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Abstracts 

Reinforced concrete barriers are commonly used as defence measures in hilly areas to contain 

falling boulders and landslide debris.  These barriers are conventionally designed to satisfy the 

conditions of force and momentum equilibrium with a factor of safety.  A major limitation of this 

approach is that the inertial resistance of the barrier is neglected such that the design could be 

over-conservative.  This paper presents a novel displacement-based approach for the assessment 

of overturning stability of rigid L-shaped barriers subjected to rockfall impacts. Analytical 

solutions, which are derived based on conservation of momentum and energy, are used to take 

into account the contributions of the self-weight and thus the inertial resistance of the barrier in 

resisting an impact.  The actual amount of energy transferred from the impacting boulder to the 

barrier is considered by including the coefficient of restitution between the two objects. The 

accuracy of the analytical solutions has been confirmed by laboratory impact experiments.  

Numerical assessments conducted using the new solutions indicate that a reasonably sized rigid 

barrier, due to its own inertial resistance, may adequately withstand the impact action of a heavy 

boulder rolling down a hillslope without relying on any anchorage to its support. A range of 

geometric design of the barriers with L-shaped cross sections also have been considered and 

analysed.  The new approach presented in this paper is easy to apply in practice and will be useful 

for engineers designing concrete barriers as passive rockfall mitigation measures. 

 

Keywords: rockfall, impact action, L-shaped rigid barrier, displacement-based approach, 

overturning stability  
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Notation 

l  = length of base slab 

c  = length of side wall  

COR = coefficient of restitution 

d  = height of side wall 

g  = gravitational acceleration 

h  = height of barrier  

ih  = vertical distance between point of impact and the axis of rotation  

I  = rotational inertia 

0KE  = initial kinetic energy of boulder  

1KE  = rebound kinetic energy of boulder  

2KE  = kinetic energy gained by the barrier 

M  = total mass of barrier 

baseM  = mass of barrier base slab 

sideM  = mass of a single side wall 

stemM  = mass of stem wall 

oM  = overturning moment 

oM  = restoring moment 

m  = mass of boulder  

n  = number of side walls 

PE  = potential energy gained by the barrier due to rotation 

R  = distance between the axis of rotation and the point of impact 

baser  = distance between the axis of rotation and the centroidal axis of the base slab 

sider  = distance between the axis of rotation and the centroidal axis of the side wall 

stemr  = distance between the axis of rotation and the centroidal axis of the stem wall 
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0v  = initial velocity of boulder  

1v  = rebound velocity of boulder  

2v  = velocity of barrier at the point of impact 

basew  = width of base slab 

sidew  = width of side wall 

stemw  = width of stem wall 

x  = horizontal distance to the barrier‟s centre of gravity from global vertical axis 

y  = vertical distance to the barrier‟s centre of gravity from global horizontal axis 

z  = global axis (axis of rotation) 

cz  = centroidal axis 

𝛥 = horizontal displacement of barrier 

C.G.Δ  = rise in the centre of gravity of barrier  

C.G.(crit)Δ = rise of the barrier‟s centre of gravity at the critical overturning condition 

  = a dimensionless ratio considering mass and geometrical effects 

  = angle of rotation 

crit  = critical angle of rotation 

  = angular velocity  
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INTRODUCTION 

Reinforced concrete barriers are commonly used as passive defence measures to protect buildings 

and infrastructures from natural hazards such landslides and rockfalls (e.g. Paronuzzi 1989; 

Patnaik et al. 2015; Ng et al. 2016).  To perform their intended functions, these structures should 

be capable of withstanding the impact force of the falling debris.  Currently they are typically 

designed using a force-based approach where the conditions of force and moment equilibrium are 

satisfied with a certain factor of safety.  For example, Fig. 1 shows an L-shaped barrier with 

stiffening counterforts constructed on a natural hillslope in Hong Kong.  This barrier was 

designed to resist the impact of a 1.8-m diameter boulder travelling at a velocity of 15 m/s.  The 

equivalent impact force was estimated using the simplified Hertz equation given in Kwan (2012), 

and the barrier was designed to have sufficient weight to counterbalance the impact force and the 

induced overturning moment. 

