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Abstract

Species distribution models (SDMs) are increasingly used in conservation and land use planning as
inputs to jeﬁ' biodiversity patterns. SDMs can be built in different ways, and decisions about

data prepa tion of predictor variables, model fitting and evaluation all alter the resulting

predictionsmCommonly, the true distribution of species is not known, nor is there independent data

to verify le\ﬂ variant to choose. Such model uncertainty is concerning to planners. We

analysed h routine decisions about model complexity, predictors, bias treatment and

thresholdiwmted values altered conservation priority patterns across 25 species. While all

SDM variamood model performance (AUC>0.7), they produced spatially different predictions

for species and different conservation priority solutions. Priorities were most strongly altered by
decisions ts;ot deal with bias or to apply binary thresholds to predicted values, where on average
40% and 33%; ctively, of all grid cells received an opposite priority ranking. Forcing high model
complexity alte conservation solutions less than forcing simplicity (14% and 24% of cells with
opposit§s, respectively), while using fewer species records to build models or choosing
alterna atments had intermediate effects (25% and 23%, respectively). Depending on
modelling choices, priority areas overlapped as little as 10-20% with the baseline solution, affecting

top and bo priorities differently. Our results demonstrate the extent of model-based

antify the relative impacts of SDM building decisions. When the truth about the

best SDM fproach and conservation plan is not known, solving uncertainty or spending time

consideringalterative options is most important for those decisions that change plans the most.

-
L

Conservation of biodiversity requires decisions on how to allocate resources in space, in order to

protect, restore or manage areas within a landscape. This can be challenging, typically requiring
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spatial data and considerations across many candidate conservation sites and tens to hundreds of
species. Spatial optimisation tools such as Marxan (Ball, Possingham & Watts 2009) and Zonation
(Moilanen tt . 2005) help planners and managers understand how resources can be cost-

effectively between candidate locations so as to maximise conservation benefits for

muItipIe-spFC|es ujala et al. 2018a).

Species di utiGh models (SDMs) expand the spatial coverage of species information from point

C

observations to mapped predictions across landscapes and are thus useful for conservation planning

S

(Guisan et . Building SDMs requires decisions at each step of data preparation, selection of

predictor variableS\and modelling method, model fitting, and evaluation. Different decisions alter

b

predictions imes substantially, exposing uncertainty in predicted distribution patterns.

N

Previous r as explored several sources of SDM error and uncertainty (e.g. Barry et al. 2006;

Langford 09; Synes & Osborne 2011; Hermoso & Kennard 2012). Yet, there is still

d

consid ion in how SDMs are built, partly because no single approach is proven best

across applicati Araujo et al. 2019).

In the context of conservation planning, errors in SDM predictions can result in excessive spending of

resources Lglect of species in areas mistaken as unimportant (Wilson et al. 2006; Guisan et

al. 2013). &’ true distributions are not known, we cannot fully evaluate errors in alternative
SDM predicti odellers can tune models against held-out data, but (particularly when data are
biased) miui t get closer to truth (El-Gabbas and Dormann 2018). Instead, when no additional

{

informatio motivates choice between SDM variants, these become alternative representations of

species’ true distfibutions, their differences illustrating the uncertainty in our understanding of

3

where spe r. Despite their use by decision makers (Guisan et al. 2013) and their likely impact

A

on conserva tcomes (Wilson et al. 2006; Guillera-Arroita et al. 2015), uncertainty in SDMs is

rarely reported or systematically assessed (Langford et al. 2009; Tulloch et al. 2016). There also
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exists little guidance on how relevant these uncertainties are for conservation decisions, particularly

multi-species ones, and whether some uncertainties are more important to resolve than others.

