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Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease
characterized by extraordinary heterogeneity, due to the complex patho-
genesis and diverse manifestations. Stratification of patients for therapy and
prognosis represents a major challenge to manage SLE. Conventional bio-
markers for disease diagnosis and activity assessment provide very limited
insight into immunological pathogenesis and therapeutic response rates. The
advancement of “omics” technologies including genomics, transcriptomics,
proteomics, and metabolomics has constituted an unprecedented opportu-
nity to characterize the immunopathological landscape in individual patients
with SLE. Indeed, genomic studies reveal a subset of SLE patients carrying
one or more functional single nucleotide polymorphisms (SNPs) underlying
immune dysregulation while transcriptomic studies have revealed subgroups
in SLE patients showing distinct signatures for Type I interferon (TI-IFN)
pathway activation or aberrant differentiation of B cells into plasma cells.
This review will summarize results from the latest studies using omics
technology to understand SLE heterogeneity. In addition, we propose that the
application of artificial intelligence, such as by machine learning-based
nonlinear dimensionality reduction method uniform manifold approxima-
tion and projection (UMAP) can further strengthen the analysis of omics big
data. The combination of new technology and novel analysis pipeline can
lead to breakthroughs in stratifying SLE patients for a better monitoring of
disease activity and more precise design of treatment regime, not only for
conventional immunosuppression but also novel immunotherapies targeting
B-cell activating factor (BAFF), TI-IFN, and interleukin 2 (IL-2).
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immunosuppressive or immunomodulatory therapies.”

EXTRAORDINARY CLINICAL
DIVERSITY AND DRIVEN BY
MULTIPLE PATHOGENIC PATHWAYS

Systemic lupus erythematosus (SLE, or lupus) is the ar-
chetypal multisystem autoimmune disease affecting
20-150 people per 100,000, with female predominance
(7-9:1)." It is characterized by extraordinary clinical
diversity, wherein patients develop different organ
manifestations with variable disease activities (DA)
and individuals show distinct responses to specific

Such clinical and biological diversity of SLE leads to the
argument that SLE as a single disease can be funda-
mentally flawed.” The heterogeneous nature of SLE is
itself a reflection of complex and diverse pathogenesis.
The pathogenesis of SLE involves the hyperactivation in
both innate and adaptive arms of the immune system,
which eventually leads to loss of immune tolerance to au-
toantigens."” The impaired clearance of DNA or RNA from
dead cells including neutrophil extracellular traps (NETSs)
can stimulate plasmacytoid dendritic cells (pDCs) to pro-
duce type I interferon (TI-IFN), which in turn enhances
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antigen presentation and promotes both innate and adap-
tive responses.”” In SLE, there is an expansion of activated
B cells with aberrant differentiation in plasma cells to
produce autoantibodies,” which is supported by excessive
B-helper function from CD4" T cells.” CD4" T cells also
show enhanced production of proinflammatory cytokines
such as interleukin 17 (IL-17) and impaired function for the
regulatory T (Treg) subset.'” CD8" T cells in SLE also con-
tribute to organ damage with their activity shown to predict
prognosis.'' The end-organ damage in SLE is mediated by
proinflammatory innate and adaptive immune cells as well
as the pathogenic antigen-autoantibody immune complex
that activate FcyR and complement pathways’ (Figure 1).
The complex and diverse pathways for SLE pathogen-
esis are clearly demonstrated by different mouse models for
lupus, which are individually driven by distinct pathways of
immune dysregulation. Impaired uptake of apoptotic cells
in MFG-E8”~ mice causes splenomegaly and spontaneous
formation of germinal centers, the production of autoanti-
body and the development of glomerulonephritis.'” The
mice with the D18N mutation in TrexI, a major cytoplasmic
exonuclease that degrades dsDNA and ssDNA, exhibit
lupus-like symptoms including systemic inflammation,
lymphoid hyperplasia, vasculitis, and kidney disease."”
Overexpression of B-cell activating factor (BAFF) in mice
models results in SLE-like disease including production of
autoantibodies and the development of glomerulone-
phritis.”'*'> Aberrant differentiation of follicular helper
T (Tfh) cells leads to autoreactive germinal center B-cell
formation and autoantibody production in Roquin®/s™
mice.'”"? Although an individual immune dysregulation is
sufficient to drive lupus-like disease mice, the question is
whether SLE patients could be divided into subgroups
featured by distinct types of immune signatures, which
could help to tailor patients with specific immunotherapies.
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2 | CONVENTIONAL CRITERIA FOR
SLE CLASSIFICATION

