
Leveraging Abstract Interpretation for Efficient
Dynamic Symbolic Execution

Eman Alatawi, Harald Søndergaard, and Tim Miller
School of Computing and Information Systems

The University of Melbourne, Vic. 3010, Australia
Email: e.alatawi@student.unimelb.edu.au, {harald, tmiller}@unimelb.edu.au

Abstract—Dynamic Symbolic Execution (DSE) is a technique
to automatically generate test inputs by executing the program si-
multaneously with concrete and symbolic values. A key challenge
in DSE is scalability, as executing all feasible program paths is
not possible, owing to the possibly exponential or infinite number
of program paths. Loops, in particular those where the number
of iterations depends on an input of the program, are a source
of path explosion. They cause problems because DSE maintains
symbolic values that capture only the data dependencies on
symbolic inputs. This ignores control dependencies, including
loop dependencies that depend indirectly on the inputs. We
propose a method to increase the coverage achieved by DSE in
the presence of input-data dependent loops and loop dependent
branches. We combine DSE with abstract interpretation to find
indirect control dependencies, including loop and branch indirect
dependencies. Preliminary results show that this results in better
coverage, within considerably less time compared to standard
DSE.

I. INTRODUCTION

Testing remains the most commonly used method to ensure
software quality. However, direct construction of test inputs
for a given program is a complicated task. Dynamic Symbolic
execution (DSE) [9], or concolic testing [17], is a well-known
dynamic analysis technique for more systematic test case
generation. DSE systematically explores a program, keeping
track of how the inputs forced execution to take the path
it took, so that it can find alternative inputs that will make
execution take other paths. In this task, a DSE tool is assisted
by a suitable constraint solver. The aim is usually to achieve
high coverage for some chosen definition of coverage. While
high coverage in itself provides no guarantee of absence of
bugs, it is still considered a desirable goal in testing.

The problem. Scalability is a significant challenge for
DSE in practice. Even for a loop-free program, the number
of execution paths may be exponential in the program size.
Loops, and in particular input dependent loops (those where
the number of iterations depends on an input of the program),
are a source of program path explosion [16], [10], [3].

An obstacle to high coverage is that DSE maintains values
of the symbolic variables during execution, but does not track
how these are related. In effect, data dependencies are tracked,
in particular dependencies on symbolic inputs, but control
dependencies are not. This means that, if a loop condition
is not directly dependent on inputs, large parts of the code
may remain uncovered [16]. Consider this program:

x = 0;
y = input;
while (y > 0) {

x = x + 1;
y = y - 2;

}
if (x > 1117)

action A;
else

action B;

In its first round, a DSE tool might explore the branch that
leads to action B. The information available just before the
‘if’ statement does not suggest which inputs, if any, would
execute action A. This is because x, while dependent on y
because y determines the number of iterations of the loop, is
never made to depend on other variables via assignments; its
dependence on y is indirect.

Approach. We wish to improve the coverage achieved by
DSE in the presence of input data dependent loops and loop
dependent branches. To this end we precede DSE with static
analysis to capture the indirect control dependencies, including
loop and branch indirect dependencies on the inputs of the
program. We exploit abstract interpretation based on well-
known relational numeric abstract domains [6].

At first sight it would seem that classical abstract inter-
pretation has little to offer. For a given program point p,
abstract interpretation provides an over-approximation ' of
the set of runtime states that may occur at p. Every state
actually met at p during a (concrete or symbolic) execution
must satisfy ' by definition; hence it may appear that '
offers no real information. However, ' may expose non-trivial
relations among sets of variables, and these relations can be
used to strengthen generated path constraints. Consider again
the program above. A DSE tool would be greatly helped if we
were to express invariants directly, using symbolic names for
input values, such as ‘y0’ for y’s initial value:

x = 0;
y = input;
y0 = y;
while (y > 0) {

x = x + 1;
y = y - 2;

}
/* -2 < y, y <= 0, 2*x = y0 - y */
if (x > 1117)

action A;
else

action B;

The assertion makes it clear that, to reach action A, we need
to satisfy �2 < y ^ y 0 ^ y0 > 2234 � y. A constraint
solver can now find a solution such as y0 = 2235. Automated
generation of powerful invariants, such as the one used above,
is not beyond the capacity of static analysis tools.