{

Here we a systematic evaluation of how decisions made during SDM building alter
conservati . do not focus on creating or identifying the best possible model, but rather
I I

on represéfiting common choices of conservation practitioners. We used real data from eastern

Australia, quantify the relative influence these methodological decisions have on i) the spatial

G

patterns in species’ predicted distribution; ii) the spatial patterns of conservation priorities; and iii)

o

the overla st and least important areas for conservation. Understanding how stable

conservation plan$jare against different SDM alterations will help identify those uncertainties that

b

are most cr olve, and which decisions may need to be more carefully considered.

Methods

dll

Study area

The Great r region covers 29,145 km? along the eastern coast of Australia, within New South

V]

Wales (NSW). It’s habitats (Fig. 1), range from coastal wetlands and inland grasslands to sclerophyll

1

forests an d rainforest. Large parts of the region support agriculture and mining. Altitudes

vary from g to 1,596 m at Brumlow Top (Fig.1).

Species da

N

We use ecords for 25 native species listed as protected under NSW law, covering four

{

broad taxonomiCgtoups: 11 plant, 7 bird, 4 mammal and 3 reptile species (Supporting Information).

U

These were a subset of species data cleaned and collated by Kujala et al. (2015), originally sourced

from Atlas  of  Living  Australia (https://www.ala.org.au/) and BioNet

A

(http://www.bionet.nsw.gov.au/). Species were selected for their influence in defining important

biodiversity locations in multi-species conservation prioritisations for the Greater Hunter (Kujala et
al. 2018b). Species records were collected after 1 January 1990 and had recorded accuracy of 100
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meters or less. Duplicate records were removed. For details of data cleaning and processing, see

Kujala et al. (2015).

Enwronmﬁ

We gatheredsassetsof 24 environmental variables, describing aspects of the climate, soil, topography

and vegethoo m resolution, as candidate variables for the SDMs (Supporting Information,

*

including t&sts of Pairwise correlations). Kujala et al. (2015) identified these variables as ecologically

relevant fofféx ing the observations of species.

S

Species Di Modelling

U

We used hillips, Anderson & Schapire 2006; Phillips & Dudik 2008) version 3.4.1 to create

1

several sp ibution models (SDMs) for each species. The models were fitted with the dismo

package (V@rsi 1-4) in R (version 3.5.0), using sites with data mode. Predictions were made at

a

100 m er the whole region. We first created a baseline SDM for each species (hereafter

base), fittin odel to all cleaned observation data. Since we do not know truth, we do not

\

assert these settings provide a distribution closest to the truth, rather it provides a reasonably

motivated Woint of comparison. We aimed for settings that are arguably sound practice, commonly

3

used and good reasoning (Table 1 and Supporting Information). These included MaxEnt’s

O

defaults for complexity, in which programmed rules enforce varying complexity of modelled

responses Yor different numbers of species records. These defaults, which produce moderately

4

L

comple e justifiable when predicting to the same region as the training data (Merow et

al. 2014). Biases ifithe species data were addressed with target group background (TGB) samples,

Ul

which quantif ey effort through observations of multiple species in the same taxonomic group

(Phillips 009; Supporting Information). Following Kujala et al. 2015 and motivated by the

A

desire to use ecologically relevant predictors, we used different subsets of the 24 candidate

predictors for each of the four taxonomic groups (Supporting Information).
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We explored 11 variations of the base model for producing distribution maps for species. Our first
variations focused on model complexity within MaxEnt. These mimic likely differences across
modellim including different SDM algorithms. MaxEnt controls model complexity through
feature ty larisation parameters (Elith et al. 2011; Merow et al. 2013); here we focus on
featurels Ir!wple variant, feature types for all species were restricted to linear and quadratic
only. Whilst_notga common choice for many MaxEnt users, we use it here to mimic a regression
model with nd quadratic terms. In the complex variant, use of all available feature types was
enforced f spBcies. This includes use of threshold features (omitted from default settings) and
mimics a :machine learning approach where fitted functions cannot be simplified (Elith

2019).