Given the heterogeneity in SLE, the current international
consensus for diagnosis and classification of SLE is based
on a series of clinical, biochemical, and immunological
parameters.”’ These criteria are designed to diagnose
disease based on an additive score but do not predict
disease progression, severity, or risk of relapses. Earlier
criteria by the Systemic Lupus International Collaborat-
ing Clinics (SLICC) addressed issues with initial diag-
nostic criteria developed by the American College of
Rheumatology (ACR) which omitted features such a
mucocutaneous, neuropsychiatric disease, and im-
munological parameters.”””' SLICC criteria considered
biopsy-proven lupus nephritis (LN) along with a lupus
antibody positivity (antinuclear antibodies [ANAs],
double-stranded DNA [dsDNA], and anti-smith anti-
bodies [anti-sm]) sufficient for the diagnosis of SLE.”'
More recently European League Against Rheumatism
(EULAR) and the ACR have developed a classification
criterion, to create a more unbiased patient-specific ap-
proach compared with SLICC, to encompass an extended
list of clinical and immunological features.”””' The EU-
LAR/ACR criteria have a weighted additive score >10,
from either clinical or immunological features and a
screening anti-nuclear antibody (ANA) test being positive
(Figure 2). There is some data to suggest that EULAR/
ACR baseline score >20 may indicate more severe disease
at 5 years.” However, others believe 5 years is not
sufficient to provide diseases accrual, and this classifi-
cation may miss early organ-specific diseases.”’ >
An unbiased patient-specific approach is required to
improve early detection, disease prognosis, and patient-
specific therapy.
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Simplified depiction of Immunopathogenesis of SLE. Inciting events or triggers in predisposed individuals leads to poor clarences

of nucleic acids and increased neutrophil extracellular traps (NETs). Activation of plasmacytoid dendritic cells (pDCs) leads to Type I IFN (TI-IFN)
production and activation of dendritic cells (DCs). Primed DCs present antigens and stimulate T-cell activation and differentiation. CD4* T cells
promote B-cell activation and differentiation into plasma cells for autoantibody production. Excessive B-cell activating factor (BAFF) support
self-reactive B-cell survival and function. Proinflammatory immune cells, autoantigen-autoantibody immune complex (IC), and activated
complements are recruited into organs to cause tissue damages. SLE, systemic lupus erythematosus
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FIGURE 2 Conventional clinical features and immunological biomarkers to classify SLE patients, adapted from American College of
Rheumatology/European Alliance of Associations for Rheumatology classification criteria 2019.”* SLE, systemic lupus erythematosus

A critical complication of SLE is LN. LN affects 29%
of Caucasian and up to 80% of Asian patients and is
associated with substantial adverse outcomes includ-
ing mortality and progressive kidney disease.” Up to
10% of patients develop kidney failure at 5 years."” The
relapsing and remitting nature of LN, compounded by
limited noninvasive biomarkers of DA (such as pro-
teinuria and complement levels), makes it difficult to
treat. Consequently, certain patients are left with
low levels of DA while others are exposed to the
adverse effects of potent immunosuppression.” Im-
munosuppression currently used for LN has significant
side effects, and patient-specific factors including tol-
erance of medications, cost, and compliance make
treatment a further challenge.”