Our focus is on improving DSE by tackling two main
problems, namely: 1) path explosion resulting from input data
dependent loops, where the number of iterations depends—
directly or indirectly—on unbounded input; and 2) low cov-
erage of a loop dependent branch whose condition depends
indirectly on the number of iterations a previous input depen-
dent loop has executed.

In our approach, we aim to determine the number of
symbolic iterations of input dependent loops to reach program
statements. This is achieved using abstract interpretation to
calculate the number of required iterations to cover a given
loop, and to generate invariants that relate that number of
iterations to the program inputs. In addition, we support
DSE by adding some relational information to cover branches
that depend on an input dependent loop, such as the branch
condition given in the example above, if (x > 1117). To
cover this branch, the value of x has to be greater than 1117,
and in fact, the value of x has been changed inside the loop
whose number of iterations depends on the program input y.
This loop has to be executed x times to enable DSE to reach
that branch. Such an indirect relation cannot be captured by
classical DSE. Thus, we use abstract interpretation in this case
to 1) calculate in advance how many iterations are needed to
enter that subsequent branch; and 2) to generate invariants
that relate program inputs to other program variables included
in the conditional statement of the branch. These invariants
are expressed in terms of symbolic values of program inputs.
As a result, DSE can more readily synthesize input that will
steer execution toward a targeted branch. For the analysis
we use Cousot and Halbwachs’s polyhedral domain [6], as
implemented in the Apron library [11].

We assume the reader is familiar with the basics of abstract
interpretation [4], [5], although this knowledge is not required
to understand the paper. A key component is the abstract
domain which is a computer-representable class of invariants
(or sets of runtime states). The polyhedral domain is among
the more expressive domains. While it is also expensive and
fails to scale to the analysis of large programs, it is easily up
to the task of analysing small-to-medium-sized programs.

II. BACKGROUND

Dynamic Symbolic Execution [9], [17] systematically exe-
cutes a program simultaneously with concrete and symbolic
values. During execution DSE collects symbolic constraints
on the program inputs along the executed path. This yields a
conjunction called a path condition. Negating some conjunct
corresponds to an alternative path which should be explored.
To check whether this path is feasible, the perturbed path
condition is sent to a constraint solver to check its satisfiability.
If it is satisfiable, concrete test inputs are generated that will
force execution to follow this new path. If it is unsatisfiable,

the corresponding path is deemed infeasible1, and search is
pruned. A path condition can be simplified during DSE by
using concrete values instead of symbolic values in many cases
that the symbolic reasoning is impossible or the underlying
constraint solver cannot handle the generated path condition.

The number of feasible paths that can be executed by DSE
is significantly large as it could be infinite or exponential in
the program size [3]. This path explosion problem [10], [19]
leads to poor coverage in limited time.

Program loops, recursion, and sequences of branches are
three main causes for the problem of path explosion [19].
Loops in particular pose a critical challenge for DSE that may
affect its coverage and fault detection ability, owing to the
exponential or infinite growth of the number of the explored
paths especially in the presence of loops with an unbounded
number of iterations [21], [19]. As a result, dealing with code
containing loops is a key limitation of DSE. The problem is
that even a single loop can generate a huge number of different
execution paths, corresponding to different numbers of loop
iterations and taking various paths through the loop.

Available approaches for solving unbounded loop problems
include [21]: (1) bounding loop iterations to reduce the whole
search space to be finite by bounding loop iteration with the
loss of completeness; (2) using search-guiding heuristics to
prevent DSE from being stuck in loops by guiding DSE toward
exploring specific paths; (3) summarizing loops into a set of
formulas that can be solved by using constraint solvers [16],
[10], [12]; and (4) using abstraction to model loop iterations
states, handling infinite loops with symbolic execution.

III. APPROACH AND MOTIVATING EXAMPLES

To illustrate our approach and the motivation for combining
abstract interpretation and DSE, we introduce two examples
to explain the details of our proposed method.

A. Input data dependent loops: Indirect dependency
Input dependent loops where the number of iterations de-

pends on unbounded input lead to large numbers of possible
execution paths. DSE tools typically impose a bound on
the number of iterations of input-dependent loops, so as to
terminate in a reasonable amount of time. However, arbitrarily
bounding the number of loop iterations might leave important
execution paths unexplored.

