paris 80 80 81 82 81 73
Frankfurt 530 537 536 524 533 509
Hong Kong 197 202 202 200 198 188
Indonesia 75 76 75 75 75 73
Karachi 56 55 55 55 54 52
Korea Stock Exchange 52 51 53 52 53 50
Kuala Lumpur 98 99 99 99 99 98
Kuwait City 75 75 74 72 71 69
London 145 146 143 141 145 135
NASDAQ 367 371 372 370 374 368
National India 101 103 102 100 101 96
NYSE 184 185 182 182 180 178
Non NASDAQ OTC 1265 1277 1287 1244 1230 1233
PSE 81 83 83 82 80 77
Shanghai 73 73 73 73 73 73
Shenzen 55 55 55 54 52 51
SIX Swiss 68 68 69 68 68 68
Stuttgart 62 64 62 63 60 58
Taiwan 60 61 61 61 60 59
Tel Aviv 107 106 104 105 106 102
Thailand 58 59 58 57 57 52
Tokyo Stock Exchange 176 177 175 176 176 173
Toronto 80 78 79 78 79 73
TSX Ventures 64 63 64 62 60 55
XETRA 82 81 82 84 83 79
Others 1124 1125 1112 1112 1113 1070
Total 6066 6100 6087 6010 6003 5813
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Table 3: Distributions by market and industry: Whole period: July 1, 2006 to Novem-
ber 31, 2009. NYSE: New York Stock Exchange. PSE: Philippine Stock Exchange.

Bank Life Non Life Financial Real Estate
Insurance Insurance Services

Amman 11 0 21 18 14
Australian 7 3 3 54 25
Bangkok 10 1 14 20 36
Berlin 54 6 13 36 26
BSE Ltd 0 0 0 232 30
Dhaka 31 4 23 8 1
Euronext.liffe Paris 19 1 4 23 26
Frankfurt 165 35 66 153 90
Hong Kong 10 4 3 54 117
Indonesia 20 1 10 18 24
Karachi 14 3 9 26 0
Korea Stock Exchange 5 0 10 34 1
Kuala Lumpur 10 1 6 12 69
Kuwait City 9 0 8 26 26
London 11 7 12 67 38
NASDAQ 300 5 23 31 9
National India 34 1 1 47 13
NYSE 58 18 45 48 9
Non NASDAQ OTC 471 21 23 647 71
PSE 13 2 0 22 40
Shanghai 4 0 0 6 63
Shenzen 1 0 0 4 46
SIX Swiss 25 1 6 11 25
Stuttgart 10 1 3 19 25
Taiwan 17 5 5 5 27
Tel Aviv 10 1 7 29 55
Thailand 8 1 6 11 26
Tokyo Stock Exchange 78 3 3 35 54
Toronto 11 7 5 34 16
TSX Ventures 2 0 3 40 10
XETRA 28 5 13 23 10
Others 395 30 89 336 220
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Table 4: Selected number of groups, the number of common factors and the number
of group-specific factors. Period 1: July 1, 2006 to December 31, 2006. Period 2: July
1, 2007 to December 31, 2007. Period 3: February 1, 2008 to August 31, 2008. Period
4: October 1, 2008 to March 31, 2009. Period 5: May 1, 2009 to November 31, 2009.
Whole period: July 1, 2006 to November 31, 2009. R1 and R2 in (7) measure how
much variations left in the error term ε̂it = yit − xitβ̂i − f̂ cλ̂c,i − f̂ ĝi

λ̂gi,i.

Period 1 Period 2 Period 3 Period 4 Period 5 Whole
S 7 8 8 11 8 13
r 1 1 1 1 1 1
r1 1 3 3 3 1 2
r2 1 4 4 8 5 9
r3 3 1 2 3 3 12
r4 3 3 1 10 1 6
r5 1 3 4 3 2 3
r6 2 3 1 1 3 4
r7 2 1 4 7 3 9
r8 3 5 8 3 9
r9 1 16
r10 2 10
r11 10 15
r12 4
r13 11

R1 0.0744 0.1362 0.1383 0.1835 0.1697 0.5647
R2 0.1988 0.3049 0.2917 0.2612 0.3562 0.5685

Table 5: Size of each clusters. Period 1: July 1, 2006 to December 31, 2006. Period
2: July 1, 2007 to December 31, 2007. Period 3: February 1, 2008 to August 31, 2008.
Period 4: October 1, 2008 to March 31, 2009. Period 5: May 1, 2009 to November 31,
2009. Whole period: July 1, 2006 to November 31, 2009.

