A RTl C L E W) Check for updates

Optimising genomic approaches for identifying
vancomycin-resistant Enterococcus faecium
transmission in healthcare settings
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Vancomycin-resistant Enterococcus faecium (VREfm) is a major nosocomial pathogen. Iden-
tifying VREfm transmission dynamics permits targeted interventions, and while genomics is
increasingly being utilised, methods are not yet standardised or optimised for accuracy. We
aimed to develop a standardized genomic method for identifying putative VREfm transmis-
sion links. Using comprehensive genomic and epidemiological data from a cohort of 308
VREfm infection or colonization cases, we compared multiple approaches for quantifying
genetic relatedness. We showed that clustering by core genome multilocus sequence type
(cgMLST) was more informative of population structure than traditional MLST. Pairwise
genome comparisons using split k-mer analysis (SKA) provided the high-level resolution
needed to infer patient-to-patient transmission. The more common mapping to a reference
genome was not sufficiently discriminatory, defining more than three times more genomic
transmission events than SKA (3729 compared to 1079 events). Here, we show a standar-
dized genomic framework for inferring VREfm transmission that can be the basis for global
deployment of VREfm genomics into routine outbreak detection and investigation.
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nterococcus faecium comprises part of the normal gastro-

intestinal tract flora in humans, but in recent years, has

become an increasingly important healthcare-associated
pathogen, causing a range of infections, including bloodstream
and urinary tract infections!~3. Enterococcus faecium is particularly
difficult to treat due to intrinsic resistance to a range of antibiotics,
and although vancomycin was once the treatment of choice for
E. faecium, vancomycin-resistant E. faecium is now common in
many countries?. Consequently, the World Health Organisation
(WHO) listed vancomycin-resistant Enterococcus faecium (VREfm)
as a “high priority” in its recent list of priority bacterial pathogens
due to the limited treatment options available®.

Whole-genome sequencing (WGS) allows high-resolution
investigation of pathogen outbreaks and transmission networks,
facilitating accurate targeting of infection control interventions
and consequently reducing the number of infections®. Conven-
tional genomic approaches for determining genetic relatedness
and transmission links include multilocus sequence type (MLST)
and single nucleotide polymorphism (SNP) distances, generated
from core genome alignments usually using recombination
masking. However, these methods are not optimal for highly
recombinogenic and very genetically diverse species, such as
E. faecium, and may result in isolates being labelled as more
closely/less closely related than they actually are’. More recently,
alternative approaches such as core genome MLST (cgMLST) and
kmer-based methods (genomic data broken down into smaller
pieces of known size k) have been developed to deal with some of
the pitfalls of the conventional approaches. In all approaches,
genomic data are combined with epidemiological information for
a more accurate determination of transmission links and out-
break status.

Multiple studies have demonstrated the utility of these methods
for VREfm, especially when there are complex transmission net-
works that involve multiple wards or when hospitals have a high
VREfm burden3-10. Despite this proven utility, there is yet to be
standardisation in the methods and thresholds used to identify
outbreaks and transmission links. The lack of standardisation is a
key factor identified by the WHO limiting the use of whole-
genome sequencing in routine surveillance of antimicrobial
resistancell. Multiple thresholds have been proposed for pairwise
SNP distances to identify putative transmission links in E. faecium
based on within-patient isolate diversity (ranging from 6 to 17
SNPs)10:12.13, However, these thresholds are not accompanied by
methods to standardise the preceding steps in the analyses. A
recent study from our group demonstrated the large variation in
SNP distances caused by changes in analysis approach, such as
reference choice, masking for recombination and subsampling of
datasets’. For analysis of VREfm, this study recommended using a
closely related reference genome and not masking for prophage/
recombination regions to ensure consistent and accurate pairwise
SNP distances.

Current genomic studies on transmission and outbreak ana-
lysis are primarily focussed on retrospective analysis that only
occurs once an outbreak is suspected or has been resolved.
Laboratory and bioinformatic workflows that identify potential
transmission events in closer to real time are still being developed.
One potential system was described by Brown et al, in
which methicillin-resistant Staphylococcus aureus (MRSA) were
sequenced and the data interpreted using an automated
pipeline!4. Promisingly, the data showed that even with current
technology, the limiting step in real-time outbreak detection
using WGS is the data analysis step and not the turnaround time
of sequencing. For a bioinformatic analysis of genomic trans-
mission to be implemented as standard practice it needs to: (i) be
stable over time as additional isolates are added to the analysis;
(ii) be standardised to allow for comparison across sites or

hospitals; (iii) be computationally efficient; and (iv) allow for
automation and require minimal intervention and interpretation.