Second, de on predictor variable selection. The base used the 16-19 most ecologically

relevant pmfor each taxonomic group (Supporting Information). For the predictors variant,

the sa et of 12 variables were used for all species. These included the first two axes of a

principal com ts reduction (via RStoolbox version 0.2.1) of the 6 climate variables, plus most

remaining variables but excluding some vegetation variants (Supporting Information).

Next, we fh alternative methods for handling expected biases in species data (Phillips et al.

2009). Thrg @ s models were produced, replacing the TGB with 2000, 10000 or 30000 randomly
allocated nd points. These mimic the common choice to ignore bias and explore
uncertﬁd how many samples to use as background points (Renner et al. 2015). A fourth
approach (Bias grid) dealt with bias, but through bias grids (Kujala et al. 2015) instead of TGB points,

for each major taSnomic group. Each bias grid was created with a normalised density kernel fitted
to all taxo Ic target group records (Supporting Information) with a 10 km radius. The grid
values provi bability weights for sampling 20000 background points, meaning that relatively

more background points were sampled from regions with higher densities of records.
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We also explored the impact of having fewer species records. In the few records variant, the number

of presence points was reduced by half for each species. Since results may depend on the random

t

sample selécted, we ran 10 repeats per species.

The typica nt reflected what we often see in conservation planning papers (e.g. Kaky &
|

Gilbert 20 with a constant set of predictor variables across species, no bias treatment, and 10000

random baéKgro samples.

C

Our final ajfér explore the common approach of thresholding predicted values. We used the

S

equate entropy threshold in MaxEnt, which chooses the threshold giving the thresholded

distributio

U

e entropy as the original output. This threshold was used to make the binary

variant, asgigning a value of 0 below the threshold and 1, above. A second truncated variant kept the

N

continuous pr ns above the threshold but assigned 0 below it. This aims to eliminate cells likely

d

unsuitable ecies, whilst retaining predictive detail for more suitable sites.

In total, we d 19 SDMs for each species: 1 base model, 8 variations to model building, plus

\

10 iter 0% species records. The two threshold variants were applied to each SDM (Table

1). All modglling code and data can be accessed at: https://figshare.com/s/73725332d2ed92cbf9cl

.

Measuring erences

HO

As a poiWasure of model performance we recorded the area under the receiver operating
characteri (AUC) estimated for presence vs background samples (Foody 2011), a measure

of model discrimination. We ran a 7-fold cross validation for each species’ SDM across all model

ing AUC.i, across the training folds, and AUCs; across the test folds.
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We also quantitatively compared the mapped outputs. For each species, we compared all pairwise

combinations of model variants using a Pearson’s pairwise correlation coefficient and an asymmetric

t

P

Kulczynski’S cgefficient (KUL), which was calculated as

Equation 1.
|

Yic1 X — Xi=qmin(x;, y;)
KUL,, = : : ;1x- vt
1= l

(Legendre efdre 1998; Ray & Burgman 2006). This measure focusses on agreement of high

SCI

values, as her the models identify best habitat in the same locations. Values close to 0

T

indicate si erns. KUL can be calculated from the viewpoint of model x or y, and KUL,, is not,

in general,@@qual to KUL,,. For instance, while two model variants may predict highest values in the

N

same cells, assign zero to most other cells, while y may have a greater proportion of

c

intermediatyr cells. In this case, KUL,, will be lower than KUL,,.

Spatial prioriti

To explore how SDM decisions propagate into conservation plans, we produced several conservation

prioritisatim based on one SDM variant (Table 1). We used the spatial prioritisation software

order dwiority rank of each cell, the most important grid cells being removed last. We ran

Zonation with theiare area option (Moilanen et al. 2014) which defines the marginal loss value § of
cell iat eachi e step as

Equation

Pij
6; = max—l
J Zkespkj
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where p;; is the predicted value of species j in cell i, and Xyspy; is the sum of values of species j in

cells k£ included in the remaining set of cells S at each step in the cell removal process. The output

I

priority ra has values from 0 (lowest rank) to 1 (highest).

