1	Title:
2	The effect of elevated atmospheric carbon dioxide concentration on the contribution
3	of residual legume and fertilizer nitrogen to a subsequent wheat crop
4	
5	List of authors:
6	Shu Kee Lam ¹ , Deli Chen ^{1*} , Rob Norton ^{1,2} , Roger Armstrong ³
7	
8	Institute or laboratory of origin:
9	¹ Melbourne School of Land and Environment, The University of Melbourne, Victoria
10	3010, Australia
11	² International Plant Nutrition Institute, 54 Florence Street, Horsham, Victoria 3400,
12	Australia
13	³ Department of Primary Industries, Private Bag 260, Victoria 3401, Australia
14	*Corresponding author (e-mail: <u>delichen@unimelb.edu.au</u> ; telephone: +61 3
15	83448148; fax: +61 3 83445037)
16	

18 Abstract

19 *Purpose*

This study investigated the residual contribution of legume and fertilizer nitrogen (N)
to a subsequent crop under the effect of elevated carbon dioxide concentration
([CO₂]).

23 *Methods*

Field pea (Pisum sativum L.) was labeled in situ with ¹⁵N (by absorption of a 24 ¹⁵N-labeled urea solution through cut tendrils) under ambient and elevated (700 µmol 25 mol^{-1}) [CO₂] in controlled environment glasshouse chambers. Barley (*Hordeum*) 26 vulgare L.) and its soil were also labeled under the same conditions by addition of 27 ¹⁵N-enriched urea to the soil. Wheat (*Triticum aestivum* L.) was subsequently grown 28 to physiological maturity on the soil containing either ¹⁵N-labeled field pea residues 29 (including ¹⁵N-labeled rhizodeposits) or ¹⁵N-labeled barley plus fertilizer ¹⁵N residues. 30 Results 31

Elevated [CO₂] increased the total biomass of field pea (21%) and N-fertilized barley (23%), but did not significantly affect the biomass of unfertilized barley. Elevated [CO₂] increased the C:N ratio of residues of field pea (18%) and N-fertilized barley (19%), but had no significant effect on that of unfertilized barley. Elevated [CO₂] increased total biomass (11%) and grain yield (40%) of subsequent wheat crop

37	regardless of rotation type in the first phase. Irrespective of [CO ₂], the grain yield and
38	total N uptake by wheat following field pea were 24% and 11%, respectively, higher
39	than those of the wheat following N-fertilized barley. The residual N contribution
40	from field pea to wheat was 20% under ambient $[CO_2]$, but dropped to 11% under
41	elevated [CO ₂], while that from fertilizer did not differ significantly between ambient
42	$[CO_2]$ (4%) and elevated $[CO_2]$ (5%).
43	Conclusions
44	The relative value of legume derived N to subsequent cereals may be reduced under
45	elevated [CO ₂]. However, compared to N fertilizer application, legume incorporation
46	will be more beneficial to grain yield and N supply to subsequent cereals under future
47	(elevated [CO ₂]) climates.
48	
49	Keywords
50	Elevated [CO ₂], ¹⁵ N labeling, below-ground legume N, residual legume N, residual
51	fertilizer N
52	
53	Introduction
54	Atmospheric carbon dioxide concentration ([CO_2]) has increased from 280 µmol

 mol^{-1} at the beginning of the Industrial Revolution to the current level of 392 μ mol

56	mol^{-1} (NOAA 2012). If atmospheric CO ₂ emissions continue at their present rate the
57	CO ₂ concentration is estimated to reach about 700 μ mol mol ⁻¹ by 2100 (IPCC 2007).
58	Elevated [CO ₂] generally stimulates plant photosynthetic processes, often resulting in
59	increased crop growth and yield (Kimball 1983; Drake et al. 1997; Ainsworth and
60	Long 2005; Long et al. 2006) if progressive nitrogen (N) limitation (Luo et al. 2004;
61	Reich et al. 2006) does not occur. Total N uptake by crops and N removal in grain
62	also generally increase under elevated [CO ₂] (Kimball et al. 2002; Miyagi et al. 2007),
63	and this increase in N demand in cropping systems would be expected to gradually
64	reduce soil N reserves unless replenished.

Depletion of soil N in agroecosystems can be compensated by applying fertilizer and N_2 fixation by legumes. Legume or fertilizer residues can contribute to subsequent crops over time (Ladd and Amato 1986), and alleviate N limitation under ambient [CO₂]. While elevated [CO₂] may affect the quantity, quality and decomposition rate of crop residues (Torbert et al. 2000; Kimball et al. 2002), the availability of residual legume and fertilizer N to subsequent crops under elevated [CO₂] remains unclear.

The use of *in situ*¹⁵N feeding techniques provides an estimate of the total legume below-ground N accumulating in a growing season, and allows the quantification of this N to successive crops (Russell and Fillery 1996a, b; McNeill et al. 1997, 1998;

75	Khan et al. 2002a, b). Nitrogen rhizodeposited by legumes accounts for 4–71% of the
76	plant N under ambient [CO2] (Fustec et al. 2010). While an increase in N
77	rhizodeposition (29–31%) has been observed under elevated $[CO_2]$ in wheat and
78	perennial ryegrass (de Graaff et al. 2007; Bazot et al. 2008; Schulze and Merbach
79	2008), the effect of elevated $[CO_2]$ on N rhizodeposition by legumes has rarely been
80	studied. Symbiotic N_2 fixation is generally increased under elevated [CO ₂] (Rogers et
81	al. 2009). This, together with [CO ₂]-induced increase in legume above-ground and
82	below-ground biomass (Kimball et al. 2002; Ainsworth and Long 2005), suggests that
83	the availability of N in legume residue for subsequent crop growth will likely be
84	higher under future elevated CO ₂ atmospheres.
85	Fertilizer N recovery by crops rarely exceeds 40% under ambient [CO ₂] (Chen et
86	al. 2008; Gardner and Drinkwater 2009), and its contribution to the first succeeding
87	cereal crop typically ranges from 2 to 5% (Ladha et al. 2005). The few published
88	studies indicate that the effect of elevated [CO ₂] on fertilizer N recovery in cereals

89 was either positive (Martín-Olmedo et al. 2002; Weerakoon et al. 2005) or neutral

90 (Torbert et al. 2004; Kim et al. 2011; Lam et al. 2012). The remobilization of

91 fertilizer-derived N into grain has been shown to increase under elevated [CO₂] (Kim

et al. 2011). The contribution of fertilizer residue to subsequent crops may therefore

93 be lower under future CO_2 climates.

