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abstract: Direct species interactions are commonly included in
individual fitness models used for coexistence and local diversity
modeling. Though widely considered important for such models,
direct interactions alone are often insufficient for accurately pre-
dicting fitness, coexistence, or diversity outcomes. Incorporating
higher-order interactions (HOIs) can lead tomore accurate individ-
ual fitness models but also adds many model terms, which can
quickly result in model overfitting. We explore approaches for bal-
ancing the trade-off between tractability and model accuracy that
occurswhenHOIs are added to individualfitnessmodels. To do this,
we compare models parameterized with data from annual plant
communities in Australia and Spain, varying in the extent of infor-
mation included about the focal and neighbor species. The best-
performing models for both data sets were those that grouped
neighbors based on origin status and life form, a grouping approach
that reduced the number of model parameters substantially while
retaining important ecological information about direct interac-
tions and HOIs. Results suggest that the specific identity of focal
or neighbor species is not necessary for buildingwell-performing fit-
ness models that include HOIs. In fact, grouping neighbors by even
basic functional information seems sufficient tomaximizemodel ac-
curacy, an important outcome for the practical use of HOI-inclusive
fitness models.
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Introduction

Natural communities are incredibly complex. In fact, the
more we study them, the clearer it becomes that we have
much to learn about how they function and persist given
their diversity and complexity. As such, our ability to ac-
curately predict patterns of diversity and composition
at local community scales is still fairly limited (Kimball
et al. 2016; Houlahan et al. 2017; Maris et al. 2018). Such
predictive capacity is important, however, for ensuring ac-
curate understanding of community ecology and applying
individual fitnessmodels (i.e., models of lifetime fecundity)
to a range of conservation and restoration problems.
Understanding how species interactions influence indi-

vidual fitness and, hence, population dynamics is central
to most models of community-level diversity (Volterra
1928; Chesson 2000a). Many of these models, however,
are notoriously poor predictors of coexistence in highly di-
verse communities (Wootton 1994;White et al. 2006; Engel
andWeltzin 2008). A reason for this is that suchmodels of-
ten employ strong simplifying assumptions. One common
assumption is that the only type of species interaction
important for individual fitness and coexistence outcomes
is direct competition between species pairs. There is in-
creasing evidence, however, that other types of interactions
are also important for structuring community diversity,
including facilitation (Martorell and Freckleton 2014; Bul-
leri et al. 2016; Bimler et al. 2018), indirect competitive
effects (Soliveres et al. 2015; Gallien et al. 2017; Godoy
et al. 2017; Matías et al. 2018), and higher-order interactions
(Billick and Case 1994; Bairey et al. 2016; Mayfield and
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Stouffer 2017b). Further, a recent paper by Clark and col-
leagues (2019) found that models of intermediate com-
plexity are the best at predicting local patterns of diversity.
Their careful comparison of models containing different
amounts of information made an important point: there
is often a trade-off between how much biological infor-
mation we include in models and their accuracy. It re-
mains unclear, however, which biological details (rather
than just howmany) are themost important for accurately
modeling and predicting coexistence outcomes and pat-
terns of diversity.
In recent years, there has been a rapid increase in the

number of studies exploring the importance of a wide
range of species interactions to coexistence and diversity
modeling (Goldberg and Werner 1983; Chesson 2000b;
Michalet et al. 2014; Adler et al. 2018). One group of inter-
actions, higher-order interactions (HOIs), has become of
particular interest, given increasing evidence that they are
strong and important for accurately modeling fitness and
population growth rates in at least some plant communi-
ties (Mayfield and Stouffer 2017b). HOIs, defined here in
the context of individual fitness models, are the nonaddi-
tive, cumulative effects of interactions between neighbor-
ing individuals on a focal individual’s fitness (Billick and
Case 1994;Wootton 1994). HOIs emerged as a way to for-
malize what has been lumped under the term “diffuse
competition” (Mack andHarper 1977; Fowler 1981;Moen
1989). Diffuse competition (or “interactionmilieu,” as it is
called by McGill et al. [2006]) is defined by MacArthur
(1972) as competition by a constellation of species. The ef-
fects of the constellation of species are more specifically
defined when using the concept of HOIs as the specific ef-
fect of the presence or density of a third species on the in-
teraction between a species pair. Further, by this defini-
tion, HOI effects are specific to particular combinations
of individuals of different species (Vandermeer and May
1969; Wootton 1994; Levine et al. 2017; Mayfield and
Stouffer 2017b).
HOIs have been experimentally demonstrated on

protozoa (Vandermeer and May 1969; Case and Bender
1981) and in food web analysis using experimental ponds
(Morin et al. 1988;Wissinger andMcgrady 1993; Paterson
et al. 2015). Nearly all research on HOIs in ecology, how-
ever, has been based on theoretical, simulated data (Bairey
et al. 2016; Levine et al. 2017) or has used experimental
microcosms (Wilbur 1972; Neill 1974; Billick and Case
1994). To our knowledge, Mayfield and Stouffer (2017b)
are the first to statistically evaluate the importance of
HOIs in natural plant communities composed of many
species, though other studies have now shown their im-
portance in other natural communities as well (Li et al.
2020). Though including HOIs improved model-based
predictions across these studies by adding flexibility to
the models, one potential downside is that they do not di-
rectly improve our understanding of the drivers of com-
plex interactions. Indeed, the ecological mechanisms be-
hind HOIs in plant communities are largely unknown and
likely system specific (Kleinhesselink et al. 2020). Simula-
tions by Letten and Stouffer (2019), however, indicate that
HOIs routinely emerge from consumer-resource dynam-
ics, indicating that shared use of resources (e.g., light or
nutrients)may often be involved. Despite the lack of direct
mechanistic insights, HOIs can provide useful insights
about the complexity of species interactions and the role
of diversity in competition. For this reason, it is valuable
to improve our understanding of how to most effectively
incorporate them into the individual fitness models that
are foundational to the study of population dynamics
and coexistence.
The predominant approach to inferring HOIs is statis-

tically problematic in that it incorporates information
about all pairs of neighboring species individually, re-
sulting in a very large number of model terms. By adding
such extensive detail, data requirements become massive
for the study of HOIs in diverse systems. In fact, the data
demands for models that incorporate even a fraction
of all potential HOIs is so large, the tractability of this
approach—or the inclusion of HOIs in individual fitness
modeling of natural communities—has been questioned
(Pomerantz 1981; Abrams 1983; Levine et al. 2017; Al-
Adwani and Saavedra 2019). As the number of species
in a community increases, the data requirements for pa-
rameterizing a full HOI-inclusive model (including data
on all possible HOIs) grow exponentially and become im-
practical to collect. We note, however, the common mis-
conception that this approach can be used only if there
are data available for all species combinations—which is
not true. In most cases, HOI-inclusive individual fitness
models include a small fraction of potential HOIs (May-
field and Stouffer 2017b; Li et al. 2020) because many
combinations of species do not occur in natural commu-
nities and because most field data sets capture combi-
nations of common speciesmore completely than uncom-
mon combinations. Though most efforts to parameterize
HOI-inclusive models include only a fraction of possible
HOI terms, no studies have tested whether particular types
of HOIs such as intra- or interspecific HOIs are more im-
portant to include than others for model accuracy (May-
field and Stouffer 2017b). One way to make the value of
this added ecological complexitymore tractable is to iden-
tify which details about interaction neighborhoods are
actually needed to merit the benefits of HOI-inclusive
models. For example, is it important to include individual
model terms for each set of unique neighbors? Or can we
categorize neighbors in ecologically sensible ways without
losing the value added from HOIs overall? By identifying
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which aspects of interaction neighborhoods are impor-
tant and which are not, we can take an evidence-based ap-
proach to reducing the number of model terms and data
requirements while maintaining a high level of biological
realism.
A common practice in the study of drivers of biodiver-