LN can be suspected in patients with biochemical
changes in kidney function, onset of hematuria,
proteinuria, and autoantibody positivity. However,
definitive diagnosis still requires an invasive kidney
biopsy which carries the risk of complications (minor
complication rates reported being 8.1%-15%, and ma-
jor complications rates between 1.5% and 6.6%).””" "
LN is classified into six subtypes based on a broad
spectrum of clinicopathologic features (Table 1).”* The
histological grading of the disease provides insights
into the activity and chronicity of kidney damage to
guide the degree of immunosuppression (with Class I
LN being an early disease not requiring aggressive
immunosuppression, and Class VI being advanced
diseases with significant fibrosis).”*” This classification
is often insufficient in predicting prognosis and guiding
therapy given the variable response to treatment.’ In-
effective therapies to treat LN in randomized controlled
trials are shown to be effective in individual cases.” '

There is an unmet need for further research into SLE
and LN stratification by assessing these genetic and
immunological changes in patients with the disease. A
noninvasive precision medicine approach is required
to not only mitigate biopsy-related risk but also to
provide patient-specific therapy.

3 | THE APPLICATION OF “OMICS”
TECHNOLOGIES AT THE FRONTLINE
OF PRECISION MEDICINE FOR SLE

With an increasing understanding of the pathogenesis of
SLE by internationally recognized immunologists and
clinical scientists, new immunotherapies for SLE have
been developed to suppress the key pathway for immune
activation by blocking TI-IFN,” to reduce excessive
B-cell survival and activation by blocking BAFF’"** and
to reinstate the balance between regulatory and effector
T cells by low-dose IL-2.”*° It is now more important
than ever to classify SLE patients based on systemic
immune signatures. This new classification will not
only help predict prognosis but essentially guide
therapy for precision medicine to improve outcomes.
Furthermore, identification of potential biomarkers and
immunological pathways associated with specific clas-
sification may provide new targets for future therapy
development, for overall or specific SLE subgroups. By
applying cutting-edge “omics” technologies and artificial
intelligence-based analysis, a “systems immunology”
approach has been pioneered in stratifying patients with
SLE (Figure 3). We will summarize representative studies
of this kind using genomics, transcriptomics, metabo-
lomics, and proteomics.
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TABLE 1

LN biopsy class

LN class I

LN class II

LN class IIT

Features

Minimal changes on light microscopy. Mesangial deposition
of IC by IF and EM

Mesangial proliferative LN (any degree of hypercellularity >3
mesangial cells per 3-pum-thick section) on LM. Isolated
subepithelial or subendothelial deposits (IF/EM)

Focal LN <50% glomeruli effected by LM. Active or inactive
(endocapillary or extracapillary hypercellularity).

_Kj

Biopsy features of Lupus nephritis adapted from the Insertional society of nephrology and Renal pathology society
classifications 2018.*

Modified National Institute of Health activity
and chronicity index

Activity score

Endocapillary Hypercellularity (0-3)
Neutrophil infiltration (0-3)

Fibrinoid necrosis (0-3) x2

Hyaline deposits (0-3)

Cellular or fibrocellular Crescents (0-3) x2
Interstitial inflammation (0-3)

Score total 0-24

Score
LN class IV Diffuse LN > 50% of all glomeruli effect on LM. May have 0. absent
diffuse wireloops and subendothelial deposits 1. <25% glomeruli/cortex or interstium effected
2. 25-50% effected
3. >50% effected
LN class V Lupus membranous nephropathy, diffuse thickening of Chronicity score
capillary walls on LM. Diffuse subepithelial deposits Glomerulosclerosis score (0-3)
on EM. Fibrous crescents (0-3)
Tubular atrophy (0-3)
LN class VI Advanced sclerosing glomerulonephritis, with >90% of

glomeruli sclerosed on LM.

Interstitial fibrosis (0-3)
Score total 0-12

Abbreviations: EM, electron microscopy; IC immune complex; IF, immunofluorescence; LN, lupus nephritis; LM, light miscopy.
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FIGURE 3 A proposed new classification of SLE patients by omics data and artificial intelligence. Compared with the conventional
classification of SLE patients by disease activities, histopathological features, and lab test results, the integration of multiomics data by artificial
intelligence, such as machine learning-based dimensionality reduction can more efficiently classify SLE patients for precision medicine. SLE,