94	To our knowledge, no previous study has been conducted to compare the
95	contribution of legume and fertilizer residue N to a subsequent crop under elevated
96	[CO ₂]. Such information is critical for N management practice for soil N
97	replenishment under elevated [CO ₂]. The objective of this study was to investigate the
98	interactive effects of elevated [CO2] and residual N (legume or fertilizer N) on
99	subsequent wheat growth and N uptake. We hypothesized that elevated [CO2]
100	increases crop growth (crop residues input to subsequent rotation phase), and that
101	[CO ₂]-induced changes in the quantity and quality of crop residues affect the growth
102	and N uptake of a subsequent crop. We predict that the relative impact of legume
103	residues should increase under elevated [CO2] whereas that of fertilizer residues should
104	decrease under elevated [CO ₂].

106 Materials and methods

107 *Glasshouse chambers*

108 This study was conducted between September 2010 and April 2011, in soil in pots in a 109 set of four naturally lighted glasshouse chambers (3.1 m long \times 2.4 m wide \times 2.6 m 110 high) located at the Department of Primary Industries Grains Innovation Park in 111 Horsham (36°43' S, 142°10' E), Victoria, Australia. Two glasshouse chambers had 112 ambient [CO₂] (390 µmol mol⁻¹), and two had elevated [CO₂] (700 µmol mol⁻¹). Each

treatment was created by adding pure CO_2 to a mixing fan within the chambers
the $[CO_2]$ was monitored using an infra red gas analyser (Guardian SP 97
116 Edinburgh Instruments Ltd). Air temperature in each chamber was measured
117 temperature sensor (DS1923 Hygrochron iButton, Thermodata Pty Ltd) that
118 mounted 15 cm above the plant canopy. The average day/night temperature o
119 chamber throughout the growing season was 24/21°C.

121 Experimental design

The effect of elevated [CO₂] on the contribution of residual legume N and residual 122 123 fertilizer N from a previous barley crop to subsequent wheat crops was investigated in 124 pots in a glasshouse under three different 2-phase rotations, viz. field pea-wheat, 125 N-fertilized barley-wheat, and barley (no fertilizer)-wheat (control). In rotation phase 126 1 we determined the effect of elevated $[CO_2]$ on the accumulation of legume N and the partitioning of N derived from fertilizer in the crop-soil system. In rotation phase 127 2 we examined the recovery of residual legume N and fertilizer N by a following 128 129 wheat crop under ambient or elevated [CO₂]. Residual legume N refers to N derived from field pea residues. Residual fertilizer N refers to N derived from fertilizer 130 131 residues and barley residues i.e. direct soil-derived fertilizer residues plus indirect

132	barley-derived fertilizer residues, which will be referred to as fertilizer residues
133	throughout the text. The experimental design was two CO_2 concentrations \times three
134	rotation types \times two rotation phases, with four replications, totaling 48 pots (PVC
135	tubes, 15 cm diameter, 45 cm deep, sealed at the bottom). The four replicates in both
136	experiments were subdivided into two groups of duplicates and put to each block of
137	[CO ₂]. The PVC pots within each chamber were completely randomized.

139 Soil and PVC pot preparation

140 A Vertosol soil (Isbell 1996) was collected from the plough layer (top 20 cm) of an 141 undisturbed area 8 km south-west of Horsham. The soil had a pH (soil:water ratio of 142 1:5) of 8.10, and contained 1.10% organic C, 0.12% total N, 2.0 mg ammonium-N 143 kg^{-1} , 4.1 mg nitrate-N kg^{-1} , 7 mg Colwell P kg^{-1} , 630 mg available K kg^{-1} and 37% 144 clay. The soil was air dried, crushed into < 1 cm fractions, and mixed thoroughly. Any 145 visible plant residues were picked out manually and discarded.

The 48 PVC pots were filled with 7.4 kg (dry weight) of the Vertosol. Field capacity of the soil was determined and the soil was re-wetted to 80% of field capacity before sowing. To ensure the soil was wet evenly throughout the column, the 7.4 kg soil was added in three portions of 1.8 kg (equivalent to 9 cm depth of soil) and a top portion of 2.0 kg (equivalent to 10 cm depth of soil), and each portion was 151 followed by the addition of reverse osmosis water. A basal nutrient application of 152 $35.3 \text{ mg P pot}^{-1}$ (as NaH₂PO₄·2H₂O, equivalent to 20 kg P ha⁻¹), 4.4 mg Cu pot⁻¹ (as 153 CuSO₄·5H₂O, equivalent to 2.5 kg Cu ha⁻¹) and 8.8 mg Zn pot⁻¹ (as ZnSO₄·7H₂O, 154 equivalent to 5 kg Zn ha⁻¹) was added to the top 2.0 kg portion, and the contents of 155 the top portion were thoroughly mixed.