sity maintenance is to track the identities of focal individ-
ual species and neighbors to estimate the effect of species’
interactions on individual fitness outcomes (Chesson
2000b; Adler et al. 2007). Mathematically and statistically,
however, there is no requirement that species interactions
differ based on species identity because no information
on species differences (e.g., vital rates) are involved in cal-
culating individual fitness (Hubbell 2001; Adler et al.
2007). Given this, there are many ways we could group
species in HOI-inclusive models. Many such approaches
have been explored for models based on direct interac-
tions alone (Weigelt et al. 2002; Straub and Snyder 2006;
Eskelinen 2008), with particular focus on tree communities
(Callaway et al. 2003; Uriarte et al. 2004; Kaitaniemi and
Lintunen 2010; Lübbe et al. 2015). For instance, Uriarte
et al. (2004) found that for more than half of the focal spe-
cies, grouping neighbor species was the best-fitting model,
indicating that all neighboring plants acted similarly on
the focal individual. Though the importance of neighbor
identity has been well studied for fitness models that ac-
count for direct interactions, none, to our knowledge, has
explored the same for fitness models that explicitly include
HOIs. As past studies have found that direct interactions
and HOIs do not capture the same variance (Mayfield
and Stouffer 2017b), it is valuable to consider the impor-
tance of neighbor identity for HOI-inclusive models rather
than assuming that identity will have the same relationship
with HOIs as direct interactions alone. Following results
fromUriarte et al. (2004) for tree communities, for instance,
we start with the simplest option—a diffuse competition
model. In thismodel, we assume that all neighboring plants
are equivalent with respect to their competitive effect and,
therefore, that their abundance can be summed into a single
expression of neighbor abundance. Here, we also explore
models that allow increasing amounts of complexity, and
we group individual neighbors in ecologically sensible ways,
including by rarity, functional role in the community, or
origin status, or on the basis of taxonomic relationships
(McGill et al. 2006).
Grouping rare species together is a comparatively quick

way to increasemodel tractability by reducing the number
of free parameters requiring statistical estimation in the
model while limiting the amount of ecological informa-
tion lost. Rare species often establish weak interactions
within competitive networks that appear to stabilize com-
munity dynamics overall (McCann et al. 1998; Vázquez
et al. 2007; Gellner and McCann 2016). Locally rare spe-
cies, however, may contribute so few individuals to a com-
munity that the species-specific impact on the population
growth rate of a neighboring species is negligible. We can,
therefore, test whether rare species can be grouped in
models of individual fitness or, indeed, removed as com-
petitors from the models altogether without losing the
benefits of including HOIs.
Using broad categories such as functional group or or-

igin status (native/exotic) provides a way to group indi-
viduals that may play similar roles within the community
but limit the amount of detail needed to explain general
patterns. For example, in herbaceous communities, cate-
gorizing species by life form (i.e., grass or forb) can cap-
ture important differences in life-history strategy, traits
(see Craine et al. 2001; Tjoelker et al. 2005; Ravenek et al.
2016), responses to nutrient addition (see Li et al. 2016;
You et al. 2017), and water availability (Pérez-Ramos
et al. 2019). Further,wemay expect exotic andnative species
to have different functional traits (Ordonez et al. 2010) and
differing competitive abilities (Levine et al. 2003; Godoy
et al. 2014). For example, Ordonez et al. (2010) found that
exotic species tend to have small seeds (which could influ-
encewiderdispersal) and large specific leaf area (SLA;which
could improve ability to compete for light). Combining or-
igin status with life form to create narrower categories
(e.g., a native, annual grass vs. an exotic, perennial forb)
thus seems an ecologically sensible way to create finer eco-
logical groups that provide important information about
how individuals interact without dramatically increasing
model complexity. It may also prove beneficial to add a
bit more detail by including specific functional trait data
in species groupings (Díaz et al. 2016; Levine 2016). Alter-
natively, grouping species by taxonomic relatedness, such
as family, offers a potentially simple way to capture key
species differences as it is a measure of evolutionary his-
tory that potentially predicts trait similarity between spe-
cies in communities (Qian and Jiang 2014; also reviewed
in Webb et al. 2002; Cavender-Bares et al. 2009; but see
Wilcox et al. 2018).
In this paper, we explore a range of approaches to

simplifying annual plant individual fitness models that
include more biological information than direct competi-
tion alone, focusing on models that include higher-order
interactions and facilitation as well as direct competition.
Specifically, we ask, the following: (1) Is considering the
identity of focal species important for accurately model-
ing individual fitness (i.e., lifetime fecundity) in annual
plant communities? (2) How important is considering
the identity of neighborhood members for the accuracy
of individual fitness models? Is it worthwhile to include
details about interactions with rare species, or can they
be grouped or ignored entirely without losingmodel accu-
racy? And, (3) Can we identify generalizable functional
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and taxonomic approaches to grouping neighbor species
that reduce model complexity while maintaining ecolog-
ically important variation associated with direct and
higher-order interactions?
To answer these questions, we use the Mayfield and

Stouffer (2017b) higher-order interaction model frame-
work to model individual fecundity of focal plants. We
split species identity in fitness models into two parts,
the focal identity (question 1) and the neighbor identity
(questions 2 and 3; fig. 1). For question 1, we test the im-
portance of focal species identity by iteratively including a
focal identity term in models that include combinations
of direct and higher-order interactions (fig. 1B; table 1).
To ensure the generalizability of our findings, we then use
a variety of approaches to assess importance. First,wedefine
importance as an increase in model accuracy (lower value)
based on comparing root mean square error (RMSE) for
model fit to testing and training data sets (RMSEtrain and
RMSEtest). By comparing RMSE across different model
specifications, researchers can balance how much accu-
racy they are willing to compromise to simplify themodels.
In addition, we also provide two different but commonly
Figure 1: Conceptualizations of identity analyses showing a simple neighborhood with a focal individual (center pink flower) and four
neighboring plants. A, The standard neighborhood is where the focal plant and the neighbors are identified by their species; this is the neigh-
borhood that all other analyses will be compared against. B, To analyze the importance of the identity of the focal species, the standard
neighborhood is compared to a neighborhood where the focal species identity is removed (here indicated as “focal plant”). C, The standard
neighborhood is compared to a neighborhood where the neighbor species identity is removed and neighbors are accounted for as just counts
of plants (abundance, represented by the numbers 1–4). D, The standard neighborhood is compared to a neighborhood where the neigh-
boring plants are grouped by taxonomic or functional identity (shown is an example identifying differences in life form, i.e., grass vs. forb).
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used metrics for model fit that penalize for number of
parameters: Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC). These model selec-
tion heuristics objectively select the best model with differ-
ent criteria. Overall, the models that result in the best fit
inform if and for which interactions focal identity is impor-
tant. For questions 2 and 3, we comparemodels with differ-
ent neighbor identities (e.g., plant abundance only [fig. 1C]
and neighboring species groupings based on rarity or func-
tional identity, such as life form [fig. 1D]). If we find an
improvement in model performance with certain group-
ings, this provides insight into ways of grouping species
that improve model tractability while retaining key bio-
logical information about neighboring species. We ran the
above analyses with data from two distinct annual plant
communities—one from Australia and the other from
Spain—in order to determine not onlywhich simplification
approach is best but also which is most generalizable across
contrasted annual plant systems.
Methods