systemic lupus erythematosus

3.1 | Genomics

Genomics are recognized as one of the most potent risk
factors underpinning the development of SLE. Twin
concordance studies suggest a range from 25% to 54% of
genetically identical twins will develop SLE compared
with 2%-5% of genetically distinct twins.”’ Symptom
heterogeneity exists among these twins and in part is
thought to be related to epigenetic modifications of the
genome.’>”’ This recognition accelerated genetic stu-
dies in SLE patients, with almost 100 loci now associated
with SLE through genome-wide association studies
(GWAS).""** Although gene loci from different studies
differed between cohorts due to distinct ethnicities and
sample sizes, common major regulatory pathways and
mechanisms in SLE pathogenesis have been elucidated
by such studies.”’*”*° More recently, whole exome or
genome sequencing has discovered one or more rare or

novel single nucleotide variants (SNVs) contributing to
the development of SLE, identifying unique monogenic
mutations contributing to heterogeneous phenotypes in
SLE patients’® (Table 2).

One major advance from genome studies is the re-
cognition of common immune pathways implicated in
disease. These loci include genes with functions in
DNA/RNA metabolism, classic complement pathway
regulation, IFN regulation, and T- and B-cell function.
Indeed, the risk of developing SLE attributed to these
genes tends to reflect the biological pathway involved.
As an example, genes involved in RNA or DNA meta-
bolism often cause Mendelian SLE, whereas genes in-
volved in IFN regulation increase risk by a relatively
modest 20%-40%. Recently, studies have identified the
mechanisms through which these loci contribute to
SLE with SNVs in GWAS-associated genes disrupting
regulation of TI-IFN resulting in enhanced TI-IFN
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production.”” It is also increasingly apparent that many
SNVs that contribute to SLE are under significant selec-
tion pressure with enrichment of pathogenic variants
among rare and novel SNVs. Monogenic mutations such
as hereditary C1q deficiency have been implicated in SLE
development along with mutations in other complement
proteins™’ and rare mutations in the TI-IFN associated
Toll-like receptor (TLR) pathway being enriched in SLE
patients.”” GWAS utilizing WES have permitted greater
insight into these low-frequency mutations' association
with SLE development (Table 2). While the heterogeneity
of mutations across distinct arms of the immune system
in SLE make treatment challenging in the absence of
knowing patient-specific genes and pathways, it also re-
presents an opportunity to individualize therapy where
patient-specific signatures are known. Indeed, it has been
suggested that certain GWAS loci are associated with
specific unique transcriptomic signatures.’® With further
machine learning analysis, genomics can be utilized as a
tool to stratify patients with SLE and provide insights into
disease pathogenesis.

3.2 | Transcriptomics

Although there is a high genetic contribution to SLE, non-
genetic risk factors are also important, which can be better
examined by transcriptomics. Transcriptional changes often
precede clinical manifestations and may provide patient
stratification.’ >’ These studies demonstrate that the
variations in IFN gene signatures (IGS) and the dysregula-
tion of innate immune cells such as neutrophils or adaptive
immune cells such as plasma cells or CD8" T cells might
stratify patients into different groups (Table 3).

Current transcriptional and genomic data highlight a
strong IGS elevation in SLE.**°"°*°*°° These studies
suggest discordant results surround IGS expression with
DA, however, all data suggest TI-IFN is involved in the
pathogenesis of SLE. Whole exome sequencing (WES)
has highlighted various SVNs in TI-IFN genes found in
SLE patients.””*® Further analysis of the pediatric po-
pulation has highlighted different cell types correlate to
disease activities based on subgroup stratification of
disease among patients, although the relationship be-
tween subgroup stratification and conventional classi-
fication has not been investigated in detail.”” In this
article, a subgroup analysis of disease activities based on
response to drug therapy revealed Cyclophosphamide
had a greater suppressive effect on DA modules as
compared with steroids, however, steroids were more
efficacious than Plaquenil in DA module suppression.
Other studies have suggested that IGS are unreliable as a
marker of activity due to the monocyte retention during
quiesces and flare.”” Given the potent correlation be-
tween transcriptomics and DA, recent randomized
controlled trials (RCTs) of anti-interferon therapy show
greater efficacy in subgroups with pronounced TI-IFN
signatures suggesting targeted anti-interferon therapy
may be more efficacious for this subset of patients.”’
Using transcriptional gene panels which correlate to
disease could be considered as a cost-effective and
noninvasive biomarker of SLE/LN activity.