156

157 *Rotation phase 1—Plant cultivation and ¹⁵N-labeling*

In the first phase, five seeds of field pea (Pisum sativum L. cv. Kaspa; a semi-leafless 158 field pea cultivar) were sown to the PVC pots of field pea-wheat rotation on 6 159 September 2009. The seeds of field pea were inoculated with a commercial inoculant 160 (Becker Underwood Pty Ltd) following the manufacturer's instructions. Ten days 161 162 after emergence, field pea seedlings were thinned to two per pot based on sowing 163 density in the field. The thinned plants were returned to the soil. All the pots were watered with reverse osmosis water to constant weight (80% of field capacity) every 164 two to three days. Field pea plants were labeled with ¹⁵N urea (3 mL, 0.5% w/w urea, 165 98.26 atom% ¹⁵N) on 34 days (growth stage: 12th node), 42 days (16th node) and 49 166 days (20th node) after emergence. The tip (2 mm) of two tendrils per field pea plant 167 was cut off and the remainder of the tendrils was immersed in the labeling solution in 168 sealed ziplock bags (4 cm by 6 cm) for 24 hours, by which time the solution was 169

mostly absorbed (de Graaff et al. 2007). The ziplock bags were attached to the petiole
of the tendrils by Blutack. The quantity of labeling solution absorbed by the plants
(93–96%) was determined by weighing the solution in the ziplock bags before and
after the labeling process using a 5-decimal digital balance. No loss of solution due to
evaporation was detected from control ziplock bags containing 3 mL of solution
without tendrils.

Ten seeds of barley (*Hordeum vulgare* L. cv. Gairdner) were sown to the PVC pots of barley-wheat rotation on the same day when field pea seeds were sown. ¹⁵N-labeled urea (10.22 atom% ¹⁵N) was applied to the PVC pots at 50 or 0 kg N ha⁻¹ as a band with the seeds to minimize losses by volatilization. Ten days after emergence, barley seedlings were thinned to four per pot. The thinned plants were returned to the soil. All the pots were watered with reverse osmosis water to constant weight (80% of field capacity) every two to three days.

183

184 *Sample collection and preparation*

All plants in each pot were harvested when leaves were completely senesced and grain was fully developed and ripened, approximately 90 days after emergence. The plants were cut at ground level to separate the above-ground parts from the bulk soil, and the above-ground parts were separated into grain and shoot (stem and leaf). The

entire 0–10 cm and 10–37 cm soil layers from half of the 48 PVC pots were removed. 189 Soil samples were weighed and ground to less than 2 mm diameter. For both soil 190 191 layers, root materials were collected and separated into clean roots (after brushing away the soil particles) and very fine roots which were mixed with the bulk soil. To 192 reduce sampling error due to large bulk soil weight, triplicate subsamples of the bulk 193 soil were taken for subsequent analysis. The plant and soil samples were oven dried at 194 60°C and 40°C, respectively, for 48 hours and weighed. The dried plant and soil 195 material was ground (in a ball mill; TissueLyser II, QIAGEN) to yield a fine powder 196 of ~100 µm. The control pots (barley) were treated as described above except the 197 plants were not ¹⁵N-labeled. These pots provided background atom% ¹⁵N values for 198 calculating excess ¹⁵N of the labeled plant and soil material. 199

200

201 Rotation phase 2—Wheat cultivation

The dried shoot material obtained from the harvest of the first phase was cut into segments of 2–3 cm length. Around 90% of this material was added on 16 December to the 24 PVC pots that had not been destructively harvested. The remaining 10% of the plant material was retained for chemical analysis to determine the amount of ¹⁵N added to rotation phase 2. The amount of residues incorporated corresponded to 4.1, 5.9 and 4.1 t ha⁻¹ (on an area basis) for field pea-wheat rotation, ¹⁵N-fertilized

barley-wheat rotation and unfertilized barley-wheat rotation, respectively, under 208 ambient $[CO_2]$, and 5.1, 6.3 and 4.3 t ha⁻¹ under elevated $[CO_2]$. The soil and root 209 (0-10 cm) was lightly 'ploughed' to incorporate the residue material into the top 10 210 cm of soil to simulate field practice. Reverse osmosis water was added to each pot to 211 constant weight (80% of field capacity) every week for one month before sowing of a 212 subsequent crop. This simulated the fallow period for residue decomposition between 213 214 crop harvest and the sowing of a subsequent crop. After a wetting / drying cycle of one month, ten seeds of wheat (Triticum aestivum L. cv. Yitpi) were sown on the soil 215 on 15 January 2011. No fertilizers were applied in this 2nd phase. Ten days after 216 217 emergence, plant seedlings were thinned to four per pot. All the pots were watered 218 with reverse osmosis water to constant weight (80% of field capacity) every two to 219 three days.

220

221 *Sample collection and preparation*

All plants in each pot were harvested when leaves were completely senesced and grain was fully developed and ripened (approximately 80 days after emergence). The plants were cut at ground level to separate the above-ground parts from the bulk soil, and the above-ground parts were separated into grain and shoot. The entire 0–10 cm and 10–37 cm soil layers were removed from the pots. Soil samples were weighed,

227	crushed to particles less than 2 mm in diameter, and sieved through a 2 mm sieve to
228	remove undecomposed residue from the first phase. For the top 0-10 cm soil layer,
229	coarse root material was separated manually, cleaned by brushing away the soil
230	particles, and a sample was taken for analysis. The fine roots were mixed thoroughly
231	with the soil, and sample of the mixture was taken for analysis. No wheat roots were
232	picked from the 10-37 cm layer because wheat roots and roots from the previous crop
233	were not easily differentiated. The plant and soil material was oven dried at 60°C and
234	40°C, respectively, for 48 hours and weighed. The dried plant and soil material was
235	ground (in a ball mill; TissueLyser II, QIAGEN) to yield a fine powder of ~100 μ m.

237 Chemical analysis and ¹⁵N calculations

The finely ground plant and soil samples in both phases were analyzed for total C, total N and δ^{15} N values by isotope ratio mass spectrometry (IRMS) (Hydra 20-20,

240 SerCon). Grain protein concentration of wheat was estimated by multiplying grain N

concentration by 5.7 (Jones 1941).