 

The use of a force-based approach for analysing dynamic impact problems may lead to over-

conservative design since certain important phenomena such as the effect of inertial resistance 

and the actual amount of energy transferred to the structure are neglected.  Despite these 

limitations, at present there is very limited guidance in the literature on how to deal with complex 

interactions between an impactor and an impact-resisting structure. Civil engineers working on 

the design of impact-resisting structures, such as bridge piers and vehicle parapets, commonly 

adopt the conventional approach of treating the impact action as equivalent static forces as 

stipulated by the relevant design guidelines (e.g. CEN 2006; Kim et al. 2012; AASHTO 2014). 

The use of this forced-based approach could result in over-conservative design because the 

duration of an impact force typically lasts for only a small fraction of a second as opposed to a 

continuing pseudo-static force which is implied in a conventional analysis.  Calculation methods 

based on the assumption of equal energy (i.e. no energy loss) could also result in grossly 

erroneous estimates of impact forces if only a fraction of energy delivered by the impactor is 

absorbed by the structure.  It should be noted that calculation procedures based on measured or 
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simulated contact force could still give misleading results if the time dimension, and/or inertial 

resistance generated from the resisting structures have not been fully factored into the calculation.  

Recent research has shown that, although the contact force may cause localised damage, only a 

small fraction of the force is actually transmitted to the rest of the structure due to its inertial 

resistance (Ali et al. 2014; Sun et al. 2014).  Therefore, the contact force generated by an impact 

could be an order of magnitude higher than the reaction force that the foundation need be 

designed to resist. 

 

To overcome the shortcomings of the existing design approaches, this paper presents a novel 

approach for the assessment of overturning stability of L-shaped reinforced concrete barriers, 

with and without side walls or stiffening counterforts. This approach which is based on the 

principles of energy and momentum conservation considers the inertial resistance of the barrier 

and energy lost on impact.  Stability is assessed by comparing the calculated movement with the 

critical value for the barrier.  In this paper, derivations of the analytical solutions are first 

presented. Results obtained from laboratory impact experiments are then used to verify the 

accuracy of the solutions.  The results of a parametric study are then presented to highlight the 

effect of barrier geometry on overturning stability. Limitations of the new method will also be 

discussed.   

 

ANALYTICAL SOLUTIONS 

Barrier geometry 

Fig. 2 shows an L-shaped barrier with its height and slab length of the barrier denoted as h and l  

respectively.  The stem wall of the barrier is impacted by a single boulder with mass m and 

travelling at an initial velocity 
0v , which is defined as the velocity immediately before the impact. 

The boulder hits the stem wall at a distance 
bh  above the point of rotation. Immediately following 

the impact, the barrier gains kinetic energy (KE2) which is then converted to potential energy (PE) 

as the barrier rotates (similar to the case of a swinging pendulum).  The barrier‟s centre of gravity 
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also rises by the vertical distance 
C.G.Δ .  The angle of rotation is denoted as θ and the top of the 

barrier travels a horizontal distance Δ.  The thicknesses of the stem wall and the base slab are 

stemw  and 
basew  respectively.   

 

Reference case: no energy loss 

If there is no energy loss, the maximum value of ΔC.G. can be obtained readily by equating the 

boulder‟s initial kinetic energy (KE0 = 2

00.5mv ) with the barrier‟s gain in potential energy 

(
C.G.PE MgΔ ) to obtain the following equation: 

 

2

0
C.G.

2

mv
Δ

Mg


           (1) 

 

where M is the total mass of the barrier and g is gravity.  A major shortcoming of Equation 1 is 

that the amount of kinetic energy delivered by the boulder is assumed to be equal to the amount 

of potential energy gained by the barrier, and that no consideration is given to the geometry of the 

barrier.  In reality, only a fraction of the energy is transferred to the barrier, with the rest of the 

energy being partly carried away by the rebounding boulder and partly dissipated in the form of 

heat and sound.  The implication of energy partitioning between the impactor and the target 

(barrier) for impact problems has been discussed previously by Ali et al. (2014) and Lam et al. 

(2018).  To take into account the effects of energy loss and the inertial resistance of the barrier, 

the principles of momentum and energy conservation can be incorporated into the derivation 

following the approach developed by Lam et al. (2018) for calculating the movement of 

rectangular blocks subjected to point-load impacts, as follows.   
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Consideration of momentum conservation  

The angular momentum of a barrier is the product of its rotational inertia ( I ) and angular 

velocity ( ).  By considering the conservation of angular momentum for the case shown in Fig. 2, 

the following equation can be written: 

 

0 i 1 imv h I mv h 
          (2) 

 

where 
0v  and 

1v  are the initial and rebound velocities of the boulder respectively, and hi is the 

perpendicular distance between the bottom of the base slab and the boulder. 