We aim to solve the following problem: Given a piece of
code containing loops whose number of iterations to reach par-
ticular statements is indirectly dependent on program unbound
inputs, the goal is to know in advance the minimum number of
iterations that are needed to cover that loop and each branch
presented within the loop, and capture the relation between
program inputs and that number.

Consider the example in Listing 1 which is inspired by the
examples given in [19], [10]. The number of iterations of the
while loop indirectly depends on the input value x0 stored in

1However, the lack of satisfiability can be due to other limitations, such as
the generation of constraints that are too difficult for the constraint solver to
solve.

void inputDependentLoop(int x) {
int i = 3, p = x;
while (true) {

if (p <= 0)
break;

i = i+4;
p = p-1;
if (i >= 80)

abort (); // target
}

}

Listing 1. Input dependent loop

:
while (true) {
/* x = counter + p, counter >= 0,

counter <= 19, counter = (i-3)/4 */
:

if (p <= 0)
/* x = counter + p - 1, counter >= 1,

counter <= 20 */
:

if (i >= 80)
/* x = counter + p, counter = (i-3)/4,

counter = 20 */
abort ();

} /* x = counter + p, counter >= 0,
counter <= 19, counter = (i-3)/4 */

Listing 2. Invariants generated for Listing 1

variable x at the beginning of the program execution. Suppose
we start testing this program with x0 = 3. The loop condition
triggers the generation of the following path constraints:

(0 < x0) ^ (0 < x0 � 1) ^ (0 < x0 � 2) ^ (x0 � 3 0).

Obviously x0 appears in the path condition, but p, which
appears in the loop exit branch, does not, because DSE tracks
only direct data dependencies on the program inputs. Then it
negates each constraint in the path condition one by one to
generate new tests to exercise new program paths. This can
be repeated, in principle forever if x0 can be any integer.

Limited knowledge of the relations between program input
and other variables in a program prevents DSE from achieving
high coverage. This is manifest when DSE reaches a control
point (branch or loop) that depends on how many times some
previous input dependent loop was executed. For example, our
target in this example is to cover the abort() statement,
which is guarded by i � 80. In fact, the value of i depends
on how many times the loop is iterated during the program
execution. The DSE tool Pex [18], which we use as a represen-
tative for DSE tools in this paper, could not cover the branch
for (i � 80) when we set its exploration bounds (maximum
runs, and maximum conditions) to 100. Pex generated the test
inputs 1 and 3 which could not cover the target.

Abstract interpretation can help in maintaining the indirect
data dependencies of program variables on inputs. The key
insight here is that it is possible through a combination of
abstract interpretation and DSE to obtain higher coverage.

Invariant generation: First, we add a new local variable
called counter that represents the number of loop iterations. It
is incremented each time the loop body is entered. Its purpose
is to explicitly express the relation between program variables
and the number of times the loop body is executed. Second, we
run forward abstract interpretation on the program to generate
loop invariants using the polyhedral abstract domain. This
produces invariants at each program point2. The Polyhedra
domain is commonly used in static analysis to prove safety
properties in programs like the absence of buffer overflow,
division by zero, etc. It is a fully relational numerical domain,
able to express arbitrary linear inequalities (and equalities)
among program variables. It is more expressive than weakly
relational domains such as Octagons [15], Pentagons [13] or
Zones [14], and it comes with a correspondingly higher cost.

Listing 2 shows the invariants generated for Listing 1,
by polyhedral abstract interpretation, as implemented in the
Interproc analyzer. We are interested in discovering loop
invariants and any invariants generated at each branch inside
or after the loop. Note that abstract interpretation is able to
generate a strong loop invariant, relating the program input x,
the loop counter, and the local variable p, whose initial value
depends on x, and appears in loop exit branch. In addition,
polyhedral abstract interpretation generated invariants at each
branch location specifying the number of loop iterations
required to reach that point of the program expressed using
the loop counter. Augmenting the path condition with these
new invariants guides DSE successfully to find a test input that
steers execution toward that targeted location. In other words,
knowing the loop invariant x = counter+p, and the calculated
invariants at the targeted location counter = 20, the DSE tool
can produce the input x = 20 using the constraint solver. The
invariant x = counter + p� 1^ counter � 1^ counter 20
guides DSE to cover the input dependent loop with a minimal
number of iterations. Thus, to terminate the loop, and for
the break statement to be reached, the counter has to be at
least 1, and in this case DSE can generate the test input
x = 0. Invariants on the program counter can be exploited
to identify the loop bounds, and use that bound to ensure both
coverage, and execution termination with a minimum number
of iterations. Considering the values assigned to the variable
counter, we can set the exploration bound to 20. When we do
that, Pex achieves full coverage in less test generation time.