Legume root-derived N in the bulk soil ($N_{bulk soil}$) in the first rotation phase was estimated by mass of ${}^{15}N_{excess bulk soil}$ divided by specific enrichment of clean roots (µg ${}^{15}N_{excess clean root}$ / mg root N) (Khan et al. 2002a). Total below-ground legume N ($N_{below-ground}$) was calculated as the sum of measured clean root N ($N_{clean root}$), and

estimated legume root-derived N in soil, i.e. $N_{below-ground} = N_{clean root} + N_{bulk soil}$ (Russell 246 and Fillery 1996b; Khan et al. 2002a). The major assumptions of these calculations 247 are that any excess ¹⁵N in the soil is derived only from the ¹⁵N-enriched legume root 248 and that any root-derived N in the below-ground pools has the same specific ¹⁵N 249 enrichment as the clean root material (Khan et al. 2002a; McNeill and Fillery 2008). 250 Enrichments (atom% ¹⁵N excess) were calculated by correcting measured atom% ¹⁵N 251 values with background atom% ¹⁵N values of corresponding non-labeled barley plant 252 and soil fractions. The percentages of ¹⁵N applied that were recovered in crop and soil 253 were calculated according to Hauck and Bremner (1976). 254 The percentage of residual field pea N or fertilizer N in the first phase recovered 255 by the subsequent wheat (%N_{wheat}) was calculated as: %N_{wheat} = $\mu g^{15} N_{excess wheat} / \mu g$ 256 $^{15}N_{excess residual N} \times 100$, where μg $^{15}N_{excess wheat}$ is the total excess ^{15}N content of the 257

subsequent wheat, and $\mu g^{15} N_{excess residual N}$ the excess ¹⁵N content of estimated total residual legume N or fertilizer N in the first phase (Rees et al. 1993; Williams et al. 2000; McNeill 2001).

261

262 *Statistical analysis*

263 Data were analyzed with MINITAB 16 statistical package using a General Linear 264 Model analysis of variance with a level of significance of p < 0.05 unless otherwise

266	equalize variances between treatments.
267	
268	Results
269	Rotation phase 1
270	
271	Total biomass
272	Elevated [CO ₂] increased ($p < 0.001$) the total biomass of field pea and N-fertilized
273	barley by 21% and 23%, respectively, but the $[CO_2]$ -induced increase (9%) in the
274	total biomass of barley receiving no N fertilizer was not significant (Table 1).
275	
276	>> Insert Table 1 near here>>
277	
278	N uptake
279	Increasing [CO ₂] resulted in a 25% increase in total N uptake by field pea ($p <$
280	0.001), but had no effect on total N uptake by N-fertilized barley and reduced that of
281	unfertilized barley by 10% ($p < 0.001$) (Table 1).
282	The specific enrichment of clean root fraction for ¹⁵ N-fed field pea was in the
283	range of 7.4–8.4 and 6.3–7.2 at 0–10 cm and 10–37 cm soil depth, respectively (Table

stated. Data were tested for normality and \log_{e} -transformed where necessary to

284	2). The estimated root-derived N at the corresponding soil depth was 40-56 and
285	34–39 mg N pot ^{-1} . Elevated [CO ₂] had no significant effect on these parameters
286	(Table 2). The total below-ground N of field pea represented 18% and 19% of the
287	total plant N under ambient and elevated [CO2], respectively. These values were not
288	significantly different (Table 2).
289	For N-fertilized barley, the recovery of fertilizer N in the plant was in the range
290	of 48–49% while that in the soil ranged from 31–33% (25% in the 0–10 cm soil layer;
291	6-8% in the 10-37 cm soil layer). Elevated [CO ₂] was associated with a marginally
292	significant increase in the N recovery in grain from 33.8 to 35.3% ($p = 0.07$), but did
293	not significantly affect the recovery of fertilizer N in other plant parts or in the soil.
294	

296

Elevated [CO₂] increased the C:N ratio of field pea and ¹⁵N-fertilized barley residues 298 by 18% and 19%, respectively, but had no significant effect on that of unfertilized 299 barley residues (Table 1). 300

301

302 Rotation phase 2

Residue C:N ratio 297

304 Wheat biomass

305 Elevated [CO₂] increased total biomass (11%, p < 0.001) and grain yield (40%, p < 0.001) 0.001) of wheat regardless of rotation type in the first phase, but had no significant 306 effect on the shoot and root biomass of wheat (Fig. 1). When averaged across [CO₂], 307 the grain yield and shoot biomass of the wheat following field pea were 24% (p <308 0.001) and 21% greater (p < 0.001), respectively, than those of the wheat following 309 N-fertilized barley. When compared to the wheat following barley which received no 310 N fertilizer, N application to barley in the first phase did not significantly affect the 311 312 grain yield and shoot biomass of the subsequent wheat (Fig. 1).

313

314 >> Insert Fig. 1 near here>>

315

316 Wheat N uptake

There was a marginally significant (p = 0.1) interaction between elevated [CO₂] and previous rotation phase on total N uptake by wheat: elevated [CO₂] increased the total N uptake by wheat following N-fertilized barley (11%), but had no significant effect on the N uptake by wheat following field pea or unfertilized barley (Fig. 2). When averaged across the rotation treatments, elevated [CO₂] increased wheat grain N

322	content by 15% ($p < 0.001$), but reduced the shoot N content by 27% ($p < 0.001$) and
323	root N content 26% ($p < 0.01$). When averaged across [CO ₂] treatments, total N
324	uptake by wheat following field pea was 11% higher ($p < 0.001$) than that grown after
325	N-fertilized barley (Fig. 2).
326	
327	>> Insert Fig. 2 near here>>
328	
329	Grain protein concentration
330	Both elevated [CO ₂] and previous rotation type had a significant effect on grain
331	protein concentration of wheat (Table 3). Irrespective of rotation type, elevated [CO ₂]

had a significant negative effect on grain protein concentration but [CO₂]-induced

reductions were greater for wheat following unfertilized barley than for wheat

following field pea and N-fertilized barley (significant $[CO_2] \times$ species interaction,

Table 3). When averaged across [CO₂], the grain protein concentration of the wheat

- **336** crop grown after N-fertilized barley (16.2%) was higher than that grown after field
- **337** pea (13.7%) and unfertilized barley (14.3%) (Table 3).