 

Rotational inertia (mass moment of inertia)  

For an L-shaped barrier, I  can be approximated as: 

 

 
2

2stem base
base

3 3

M M b
I h hw   

        (3) 

 

where 
stemM  and 

baseM  denote the masses of the stem wall and the base slab respectively.  For L-

shaped barriers with rectangular side walls, Equation 3 can be expanded to become: 

 

 
2 22 2 2

2stem base
base side stem stem

3 3 12 2 2

M M b c d d c
I h hw nM w w

      
             

        (4) 

 

where n and 
sideM  are the number and the mass of side walls respectively; c and d denote the 

length and height of the side walls respectively. Derivations of Equations 3 and 4 are given in 

Appendix A.   
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Consideration of velocity 

By considering the geometry of the barrier, it can be shown that the angular velocity   of the 

barrier can be expressed as: 

 

2d

d

v

t R


  

           (5) 

 

where 
2v  is the velocity of the barrier at the point of impact, and R  is the distance between the 

point of rotation and the impact location.  It can be shown that for the barrier shown in Fig. 2, R 

equals 2 2

i stemh w .  Substituting Equation 5 into Equation 2 and rearranging gives: 

 

0 1 2

i

I
v v v

mh R


 

   
            (6) 

 

Let 
i

I

mh R

   (dimensionless), Equation 6 now becomes: 

 

0 1 2v v v 
           (7) 

 

Adding 
2v  to both sides of the equation and then dividing by 

0v  gives: 

 

 1 2 2

0 0

1 1
v v v

v v



  

          (8) 

 

At this point, it is useful to introduce the coefficient of restitution (COR) which is a measure of 

kinetic energy loss during an impact (collision).  When the COR is 0, the impact is termed 

“inelastic” and the two objects coalesce and travel together after the impact.  When the COR is 1, 
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kinetic energy is conserved and the impact is termed “elastic”.  In this case, the objects rebound 

from each other with the same relative speed but in opposite directions.  When the COR is 

between 0 and 1, the impact is termed “partially elastic” and some of the kinetic energy is 

converted to other forms of energy such as heat, sound and work done deforming the object.  The 

COR is commonly defined as the ratio of relative speeds immediately after and before the impact, 

i.e.,  1 2 0COR= /v v v .  Substituting this definition into Equation 8 and rearranging gives: 

 

2

0

1 COR

1

v

v 





           (9) 

 

Equation 9 is particularly useful because it relates the rebound-to-initial velocity ratio of the 

impacting boulder to the COR and the dimensionless ratio  , both of which can be determined 

for a particular impact scenario. The value of the COR of an impact between the boulder and the 

barrier can be estimated with reference to previous research such as Chau et al. (1998) and 

Wyllie (2015), whereas factor   can be calculated using the size and dimensions of the barrier 

and the boulder. 

 

Consideration of rotational kinetic energy 

Now consider the rotational kinetic energy of the barrier: 

 

2

2

1
KE

2
I            (10) 

 

Substituting Equation 5 into Equation 10 and again letting 
i

I

mh R

   gives: 

 

2 2 2

2 2 i 2 i
2

i

1 1 1
KE

2 2 2

Iv v mh v mh
I

R mh R R R




  
     

          (11) 
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With Equation 9, the ratio of energy transfer from the boulder to the barrier, i.e., the energy-

reduction ratio, can be expressed and manipulated as follows: 

 

2

2 i 2 2

2 i 2 i

20 0
0

1
KE 1 COR2

1KE 1

2

v mh
h v hR

R v R
mv


 



    
     

  

      (12) 

 

Rearranging Equation 12 finally leads to: 

 

2

2 i
2 0

1 1 COR
KE

2 1

h
mv

R





 
   

          (13) 

 

Equations 12 and 13 show that the amount of energy transferred to the barrier does not equal the 

kinetic energy of the impacting boulder (
0KE ), but is a function of the barrier‟s geometrical 

properties and the coefficient of restitution between the two objects.  These effects are taken into 

account by the additional term 

2

i 1 COR

1

h

R





 
 

 
. 

 

Consideration of energy conservation 

By conservation of energy, the barrier‟s gain in kinetic energy (KE2) is gradually converted to 

potential energy (
C.G.PE MgΔ ) as the barrier rotates. Therefore, the maximum rise of the 

barrier‟s centre of gravity (
C.G.Δ ) can be expressed as: 

 

22

0 i
C.G.