Program annotation: We use program annotations to
insert the necessary invariants at loop entry, after the loop,
loop internal branches, and branches after the loop. These
annotations can be added automatically or manually. We add
these invariants as assumptions in the code.

Test input generation: We use the annotated program
to generate test inputs using DSE. Pex needs bounds to
ensure terminating the loop execution, by setting the bound.
We arbitrarily set the bounds to 2, 4, 8, and 10. Within 10
iterations, Pex alone was able to generate only three tests,

2In fact, for integer variable counter , Interproc has counter � 19.25,
counter 20 after the second ‘if’, which we translate to counter = 20.

void inputDependentLoop(int n, int m) {
int i = 0, k = 0;
int j;
int limit = 1000;

while (i < n) {
j = 0;
while (j < m){

k = k + 5;
j = j + 1;

}
i = i + 1;

}

if (k >= limit)
abort(); // target

}

Listing 3. Nested loops

x = 0, x = 1, x = 7 that could not cover the target. A new
test x = 24, is generated by Pex when the invariants are added,
which leads to coverage of the target.

B. Input dependent loops: Direct dependency

We aim to solve the following problem: Given a piece of
code containing a loop whose number of iterations is directly
dependent on program inputs, and a targeted loop dependent
branch anywhere in the code after the loop whose condition
depends on the number of times that the loops have iterated,
generate a test of that target. The goal is to know in advance
how many iterations are needed to enter that branch, and to
capture the relation between program inputs and that variables
presented in the branch condition.

Consider the program example shown in Listing 3, where
two nested loops has input-data dependent termination con-
dition; that is, the number of the iterations of the nested
two loops directly depends on the input values m0 and n0

stored in variables m and n at the beginning of the program
execution. The goal here is to generate inputs to cover the
branch if (k >= limit) to steer the program execution
toward the abort statement. DSE-based reasoning will almost
certainly not be able to generate such inputs, as this requires
relating the value of variable k to the values of the program
inputs m0 and n0. Pex, for example, was not able to reach that
branch with different bounds including 10, 100, and 1000.

The value of k is modified inside the inner loop. So the
question here is: How many times do we need to iterate these
two nested loops to reach the abort statement, and what is the
relation between the required number of iterations, and the
program inputs that could help DSE hit that statement?

To answer this we want to find the linear relation between
loop iteration counts, program local variables, and inputs, that
is, relate program inputs to both k and loop counters.

To identify the linear relation between k and the program
inputs n and m, we introduce a new counter to the program to
record the required number of iterations needed to reach any
program control point after a loop using abstract interpretation
theory. We are interested in computing the minimum number

:
while (i < n) {

/* k>=5*j, n>i, i>=0, j>=0 */
while j < m {

/* k>=5*j, n>i, m>j, j>=0, i>=0 */
:

} /* k>=5*j, n>i, j>=m, i>=0, j>=0 */

:
} /* k>=5*j, i>=n, i>=0, j>=0 */

if (k >= limit)
/* k>= 5*j, k>=1000, j>=m, j>=0, i>=n, i>=0 */
abort();

:

Listing 4. Generated invariants for Listing 3

of iterations required to cover the loop, and to cover any
subsequent loop dependent control points.