Our region 2 cells with data. We used default Zonation parameters with a warp factor of
|

1000 and e removal on, meaning that in each iteration, 1000 cells on the edges of remaining

areas are oved. All species were weighted equally. In total, 57 priority maps were produced,

each based on different SDM variants with all 25 species. We also produced 10 priority maps in

SC

Zonation agdlom cell removal and base SDMs as inputs, to serve as a reference point.

U

Measuring ces in priority maps

We used tWiQ metrics to measure differences in conservation priorities between solutions produced

1

with the b s and each variant: i) absolute difference in priority ranks (Kujala et al. 2018b),

d

describing the oVerall change in grid cell rankings; and ii) spatial overlap of both top and bottom

priority areas. lute differences between two Zonation priority maps were calculated as

\

Equation 3.

S :base
i=1 |pri; " —

0.5 Xn

pr

i)

or

r ibas

where p i"" are the priority rankings of grid cell i in a solution produced using the baseline

N

SDMs the model variants, respectively. The number of grid cells with rankings (n)

LEL

multiplied 0.5 denotes the maximum possible difference in ranks that takes place when two
solutions a act mirror images of each other. Eq. 3 returns values between 0 (solutions are

identical solutions are mirror images, named opposite hereafter). Since the chosen baseline

A

might affect r impacts of other variants, we present alternative (binary or truncated) baseline

analyses in Supporting Information.
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We evaluated the spatial agreement in areas of highest and lowest priority by calculating the overlap

of the top and bottom ranked 20%, 10% and 5% of all cells between each model variant and the

{

base.
Results

I I
Comparin d mapped prioritisations
AUCsareac on way to compare SDMs (Fig. 2). As different variants imposed different numbers
of presenchground records, most AUCs are not strictly comparable and trends can only be
interpreted In d terms. All variants displayed reasonable model performance and would pass

U

the goodness of fit test of AUC>0.7 (Moran-Orddiiez et al. 2017). Models based on the same data

1

showed a nd towards decreased discrimination (lower AUC) when model complexity or

predictor sgts fixed across species, rather than allowed to vary as in the base model.

d

Visual Information) and quantitative (Fig. 2) comparison of maps revealed larger

difference predictions than suggested by AUCs. Spatially, dealing (or not dealing) with bias

\%

had notable impacts on predictions, particularly in areas with less records. Imposing a binary

threshold d areas of high predictions. Correlations (COR) broadly matched the two sides of

[

the asym @ L, but with differences in details. Of the SDM variants, complex, bias grid, and

truncated were all similar to the base model, measured by COR and either KUL. Binary thresholds

had a i R of 0.75 with base predictions (Fig. 2b), and compared with the base,

h

{

demons h agreement of top values (median base-to-var KUL = 0.2). However, from the

var-to-base KUL vigwpoint (Fig. 2d), binary predictions were the most different to base predictions,

U

presumably e all the nuances about intermediate predictions are missing in the binary

version. ating bias and varying the number of background points meant some high

A

predictions, especially with more background points, were similar to the base (low var-to-base KUL),

but discrepancies were large for many other medium to high predictions (high base-to-var KUL). This
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fed through to the typical variant, which was one of the more different variants compared with the

base. In summary, many of the SDM variants altered predictions strongly enough to show

t

P

qguantifiabl€ differences compared with the base models.

Difference
||

similaritiesq@etween the predictions (Fig. 2, Supporting Information) and prioritisation solutions (Fig.

d through to differences in mapped prioritisations (Fig. 3). There were several

3), highlighf€d by$he large high priority areas in the central north and north-east, southern tip and

SG

extending to n -west. However, there were also marked differences. The grassy north-western
tip and m clg@red central regions were particularly sensitive to changes in bias treatment,

coinciding with loWer densities of observations across all species (Fig. 3a,e-h). Additionally, the

E

extent to central west (dominated by dry sclerophyll forests, Fig. 1) is valued was highly

variable b odel variants.