1 COR

2 1

mv h
Δ

Mg R





 
   

          (14) 

 



12 

By comparing Equation 1 with Equation 14, again it can be seen that the effects of inertial 

resistance and energy loss are taken into account by the additional term 

2

i 1 COR

1

h

R





 
 

 
, which 

is the energy-transfer ratio (Equation 12).  From geometry, it can be shown that the angle of 

rotation θ is related to ΔC.G. via the following equation:  

 

C.G.1 1

2 2
sin tan

y Δ y

xx y
  

   
    

             (15) 

 

where x  and y  are the distances to the barrier‟s centre of gravity measured from the outer edge 

of the stem wall (global vertical axis) and the base slab (global horizontal axis) respectively. 

 

Critical overturning condition 

In assessing the stability of a barrier, the calculated ΔC.G. (Equation 14) can be compared with the 

critical value ΔC.G.(crit), which may be computed using the following equation: 

 

 
2 2

C.G. crit
Δ x y y  

         (16) 

 

Similarly, the calculated θ (Equation 15) can be compared with the critical value which has the 

following form:  

 

1

crit 90 tan
y

x
   

   
            (17) 

 

The derivations of Equations 16 and 17 are given in Appendix B. 
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EXPERIMENTAL VERIFICATION 

In order to verify the displacement-based analytical solutions derived in the previous section, 

pendulum impact tests of laboratory-scale were carried out on a free standing L-shaped concrete 

block. The concrete block had a density of 2400 kg/m
3
 and dimensions of 0.8 m × 0.6 m × 0.4 m 

( h  × l  × b ). The widths of the stem wall (
stemw ) and of the base slab (

basew ) were both 0.2 m. 

The dimensions are shown in Fig. 3(a). A photograph of the experimental setup is shown in Fig. 

3(b). A spherical cast iron object with mass of 5 kg was used as the impactor which was 

connected with two steel cables to guide its motion, and was raised to heights of 0.5 m, 1.0 m and 

1.5 m before it was released to strike the concrete block. The impact velocities corresponding to 

these heights were 3.13 m/s, 4.43 m/s and 5.42 m/s respectively. A steel plate weighing about 1 

kg was placed in between the impactor and the concrete block to prevent accumulative localised 

damage to the concrete surface following multiple strikes. As the mass of the steel plate was 

insignificant compared to concrete, its only effect on the experimental results was the COR 

values, which were captured and measured with the use of a high-speed camera. 

 

The rise in the centre of gravity 
C.G.Δ  could not be measured directly from the experiment. The 

horizontal displacement at the top of the wall ( Δ ) was measured instead. To this end, a laser 

displacement transducer with a measurement frequency of 1.5 kHz and a measurement range of 

600 mm was placed behind the concrete block. The peak horizontal displacement measured from 

each test could then be compared with that calculated from the analytical solutions. The 

theoretical horizontal displacement Δ  was obtained by first calculating the angle of rotation (θ) 

using Equation 15 and the converting it to Δ  using the following equation:  

 

sinΔ h             (18) 

 

Fig. 4 shows the measured and computed results. The COR values were measured to be 0.502, 

0.454 and 0.363 for impactor release height of 0.5 m, 1.0 m and 1.5 m respectively. Details of the 
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calculations are not given here as they will be illustrated in a worked example in the next section. 

As can be seen, there are good consistencies between the measured and theoretical results for the 

three impact tests. The accuracy of the analytical solutions is thus verified. 

 

NUMERICAL ASSESSMENT 

Worked example 

A worked example is presented herein to illustrate the use of the analytical solutions in practice.  

To show the advantage of the new design approach, the result is also compared with that obtained 

from the conventional approach which is based on moment equilibrium.  The barrier considered 

had a height ( h ) of 3 m, a slab length ( l ) of 6 m and a width (b ) of 10 m.  The widths of the 

stem wall (
stemw ) and of the base slab (

basew ) were both 1 m.  A boulder with a diameter of 1.8 m 

( ) and an initial velocity (
0v ) of 15 m/s is assumed to impact on the top of the stem wall (i.e., 

ih h ). These values were taken from the real-life example shown in Fig. 1, and the assumed 

impact location represents the worst-case scenario in terms of the barrier‟s overturning stability.  