Abstract interpretation computes statically the number of
required counts by relating it to other program variables. We
use forward abstract interpretation to compute sound invariants
using the polyhedral abstract domain. Listing 4 shows the
invariants generated by the Interproc analyzer. Note that we
cannot hope to find the non-linear invariant k = mn. The
invariant k � 5j is valid for both nested loops, and knowing
the invariants at the target location, that is,

k � 5j ^ k � 1000 ^ j � m ^ j � 0 ^ i � n ^ i � 0,

gives DSE a chance to find appropriate test inputs such as (n =
0,m = 200). Indeed, once we annotate the program with such
invariants, Pex can cover the targeted location and achieve
100% coverage with only 3 tests, compared to 75% coverage
with 5 tests for the original subject without the invariants.

IV. PRELIMINARY EVALUATION

We performed a preliminary evaluation of our approach
using polyhedral analysis [6] as implemented in the Apron
library and the state-of-the-art invariant generation tool Inter-
proc [11]. We used the Interproc analyser to infer invariants
for each program point automatically. These invariants are
intended to relate the program inputs to the established loop
counter and other related variables in the program under test.
We used 6 small examples taken directly from, or inspired
by, the literature [8], [19], [10], [7], each subject contains an
input dependent loop, and at least one loop dependent branch
and/or an assertion. Subject 2 has two nested loops, subject 6
has two sequential loops.

First we ran Interproc on the subjects, and then the code
was annotated with the generated invariants at each marked
target in the code. Second, we ran Pex on both the original
and the annotated subject. We set the maximum exploration
bound (MaximumRuns) in Pex to 100 to limit the exploration,
so that the tool does not get stuck in loops that might have
infinitely many execution paths. We measured the size of the
generated test suite, the line coverage of the generated test
inputs, the time taken by Pex to generate the test inputs, and
the number of runs attempted by Pex during the exploration.

TABLE I
PRELIMINARY EVALUATION RESULTS

Interproc Pex Pex+AbstractInterpretation

Subj InvG Time #Tests Coverage TestG Time #Runs #Tests Coverage TestG Time #Runs

Subj1 (List. 1) 0.01 4 100% 6.25 14 4 100% 0.50 23
Subj2 (List. 3) 0.01 5 75% 2.40 100 3 100% 2.30 100
Subj3 [8] 0.01 1 75% 3.73 100 2 100% 1.80 100
Subj4 [10] 0.01 2 56% 0.75 14 3 100% 0.76 15
Subj5 [7] 0.01 5 82% 1.22 25 3 100% 1.00 28
Subj6 [1] 0.01 0 0% 0.64 100 2 100% 0.43 4

Avg 0.01 2.8 65% 2.50 58 2.8 100% 1.10 45

Table I presents the results of our experimental evaluation.
The column labeled “InvG Time” indicates how long (in
seconds) Interproc took on each subject, to generate the in-
variants. The columns grouped under the section Pex, namely:
“# tests”,“Coverage”, “TestG Time”, and “#Runs” indicate
the size of the generated test suites, coverage achieved by
a Pex-generated test suite, test generation time, and number
of runs that are attempted by Pex during DSE exploration,
respectively. Similarly, the third section of the table list the
results for Pex supported by abstract interpretation.

These preliminary results show that Pex with abstract inter-
pretation was able to generate test inputs that achieved better
coverage (average of 35% increase in the coverage). Moreover,
with the help of generated invariants, Pex was able to handle
input dependent loops efficiently: the testing time was clearly
decreased, compared with the time taken by Pex alone. For
example, when bounds were set to 100, Pex was able to reach
to 100% coverage only for subject1 (Listing 1), and it took
comparatively longer time (6.25 seconds, compared to 0.5
seconds for Pex with abstract interpretation). For the remaining
subjects, Pex alone was not able to achieve full coverage (it
was unable to cover loop dependent branches, as it consumed
the available number of runs, iterating the input dependent
loop). Conversely, Pex with abstract interpretation achieved
full coverage through the guidance of the added invariants.
These helped Pex to iterate the input dependent loop enough
to be able to terminate the loop execution, and at the same
time cover any loop dependent branches.

Adding program invariants guides Pex toward more interest-
ing inputs that are able to satisfy the inferred relation between
program inputs and other variables in the program under test.
For Listing 3, again, static analysis allowed Pex to generate
fewer tests, compared to the case without invariants, but with
better coverage. In addition, test generation time was slightly
better in this case (2.30 seconds compared to 2.40 seconds).
In our experiments, adding loop invariants did not increase
the exploration time, but it did lead to better tests that achieve
better coverage even if Pex in both cases reached to the limit
of the assigned exploration bound. However, if we reduced the
limit of runs to 50, Pex with abstract interpretation achieved
100% coverage in only 1.30 seconds.