Absolute

an

in Zonation ranks

Absolute di s in rank values (Fig. 4, Supporting Information) were largest when sampling bias

W

was no binary thresholds were applied. Not dealing with bias, regardless of number of

background, points, resulted in the largest change in rank values from any single SDM variant.

[

Varying the er of background points had a minor effect on the absolute difference, exhibiting a

O

standard of just 0.02% between the three models. Binary thresholding of base SDMs

resulted infjfon average, 34% of cells being assigned an opposite priority rank value due to this

N

change algpne. In gomparison, applying a truncated threshold to the base models resulted in a

t

difference %, the lowest of any single model variation. When combined with other variants

U

of model ) truncated thresholds added very little to the deviation from base prioritisation,

wherea pplication of a binary threshold showed greater additive effects on rankings,

particularly when t™ain model effects were less severe (Fig. 4). Additive effects of multiple model

changes (typical model) resulted in the largest deviation of all variants. All variants changed the
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priority rankings less than an entirely random solution (average rank difference 67%), however, the
largest alterations reached approximately two-thirds of the effect of randomization.
Overlapsin tepm@ndibottom priority sites

L

Overall, thegove of top and bottom priority areas between solutions mimicked results seen in

rank differ ith least overlap between base and models without bias adjustments or with

binary—thrwpredictions (Fig. 5). Focusing on either top or bottom ranked areas revealed

more nuar3rences. Not accounting for sampling bias particularly changed bottom priority

sites, to the point that the further effects of thresholding were masked, and the overlap approached
a random g:'oritisation (average 12% for bottom priorities). In models accounting for bias, binary
thresholdi ly altered the location of all priority areas, while truncated thresholding effects

were mild. The mildest effects, resulting from alternative bias treatment and a reduction in species
data, prefereEaltered the top priority sites, particularly when paired with thresholding. Making
MaxEn pler resulted in lower overlap with the base, compared with increased
complexity!

Overall, th@the priority fraction being examined (e.g. top or bottom 5%), the more sensitive
S

it was to anges. Across model alterations (excluding thresholding), most drastic single

changes wg seen in bottom ranks, although on average top and bottom ranks were fairly equally

affectedHy maps see Supporting Information.

Discussio

Conser@itioners are often concerned about data and model uncertainties, and their

impact on biodiversity outcomes. But from a decision-making point of view, reducing uncertainty is

only relevant if it changes the management decision at hand (Raiffa & Schlaifer 1961).
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Our results show that different decisions made during model building are unequal in their impact.
Converting continuous predictions into binary maps via thresholds or not accounting for data bias
result irht alterations in conservation decisions. Decisions about model complexity and
predictor d a smaller but not insignificant effect, whereas altering the number of
backgroﬂnEseemed to carry little effect beyond decisions about bias treatment. Biases are

published

pervasive ingthegspecies databases commonly used for SDM building (Merow et al. 2013), and
u still frequently built without any consideration of bias (Tulloch et al. 2016). Our
n

findings (FWS) emphasise the large impacts of accounting for bias which, based on previous

research (:al. 2009; Fithian et al. 2015), likely improves prediction accuracy.

Similarly, la ges to spatial plans can be introduced by converting continuous predictions into
binary ma in our example caused a 34% deviation in cell ranks. Binary thresholding
effectively fdis information in species distribution predictions (Wilson et al. 2005; Elith &
Leathwj nd has two main effects on the prioritisation: first, information on the relative
environment bility of grid cells is lost. Cells above the threshold value are all seen as equally