The coefficient of restitution (COR) is conservatively taken as 0.5 after a review of the relevant 

literature (e.g. Chau et al. 1998; Wyllie 2015).  It should be noted that the COR is a function of 

material properties and impact velocity (Jankowski 2010; Sun et al. 2015; Perera et al. 2016), so 

its value will need to be considered on a case-by-case basis.  If the density of reinforced concrete 

(
c ) was taken as 2,500 kg/m

3
, the stem wall (

stemM ) and the base slab (
slabM ) of the barrier will 

weigh 50,000 kg and 150,000 kg respectively, thus giving a total mass ( M ) of 200,000 kg.  The 

mass of the boulder ( m ) would be 8,092 kg if its density was 2,650 kg/m
3
.  Using the analytical 

solutions presented previously, the following parameters can be determined:  

 

Distance between axis of rotation and impact location: 3.1623 mR    

Rotational inertia: 2,000,000I   kg·m
2
 

Dimensionless number: 26.0523   
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Therefore, the maximum rise in the barrier‟s centre of gravity was: 

2 22 2

0 i
C.G.

1 COR 8092 15 26.0523 3 1 0.5

2 1 2 200,000 9.81 3.1623 1 26.0523

mv h
Δ

Mg R





      
       

       = 0.0353 m  

 

The overturning stability of the barrier could be assessed by comparing the calculated ΔC.G. with 

the critical value ΔC.G.(crit).  To this end, the centre of gravity of the barrier needs to be located 

with reference to a global origin, which could be set conveniently at the point of rotation.  For 

objects with a uniform density, the centre of gravity is the same as the geometrical centre.  For 

the barrier considered in this example, the centre of gravity was located at x 2.375 m and y 

0.875 m.  Therefore  
2 2

C.G. crit
Δ x y y   1.6561 m.  If the factor of safety (FOS) against 

overturning was defined as 
  C.G.C.G. crit

Δ Δ , then this barrier would have a FOS of 47.  This result 

indicates that the barrier has sufficient capacity against overturning despite its temporary 

rotational movement.   

 

On the other hand, if this same barrier was assessed using the conventional force-based approach, 

the impact force would be 8353 kN which could be calculated using the simplified Hertz equation 

(Kwan, 2012). This force would induce an overturning moment (
oM ) of 25,060 kNm 

( 8353 kN 3 m  ) on the barrier.  Since the total weight of the barrier was 1962 kN (barrier mass 

equals 200,000 kg) and the centre of gravity was at a horizontal distance of 2.375 m from the axis 

of rotation, the restoring moment (
rM ) would be 4660 kNm ( 1962 kN 2.375 m  ).  If the FOS 

was defined in the conventional manner as 
r oM M , this barrier would have a FOS of merely 

0.19, which would in fact be not surprising given that the barrier was expected to rock slightly 

following the impact. 
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If the barrier is assumed to be simultaneously impacted by two boulders instead of one, the same 

calculation procedure can be adopted. Parameter m  may represent the combined mass of the 

impacting boulders and is 16,184 kg ( 8092 kg 2  ). The value of the dimensionless ratio  , 

which is a function of m , is reduced to 13 which is about half of the original value. If all other 

conditions remain the same, the maximum rise in the barrier‟s centre of gravity (ΔC.G.) becomes 

0.13 m and the corresponding value of the FOS is 12.6.  

 

It is noted the barrier analysed in the above worked example has a high safety margin in terms of 

overturning even when subjected to simultaneous impact by two sizeable boulders. Thus, the 

original design can be optimised by reducing the dimensions of the stem wall and the base slab, 

provided that the wall has sufficient structural strength to resist the predicted impact. The key to a 

successful design is to limit the barrier‟s movement to an acceptable level. This topic will be 

explored in the following section. 

 

Parametric study 

A parametric study has been carried out using the analytical solutions to investigate the effect of 

the change in geometry on the overturning stability of the barrier. The same barrier considered in 

the previous example was used for this study, except that the length of the barrier varied from 1 

to 10 m.  The length-to-height ratio ( l h ) of the barrier thus varied from 0.33 to 3.33.  The weight 

and the rotational inertia of the barrier would also vary.  To assess the effect of these changes, Fig. 