Relating program inputs to other variables in the program is
significant for DSE tools to achieve good coverage, especially
in the presence of assertions that involve only non-input
variables. Subject 6 provides an example of this—the program
has an input k and contains an assertion that includes only
local variables. Here Pex alone was not able to generate any
test within the exploration bound. On the other hand, with
only 4 runs, 0.43 seconds, and 2 generated test inputs, Pex +
abstract interpretation was able to achieve 100% coverage.

These results suggest that, compared to DSE alone, our tech-
nique produces slightly smaller test suites with better coverage,
while reducing test generation time, for code containing input
dependent loops and loop dependent branches.

V. RELATED WORK

There are few approaches that are focused on how to deal
with input-dependent loops in DSE. Saxena et al. [16] propose
an approach called Loop-Extended Symbolic Execution to
capture the relation between program inputs and loops in
DSE. They introduce a new symbolic variable called trip count
for each program loop. This count represents the number of
times a loop body was executed, at any given time. Saxena et
al. obtain the relationship between these variables and other
variables in the program by running a separate static analysis.
They relate the trip counts to the program input format by
introducing auxiliary variables to capture how loop-dependent
variables are related to the lengths and counts of elements in
the program input based on an input grammar. In contrast,
our approach infers loop invariants and captures the relations
between program inputs and all program variables purely
statically before DSE. Symbolic execution is then guided
by the inferred relations. Our method distinguishes between
direct and indirect dependency of loops on the input data,
and introduces a loop counter as a new local variable to
explicitly capture the relation between the program input and
loop iterations.

The introduction of loop counter variables is also found in
the context of abstract interpretation, in the search for nu-
merical abstract domains that trade away some expressiveness
to avoid the heavy cost of polyhedral analysis. The Gauge
domain [20] offers a limited relational analysis, in which
relations among program variables cannot be expressed, but

relations are maintained between each program variable and
specially introduced loop counter variables.

Godefroid and Luchaup [10] use loop summaries to deal
with certain types of unbounded loops that include induction
variables, whose values are modified by a constant value
or constant times for each loop iteration. Their goal is to
determine the number of iterations of input-dependent loops
by automatically guessing an input constraint using simple
loop-guard pattern matching rules. This solution is performed
dynamically without requiring any static analysis or input-
format specifications (unlike [16]). Loops are summarized by
loop pre-conditions and post-conditions that are derived from
inferred partial loop invariants relating the program inputs to
the induction variables. Our approach is simpler and does not
require detection of induction variables or loop structure. We
simply infer program invariants at each program point, relating
the value of input variables, and all other local variables in the
program within any loop (that is, not only induction variables).
In addition, we determine the required number of iterations
required to reach any branch within or after the loop statically.

Čadek et al. [2] propose an algorithm for computing upper
bounds for execution counts of individual instructions of an
analyzed program during any program run. The algorithm
is based on symbolic execution and the concept of path
counters. The upper bounds parameterized by input values
of the analyzed program path counters are more general:
executions of a single program path in a loop can be counted
by several path counters relative to some other program paths
even in other loops.

VI. CONCLUSION AND FUTURE WORK

We have proposed a way of improving the coverage
achieved by DSE in the presence of input data dependent loops
and loop dependent branches. The idea is to precede DSE
with well-known analyses from abstract interpretation based
on relational numeric abstract domains to capture the indirect
control dependencies on the inputs of the program. Preliminary
results suggest that, compared to dynamic symbolic execution
alone, the outcome is better coverage, achieved in considerably
less time.

So far we have communicated static analysis results to a
DSE tool by manual transfer. Hence, while the results are
very promising, the subjects on which we have tested the idea
have been small, single functions, albeit non-trivial from a
reasoning perspective. We plan to integrate the two compo-
nents properly, so that we can work on scaling up the method.
For very large programs, the domain of convex polyhedra is
likely to prove too expensive. However, a large number of
relational abstract domains, of varying expressiveness, have
been suggested and implemented, and often made available
as open source code. One should be mindful, however, that
while DSE tools usually deal with programming languages that
assume finite-width integers, most relational abstract domains
are based on proper integers, and this discrepancy has the
potential to cause unsoundness of analysis.