Data Sets

We ran all analyses on two independent data sets collected
from twodistinct study systems, one inAustralia andone in
Spain. Both data sets come from annual plant-dominated
communities growing naturally in Mediterranean climate
regions.We describe each study systemand data-collection
protocols below.

Australia. Our first data set was collected in 2013 in two
Western Australia nature reserves, Kunjin (lat. 32721019.3100S,
long. 117745042.300E) and Bendering (lat. 32723006.100S, long.
118722042.400E). Both reserves are dominated by York gum-
jamwoodlands, which support an understory of mixed na-
tive and exotic annual grasses and forbs (Dwyer et al. 2015).
Across both reserves, we tracked seed production of in-
dividual plants from six focal species. Three species were
found at both reserves, whereas the others were found in
only one reserve or the other. In each reserve, 30#30-cm
plots were marked out around arbitrarily selected individu-
als of each focal species. There were 35 focal individuals
for each focal species at each reserve in which it was found,
for a total of 945 focal individuals across all six species and
both reserves. Fiveof the individuals selected fromeach spe-
cies were randomly assigned to an intrinsic fecundity treat-
ment, in which all neighbors were weeded in a 7.5-cm-
radius circle around the focal plant. The intrinsic fecundity
treatment served to quantify the number of seeds for an
individual that was receiving no competition (i.e., a base-
line fecundity). The remaining 30 plots were competition
plots, in which neighborhoods were thinned to contain cer-
tain combinations of neighbors. Distinct neighborhood-
thinning treatmentswere not distinct enough tobedifferent
factors and so are not considered here. For more details on
neighborhood thinning, see Mayfield and Stouffer (2017b).
In a 7.5-cm radius around each focal individual, we re-
corded the identity and abundance of all neighboring plants
left after thinning. Neighborhoods around focal plants in-
cluded 0–31 individuals from zero to eight different species.
Across all plots, there were 45 neighboring species repre-
sented, including the six focal species (see table S1 for the
list of species with sample sizes; tables S1–S5 are available
in online apps. S1–S4).
At the end of the growing season, we counted all flow-

ers (inflorescences for Asteraceae species) on each focal
plant and collected seeds from one to three flowers (inflo-
rescences) per plant. To estimate total seed production per
plant, we then averaged the number of seeds produced per
flower and multiplied this number by the number of flower
heads on each individual. Herbivory, plant death, or seed
release prior to collection prevented the use of 172 focal
plants, reducing our final data set to 773 focal individuals
from six focal species across two reserves. See Mayfield
and Stouffer (2017b) for further field methods. Fecundity
and neighborhood data are from Mayfield and Stouffer
(2017a).

Spain. Our second data set was collected from an annual
grassland system in Caracoles Estate within Doñana Na-
tional Park in southwest Spain (lat. 37704001.000N, long.
6719016.200W). In September 2015, we established nine
8:5#8:5-m plots over a humidity and salinity gradient
within a 1 km#200 m area. Plots were blocked into three
locations along a topographical gradient (upper, middle,
and lower) with, on average, 300 m between each block
and 15 m between each plot (fig. S1; figs. S1–S12 are
available in online apps. S1–S4). Each plot was subdivided
into 36, 1#1-m subplots, and we measured one focal in-
dividual per species within each subplot for a maximum
of 324 focal individuals per species. Surrounding each focal
individual, we counted and identified the neighbor species
within a 7.5-cm-radius area. During senescence, we re-
corded seed production for each individual that germi-
nated by counting the number of fruits on each individual
and multiplying that value by the average number of seeds
per fruit for each species at the site. In total, we collected
fecundity and neighborhood data for 1,751 focal individu-
als from 17 focal species at this site. For this analysis, we
removed focal species with less than 20 occurrences, re-
sulting in a data set with 1,694 individuals from the 12
most common species with 17 potential neighbors (see ta-
ble S1 for the list of focal and neighboring species with
sample sizes). See Lanuza et al. (2018) and García-Callejas
et al. (2020) for more in-depth field methods.
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Individual Fitness Model

We quantified the effects of neighbors on the fecundities
of focal individuals using the negative binomial individ-
ual fitness model framework presented by Mayfield and
Stouffer (2017b):

Fmi
jfNg p lie(Dmi jfNg)1(Hmi jfNg), ð1Þ

where Fmi
is the fecundity (measured as the number of

seeds a plant produced or was estimated to produce) of
each focal individual m of the focal species i in the pres-
ence of a set of neighboring individuals {N}. Intrinsic fe-
cundity (i.e., fecundity in the presence of no neighbors) of
focal species i is represented above by li. We used Dmi to
partition the direct effects of neighbors on the focal indi-
vidual from the higher-order effectsHmi . Direct effects are
modeled more specifically as

Dmi jfNg p 2
Xs

jp1

aijNj, ð2Þ

where the direct effects (aij) capture the per capita effect of
the densityNj of neighbors of species j on the focal individ-
ual mi. Higher-order effects were modeled similarly:

Hmi
jfNg p 2

Xs

jp1

bijj

Nj(Nj 2 1)
2

2
Xs

jp1

Xs

kpj11

bijkNjNK ,

ð3Þ
where higher-order effects bijk are the collective effects of
neighboring individuals of species j and/or species k on
the focal individual, resulting in nonadditive effects of neigh-
bor densities (e.g., NjNk) on the fecundity of the focal indi-
vidual. For intraspecific higher-order effects, we used the
term biii (which captures the quadratic effect of intraspe-
cific density on the focal individual’s fecundity), and inter-
specific HOIs could be either bijj or bijk.
Analyses

For our analyses, we used a model comparison approach
to determine how the identity of focal and neighbor spe-
cies affects model accuracy. Here, we determinemodel ac-
curacy using four metrics. We used k-fold cross-validation
(Zhang 1993) to compare the fit of the model to the data
and the ability of the model to predict withheld data. We
split each data set intofive stratified sections using the create-
Folds() function in the caret package in R (Kuhn 2008). We
fit the model with four of the five folds and then predicted
the remaining fold using the withheld data as a testing data
set. To calculate the fit to the training data and the ability
to predict the testing data, we used the RMSE, which is ex-
pressed in the same units used to express the linear predic-
tor—log(seeds) in our negative binomial model—and can
quantitatively inform us of how much error is added via
model simplification. We calculated RMSE for the train-
ing data set as