338

332

333

334

335

339 >> Insert Table 3 near here>>

342	The amount of excess ¹⁵ N added from field pea residues in the previous phase
343	was 33% greater ($p < 0.05$) under elevated [CO ₂] than under ambient [CO ₂], whereas
344	excess ¹⁵ N added from fertilizer residues did not differ significantly between [CO ₂]
345	treatments (Table 4). The amount of ¹⁵ N recovered in wheat parts followed the order
346	grain $>$ shoot $>$ root, irrespective of [CO ₂] treatment (Table 4).
347	
348	>> Insert Table 4 near here>>
349	
350	Contribution of residual legume and fertilizer N to wheat

For soils which had been amended with legume material, wheat grain, shoot and upper root contained 9–15%, 2–5% and 0.3–0.5%, respectively, of the total residual ¹⁵N that was in the soil at sowing. For soils which had received fertilizer ¹⁵N for the previous barley crop, ¹⁵N in wheat grain, shoot and upper root accounted for 3–4%, 0.7–1.0% and 0.1–0.2%, respectively, of the residual ¹⁵N remaining in the soil when the wheat was planted (Table 4).

Elevated [CO₂] reduced the proportion of residual legume N recovered by grain, shoot and upper root of the wheat crop by 40, 56 and 38%, respectively (Table 4). However, increasing [CO₂] had no significant effect (p > 0.05) on the residual N

360	contribution from fertilizer to wheat parts (Table 4). The above-ground parts of wheat
361	following field pea represented 20% of the ¹⁵ N present at sowing under ambient [CO ₂]
362	and 11% under elevated [CO ₂]. These percent recoveries were significantly greater
363	than those of the wheat following N-fertilized barley under ambient $[CO_2]$ (4%) and
364	elevated $[CO_2]$ (5%) (Table 4).

366 Discussion

In the first phase of the rotation, the [CO₂] fertilization effects on total biomass of 367 field pea and N-fertilized barley were within the range of growth responses of various 368 crops to elevated [CO₂] (Kimball et al. 1983; Cure and Acock 1986; Jablonski et al. 369 370 2002). However, the total biomass of barley grown did not respond to elevated [CO₂] without the application of fertilizer N. Similar N-dependent growth response of barley 371 372 to elevated [CO₂] was also observed by Thompson and Woodward (1994) and Fangmeier et al. (2000). In our study, the N-dependent effect of growth response to 373 elevated [CO₂] was associated with plant N uptake. The reduction in plant N uptake 374 by unfertilized barley under elevated [CO₂] indicates that soil N availability was 375 376 insufficient to meet plant demand under elevated [CO₂]. A declining N availability has previously been shown to eliminate the [CO₂]-induced enhancement in leaf area 377 index of cereal (Kim et al. 2003), thereby restricting the CO₂ fertilization effect on 378

379 plant growth. In contrast, we found that this limitation of CO₂ fertilization effect on 380 growth did not occur when N fertilizer was applied to barley or for field pea, which 381 could source its N via N₂ fixation. A review by Reich et al. (2006) suggests that a 382 general N limitation of biomass accumulation to elevated [CO₂] effect is common, 383 although not ubiquitous. Intense competition between plants and microbes for soil N 384 can restrict plant growth responses to elevated [CO₂] (Gill et al. 2002). Improved N management strategies will therefore be needed to sustain crop growth (and residue 385 input) and account for the additional grain N removal under future elevated CO₂ 386 atmospheres. 387

Many cropping systems, especially those where fertilizer N inputs are relatively 388 389 low by international standards due to low and unreliable rainfall that dominate much 390 of Australia, rely heavily on legume N₂ fixation to supply N to subsequent cereal 391 cropping phases. The supply of residual N to subsequent crop depends on various biotic and abiotic factors including the quantity and quality of residue, and the 392 interaction between plants and microbes under elevated [CO₂] (Reich et al. 2006). 393 Previous work, often focusing on soybeans and pasture legumes, showed that legume 394 biomass and N₂ fixation increase under elevated [CO₂] (e.g. Soussana and Hartwig 395 1996; Kimball et al. 2002; Rogers et al. 2009). We found that elevated [CO₂] 396 increased the amount of residues produced (and incorporated) from the preceding 397

398	field pea but that this residue also had a greater C:N ratio. This suggests that soil N
399	availability to the subsequent wheat crop was reduced under elevated [CO2], similar
400	to that observed by others (Hungate et al. 1997; de Graaff et al. 2006). This increase
401	in N immobilization partly explains why whole plant N uptake of the subsequent
402	wheat was not higher under elevated [CO ₂], despite a potentially greater amount of N
403	in the soil system originating from the field pea residues. This phenomenon could be
404	also be related to a decrease in the uptake rates of N by unit mass or length of roots
405	under elevated [CO2] (Taub and Wang 2008). Another possible explanation is a
406	reduced rate of decomposition of crop residues (including legumes) observed in other
407	studies under elevated [CO ₂] (Torbert et al. 2000). As a result, the contribution of field
408	pea N to subsequent wheat, at least in the short term, was lower under elevated [CO ₂]
409	in our study.

The contribution of field pea N to subsequent wheat N (11–20%) was within the range of the recovery of N contained in grain legume residues (2–27%) by various first succeeding crops (Fillery 2001). Although reduced under elevated [CO₂], the contribution of field pea residue N to subsequent wheat (11%) was significantly greater than that of fertilizer residue N (5%) in our study. While soil microbes prefer higher quality substrates (Kuzyakov 2002), the lower C:N ratio of the field pea residues than that of barley residues may explain the difference in residual