5 plots the energy-transfer ratio (
2 0KE KE ) against l h .  It can be seen that the value of 

2 0KE KE  drops rapidly when the value of l h  increases from 0.33 to around 2.0, which is true 

for all COR values. When the value of l h  increases further, the rate of reduction becomes 

increasingly smaller.  Results show that for a given wall height, increasing the slab length will be 

more effective for barriers with low l h  values. For any length-to-height ratio, a reduction in the 

COR would also lead to a reduction in 
2 0KE KE (Fig. 5).  Recalling that COR is a measure of 
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the amount of kinetic energy loss in the course of the impact.  For impact with a low value of 

COR, a large amount of kinetic energy is lost and less energy is therefore transferred to the 

barrier. It can be shown that the effects of COR gradually diminish when the value of l h  

increases. This is because when l h  is high, the inertial resistance of the barrier becomes the 

controlling factor in energy partitioning.  Lastly, it can be seen that even for an elastic collision 

where there is no loss of kinetic energy (COR = 1), the value of 
2 0KE KE is still less than 1 

because of the inertial resistance of the barrier being larger than that of the impacting boulder. 

 

Fig. 6 shows the rise in the barrier‟s centre of gravity (
C.G.Δ ) against l h .  To allow an evaluation 

of the barrier‟s overturning stability, curves corresponding to FOS of 1, 10 and 50 are also shown 

for reference.  Two observations can be made from this plot.  First, the shape of the computed 

C.G.Δ  curves much resemble those for 
2 0KE KE , except that the initial portion of the curves with 

low l h  values is not available because the barrier is predicted to have overturned. This 

resemblance is actually expected because the value of 
C.G.Δ  is directly proportional to that of the 

energy-reduction term according to Equation 14. Second, a high FOS appears to be appropriate if 

the movement of the barrier is limited to, say, below 50 mm.  The amount of “acceptable” 

movement should depend on a number of factors, such as the site setting and the structural design 

of the barrier. Lastly, it is emphasised that Fig. 5 and 6 are only valid for the impact scenario 

assumed in this exercise.  Similar graphs can be produced using spreadsheet to assist in the sizing 

of the barrier for a different impact scenario.   

 

LIMITATIONS 

The limitations of the analytical solutions are discussed in this section. First, the solutions were 

derived assuming that the boulder would rebound from the barrier following the impact. In other 

words, the solutions are valid for elastic or partially elastic impact ( 0 COR 1  ), but not for 

inelastic impact ( COR 0 ). This assumption should be valid for most situations except for the 



18 

case where the boulder becomes embedded into the barrier, which is a situation that can be 

avoided by adequate structural design. Another possible situation where rebounce may not occur 

is when the barrier is shielded by a granular cushion layer such as rock-filled gabions (Bourrier et 

al. 2008; Kwan et al. 2016; Ng, et al. 2016).  In this case, the cushion layer will dissipate the 

impact energy through elasto-plastic deformation.  Further research will be required to develop 

and validate analytical solutions for these impact scenarios. 

 

The second limitation is that the barrier under impact needs to be structurally robust to behave as 

a „rigid‟ body.  If the stem wall is only lightly reinforced, punching failure may occur around the 

impact location.  This situation can be avoided by performing checks against punching failure. 

Calculation methods are available for this purpose (e.g. CEB, 1988; Micallef et al. 2014).  

Another possibility is that if the wall-slab connection is not sufficiently rigid, the barrier wall 

may behave as a cantilever. Yielding may occur near the base where bending moment is 

maximum. To design wall against bending failure, the simplified Hertz equation given in Kwan 

(2012) or the analytical solutions developed by Lam et al. (2018) may be used to estimate the 

equivalent impact force for use in the structural design. Research is still underway to investigate 

the structural performance of reinforced concrete barriers when subjected to boulder impact. 

 

The third limitation of the analytical solutions is that the dimensionless ratio   must be greater 

than 1.  Since   is defined as 
i

I

mh R

 , this ratio takes into account several important factors 

including the geometrical effect of the barrier, the impact location, and the mass of the impacting 

boulder. The larger the value of  , the greater is the inertial resistance of the barrier.  However, if 

  is smaller than 1 (such as when the barrier is lighter than the impacting boulder), the boulder 

will not rebound but to continue its trajectory following the impact. Therefore, when sizing a 

barrier it is necessary to ensure that the barrier is sufficiently robust to resist the predicted impact, 

which can be achieved by adjusting the value of I  so that the value of   is always greater than 1. 
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To put this concept into context, for the barrier considered in the parametric study, the value of   

ranges from 2.7 to 111 when the slab length varies from 1 to 10 m. When the value of FOS 

equals to 10,   ranges from 9.5 to 16 depending on the value of the COR. Therefore, the 

condition of 1   is automatically satisfied for an adequately-sized barrier.  