Transcriptional profiling of both kidney tissue and
urine samples may further provide insight into disease
pathogenesis severity and response.”””* %" Der et al.
undertook single-cell RNA-sequencing (scRNA-seq) of
renal tubular cells and skin keratinocytes. The found
nine major cell clusters, differentially expressed gene
(DEG) enrichment was noted for TI-IFN signatures.
TI-IFN response scores correlated with renal disease
treatment response. Each subclass of LN itself had
the differential expression of inflammatory pathways.
Patients with Class III/IV LN had higher TI-IFN gene
signatures than patients with Class V LN.”” Arazi et al.
undertook the transcriptomic assessment of kidney
tissue and urine samples. They found a high correla-
tion of urine immune cells corresponding to infiltrating
leukocytes seen in kidney tissue. This suggesting tran-
script assessment in both kidney tissues and urine
samples may provide insights into disease response
over traditional renal biopsies alone.”’

3.3 | Proteomics

High-resolution mass spectrometry can efficiently ana-
lyze protein abundance, modifications, and interactions.
Proteomic analysis of kidney tissue and showed an im-
mune activation gradient in urinary proteomics which
was higher in proliferative disease. Kidney tissues ana-
lysis revealed chemokine secretion in the urine was re-
lated to intrarenal chemokine production within tubular
cells. While transcriptomic analysis found IFN-y, was
found to be the most abundant cytokine produced by
infiltrating CD8" T cells in the kidney tissue across all
classes of LN.”” Proteomic analysis of neutrophil subsets
has shown differential expression of interferon regulated
within SLE patients.”’ Bashant et al.”' demonstrated that
low density proinflammatory granulocytes (neutrophils)
expressed an abundance of TI-IFN proteins compared
with normal density neutrophils within SLE patients.
Cytoskeleton changes were noted in these low-density
granulocytes thought to contribute to increased traf-
ficking and adherence of these neutrophils to micro-
vasculature causing tissue damage during disease
flare.”' These studies suggest proteomic analysis may
provide additional information on cell regulation and
immunoactivity in serum, urine, and kidney tissue
samples in patients with SLE.

3.4 | Metabolomics

Metabolomics comprehensively measure the repertoire of
metabolites and (or small molecules) present in cells, tis-
sues, and body fluids. Serum/plasma, and to a lesser extent,
urine are most commonly body fluids from patients to be
used to profile metabolomes, which have been applied to
understand disease mechanisms, stratify patients and pre-
dict prognosis or response to therapy.” Although the me-
tabolomic study to understand the heterogeneity in SLE
patients is yet to be performed, cohort studies analyzing
SLE patient's sera have suggested metabolic alternations in
these patients compared with healthy controls (HCs).”’



PURI et AL.

'sjuened IS Ul [Hd URyl

19710 suonedrdurod [ejej ur uaas arom aImeudis [[90 ewserd

pue NI Jo uonemngaidn ‘Aoueudaid gI§ paresrdwoduou

sns1oA amjeudis [rydonnau ay) jo uorssaidxa

p1oj 1oy3ry pey (1ad) ersdureos-axd “8-o ‘suonesrdurod

m seueudard g1s (spydonnau GT'GIA pue UOnBUIWRUL

CHIN stserodoriAis ¢ g ‘S[[90 ewseld 11'% N ‘NAI ‘2 TIN)
syuened JTS Ul PaUIIUIPI dI9M SI[NPOW UOISSaIdxe auagd mog

"DSI Y81y ‘4gvd Jo uoissaxdxa ysiy z9 1 1D uey)

S9IE[j 9I0WI ‘YSel PIOISIP Pue IIPIOSIP [BUSI JO )kl ISaySIy
9 ‘s191n ApoquueoINe pue SaNIANJE ASBISIP 1SAYSIY 9y} FOH