417	contribution between field pea N and fertilizer N. Unaffected by elevated [CO ₂], the
418	recovery of residual fertilizer N by wheat in the present study was within the range of
419	the generally low fertilizer N recovery (2-5%) in the first succeeding crop under
420	various N application methods and residue management practices reported by Ladha
421	et al. (2005). Furthermore, we found that the grain yield of wheat following field pea
422	was greater than that of wheat following N-fertilized barley, regardless of [CO2].
423	These results suggest that N fertilizer application does not have a substantial residual
424	effect, whereas that derived from legume residue N is a more accessible N source for
425	subsequent crops, especially over the longer term (Ladd and Amato 1986).
426	The negative effect of elevated [CO ₂] on grain protein concentration, consistent
427	with the quantitative reviews by Jablonski et al. (2002) and Taub et al. (2008), may
428	represent a 'dilution effect' (Loladze 2002) and/or the adverse effect of elevated [CO ₂]
429	on nitrate assimilation in wheat (Bloom et al. 2010); this warrants further study.
430	Although the grain protein concentration of wheat grown after field pea was lower
431	than that of wheat grown after N-fertilized barley, grain protein concentration of all
432	treatments was greater than the market requirement of 12% protein in Australia
433	(Department of Primary Industries 2008). This suggests that residual legume N and
434	fertilizer N will be sufficient for at least the first succeeding wheat crop to be
435	marketable under future CO ₂ climates.

437 Conclusions

438 Elevated [CO₂] increased N accumulation by field pea but decreased fertilizer N reserves in the soil after growing barley. Elevated [CO₂] reduced the recovery in 439 succeeding wheat of N contained in field pea residue, but did not significantly affect 440 the recovery of fertilizer residue N. Field pea residue N contributed more to 441 subsequent wheat N than fertilizer residue N irrespective of [CO₂]. The grain yield 442 and N uptake by the wheat following field pea were greater than that for the wheat 443 444 following N-fertilized barley. These results suggest that N fertilizer application has a minimal residual value, and that including a legume in a crop rotation will provide 445 446 more N and enhance yield of a subsequent crop under future CO₂ environments.

447

448 Acknowledgments

This work was supported by the Australian Research Council, the Victorian
Department of Primary Industries and The University of Melbourne. The authors wish
to thank Dr. Saman Seneweera for establishment and management of CO₂ chambers,
Mr. Peter Howie and Mr. Garry Wilde for field assistance, Mr. Jianlei Sun and Dr.
Xing Chen for chemical analyses, and Dr. Arvin R. Mosier for valuable comments on
the manuscript.

References

456	Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO_2
457	enrichment (FACE)? A meta-analytic review of the responses of
458	photosynthesis, canopy properties and plant production to rising CO ₂ . New
459	Phytol 165: 351-372
460	Bazot S, Blum H, Robin C (2008) Nitrogen rhizodeposition assessed by a $^{15}NH_3$ shoot
461	pulse-labelling of <i>Lolium perenne</i> L. grown on soil exposed to 9 years of CO_2
462	enrichment. Environ Exp Bot 63:410–415
463	Bloom AJ, Burger M, Salvador J, Asensio R, Cousins AB (2010) Carbon dioxide
464	enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science
465	328:899–903
466	Chen D, Suter H, Islam A, Edis R, Freney JR, Walker CN (2008) Prospects of
467	improving efficiency of fertilizer nitrogen in Australian agriculture: a review
468	of enhanced efficiency fertilizers. Aust J Soil Res 46:289-301
469	Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: A literature
470	survey. Agric Forest Meteorol 38:127–145
471	de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions
472	between plant growth and soil nutrient cycling under elevated CO ₂ : a
473	meta-analysis. Glob Change Biol 12:2077–2091

474	de Graaff M-A, Six J, van Kessel C (2007) Elevated CO_2 increases nitrogen
475	rhizodeposition and microbial immobilization of root-derived nitrogen. New
476	Phytol 173:778–786
477	Department of Primary Industries (2008) Organic farming: wheat production and
478	marketing. Agriculture Notes. AG1075. Department of Primary Industries,
479	Victoria, Australia.
480	http://www.dpi.vic.gov.au/agriculture/farming-management/organic-farming/o
481	rganic-crops-and-pastures/wheat-production-and-marketing. Accessed 5
482	February 2012
483	Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a
484	consequence of rising atmospheric CO ₂ ? Annu Rev Plant Physiol Plant Mol
485	Biol 48:609–639
486	Fangmeier A, Chrost B, Hogy P, Krupinska K (2000) CO ₂ enrichment enhances flag
487	leaf senescence in barley due to greater grain nitrogen sink capacity. Environ
488	Exp Bot 44:151–164
489	Fillery IRP (2001) The fate of biologically fixed nitrogen in legume-based dryland
490	farming systems: a review. Aust J Exp Agric 41:361–381
491	Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of
492	legumes. A review. Agron Sustain Dev 30:57–66

.

493	Gardner JB, Drinkwater LE (2009) The fate of nitrogen in grain cropping systems: a
494	meta-analysis of ¹⁵ N field experiments. Ecol Appl 19:2167–2184
495	Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002)
496	Nonlinear grassland responses to past and future atmospheric CO ₂ . Nature
497	417:279–282
498	Hauck RD, Bremner JM (1976) Use of tracers for soil and fertilizer nitrogen research.
499	Adv Agron 28:219–266
500	Hungate BA, Lund CP, Pearson HL (1997) Elevated CO ₂ and nutrient addition alter
501	soil N cycling and N trace gas fluxes with early season wet-up in a California
502	annual grassland. Biogeochemistry 37:89-109
503	IPCC (2007) Summary for policymakers. In: Climate Change 2007: The physical
504	science basis. Contribution of Working Group I to the Fourth Assessment
505	Report of the Intergovernmental Panel on Climate Change. Cambridge
506	University Press, Cambridge, United Kingdom and New York, NY, USA
507	Isbell RF (1996) The Australian Soil Classification. Australian Soil and Land Survey
508	Handbook. CSIRO Publishing, Melbourne.
509	Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO ₂
510	conditions: a meta-analysis of reports on 79 crop and wild species. New
511	Phytol 156:9–26.