ACKNOWLEDGMENTS

The first author gratefully acknowledges support from
Taibah University, Saudi Arabia, through a PhD scholarship.
The work was also supported by the Australian Research
Council through Linkage Grant LP140100437.

REFERENCES

[1] N. Bjørner and A. Gurfinkel. Property directed polyhedral abstraction.
In D. D’Souza et al., editor, Verification, Model Checking, and Abstract
Interpretation (VMCAI’15), volume 8931 of Lecture Notes in Computer
Science, pages 263–281. Springer, 2015.

[2] P. Čadek, J. Strejček, and M. Trtı́k. Tighter loop bound analysis. In
14th Int. Symp. Automated Technology for Verification and Analysis
(ATVA’16), pages 512–527. Springer, 2016.

[3] M. Christakis, P. Müller, and V. Wüstholz. Guiding dynamic symbolic
execution toward unverified program executions. In Proc. 38th Int. Conf.
Software Engineering (ICSE’16), pages 144–155. ACM, 2016.

[4] P. Cousot. Abstract interpretation. ACM Computing Surveys, 28(2):324–
328, 1996.

[5] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proc. 4th ACM Symp. Principles of Programming
Languages (POPL’77), pages 238–252. ACM, 1977.

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear constraints
among variables of a program. In Proc. Fifth ACM Symp. Principles of
Programming Languages (POPL’78), pages 84–97. ACM, 1978.

[7] CVE—common vulnerabilities and exposures, May 2017. http://cve.
mitre.org/.

[8] P. Dinges and G. Agha. Targeted test input generation using symbolic-
concrete backward execution. In Proc. 29th ACM/IEEE Int. Conf.
Automated Software Engineering (ASE’14), pages 31–36. ACM, 2014.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated
random testing. In Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI’05), pages 213–223. ACM, 2005.

[10] P. Godefroid and D. Luchaup. Automatic partial loop summarization in
dynamic test generation. In Proc. 2011 Int. Symp. Software Testing and
Analysis (ISSTA’11), pages 23–33. ACM, 2011.

[11] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains
for static analysis. In A. Bouajjani and O. Maler, editors, Computer
Aided Verification (CAV’09), volume 5643 of Lecture Notes in Computer
Science, pages 661–667. Springer, 2009.

[12] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. M. Winter-
steiger. Loop summarization using state and transition invariants. Formal
Methods in System Design, 42(3):221–261, 2013.

[13] F. Logozzo and M. Fähndrich. Pentagons: A weakly relational abstract
domain for the efficient validation of array accesses. In Proc. 2008 ACM
Symp. Applied Computing, pages 184–188. ACM, 2008.

[14] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,
Ecole Polytechnique, 2004.

[15] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[16] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended
symbolic execution on binary programs. In Proc. 18th Int. Symp.
Software Testing and Analysis (ISSTA’09), pages 225–236. ACM, 2009.

[17] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine
for C. In Proc. the 10th European Software Engineering Conf., pages
263–272. ACM, 2005.

[18] N. Tillmann and J. De Halleux. Pex—white box test generation for
.NET. In B. Beckert and R. Hähnle, editors, Tests and Proofs, volume
4966 of Lecture Notes in Computer Science, pages 134–153. Springer,
2008.

[19] M. Trtı́k. Symbolic Execution and Program Loops. PhD thesis, Faculty
of Informatics, Masaryk University, 2013.

[20] A. J. Venet. The Gauge domain: Scalable analysis of linear inequality
invariants. In P. Madushan and S. A. Seshia, editors, Computer Aided
Verification, volume 7358 of Lecture Notes in Computer Science, pages
139–154. Springer, 2012.

[21] X. Xiao, S. Li, T. Xie, and N. Tillmann. Characteristic studies of loop
problems for structural test generation via symbolic execution. In Proc.
28th IEEE/ACM Int. Conf. Automated Software Engineering (ASE’13),
pages 246–256. IEEE Comp. Soc., 2013.

View publication statsView publication stats

https://www.researchgate.net/publication/321097727