 

Lastly, it is noted that the calculation methodology presented herein has not included the 

stabilising action of the soil covering the footing of the L-shaped barrier.  Designers have the 

option to either ignore the additional stabilising action for achieving a conservative design, or to 

take into account such stabilising action by treating the part of the soil overlying the footing as if 

it was part of the footing but allowing for the difference in density between the soil and the 

concrete. For a barrier with a thick layer of overburden soil above the base slab, the dynamic 

shear resistance at the interface between the moving barrier (including the overburden soil) and 

the surrounding soil mass can also contribute significantly to the barrier‟s overturning stability.  

Further research will be required to take into account such effects in the stability assessment. 

 

CONCLUSIONS 

In this paper, analytical solutions have been presented for the assessment of overturning stability 

of L-shaped barriers.  The solutions are derived based on the principles of momentum and energy 

conservation, and considerations of the inertial resistance of the barrier and energy loss during the 

impact.  The accuracy of the solutions has been confirmed by laboratory-scale experiments.  A 

worked example has been presented to illustrate the advantage of a displacement-based 

assessment over the conventional force-based design approach.  Both single and multiple boulder 

impacts have been considered.  The conventional design approach has been shown to be overly 

conservative as compared to the displacement-based approach, and the overestimation is due to 

the lack of consideration of the inertial resistance of the barrier arising from its own the self-

weight and the actual amount of energy transmitted to the structure. A numerical parametric 

study has also been conducted for an assumed impact scenario. Results show that for a given 
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barrier height, the length of the base slab has a profound effect on the energy-transfer ratio and 

hence the movement of the barrier.  This is due to the increase in the inertial resistance of the 

barrier as its slab length increases. It is hoped that the analytical solutions presented in this paper 

will be useful for designers of rockfall barriers aiming for a more rational and optimised design.  

In addition, the solutions may also be adopted for the design of other types of impact-resistant 

structures such as roadside traffic barriers.  
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APPENDIX A  

Rectangular 

For a rectangular block with height h , length l  and mass M , the rotational inertia about its 

centroidal axis and its base corner can be respectively expressed as: 

 

 

2 2

centroid
12

h l
I M


 
  

           (A1) 

 

2 2

base
3

h l
I M


 
  

            (A2) 

 

L-shaped  

Fig. 7 shows an isometric view of the L-shaped barrier previously shown in Fig. 2.  The distances 

between the global axis z  and the centroidal axis of the stem wall c(stem)z  and that of the base slab 

c(base)z  are rstem and rbase respectively.  The total rotational inertia is the sum of the moments of 

inertia of the wall 
 stemz

I  and of the base slab 
 basez

I .  By the parallel axis theorem, the rotational 

inertia of the stem wall about axis z is: 

 

   c

2

stem stemstem stemz z
I I M r 

         (A3) 

 

which can be expanded to: 

 

 

22 2 2
2stem stem

stem stem base basestem
12 4 2

z

d w wd
I M M dw w

      
          

          (A4) 

 

Since 
stemw  and 

basew  are typically much smaller than d, ignoring the contributions of their 

higher-order terms leads to: 
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 

2 2

stem stem basestem
12 4

z

d d
I M M dw

   
     

           (A5) 

 

Substituting 
based h w   (see Fig. 7) into Equation A4 and rearranging thus gives: 

 

    stem
base basestem

2
3

z

M
I h w h w  

        (A6) 

 

According to Equation A2, the rotational inertia of the rectangular base slab about the global axis 

z can be written as: 

 

   2 2base
basebase

3
z

M
I l w 

         (A7) 

 

Therefore, the total rotational inertia of the barrier can be obtained by summing Equations A6 and 

A7: 

 

    2 2stem base
base base base2

3 3
z

M M
I h w h w l w    

      (A8) 

 

Expanding and ignoring the contribution of 2

base
w  leads to: 

 

 
2

2stem base
base

3 3
z

M M l
I h hw  

        (A9) 

 

Equation A8 can be used to estimate the rotational inertia of an L-shaped barrier, but the result 

will be slightly less than the true value since the higher-order terms of wstem and wbase have been 
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neglected.  For example, for a barrier with h and b equal to 5 m and wstem and wbase equal to 0.5 m, 

the value of 
11zzI  is underestimated by 5% if estimated using Equation A9.  This is deemed 

acceptable for the purpose of routine design since the error is on the safe side.  In the main text, 

zI  is written as I  to denote that it is the rotational inertia about the axis of rotation.   