RMSEtrain p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean(residuals2)

p
, ð4Þ

which is not penalized by the number of model terms, un-
like AIC or BIC. Note that, for a set of nested generalized
linear models, the one with more parameters will always
show a smaller model deviance (i.e., the value being min-
imized during model fitting) and, hence, a larger log like-
lihood due to the relationship between deviance and log
likelihood; however, the model with more parameters will
not necessarily have a smaller RMSE due to heterosce-
dasticity or other variation in the data (McCullagh and
Nedler 1989).
We also calculated RMSEtest based on the predicted

values as

RMSEtest p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean((observed values2 predicted values)2)

q
,

ð5Þ
which we used as a measure of how well the model per-
forms for withheld data. Using both RMSEtrain and RMSEtest,
we also estimated loss in predictive power of the model
as

proportion loss model predictive power p

12
RMSE best fit model

RMSE model to compare against
,

ð6Þ

so we could compare howmuch fit is lost by choosing a dif-
ferent model (perhaps with fewer parameters to estimate)
compared to the best fit model (table S2). In the text, we
present percentage loss, which is the proportion valuemul-
tiplied by 100. We also used two model accuracy metrics
that are penalized by the number of parameters in the
model, AIC and BIC, with BIC having a stronger penalty
for number of terms in the model than AIC (Brewer et al.
2016). For each analysis, we considered the best model to
be the one that had the lowest AIC/BIC value by at least
2 points (Burnham and Anderson 2002). We present the
average model accuracy metric values across all five folds
of the data in the results section and in table 3.
To fit the models, we used the manyglm() function

(package mvabund; Wang et al. 2012). Using this pack-
age, rank-deficient terms were dropped during model fit-
ting.Models were fit separately for the Australian and Span-
ish data sets. In theAustralian data set, because the sites were
approximately 65 km away, for focal species sampled at dif-
ferent sites, a fixed effect of site was included in the models
to account for differences between sites. A fixed effect for site
was not used for the Spanish data set because the plots were
relatively close in distance (!500 m). All analyses were
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performed in R statistical software 3.5.1 (R Core Develop-
ment Team 2018).

Focal Identity Analysis. To explore the importance of fo-
cal species identity to all terms in the model, we iteratively
added the identity of the focal species to the l, a, and b

terms (intrinsic fecundity, direct interaction, and higher-
order interactions, respectively), starting with the null ex-
pectation that focal identity is not important for model fit
(“no ID (direct)” and “no ID (direct and HOI)”models in
table 1). For those models that included only direct effects,
we fixed all b terms to zero. We did not do a whole facto-
rial design for this analysis in order to maintain biologi-
cally interpretable models. For example, we reason that
it would be unrealistic to include focal species identity
for HOI effects without also including focal species iden-
tity for the direct effects that are modified by those HOIs
and the intrinsic fecundity for the focal individual. There-
fore, our approach iteratively added complexity to each
previous model, starting with focal identity excluded from
all terms and then adding in focal species identity sequen-
tially to the intrinsic fecundity term, direct interaction
terms, and, finally, HOI terms.

Neighbor Identity and Rarity Analysis. To answer our
second question about the importance of neighbor iden-
tity, we conducted a similar metric-based model compar-
ison as above, comparing different neighbor groupings us-
ing the full direct-only model (“full model (direct)”) and
the full HOI-inclusive model (“full model (direct and
HOI)”), which included all species-level focal and neigh-
bor identities. We first compared the full species identity
model to the simplest model, abundance, in which neigh-
bors were included just as total number of individuals
around each focal individual (for the direct effects) and
pair of individuals (for the higher-order effects). This sim-
plified model allowed us to ask whether the abundances of
neighbors alone could capture the important information
about a neighborhood on a focal individual’s fecundity
when HOIs are included.
To explore the importance of neighbor species rarity,

we calculated the total number of neighbors for each data
set (3,582 for the Australian data set and 19,831 for the
Spanish data set).We then grouped species that had abun-
dances of less than 1% across the whole data set into a rare
species grouping (28 of 45 neighbor species for the Aus-
tralian data set and eight of the 17 neighbor species for the
Spanish data set were classified as rare; starred in table S1).
We then also ran the models with those rare species re-
moved from the data set to see how removing the rare spe-
cies would affect model fit. We compared the results for
both the full direct-only model and the full HOI-inclusive
model.

Neighbor Grouping Analysis. For our third question, ex-
ploring generalizable functional groupings, we compared
the full higher-order inclusive model with all identities in-
cluded with a selection of biologically motivated neighbor
groupings. We grouped all species by life form, origin sta-
tus, functional traits (see app. S2 for trait-clustering meth-
ods), and taxonomic relatedness (see app. S2 for methods;
table 2; table S1).We did not test origin status for the Span-
ish data set because therewas onlyone status (native).Over-
all, we tested seven distinct neighbor identity groupings
against the models run with full species identity (groupings
listed in table 2 along with the two rare groupings above).
Results

Focal Identity

The best models differed for our two data sets. For the
Australian data set, the impartial a (direct) model, which
includes focal identity for only intrinsic fecundity (li),
Table 2: Groupings for neighbor identity analysis
Number of groups within data set
Neighbor identity group
 Definition
 Example
 Australia
 Spain
Life form
 Grouped by whether species is
graminoid or forb
Forb, grass
 2
 2
Origin status
 Grouped by whether species is
exotic or native to site
Exotic, native
 2
 1a
Functional type
 Grouped by life form, life history,
and native status
Annual exotic grass, . . . ,
perennial native forb
4
 2
Trait complex
 Grouped by trait clustering of
functional traits (see app. S2)
Cluster group 1, . . . , cluster
group 4
7
 2
Plant family
 Grouped by plant family
 Asteraceae, . . . , Goodeniaceae
 18
 9
Note: See table S1 for complete species list and assigned groupings.
a Because there was only one group for origin status in the Spain data set, this model type was not run for that data set.
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was the best model based on having the lowest RMSEtest,
AIC, and BIC values (table 3). The full model (direct
and HOI) was the best-performing model based on only
RMSEtrain. Between the impartial a (direct) model and
the full model (direct and HOI), there was a 16% loss in
predictive power based on RMSEtrain and a 63% gain in
predictive power based on RMSEtest. There was also a
12-fold increase in the number of terms for the model
to estimate in the full model (direct and HOI) compared
to the impartial a (direct) model (694 and 55 terms, re-
spectively; table 3).
For the Spanish data set, the best model based on

RMSEtrain and AIC was the full model (direct and HOI),
within which focal identity was included for all model
terms (table 3). When considering RMSEtest and BIC,
however, the full model (direct) was the best-performing
model. There was a 22% loss in predictive power between
the full model (direct and HOI) and the full model (di-
rect) based on RMSEtrain and a 600% increase in predictive
power based on RMSEtest. There were also 382 fewer pa-
rameters to estimate in full model (direct) compared to
full model (direct and HOI).
Neighbor Identity and Rarity