Period 1 Period 2 Period 3 Period 4 Period 5 Whole
N1 1301 964 877 135 843 481
N2 187 934 1179 504 1182 622
N3 1125 1161 191 459 487 579
N4 1014 472 862 2616 220 429
N5 1196 597 857 297 183 262
N6 703 528 272 19 928 272
N7 540 999 537 421 1555 450
N8 445 1312 567 605 558
N9 156 668
N10 144 163
N11 692 672
N12 71
N13 586
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Table 6: Factor risk premiums for the common and group-specific factors. For each
group,we run the following cross-sectional regression: r̂j = ν0,j1+Λ̂c,jνc,j+Λ̂jνg,j+ξj,
(j = 1, 2, ..., S). Details on this model are described in Section 6.2. The number of
common and group-specific factors that are priced at the significance level α = 0.05.
For integers a∗ and b∗, the ratio a∗/b∗ means that a∗ factors are priced among a set of
b∗ factors.

Period 1 Period 2 Period 3 Period 4 Period 5 Whole
f c f g f c f g f c f g f c f g f c f g f c f g

G1 1/1 1/1 1/1 2/3 1/1 3/3 1/1 2/3 1/1 1/1 1/1 1/2
G2 0/1 1/1 1/1 4/4 1/1 4/4 1/1 8/8 1/1 5/5 1/1 8/9
G3 1/1 3/3 1/1 1/1 1/1 2/2 1/1 3/3 1/1 3/3 1/1 12/12
G4 1/1 3/3 1/1 3/3 1/1 1/1 1/1 10/10 1/1 1/1 1/1 5/6
G5 0/1 1/1 1/1 3/3 1/1 4/4 1/1 3/3 1/1 2/2 1/1 3/3
G6 0/1 2/2 1/1 3/3 1/1 1/1 1/1 1/1 1/1 3/3 0/1 4/4
G7 1/1 1/2 1/1 1/1 1/1 4/4 1/1 6/7 1/1 3/3 1/1 5/9
G8 1/1 3/3 1/1 5/5 1/1 7/8 1/1 3/3 1/1 6/9
G9 1/1 1/1 1/1 14/16
G10 1/1 1/2 1/1 9/10
G11 1/1 8/10 1/1 14/15
G11 0/1 3/4

36



Period 1. Period 2.

Period 3. Period 4.

Period 5.

Figure 1: Correlation matrix of the set of observable factors (see the text for expla-
nation). Period 1: July 1, 2006 to December 31, 2006. Period 2: July 1, 2007 to
December 31, 2007. Period 3: February 1, 2008 to August 31, 2008. Period 4: October
1, 2008 to March 31, 2009. Period 5: May 1, 2009 to November 31, 2009.
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Figure 2: The behavior of V 2
C as a function of C under the period 1.
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Period 1. Period 2.

Period 3. Period 4.

Period 5.

Figure 3: Distribution of firms in each of the sectors. An (i, j)-th element denotes %
of firms in industry i such that they belong to j-th group. Period 1: July 1, 2006 to
December 31, 2006. Period 2: July 1, 2007 to December 31, 2007. Period 3: February
1, 2008 to August 31, 2008. Period 4: October 1, 2008 to March 31, 2009. Period 5:
May 1, 2009 to November 31, 2009. 39



Period 1. Period 2.

Period 3. Period 4.

Period 5.

Figure 4: Distribution of firms in each of the stock exchanges An (i, j)-th element
denotes % of firms listed in a stock exchange i such that they belong to j-th group.
Period 1: July 1, 2006 to December 31, 2006. Period 2: July 1, 2007 to December 31,
2007. Period 3: February 1, 2008 to August 31, 2008. Period 4: October 1, 2008 to
March 31, 2009. Period 5: May 1, 2009 to November 31, 2009.
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Period 1 (Non-zero estimated βik) Period 1 (Price of risk: p-value).

Period 4 (Non-zero estimated βik) Period 4 (Price of risk: p-value).

Whole period
(Non-zero estimated βik)

Whole period
(Price of risk: p-value).

Figure 5: Left column: Histogram of the percentages (%) of non-zero estimated regres-
sion coefficients for each of the observable factors

∑N
i=1 I(β̂ik ̸= 0)/N for k = 1, ..., 496.

Right column: Histogram of the p-values of price of risk. Period 1: May 1 2007 to
December 31, 2008, Period 4: September 1 2008 to March 31, 2009, Whole May 1 2007
to December 31, 2009.
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