2D 13 IO UBY) SaIB[] dI0W

‘amjeudrs DJ pasea1dap ‘@njeudis [rydonnau paseaIdur

€0 ‘$HST Y81y ‘2Y11 Jo uorssardxa ySry ‘SHIS0I1as Jo

are1 1sey31y a1} :go ‘Aranisuasojoyd jo arer 1saydry oy ‘pue
L0y-nue mo[ ‘DY o1 Iefruits 19 :syuaned g1s ur sdnoid moyg

*9Ie[j 9seasIp Sunmnp pue
1oud ur pajou arom sydirosuen [rydonmnau asearou] ‘sjuaned
uedLIdWY ULy I0j A[remonted ‘A1anoe aseasIp jo IodIew

Jsnqox jsowr Yy sem drnjeudis jse[q ewse[d pajou os[e sem IJ
‘v 03 Suneppi1od saxmeusrs ise[q ewse[d pue pIoPAN . Od
VA UM PaIR[eIIod NI S PUe $5d
“Aanoe
0) pajera1109 dfeaur] proydw4] 1o/pue sisejqewsefd :¢ pue g Hd
*N'T JO S91BI }SaMO[ 3y} pey
pue £j1anoe 01 Sunea110d sisarodoIyiAIs pey A[urew g pue [9HJ
-a8eaury proydui4] ‘sysejqewse[d
‘siydonmau/adeaury profeAur ‘NJ ‘stsarodoIiAis Sururejuod
‘A1AT)0® 0} paje[al SAINJBUSIS JUNUIWI JUSISPIP PRy
dnoi3 yoeq *(2-195d) paynuapt a1om sdnoid jusned uanss
XIBW UONEB[RLI0d [VAHTS [ENPIAIPULIaIUI 91 jo Surralsnp Ag

‘sjuened uTy)IM U9
sem (SDI) a1neudis auad NI JO JUUISSISSE [eUIPMIISUO]
oy yum ANIqeLIRA "SAMpOW NAT UIyim syusned
SuiAinens 10j [njosn a1om pue (ZI'SIN > '€ > 2’ TIN)
SP[OYSAIY) UONIBANOR S[qRLIBA PBY UIIYM Sa[npout

JOUnISIp 991} PI[eaAdI saInjeudis N[ JO SISA[eue Ie[NPOIA
sjuoned TS oY) usas a1om ewures pue elaq

NAI os[e Inq pajou sem eydre NI A[uo jou jo uonemsaidn ayJ,
‘suroned NI parenSaidn pey sajdures

juoned TS JO %8 1B} PI[EIAdI saIIeudis N JO JUSWSSISSY

uonedynes)s ulr SAMIIA0ISIp Iofey

©
=+

suianed [euondrosuen
JO JuawWISsSasse UaH-OVDd
(13q) siduosuen
passaidxa Afenuaiafip
$S9sSe 0} SULISISNID [BOIYIIBIITH

sorwo-ydrosuery,
Ae1IROIONA POOIq S[OYM

poo[q s[oym

Juuaisnp sueow-y pasiaradnsun  jo bas-yNY :soruo-1dirosueif,

sIsA[eue
Ienpour pPajonpuoy) ‘Surslsnyd
[eoryoIeIaTy pasitadnsun

POO[q d[0YM JO SOIUIO
-1duosuen) paseq-AB1IBOIOIN

SIoMaweLy
Ie[Npou B JO UONEIdUSS PU0IIS

PoO[q 3[0yMm JO SOTUIO
-1drosuen) paseq-AeIIeOIdTA

spoypau JnAfeuy spopawr Suryoad

$¢ =N 1ueuSarduou DI

¢ = N 1ueudaxd DY
02 = N 1ueudaiduou 1S

Gz = N uononpoidax pajsisse Surogiopun uswom gIS

26 =N uawop 1ueudaid 1S 1o Te 32 SuoHq

LS=N OH
191=NT1S  ,“I& 10 1881

sjuaned onerpad gF = N DH
‘(syuaned omnerpad gg1 woxy sajdures poojq o T30
reurpmiduoj g6 pafyoid) omerpad gsT =N A7T1S neaioyoueyg