512	Jones DB (1941) Factors for converting percentages of nitrogen in foods and feeds
513	into percentages of protein. US Department of Agriculture Circular No. 183,
514	Washington, DC
515	Khan DF, Peoples MB, Chalk PM, Herridge DF (2002a) Quantifying below-ground
516	nitrogen of legumes. 2. A comparison of ¹⁵ N and non isotopic methods. Plant
517	Soil 239:277–289
518	Khan WDF, Peoples MB, Herridge DF (2002b) Quantifying below-ground nitrogen
519	of legumes 1. Optimising procedures for ¹⁵ N shoot-labelling. Plant Soil 245:
520	327–334
521	Kim H-Y, Lieffering M, Kobayashi K, Okada M, Miura S (2003) Seasonal changes in
522	the effects of elevated CO ₂ on rice at three levels of nitrogen supply: a free air
523	CO ₂ enrichment (FACE) experiment. Glob Change Biol 9:826–837
524	Kim H-Y, Lim S-S, Kwak J-H, Lee D-S, Lee S-M, Ro H-M, Choi W-J (2011) Dry
525	matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.)
526	exposed to experimental warming with elevated CO ₂ . Plant Soil 342:59–71
527	Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis
528	of 430 prior observations. Agron J 75:779–788
529	Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air
530	CO ₂ enrichment. Adv Agron 77:293–368

531	Kuzyakov Y (2002) Review: Factors affecting rhizosphere priming effects. J Plant
532	Nutr Soil Sci 165:382–396
533	Ladd JN, Amato M (1986) The fate of nitrogen from legume and fertilizer sources in
534	soils successively cropped with wheat under field conditions. Soil Biol
535	Biochem 18:417–425
536	Ladha JK, Pathak H, Krupnik TJ, Six J, van Kessel C (2005) Efficiency of fertilizer
537	nitrogen in cereal production: retrospects and prospects. Adv Agron
538	87:85–156
539	Lam SK, Chen D, Norton R, Armstrong R (2012) Nitrogen demand and the recovery
540	of ¹⁵ N-labelled fertilizer in wheat grown under elevated carbon dioxide in
541	southern Australia. Nutr Cycl Agroecosyst 92:133–144
542	Loladze I (2002) Rising atmospheric CO ₂ and human nutrition: toward globally
543	imbalanced plant stoichiometry? Trends Ecol Evol 17:457-461
544	Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought:
545	lower-than-expected crop yield stimulation with rising CO ₂ concentrations.
546	Science 312:1918–1921
547	Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE,
548	Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004)
549	Progressive nitrogen limitation of ecosystem responses to rising atmospheric

550	carbon dioxide. Bioscience 54:731–739
551	Martín-Olmedo P, Rees RM, Grace J (2002) The influence of plants grown under
552	elevated CO ₂ and N fertilization on soil nitrogen dynamics. Glob Change Biol
553	8:643–657
554	McNeill AM (2001) Stable isotope techniques using enriched ¹⁵ N and ¹³ C for studies
555	of soil organic matter accumulation and decomposition in agricultural studies.
556	In: Unkovich M, Pate J, McNeill A, Gibbs D (eds). Stable isotope techniques
557	in the study of biological processes and functioning of ecosystems. Kluwer,
558	Dordrecht, pp 195–218
559	McNeill AM, Fillery IRP (2008) Field measurement of lupin belowground nitrogen
560	accumulation and recovery in the subsequent cereal-soil system in a semi-arid
561	Meditteranean-type climate. Plant Soil 302:297–316
562	McNeill AM, Zhu C, Fillery IRP (1997) Use of <i>in situ</i> ¹⁵ N-labelling to estimate the
563	total below-ground nitrogen of pasture legumes in intact soil-plant systems.
564	Aust J Agric Res 48:295–304
565	McNeill AM, Zhu C, Fillery IRP (1998) A new approach to quantifying the N benefit
566	from pasture legumes to succeeding wheat. Aust J Agric Res 49:427-436
567	Miyagi KM, Kinugasa T, Hikosaka K, Hirose T (2007) Elevated CO ₂ concentration,
568	nitrogen use, and seed production in annual plants. Glob Change Biol

570	NOAA (2012) Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)
571	and Dr. Ralph Keeling, Scripps Institution of Oceanography
572	(scrippsco2.ucsd.edu/). http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed
573	3 February 2012.
574	Rees RM, Yan L, Ferguson M (1993) The release and plant uptake of nitrogen from
575	some plant and animal manures. Biol Fertil Soils 15:285–293
576	Reich PB, Hungate BA, Luo YQ (2006) Carbon-nitrogen interactions in terrestrial
577	ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol
578	Evol Syst 37:611–636
579	Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated carbon dioxide
580	concentration amplify the benefits of nitrogen fixation in legumes? Plant
581	Physiol 151:1009–1016
582	Russell CA, Fillery IRP (1996a) In situ ¹⁵ N labelling of lupin below-ground biomass.
583	Aust J Agric Res 47:1035–1046
584	Russell CA, Fillery IRP (1996b) Estimates of lupin belowground biomass nitrogen,
585	dry matter, and nitrogen turnover to wheat. Aust J Agric Res 47:1047-1059
586	Schulze J, Merbach W (2008) Nitrogen rhizodeposition of young wheat plants under
587	elevated CO ₂ and drought stress. Biol Fertil Soils 44:417–423

588	Soussana JE, Hartwig UA (1996) The effects of elevated CO_2 on symbiotic N_2
589	fixation: a link between the carbon and nitrogen cycles in grassland
590	ecosystems. Plant Soil 187:321–332
591	Taub DR, Miller B, Allen H (2008) Effects of elevated CO ₂ on the protein
592	concentration of food crops: a meta-analysis. Glob Change Biol 14:565–575
593	Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower
594	under elevated CO ₂ ? A critical examination of the hypotheses. J Integr Plant
595	Biol 50:1365–1374
596	Thompson GB, Woodward FI (1994) Some influences of CO ₂ enrichment, nitrogen
597	nutrition and competition on grain yield and quality in spring wheat and barley.
598	J Exp Bot 45:937–942
599	Torbert HA, Prior SA, Rogers HH, Runion GB (2004) Elevated atmospheric CO ₂
600	effects on N fertilization in grain sorghum and soybean. Field Crops Res
601	88:57–67
602	Torbert HA, Prior SA, Rogers HH, Wood CW (2000) Review of elevated atmospheric
603	CO ₂ effects on agro-ecosystems: residue decomposition processes and soil C
604	storage. Plant Soil 224:59–73
605	Weerakoon WMW, Ingram KT, Moss DN (2005) Atmospheric CO ₂ concentration
606	effects on N partitioning and fertilizer N recovery in field grown rice (Oryza