For the Australian data set, the HOI-inclusive model that
used the abundance grouping performed better in three of
the four metrics (all but RMSEtrain) than did the HOI-
inclusive species identity model (red and black points, re-
spectively, in figs. 2 and S2).When comparing performance
based on RMSEtest, the species identity model performed
worse than the abundance models, with a 33% loss of pre-
dictive power for the direct-only model and a more than
20,000% loss for the HOI-inclusive model. Both the direct-
only and HOI-inclusive abundance models had a 16% de-
crease in RMSEtrain predictive power compared to the best-
fitting HOI-inclusive species identity model; however,
the abundance models had 97% fewer parameters to esti-
mate compared to theHOI-inclusive species identitymodel
(table S2).
Similar to the Australian data set, for the Spanish data

set, the abundance grouping performed better than the
species identity grouping for all accuracy metrics for the
HOI-inclusive model except RMSEtrain (red and black
points, respectively, in figs. 2 and S3). For direct-only
models, there was an improvement in accuracy based
on BIC but lack of clear improvements in the other three
metrics (RMSEtrain, RMSEtest, and AIC). When comparing
RMSEtrain between the abundance and species identity
HOImodels, there was a 3% loss in predictive power; how-
ever, the abundance model had 92% fewer parameters to
estimate. Both the abundance and species identity direct-
only models had a 20% loss in performance based on
RMSEtrain compared to the species identity HOI-inclusive
model, though there were 94% and 71% fewer parameters
to estimate in those models, respectively (table S2). There
was more than a 300% decrease in predictive power and
a 28% increase in number of parameters to estimate when
comparing the RMSEtest between the direct-only and HOI-
inclusive species identity models.
Table 3: Focal identity results
Data set, grouping
 Coefficient
 AIC
 BIC
 RMSEtrain
 Losstrain
 RMSEtest
 Losstest
Australia:

No ID (direct)
 47
 10,447
 10,700
 1.465
 2.47
 1.630
 2.02

No ID (direct and HOI)
 348
 10,770
 12,393
 1.358
 2.36
 26.693
 224.61

Impartial a and b (direct and HOI)
 355
 10,008
 11,663
 1.081
 2.08
 21.797
 219.91

Impartial a (direct)
 55
 9,767
 10,027
 1.155
 2.16
 1.042
 .0

Impartial b (direct and HOI)
 459
 10,069
 12,208
 1.046
 2.02
 12.352
 210.85

Full model (direct)
 170
 9,800
 10,595
 1.017
 2.05
 1.240
 2.19

Full model (direct and HOI)
 694
 10,263
 13,495
 .995
 .0
 67.213
 263.50
Spain:

No ID (direct)
 18
 19,812
 19,915
 1.279
 2.11
 1.892
 21.17

No ID (direct and HOI)
 127
 19,770
 20,465
 1.334
 2.16
 2.362
 21.72

Impartial a and b (direct and HOI)
 138
 17,676
 18,431
 1.287
 2.12
 1.382
 2.59

Impartial a (direct)
 30
 17,939
 18,107
 1.213
 2.05
 .967
 2.11

Impartial b (direct and HOI)
 248
 17,139
 18,492
 1.392
 2.21
 1.182
 2.36

Full model (direct)
 145
 17,068
 17,862
 1.395
 2.22
 .868
 .0

Full model (direct and HOI)
 527
 16,996
 19,866
 1.146
 .0
 6.023
 25.93
Note: Listed are the number of coefficients for the model as well as the Akaike information criterion (AIC), Bayesian information criterion (BIC), root mean
square error (RMSE) for models fit to the training data set (RMSEtrain), RMSE for models fit to the testing data set (RMSEtest), and proportion predictive power
loss for those respective RMSE values (Losstrain and Losstest). Boldfaced values are those that are the best-performing models based on the respective accuracy
metric. ID p focal identity; HOI p higher-order interactions.
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For the rare groupings, the HOI-inclusive model with
rare species removed improved predictive power based
on RMSEtrain by 0.4% over the HOI-inclusive models of
species identity and rare species grouped and 6% over
any direct-only models. Based on RMSEtest, the direct-
only model with rare species grouped improved predic-
tive power over rare species removed and species identity
by 3% and 35%, respectively. When compared to the
direct-only models using RMSEtest, the HOI-inclusive
models performed poorly, with a greater than 2,000% loss
in predictive power (table S2). The models with rare spe-
cies grouped and rare species removed performed better
than the species-identity model based on AIC and BIC,
especially the HOI-inclusive model for the Australian
data set (gray and black points, respectively, in figs. 2
and S2). By grouping and removing rare species, we re-
duce the number of parameters in the model by 31%
and 43%, respectively, for the HOI-inclusive models and
41% and 45%, respectively, for the direct-only models
when compared to the number of parameters in the full
species identity HOI-inclusive and direct-only models
(table S2).
Similar to the Australian data set, for the Spanish data

set, based on RMSEtrain, theHOI-inclusivemodel with rare
species removed had a 1.4% and 0.7% improvement in
predictive power over theHOI-inclusivemodels with spe-
cies identity and rare species grouped , respectively, and a
greater than 22% improvement in predictive power over
any of the direct-only models (table S2). Using RMSEtest,
the direct-only model with rare species removed was the
best performing, improving in predictive power by 0.5%
and 6.4% over the direct-onlymodels with species identity
and rare species grouped, respectively. The HOI-inclusive
models had at least a 300% loss in predictive power based
on RMSEtest compared to any of the direct-only models
(table S2). Also similar to the Australian data set, the rare
species categories for the Spanish data set performed
better for AIC and BIC (fig. 2). Compared to the species-
identity models, rare species removed and rare species
grouped had 38% and 23% fewer parameters to estimate
in the HOI-inclusive models and 33% and 23% in the
direct-only models.
Neighbor Grouping

For the Australian data set, most neighbor groupings
performed better than then full species-identity model
based on RMSEtest, AIC, and BIC but not RMSEtrain for
the HOI-inclusive models (vertical spread of colored vs.
gray/black points in fig. 2). For the direct-only models,
there was improvement in model performance over
species identity based on BIC for all neighbor groupings.
However, improvement was less apparent based on
RMSEtrain, RMSEtest, and BIC (horizontal spread of points
in fig. 2). Compared to the species identity HOI-inclusive
model, plant family and trait complex had a 9%–11% de-
crease in predictive power based on RMSEtrain (for both
HOI-inclusive and direct-only models), whereas func-
tional type, life form, and origin status had a 13%–16%
decrease for both direct-only and HOI-inclusive models.
Compared to the full, HOI-inclusive species identity
model, there were 63%, 76%, 88%, 94%, and 94% fewer
parameters to estimate for the plant family, trait complex,
functional type, life form, and origin status groupings, re-
spectively (app. S1; table S2). For the direct-only models,
compared again to the species identity HOI-inclusive
model, there were more than 88% fewer parameters for
all of the above groupings.
For the Spain data set, groupings appeared to perform