valuable and marginal habitats can be prioritised over core ones, as there is no information to
distinguishSetween them. Second, flattening continuous predictions into single value (either 1 or 0)
increases ti priority ordering of grid cells. These are commonly solved by enforcing random
ordering, a case with Zonation (Moilanen et al. 2014), which increases randomness in the
priority so‘tion. The relationship between suitability and abundance can be non-linear and noisy,
but theWong evidence that it is a positive relationship and is stronger when models are
fitted with covariages beyond simple climatic ones (Weber et al. 2017), as we have done. Previously,
Guillera-Arroita al. (2015) have illustrated the negative effects of thresholding on resource
utiIisati@et hitting in conservation, arguing against their use. Similarly, Calabrese et al.
(2014) show the negative impact of thresholding in stacking SDMs for richness estimates. In

applications that require delineation of habitat patches (e.g. population simulations) thresholding
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may be justified, but in spatial multi-species prioritisations, thresholding is typically not needed and

should not be done without justification. Where necessary, we recommend the use of truncated

thresholdit ich has minimal effect in comparison to the use of binary maps.

Alteration o affect locations of top and bottom priority areas differently. Not accounting
I I

for bias alt&ed bottom ranked areas the most, shifting them into less well surveyed areas (Fig. 1 and

3), wherea§”othe)SDM variations, such as variable selection, change top priorities more. Hence,
alternative modgl building and fitting options affect decisions differently depending on prioritisation
use. Wher d

guide placement of new developments to avoid important biodiversity areas (i.e.

looking for Iowerianked sites), not accounting for bias is likely to introduce largest uncertainty,

equivalentc&irely random solution (Fig. 5).

Our results also indicate that fewer species records do not necessarily introduce large uncertainty in
spatial cow prioritisations. Although the adequacy of species observation data to build
reliable predictions is often seen as a key concern (Elith & Leathwick 2009a; Bean, Stafford &
Brasharzalving the number of records only mildly altered spatial priorities (Fig. 4), and
retained reasonable (on average 64%) overlap with baseline priority areas (Fig. 5). The tight range

amongst ih suggests that the uncertainty is not strongly affected by the specific species

points inclher the reduction of information overall. Despite halving the data, only four
species dip w 30 records, suggesting there may still have been enough information to build a
reasonﬁ/ﬁsz et al. 2008). As the default MaxEnt settings for feature classes adjusts model
comple)mm number of records, MaxEnt is perhaps particularly effective with handling
smaller datasets ;Sth et al. 2011), so these findings might not directly apply to SDMs more broadly.
Yet, the w ct of altering species records on spatial priorities has also been shown elsewhere
(Grantham 08; Selwood et al. 2019). As we used cleaned data and accounted for bias based

on full datasets, our sub-setting may show reduced effects compared with cases where only few

poorer quality records exist. The difference between less records and bias or thresholding is
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nevertheless interesting, particularly as practices for handling bias or using thresholds are easier to

change than collecting more species records through field surveys.

{

We emph we did not have independent, unbiased data to test these model variants, and
therefore ing to identify the best way to fit SDMs. Rather, we tested alternatives that
H

reflect comiinon practice. There are many approaches for fitting models that could be tested in the

context of £OnserMation planning. These include search optimisations across many combinations of

o(

feature classes regularisation parameters in MaxEnt (Cobos et al. 2019) as well as testing across

multiple m i ethods or using ensembles (Hao et al. 2020).

3

Point-base aluations, exemplified by AUC (Fig. 2a), gave little insight on the extent to which

SDM decisions impact prioritisations. These did not indicate substantial differences between

§

variants, and i d to choose a best approach for prioritisation, would have selected no bias

treatment 00 background points. This is not a problem with the metric (AUC); the issue is

&

that th are biased, so models that are also biased (i.e. no bias treatment) appear better when

M

tested e biased data (El-Gabbas & Dormann 2018). Correlations between alternative SDM

variants gave more nuanced results but were still limited indicators of decision uncertainty (Fig. 2b).

[

Kulczynski’ jient successfully flagged some large impacts (Fig. 2c, d), but can be difficult to

interpret, s omes depended on which way the comparison was made. These results indicate

that there i or developing additional spatial metrics for comparing mapped predictions.