siuaned ympe 0z =N DH

Pa1091102 sajdwres 26T Yum g9 =N 97TS oo T8 38 8YdIYD

azis ajdureg 73 LIAILI JudnNed saIpmg

sarpmys sorwoydirosuen IS aanejuasaidoy € HTIV.L



SLE ADMIST OMICS, BIG DATA, AND ARTIFICIAL INTELLIGENCE s 47

Metabolomic profiling of SLE patients has demonstrated
increased oxidative stress, fatty acid oxidation, and changes
in glycolysis related to DA, these changes may precede
clinical flares and are potential biomarkers for DA.*"**
Pearl et al. analyzed 36 SLE patients versus 42 HC
using peripheral blood lymphocytes (PBLs) by Liquid
chromatography-tandem mass spectrometry (LC-MS). The
most profound changes they noted in SLE patients' PBLs
versus HC samples were in the pentose phosphate pathway
(PPP).”” Enhanced oxidative stress was thought to reduce
cysteine levels while cystine, kynurenine, cytosine were all
increased. Kynurenine accumulation was reversed via the
administration of N-acetyl cysteine (NAC) versus placebo in
SLE patients. In vitro analysis of Kynurenine showed it was
an activator of the mammalian target of rapamycin
(mTOR). This provides mechanistic insights into disease
development in SLE via metabolic changes.”® Analysis of
fecal metabolites by Zhang et al. also found increased levels
of fecal xanthurenic acid and kynurenic acid elevated in
SLE patients versus HC. This suggests that metabolomic
analysis may provide insights into disease mechanisms in
SLE. Yan et al. performed Gas chromatography-mass
spectrometry (GC-MS) in 30 SLE patients versus 29 HC.”
They noted 1-valine was elevated at the time of SLE diag-
nosis, while i-tryptophan detection was correlated with DA.
More recently Zhang et al. noted significant changes in
glycerophospholipid metabolism in SLE patients' sera.’’
Elevations in 1-pyroglutamic acid levels were markedly in-
creased in patients with active disease and correlated with
disease activities, this was validated using area under curve
(AUC) and receiver-operating characteristic curves (ROC).
These data suggest that disease-specific metabolites may be
considered noninvasive biomarkers for diagnosis and dis-
ease activities. However further analysis is required to use
key metabolite changes to understand the heterogeneity of
SLE patients and dynamics of flare-remission cycles of the
disease.

G2, MMF treatment in the majority. G2: the highest disease
activities, the expansion of subclusters with the high
signature of ISGs, MMF treatment in minority; G3 and G4:
mixed with HC, the expansion of “memory” CD4 + and

CD8 + T-cell subclusters.
proteomics which was higher in proliferative disease. Kidney

tissues analysis revealed chemokine secretion in the urine
was related to intrarenal chemokine production. IFN-y was
found to be the most abundant cytokine produced by

infiltrating CD8 + T cells in the kidney tissue across all

with a high signature of ISGs, lower disease activities than
classes of LN.

Four groups in SLE patients: G1: the expansion of subclusters
Analysis showed an immune activation gradient in urinary

Major discoveries in stratification

combined child and adult

Hierarchical clustering on
matrices

Analytic methods

PCA

kidney tissue and urine

of PBMCs
scRNA-seq and proteomics of

Transcriptomics: scRNA-seq

Profiling methods

4 | IMPROVEMENT OF THE
MINING OF OMICS DATA BY NEwW
ANALYTIC METHODS INCLUDING
MACHINE LEARNING

=11),
6), PBMCs

A major challenge in the stratification of SLE patients
based on omics data is how to interpret data that sig-
nificantly exceed the scale of conventional clinical and
immunological measures. Compared with clinical data
are usually composed of up to dozens of variables, data
generated by omics technologies can range from hun-
dreds (such as metabolites) to tens of thousands (such
as transcripts). The linear dimensionality reduction
method principal component analysis (PCA) is a ma-
chine learning algorithm that has been widely used to
handle data with high dimensionality.”® PCA reduces
data into low-dimensional space and clusters samples.
The method PCA aims to project the data into the most
variant directions of the feature space, thus compressing
the data and maintaining global information. The first
principal component (PC1) corresponds to the direction
with the largest contribution in feature space, followed
by the second principal component (PC2) with the

33) and HC (N

8) and HC (N

30

PBMCs (1 = ~276,000)

Cohort 2: adult SLE (N

Patient criteria & Sample size
(n=~82,000)

(Continued)
Cohort 1: children SLE (N
SLE N

sy

et al.”