as well as or better than the species identity model for
RMSEtrain, RMSEtest, AIC, and BIC in the HOI-inclusive
models (vertical spread in fig. 2). Similar to the Australian
data set, for the direct-only models, the improvement in
BIC is clear; however, for the other metrics there was little
improvement in model performance (horizontal spread
in fig. 2). The best-performing model based on RMSEtrain

was the plant family HOI-inclusive model. Compared to
this best-performing RMSEtrain model, the other group-
ings’ HOI-inclusive models (as well as the species iden-
tity model) had up to 2% loss in predictive power. The
Figure 2: Model accuracy metrics for neighbor groupings comparing direct-only models and models including higher-order interactions
(HOI) for the Australian data set (A–D) and the Spanish data set (E–H ). Shown are the mean and standard error (52) values for four dif-
ferent model metrics: Akaike information criterion (AIC; A and E), Bayesian information criterion (BIC; B and F ), root mean square error
(RMSE) for the model fit to the training data set in the k-folds cross-validation analysis (RMSE training; C and G), and RMSE for the model
predicting to withheld data in the k-folds cross-validation analysis (RMSE testing; D and H ). Metrics for the direct-only models are on the
X-axis and values for the HOI-inclusive model on the Y-axis. Points above the 1∶1 line indicate that the direct-only model fit better (lower
value) for that metric, while those below the line indicate that the HOI-inclusive model fit better. Different colors represent the different neigh-
borhood groupings used in the analyses: full species identity of the neighbors (species identity), grouping rare species together into a rare group
(rare species grouped), removing the rare species (rare species removed), considering neighbors only by abundance (abundance), and the groupings
list in table 2. For the Australian data set, for RMSE testing (D), the species identity, rare species grouped, rare species removed, and plant family
grouping HOI-inclusive model values are much greater than those shown and are not included in this figure to improve clarity for the other
groupings (see fig. S2 for the full image with the above groupings included). Similarly for the Spanish data set, for RMSE testing (H), the species
identity, rare species grouped, and rare species removed grouping HOI-inclusive model values are much greater than those shown and are not
included (see fig. S3 for the full image).
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direct-only models for all groupings had a 20%–23% loss
in predictive power compared to the best-performing
RMSEtrain model. Based on RMSEtest, the best-performing
model was the species identity direct-only model. The
direct-only models for all the groupings had up to a 1%
loss in predictive power based on RMSEtest compared to
the species identity direct-only model, while the HOI-
inclusive models had a 61%, 10%, 12%, and 16% loss in
predictive power for the plant family, trait complex, func-
tional type, and life form models, respectively. There was
a 47% decrease in the number of parameters to estimate
for the plant family HOI-inclusive model and 82% for
the direct-only model compared to the full HOI-inclusive
species identity model. For the trait complex, functional
type, and life form models, there was an 85% decrease
in the number of parameters to estimate for the HOI-
inclusive models and 95% decrease for the direct-only
models.
Overall, using the neighbor groupings or abundance

models, HOI-inclusive models performed as well as (on
the 1∶1 line in fig. 2) or better than (below the 1∶1 line)
the direct-only models for both the Australian and Spain
data sets. If using the species identity, rare species grouped,
or rare species removed groupings, the direct-only models
performed better than the HOI-inclusive models based on
RMSEtest and BIC and worse than HOI-inclusive models
based on RMSEtrain for both data sets. See tables S3 and
S4 for results per focal species for the Australian and Span-
ish data sets, respectively.
Discussion

The growing interest in understanding how species inter-
actions within ecological communities modulate coexis-
tence as well as community diversity and stability has
driven a reassessment of the assumptions and simplifi-
cations commonly made in individual fitness modeling.
Clark et al. (2019) found that too much added informa-
tion can degrade the accuracy of fitness models but also
that the best models are not the simplest models com-
monly used. Though higher-order interactions are widely
recognized to be an important group of interactions in
natural communities, the issues they cause inmodeling in-
dividual fitness are not trivial and have driven the opin-
ion that the value of HOIs is not sufficient to merit the
issues they cause with modeling (Levine et al. 2017), a
conclusion we feel is premature. To improve tractability
of HOI-inclusive models, we need to take a hierarchical
approach in which, rather than modeling HOIs directly,
we first determine which model components are actually
important. In this study, we found that focal species iden-
tity was most important for intrinsic fecundity. We also
found that by grouping neighboring species according
to broad functional categories (specifically, life form and
origin status), we can reduce the number of model terms
dramatically while improving the fit of HOI-inclusive
models. These findings suggest that summarized details
about HOIs can be accounted for in individual fitness
models without major increases in data demands.
Does Identity Matter?

The identity of individuals interacting in nature is gener-
ally considered of central importance to the outcomes of
those interactions (Chesson 2000a; Uriarte et al. 2004;
Uriarte and Menge 2018). Further, it is assumed that
removing species-level information will result in the con-
current removal of associated ecologically important in-
formation, resulting in poorly performing models. Though
we did find strong evidence that the identity of the focal in-
dividual was important in both our Spanish and Australian
systems, evidence for the importance of neighbor identity
was much weaker. Results from our study suggest that
species-specific neighbor identity may be much less im-
portant for accurately modeling individual fecundity than
previously thought. Notably, we found that even simple
information on species characteristics (e.g., life form) max-
imized model accuracy for the two systems we studied. For
most measures of model accuracy (RMSEtrain, RMSEtest,
AIC, and BIC), life form and origin status performed aswell
as or better than abundance models, which always had the
fewest model terms, and the species identity models, which
were the most complex. Furthermore, life form and origin
status groupings also elevated the performance of HOI-
inclusivemodels relative to direct-onlymodels. These results
suggest that it is important to include general ecological in-
formation about neighbors (more than just abundance of
neighbors), but the finest species-level resolution informa-
tion is not necessary for capturing ecological differences be-
tween interacting neighbors in individual fitness models.
This is a noteworthy result because it suggests that the spe-
cies interactions assumed to be of foundational importance
to the maintenance of diversity in plant communities can be
summarized for modeling purposes using easy-to-measure
functional or life-history groupings (e.g., life form), without
the need for precise—and often time-consuming—species
identifications. We note that this finding does not speak to
the importance of these details for any other question about
community-level diversity but does provide a simple guide-
line for the level of detail needed to maximize the fit of in-
dividual fitness models.
The literature on the importance of neighbor identity

on focal plant fitness is quite variable. As such, our results
align with results from some studies but not others. For
instance, Uriarte et al. (2004), Vogt et al. (2010), and
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Jacob et al. (2017) found that neighbor identity is not an
important driver of interaction outcomes between focal
plants and their neighbors in a variety of systems. Other
studies, however, have found the opposite, that the iden-
tity of the neighbor species does matter, specifically in
modeling biomass using pairwise experimental plantings
(Weigelt et al. 2002) andwhen estimating the effect of com-
petition on secondary plant compounds (Barton and Bowers
2006). Our study goes beyond all of these previous neighbor-
fitness studies by increasing the number of possible neigh-
bors considered as well as the inclusion of higher-order
interactions created by complex neighborhoods. Indeed,
the similarities in our neighbor-identity results across
two very distinct annual plant systems—semiarid wood-
lands and ephemeral wetlands—are exciting, as they sug-
gest that some generalizations can be made about how de-
tailed neighborhood information needs to be to accurately
estimate individual lifetime fecundity using the full spec-
trum of relevant plant-plant interactions impacting plants
in real natural communities.
Model Fit