N

Spatial prigritisatign results are driven by many factors, notably the conservation objective and

{

constraint:n optimisations. Our results must be interpreted with these in mind. We only

considere of SDM variations using one spatial planning algorithm. We chose Core Area

se it allows changes in priorities to be most transparently linked to SDM alterations.
Additive algorithm$ (e.g. ABF Zonation) are further influenced by data-specific richness patterns,

making it harder to separate impacts of SDM choices from those of data characteristics. Under

strong richness gradients, use of additive algorithms can reduce the differences between SDM
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effects (Moilanen et al. 2013) but with the cost of reducing protection for species in species-poor
habitats. Similarly, target-based algorithms (e.g. Marxan) require defined species’ targets, another
subjectiMwhich also constrain the solution. A large caveat is that we do not know the true
distributior@. Some effects may change with a different baseline, although we found our
results 10 Ee, at least against alternative thresholding approaches applied on the baseline
(Supporting Anformation). We therefore believe our assessment about relative magnitudes of

differences

with knoww

Accounting for das biases and not thresholding predictions unless necessary are good first steps in

ative and a useful starting point for further explorations, including simulations

reducing m ed uncertainty in spatial plans. But cases where multiple equally valid pathways

to SDM b ist require more cautionary approaches. For example, in our analysis using an

alternativefbia ection still produced notable changes in spatial priorities. When no clear reasons
ion over another exists, it is important to explore the full range of uncertainty and
consider its e on the decision at hand (Smith et al. 2019). A robust way could be to produce
solutions wit options and select sites that are priorities irrespective of the method used

(Moilanen s al. 2006). Alternatively, additional work to identify the more accurate choice could be

undertake

re useful, but they will never perfectly represent the true landscape. When using

making, it is important they are the best estimates we can produce, limiting
uncertainty*as much as possible (Barry et al. 2006). The average 30% difference in prioritisation
outcomes resulti;from our model alterations is a clear indicator of the impact of decisions made
during mo uction. Consistent with other recent calls for reproducibility (Araljo et al. 2019),
our findings trate that model production decisions should not be made arbitrarily, but clearly

reported and justified.
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Table 1. Data, settings and approaches used in the alternative SDMs produced in this study.

Model

|

variants

types number of approach to bias environmental species
variant background points variable selection | data used
name (number of
variables)
(Supporting
i —— Information)
Base a) feature on | B) birds- 17833 y) target group 6) vary with g) all
background samples taxonomic group
mammals- 20730 (Supporting (16 to 19)
Information)
plants- 11904
w reptiles- 5341
Complex e complexity B \" 6 €
(autofedture off,
old on)
Simple lsear and quadratic B " 6 €
ly
Predictors B Y same set for all €
species (12)
Bias grid 20000 selection of 6 €
background points
weighted by bias layers
No bias 2 2000 none- random 6 €
background points
s used
No bias 10 o 10000 none- random 6 €
background points
used
No bias 30 30000 none- random 6 €
background points
used
Few records H B " 5 random
50%
(10 sample,
iterations)
10 repeats
Typical a 10000 none- random same set for all €
background points species (12)
Binary
Truncated a threshold was used to convert predictions to make binary or truncated predictions; applied to all SDM
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Figure legends

Figure 1. ;i) Obsiivation points for 25 species across the Greater Hunter study region in NSW,

Australia. Major regional city Newcastle, and the altitudinal peak Brumlow Top within Barrington

Tops Natid are shown. (b) Major vegetation types. The x and y axes indicate easting and

northing (metres) in the Australian Albers coordinate reference system. The lower inset
I I

demonstraSs the study site’s location within Australia.

Figure 2. ntitaive measures of differences between species distribution model variants for all

&

species: a a under the curve (AUC) calculated across 7-fold cross validation, b) Pearson’s

pairwise cdrfel@tioh coefficient, and Kulczynski’'s asymmetric coefficient comparing c) base to other

S

variants an variants to the base. Box represents the interquartile range with horizontal black line

and error bars corfespond to median and standard deviation, respectively. Circles represent outliers.