607	sativa L.). Agric Ecosyst Environ 108:342-349
608	Williams PH, Rowarth JS, Tregurtha RJ (2000) Recovery of ¹⁵ N-labelled fertiliser by
609	a perennial ryegrass seed crop and a subsequent wheat crop. Nutr Cycl
610	Agroecosyst 56:117–123
611	

612 Figure captions

613	Fig. 1 Wheat biomass (total and different plant parts) following field pea,
614	N-fertilized barley, and unfertilized barley under ambient [CO ₂] and elevated [CO ₂] in
615	rotation phase 2. Values are means of the four replicates for each treatment. Vertical
616	bars indicate standard errors. Significant effects are indicated as $***p < 0.001$. NS,
617	not significant
618	
619	Fig. 2 Wheat N uptake (total and different plant parts) following field pea,
620	N-fertilized barley, and unfertilized barley under ambient [CO ₂] and elevated [CO ₂] in
621	rotation phase 2. Values are means of the four replicates for each treatment. Vertical
622	bars indicate standard errors. Significant effects are indicated as $***p < 0.001$, $**p < 0.001$, $*p < 0.00$
623	0.01 and $*p < 0.05$ and. NS, not significant
624	

pea, N-fertilized barley and unfertilized barley in rotation phase 1. Values are means of the	e four
---	--------

627 replicates for each treatment

	¹⁵ N-fed field pea		¹⁵ N-fertilized barley		unferti	unfertilized barley		Section	[CO ₂	
	Ambient	Elevated	Ambient Elevated		Ambier	Ambient Elevated		species	×	
	$[CO_2]$	[CO ₂]	[CO ₂]	[CO ₂]	[CO ₂]	[CO ₂]			specie	
Total biomass (g pot ⁻¹)	16.9	20.4	18.2	22.3	13.3	14.5	***	***	**	
Total plant N (mg N pot ⁻¹)	421.3	525.5	146.8	151.6	90.2	81.3	**	***	***	
C:N ratio	44.1	51.9	114.1	135.4	129.3	127.1	*	***	0.08	

628 Significant effects are indicated as ***p < 0.001, **p < 0.01 and *p < 0.05

	0–10) cm		10-3	7 cm	
	Ambient	Elevated	-	Ambient	Elevated	
	[CO ₂]	$[CO_2]$		$[CO_2]$	$[CO_2]$	
Clean root						
N (mg pot ^{-1})	2.14	2.60	0.07	1.98	2.82	*
$^{15}N (\mu g \text{ pot}^{-1})$	18.9	18.9	NS	14.8	17.4	NS
Specific enrichment (µg ¹⁵ N/mg N)	8.43	7.37	NS	7.20	6.26	NS
Soil						
N (mg pot ^{-1})	1675	1631	NS	4603	4724	*
$^{15}N (\mu g \text{ pot}^{-1})$	333.8	404.1	NS	240.7	245.7	N.
Root-derived N (mg pot ⁻¹)	39.9	55.7	NS	33.7	39.4	N.
Below-ground N (% of total N)	9.9	11.2	NS	8.4	8.0	N

The amount of N and excess ¹⁵N in the root and the soil, and specific enrichment of clean

631 root fraction for ¹⁵N-fed field pea at two soil depths in rotation phase 1. Values are means of the four

632 replicates for each treatment. All ¹⁵N values expressed as atom excess

633 Significant effects are indicated as *p < 0.05. NS, not significant

634

630

Table 2

636 Table 3 Grain protein concentration of wheat following field pea, N-fertilized barley and

	¹⁵ N-fed	field pea	¹⁵ N-fertilized barley		unfertilized barley			a .	
	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated	[CO ₂]	Species	
	$[CO_2]$	[CO ₂]	[CO ₂]	$[CO_2]$	$[CO_2]$	$[CO_2]$			2
Protein concentration (%)	15.1	12.3	17.2	15.3	16.1	12.4	***	***	

637 unfertilized barley. Values are means of the four replicates for each treatment

638 Significant effects are indicated as ***p < 0.001 and *p < 0.05

	¹⁵ N-fed field pea		¹⁵ N-fer bar	rtilized ·ley	[(()]	Section	[CO ₂]	
	Ambient	nbient Elevated	Ambient	Elevated	$[CO_2]$	Species	× .	
	$[CO_2]$	[CO ₂]	[CO ₂]	[CO ₂]			species	
Total excess								
¹⁵ N added from	9.30	12.33	4.01	3.75	0.08	***	*	
phase 1 (mg)								
Grain								
¹⁵ N (mg)	1.37	1.05	0.11	0.15	0.07	***	*	
% recovery	14.84	8.95	2.80	3.90	*	***	***	
Shoot								
¹⁵ N (mg)	0.475	0.260	0.039	0.024	*	***	*	
% recovery	5.01	2.22	0.97	0.65	***	***	**	
Clean root								
(0–10 cm)								
¹⁵ N (µg)	48.9	37.8	6.4	5.0	0.06	***	NS	
% recovery	0.52	0.32	0.16	0.13	***	***	**	
Recovery in								
above-ground parts (%)	19.8	11.2	3.8	4.6	**	***	***	

640 Table 4 The amount of ¹⁵N excess and percent recovery of residue N in various parts of wheat

641 following field pea and N-fertilized barley. Values are means of the four replicates for each treatment

642 Significant effects are indicated as ***p < 0.001, **p < 0.01 and *p < 0.05. NS, not significant