Abbreviations: IGS, IFN gene signature; LN, lupus nephritis; PCA, principal component analysis; SLEDAI SLE diseases activity index; SLE, systemic lupus erythematosus.
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(A) PCA (Principal Component Analysis)

High dimensional space Low dimensional approximation
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(B) UMAP (Uniform Manifold Approximation and Projection)
High dimensional space
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FIGURE 4 Basics for dimensionality reduction. (A) Principal component analysis (PCA) aims to project the data into the most variant

directions with the first principal component (PC1) corresponds to the direction with the largest contribution in feature space, followed by the
second principal component (PC2) with second-largest contribution. (B) Uniform manifold approximation and projection (UMAP) constructs a
k-nearest neighbor (kNN) graph to approximate the manifold structure of data, then embeds the kNN graph to two-dimensional space to visualize

the data

second largest contribution (Figure 4A). Based on the
embedding data by PCA, clustering methods like
k-means and hierarchical clustering can be applied to
generating clusters of samples, which can be further
investigated with the association with patients' clinical
and immunological features. PCA was applied by several
studies to stratify SLE patients which have been sum-
marized above."’

Although PCA can retain the information of most
variables, it often fails to preserve the local clustering
structure since the local relationship between samples is
less dependent on PC1 or PC2. Therefore, new methods
including uniform manifold approximation and projec-
tion (UMAP) have been developed. UMAP relies on
persistent homology to maintain the manifold topolo-
gical structure.”” Specifically, UMAP first constructs a
k-nearest neighbour (kNN) graph to approximate the
manifold structure of data, then embeds the kNN
graph to two-dimensional space to visualize the data
(Figure 4B). UMAP has been shown to have a better
capacity at maintaining local information as well as
global structure in analyzing datasets for scRNA-seq."’

A recent study systemically compared UMAP with
other mainstream methods for dimensionality reduction
including PCA and demonstrated that UMAP was su-
perior to PCA for clustering accuracy, neighbour in-
formation preserving and feature separating.”’ In this
study, a data set consisting of longitudinal transcriptome
profiles of 65 SLE patients and 20 HCs was analyzed.
UMAP, but not PCA, clearly demonstrated the separation
of SLE patients from HCs. Furthermore, the embedding
space by UMAP revealed new clustering structures, that
is, subgroups in SLE patients' samples. Such clustering
structures were found associated with patient visiting
date and the trends of disease improvement or dete-
rioration.”’ This is an example of the capacity of new
methods that can effectively analyze omics data and
strengthen the detection of the heterogeneity within pa-
tients for disease diagnosis and therapy choices.

5 | FUTURE PERSPECTIVE

Several recent reviews have touched on the topic of
how omics technologies can pave the way for preci-
sion medicine in SLE, including the promise of
transcriptomic profiling and machine learning in-
tegration may provide an insight into SLE immune
pathways and the application of multi-omics ap-
proaches including genomics, immunophenotyping,
proteomic, and transcriptomic assessments.”®"' "’
Compared with other reviewers also suggesting
the application of omics technologies, we propose
that the further integration of these “multi-omics”
technologies using artificial intelligence including
machine learning has the potential to identify non-
invasive biomarkers of DA, novel prognostic markers
for stratification and the utilization of precision
medicine to tailor the choice of target therapies and
duration of immunosuppression. Clinical translation
of this study into standardized bioassays may
prove to be superior to current markers of DA
in SLE/LN and deliver improved patient-specific
outcomes.
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