Ll

Figure 3. C ion prioritisations produced from the SDMs for all species under different model

variants. adient represents priority rank of each cell across the landscape measured

[

between 0 portant) and 1 (most important) in terms of biodiversity conservation value.

9

Figure 4. AbSo difference in cell rank values between solutions produced with the base SDMs

and ea | variant, ordered based on increasing rank difference when no thresholding is used.

The bars ifference between priority solutions when SDMs have not been post-processed

(no thresho ark grey), and when they have been modified with a truncated (intermediate

Ing,

grey) or binary (light grey) thresholding approach. Error bars represent standard deviation from the

f

mean for s ith multiple iterations.

Figure 5. C the top and bottom 20%, 10% and 5% priority sites, comparing prioritisations

based on e cies distribution model variant to that with the base model. Comparisons are

segregate versions of model variants with (a) continuous prediction with no post-processing, (b)

1

truncated thresholding and (c) binary thresholding. Error bars represent standard deviation from the

{

mean for s ith multiple iterations.

AU
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Figure 1. (a) Obs@lvation points for 25 species across the Greater Hunter study region in NSW,
Australia. Maj ional city Newcastle, and the altitudinal peak Brumlow Top within Barrington
Tops Nati k are shown. (b) Major vegetation types. The x and y axes indicate easting and
northing (metres) in the Australian Albers coordinate reference system. The lower inset

demonstrates the study site’s location within Australia.
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c) Kulczynski's coefficient

d) Kulczynski's coefficient

a) AUC b) correlation coefficient (base to var) (var to base)
Base r-{:D-1 | | |
Complex -1+ o i} HI)- i
Simple b} - TH Ik (]
Predictors r-{_[_:}-i o }---[_[J--{ }--u_}--| b- —eqo
Bias grid =[] HIJ4 H -4 '
Mo bias 2 e [H o p--{ }4 b [} -+
No bias 10 =L TH b T} {1} +[*
No bias 30 ob-{JH o t--{]}- +- i
Few records -] -+ o +-{]] e e HIL 1
Typical b--[TH oo b J4 o ob-[J-4 o HL -1
Binary — o H[H e Ik
Truncated | 4 SRR |

Figure 2. Quantitative measures of differences between species distribution model variants for all

species: a) afea under the curve (AUC) calculated across 7-fold cross validation, b) Pearson’s
pairwise c coefficient, and Kulczynski’s asymmetric coefficient comparing c) base to other
variants an nts to the base. Box represents the interquartile range with horizontal black line

and error b spond to median and standard deviation, respectively. Circles represent outliers.

|

(a) Base (b) Complex (d) Predictors

(c) Simple

(h) No bias 30

Priority

(i) Few records (I) Truncated _ 095

0.00

Figure &(I%ion prioritisations produced from the SDMs for all species under different model
variants. Colour gradient represents priority rank of each cell across the landscape measured

between 0 (least important) and 1 (most important) in terms of biodiversity conservation value.
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Figure 4. A difference in cell rank values between solutions produced with the base SDMs
and each iant, ordered based on increasing rank difference when no thresholding is used.

The bar e difference between priority solutions when SDMs have not been post-processed

(no thr ing, dark grey), and when they have been modified with a truncated (intermediate

M

grey) or binary (light grey) thresholding approach. Error bars represent standard deviation from the

r

mean for s ith multiple iterations.
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Figure 5. of the top and bottom 20%, 10% and 5% priority sites, comparing prioritisations

based on each species distribution model variant to that with the base model. Comparisons are

segregatewons of model variants with (a) continuous prediction with no post-processing, (b)

truncated olging and (c) binary thresholding. Error bars represent standard deviation from the

mean for solutions with multiple iterations.
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