Details of the best-fitting models for each of our two data
sets were consistent in some details but not others. Nota-
bly, we found that focal identity for intrinsic fecundity was
present in the best-performing models for both data sets
but not consistently for interaction terms. This result aligns
with the well-known fact that there are inherent differ-
ences in plant species, likely reflective of the distinct niches
held by different species (Tilman 1982; Chesson 2000b;
Levine and HilleRisLambers 2009; reviewed in Silvertown
2004). For direct and higher-order interaction model terms,
support for the inclusion of focal species identity in models
differed for our two systems. The inclusion of focal identity
was supported for the interaction terms in the best-fitting
model for the Spanish data set but not the Australian data
set. In the Australian data set, focal species identity in direct
interactions was not important for model performance.
This would indicate, at least for the Australian data set, that
neighbors had relatively consistent effects on the focal indi-
vidual, regardless of the focal species. The variation across
systems in how important species identity is to fecundity
outcomes suggests that the widely held assumption that
species differences are important for the outcome of local
interactions is actually context dependent.
The importance of HOIs to model fit varied across our

data sets. HOI terms were not part of any of the best
models for the Australian data set based on RMSEtest,
AIC, or BIC but were for the Spanish data set. HOIs, how-
ever, were always included in the best-performing model
based on RMSEtrain for both data sets. This indicates that
HOI-inclusivemodels consistently fit themodel to the data
better than direct-only models. The exclusion of HOI
terms from the best-fitting models for the Australian data
set, however, indicates that the inclusion of HOIs into fit-
ness models may not compensate for model complexity
based on AIC or BIC for the Australian species. This does
not, however, indicate that HOIs are not of significant im-
portance to some focal species, some species pairs, or some
species triplets. In this study, we applied HOIs with an all-
or-nothing approach, with the assumption that HOIs were
either always important or always not important. How-
ever, certain HOIs could vary in importance by species
in the same way that two species may compete strongly
with each other but weakly with a third. For example, intra-
specific HOIs could be more important than interspecific
HOIs for some species, or vice versa; this would lend itself
to a mixed, intermediate model approach that is focal spe-
cies specific. Such an approach was used in Mayfield and
Stouffer (2017b) but was not performed here because we
were looking for system-wide trends and were not at-
tempting to provide evidence of the specific importance
or value of HOIs to specific species. Our approach is ideal
for exploring general principles about fitness modeling but
excludes more detailed analysis of the factors influencing
specific species and specific interactions. Indeed, Mayfield
and Stouffer (2017b), which used data on the same Austra-
lian focal species we use here, examined the impacts of
HOIs on each focal species separately and found that HOIs
were significantly important for half of our tested focal spe-
cies but not all, supporting our conclusion about the vari-
able importance of HOIs in this Australian data set. In the
Spanish data set, two high-performingmodels for the focal
identity analysis were identified: full model (direct) and full
model (direct and HOI). Full model (direct) was the best-
fittingmodel based onRMSEtest andBIC (a fit-focusedmet-
ric that heavily penalizes for number of model terms),
while full model (direct and HOI) was the top-performing
model based on RMSEtrain and AIC. The similar perfor-
mance of these models, one including HOIs and one ex-
cluding them, may suggest that HOIs are less important
for some focal species in this system than others and that
the overall HOI signal may have become lost when bal-
anced against the number of parameters used to predict fit-
ness using some tests of this entire data set.
Though our general conclusion is that HOIs are of

variable importance to species in both of our focal sys-
tems, it is interesting that evidence for this manifests in
such different ways for the two systems. We did select an-
nual plant systems that differed in substantial ways to in-
crease the value of our results in making generalizable
conclusions. Notably, our systems are from opposite sides
of the globe and thus have totally distinct evolutionary
and biogeographic histories. The Australian system is a
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semiarid system in which water is limiting and soil phos-
phorous is a major factor determining diversity patterns
(Prober and Wiehl 2011; Dwyer et al. 2015). This system
has also been heavily impacted by human activities, in-
cluding the invasion of grass and forb species fromAfrica,
Europe, and North America, as well as fragmentation, soil
nutrient enrichment, and disturbance (Prober and Wiehl
2011; Dwyer et al. 2015). Our Spanish system, on the
other hand, is an ephemeral wetland system, with diver-
sity structured in relation to inundation level and extent
(Lanuza et al. 2018). It is a fully native system that sits
in a well-preserved nature reserve protected from many
of the anthropogenic factors impacting the Australian
system. Given the major differences in these systems, it
is perhaps not surprising that results differed between
the systems. In fact, given these differences, it is possible
that our results reflect important inherent differences
in these systems. The Australian data set has more than
twice the number of potential neighbors as the Spanish
data set, resulting in a corresponding doubling of the
number of possible HOI terms. The Australian plant
community was also 2.2 times as even (based on Pielou’s
evenness index; Pielou 1966) than the Spanish data set,
which was dominated by a single species,Hordeum mari-
num (with more than 10 times as many individuals of this
species than any other; table S5). The dominance of H.
marinum strongly influenced which direct interactions
and HOIs could be parameterized in the Spanish models.
(We note again that in all models run in this study, only
those interactions for which data were available were pa-
rameterized; models did not include all possible interac-
tion terms as not all combinations occurred in our sys-
tem). It is important to never lose sight of the fact that
all HOI-inclusive individual fitness models (at least using
this approach to their inclusion) are simplified versions of
the theoretical ideal of a full HOI-inclusive model. This is
because no data set includes data on the full suite of all
possible direct and HOIs for all species in a natural com-
munity. Such a data set is only even possible for data col-
lected from a fully artificial experiment; in natural sys-
tems, many species found in the same community may
never interact (at least as adults) in local neighborhoods.
Even those models with several hundred terms have
parameters for a fraction of all possible HOIs. Our results
again point to the need to consider what information
about HOIs is most important to include for the goals
of a specific study or question.
Functional versus Species Identity