 

Rectangular side walls 

Fig. 8 shows an L-shaped barrier with two rectangular side walls.  The side walls have height d 

and length c, and the mass of a single side wall is 
sideM .  The rotational inertia of a single 

rectangular side wall about its centroidal axis zc is: 

 

 c

2 2

sideside
12

z

c d
I M

 
  

           (A10) 

 

where 
based h w   and 

stemc l w  .  By the parallel axis theorem, the side wall‟s rotational 

inertia about the axis z is: 

 

   c

2

side sideside sidez z
I I M r 

         (A11) 

 

where 
sider  is the distance between axes zc and z, and can be expressed as: 

 

2

stem

2

base

2

side
22


















 w

c
w

d
r

        (A12) 

 

Substituting Equations A10 and A12 into Equation A11 and rearranging gives: 
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 

2 22 2

side base stemside
12 2 2

z

c d d c
I M w w

      
          

            (A13) 

 

So far only a single side wall has been considered.  For barriers with two identical side walls or 

more, the combined rotational inertia is therefore: 

 

 

2 22 2

side base stemside
12 2 2

z

c d d c
I nM w w

      
          

            (A14) 

 

where n is the number of side walls.  Summing Equations A9 and A14 gives the rotational inertia 

of the whole barrier: 

 

 
2 22 2

2 2stem base
base side base stem

3 3 12 2 2
z

M M c d d c
I h hw b nM w w

      
              

        (A15) 

 

Equation A15 can be used to calculate the rotational inertia of an L-shaped barrier with any 

number of rectangular side walls or counterforts about axis z, which is the assumed axis of 

rotation.  Equation A15 is only approximate but the error is on the safe side as previously 

discussed.  In the main text, zI  is shown as I  to denote that it is the rotational inertia about the 

axis of rotation.    
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APPENDIX B 

Fig. 9 shows an L-shaped barrier at the critical overturning condition, that is, when the barrier‟s 

centre of gravity lies immediately above its point of rotation.  The following derivation is 

applicable to any shape so long as the barrier‟s centre of gravity is known.  As shown in Fig. 9, 

the initial centre of gravity is located at the horizontal distance x  measured from the outer edge 

of the stem wall and the vertical distance y  measured from the bottom of the base slab.  The 

distance between the point of rotation and the centre of gravity is thus 2 2x y .  At the critical 

overturning condition, the barrier‟s angle of rotation and the rise of the centre of gravity are 

denoted as 
crit  and 

 C.G. crit
Δ  respectively.  From geometry, it can be shown that: 

 

crit90                (B1) 

 

Substituting 
1tan

y

x
   
  

 
 and rearranging thus gives: 

 

1

crit 90 tan
y

x
   

   
            (B2) 

 

The rise of the centre of gravity, 
 C.G. crit

Δ , can be expressed as: 

 

 
2 2

C.G. crit
Δ x y y  

         (B3) 

  



29 

List of Figure Captions: 

Fig. 1 An L-shaped rigid rockfall barrier in Hong Kong with stiffening counterforts 

Fig. 2 Cross-section of an L-shaped barrier undergoing rotational movement after a rockfall 

impact 

Fig. 3 Experimental setup: (a) Schematic diagram (dimensions in mm), (b) Photograph 

Fig. 4 Horizontal displacement of an L-shaped concrete block struck by a pendulum impactor 

released from different heights 

Fig. 5 Energy-transfer ratio for an L-shaped barrier with different length-to-height ratios 

Fig. 6 Rise in the centre of gravity for an L-shaped barrier with different length-to-height ratios 

Fig. 7 A schematic L-shaped barrier and reference axes 

Fig. 8 A schematic L-shaped barrier with rectangular side walls and reference axes 

Fig. 9 Cross-section of a schematic L-shaped barrier at critical overturning condition 

 

Graphics programs/tools used: 

Camera: Fig. 1 and Fig. 3(b) 

Microstation: Fig. 2, Fig. 7, Fig. 8 and Fig. 9 

AutoCAD: Fig. 3(a) 

Origin: Fig. 4, Fig. 5 and Fig. 6 
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