The main aim of this study was to determine whether
HOI-inclusive models could be simplified in a way that
reduced vulnerability to model overfitting while retaining
any value added by including this biological complexity
into individual fitness models. Thus, even though we did
not find HOIs to be essential components of all of the very
best-fitting models for both systems, it is still worth explor-
ing how well HOI-inclusive models performed when sim-
plified in a variety of ecologically sensible ways. We found
that HOI-inclusive models in both systems that used trait-
based or functional group categories of neighboring spe-
cies were more supported than those including all param-
eterizable species pairs. Further, certain function-based
neighbor groupings performed better than the neighbor
abundance models, which assumed all neighbors were
the same species, which had the fewest model terms. These
results are consistent with much of the functional trait lit-
erature, which has made strong links between traits, per-
formance, and/or demographic rates (Westoby andWright
2006; Poorter et al. 2008; Violle et al. 2017). The relation-
ship between functional trait trade-offs and coexistence is
well studied (Ehrlén et al. 1998; Kneitel and Chase 2004;
Angert et al. 2009; Sterck et al. 2011; Soliveres et al. 2014;
Kraft et al. 2015; Petry et al. 2018), and many functional
traits are known to affect how species interact (Bennett
et al. 2016; Kunstler et al. 2016; Rolhauser and Pucheta
2016; Pérez-Ramos et al. 2019). Given the depth of liter-
ature linking function to demographic success, our results
are not surprising. To our knowledge, however, our study
is the first explicit test of whether species that are broadly
functionally similar also contribute to higher-order inter-
actions in similar ways. As is the case for the link between
function and direct interactions (Angert et al. 2009; Kraft
et al. 2015; Kunstler et al. 2016), we might expect that
grouping species by function would be effective only if
we could identify the traits specifically involved in the
mechanisms driving HOIs. More detailed study of specific
mechanisms underlying HOIs will likely show that group-
ing neighbors by specific HOI mechanism or associated
traits is the best option, but our results show that even
broad general life-history strategies are useful for grouping
neighboring species in HOI-inclusive fitness models. From
a practical perspective, this finding is exciting because it
shows that the common reason given for excluding HOIs
from fitness models—that data requirements are too
great—is overstated (Levine et al. 2017; AlAdwani and
Saavedra 2019). Basic information about the abundance
of neighbors and their life history (grass/forb) or basic
functional type is sufficient to gain the benefits of adding
HOIs to individual fitness models when they prove strong
in a given system. For example, if using the life form group-
ing in the systems studied here, neighboring plant surveys
could be simplified to counts of grass or forb plants and not
specific species’ identities. In addition, with the reduced
number of species-specific terms required to sustain the
power of these models, researchers could include other
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types of information not included here, such as environ-
mental variability and multitrophic interactions without
the model becoming unwieldy (Bimler et al. 2018; Godoy
et al. 2018). Given that we admittedly explored only gross
functional categories based on data that we had available
for two distinct data sets, we suggest that our results are
the tip of the iceberg, and it would be very interesting to
conduct more detailed studies of the relationships between
functional traits, HOI mechanisms, and the overall impor-
tance of HOIs to individual fecundity outcomes.
The Role of Rare Species

Rare species are a common feature of all communities
(MacArthur and Wilson 1967). Because they are, as a
group, ubiquitous, it is valuable to know whether detailed
information about rare species within communities is im-
portant for accurately estimating or predicting fitness
outcomes for individual plants living in natural commu-
nities. Rare species are often absent from data sets because
they are rare and often missed in nonexhaustive surveys
or are systematically excluded due to difficulties involved
in identifying and cataloging what can be a large number
of taxa that only appear once or twice. Our results suggest
that excluding or grouping rare species together when
they appear in neighborhoods is a viable solution for im-
proving model tractability without seriously reducing the
fit or predictive power of individual fitness models. More
research, however, is needed to fully understand the im-
portance of rare species to the fitness of individual species
in specific systems.
Limitations

In this study, we focus on biologically sensible ways of
balancing realistic data requirements with more complex
models that incorporate more biological realism than
standard fitness models. We suggest exploring functional
groupings as a way to do this. Grouping species into broader
functional categories does, however, eliminate some intra-
and interspecific variability that may be of great interest
and importance when modeling coexistence or other
aspects of diversity maintenance (Jung et al. 2010; Violle
et al. 2012; Hart et al. 2016; Uriarte and Menge 2018). As
all models are simplifications of reality, the question
remains: how important is each piece of information in
a model and how much is lost when specific pieces of in-
formation are excluded? Given the comparatively strong
performance of HOI-inclusive models in this study, it be-
comes important for future research to consider what
questions the fitness model outcomes are being used to
answer and whether trade-offs in accuracy and simplic-
ity are acceptable. In this study, we aimed to determine
whether there were biologically sensible approaches to re-
ducing the number of terms in HOI-inclusive fitness
models without losing the modeling benefits of the inclu-
sion of HOIs in the first place. Our study outcomes align
with other studies showing that HOIs are important for
seed set–based fitness outcomes for some species (Mayfield
and Stouffer 2017b). We also found, however, that across
quite different plant communities, HOI-inclusive model
power can be retained by grouping neighboring species
by life form or broad functional type. That said, much
species-specific information is certainly lost through this
simplification process, which may be important if the end
goal of estimatingfitness is to determine something detailed
about a specific species such as coexistence potential. In
such cases, it would likely be beneficial to leave details about
target species pairs (focal and neighbor) in the model as
separate terms, while grouping all other neighbors by life
form or function, as supported by our findings. This ap-
proach is similar to that used for coexistence modeling us-
ing direct-interaction models (Levine and HilleRisLambers
2009; Wainwright et al. 2019).
If sufficient data are available to include species-level in-

formation in HOI-inclusive models without model over-
fitting, the use of more information can absolutely add im-
portant details, such as when HOIs drive changes in the
magnitude and direction of direct, pairwise interactions.
The inclusions of more HOI terms may have this effect
through accounting for the impacts of second-order neigh-
bor effects. For instance, by comparing the estimated co-
efficients of our abundance and life form models for both
data sets (plus origin status and trait complex for the Aus-
tralian data set), we see that the direct interaction coeffi-
cient values change in magnitude and sometimes sign
whenHOIs are included (app. S4). Some of this would also
be evident with more coarsely grouped HOI terms, but
obviously incremental losses in information will accom-
pany all model simplifications. Trade-offs between ecolog-
ical detail and poormodel performance and overfitting will
always exist, but we hope this study will help guide re-
searchers to make justified decisions about how to simplify
HOI terms when modeling individual fitness.
Further, we note that this work does not increase our

understanding of the mechanisms underlying HOIs in
these communities. We could speculate that because func-
tional identity, including life form (i.e., grass vs. forb), was
important to both systems, competition for water in these
Mediterranean systems might be an underlying mecha-
nism of HOIs related to differences in root morphology
(Ravenek et al. 2016) and leaf physiology (Pérez-Ramos
et al. 2019). However, explicit experiments are needed to
test this hypotheses and other underlying mechanisms of
HOIs. Similar analyses to the one used here can be used
on other measures of plant performance, such as biomass
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or basal area. This would help to expand our understand-
ing of HOIs and driving mechanisms in perennial plant
communities. By further exploration of the above, we could
continue work toward identifying generalizable trends
and mechanisms across plant communities of differing
compositions.
Conclusions

In order to balance realistic data requirements with com-
plex models, we need meaningful approaches to direct
model simplification. Here, we have identified defensible
approaches to tackle this complexity by including or re-
moving focal identity inmodels as well as grouping neigh-
bors by function rather than species identity. We pre-
sented a series of simplifications in model complexity that
prove useful to understand the effect of HOIs on individual
fitness. These simplifications can improve the accuracy of
coexistence and diversity modeling while maintaining fea-
sibly sized field studies.
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