The aim of this study was to determine the best genomic
approach for identifying putative VREfm transmission links in as
close to real-time as possible and develop an analysis pipeline that
could be implemented as standard practice. Using WGS and
comprehensive patient location data, we compared genomic
variant calling methods and pairwise SNP distance thresholds for
transmission inference to develop a method that best fulfilled
these requirements.

Here, we show the superiority of using cgMLST clustering as
an alternative to MLST to group genetically similar E. faecium
isolates and using split kmer analysis (SKA) to identify putative
transmission clusters based on genomic similarity. In addition, we
demonstrate how the use of these methods in a health care sce-
nario provide accurate information on transmission events and
allow for the specific targeting of infection control resources.

Results

Isolate clusters identified with cgMLST more accurately
represent the population structure and isolate relatedness
when compared to traditional MLST. MLST has traditionally
been used to broadly group genetically similar isolates together
within a species, including when identifying isolates worth inves-
tigating for possible transmission. We aimed to compare groups
identified using traditional MLST and those identified using
cgMLST to see which best matched the population structure.

We first constructed a phylogeny in order to establish the
population structure of the local vanA VRE population (Fig. 1a).
This revealed that three of the most common STs (ST203, ST80
and ST1421) were interspersed throughout the tree and the range
of SNP distances of within-ST pairs significantly overlapped with
distances of between ST pairs for all major ST backgrounds
(Supplementary Fig. 1).

cgMLST was tested as an alternative approach. The number of
cgMLST allele differences was calculated between all isolate pairs
(total number of genes in scheme n=1,423), both within and
between STs. The distribution of cgMLST pairwise allelic
difference values across the species shows a clear peak at the
lower values that only contains isolate pairs from the same ST
(Fig. 1b). It is not until cgMLST pairwise allelic differences of 242
that the number of between-ST isolate pairs observed is greater
than the number of within-ST isolate pairs. The smallest cgMLST
allelic difference value of a pair of isolates arising from different
STs was 26. The bottom of the first trough also occurs close to
this value at 25 cgMLST allelic differences (Fig. 1b). This is true
when looking at the species level as well as individual STs
(Supplementary Fig. 2). The value of <25 allelic differences was
then used as a threshold to generate cgMLST clusters for all VRE
isolates (n = 346) through a single-linkage cluster approach. This
meant no between-ST isolate pairs were clustered together while
still maximising the number of within-ST isolate pairs.

Using the traditional MLST scheme, 18 STs were identified, of
which eight were singletons, containing only one isolate each. In
comparison, when the cgMLST approach was used with a
pairwise allelic difference clustering threshold of <25, 63 cgMLST
clusters were identified including 40 singletons (Supplementary
Fig. 3). When considering the four most common local vanA
VRE STs as key examples (ST80, ST203, ST1421 and ST1424),
this allelic difference threshold also separated isolate pairs of the
same ST in a manner that better corresponded with the
population structure (Fig. la). The range of pairwise SNP
distances, drawn from the core alignment used to generate the
species phylogeny, of within-cgMLST clusters compared to
within-STs was also dramatically reduced (Supplementary Fig. 1).

2 | (2022)13:509 | https://doi.org/10.1038/541467-022-28156-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28156-4 ARTICLE

MLST
ST1421
ST1422
ST1424
ST1425
ST17

B sTis

/ﬁ [l st203
B sT7s0
B sT796
B sTs0
MLST cgMLST
cgMLST
' Cluster 1 Cluster 34
. Cluster 11 Cluster 42
. I Cluster 16 . Cluster 44
‘

Cluster 17 Cluster 49

Cluster 18 Cluster 5

0.03 ’ Cluster 19 Cluster 51
— Cluster 22 Cluster 55
\\ . Cluster 24 Cluster 58

Cluster 26 Cluster 6

' l “ . Cluster 27 Cluster 61

“ m . Cluster 3 . Cluster 9
b . Cluster 31

1
1 T
10001 ! 5001 !
1 1
1] 1
1 1]
: i 4001 0
1 .l: 1
: 3 i
7501 ' P i
2 ' E 300+ i
8 ' 8 :
% : 5 i
S ' 8 200 '
1 ]
«w 5001 ' g 4
o ! z :
o ' 100 '
é : |II : III I I
1 1]
=) 1 1
2 ; | i .|.||| Lol
250+ '
: chLST palrWlse aIIeIlc dlfferences
:
1
1
{
0 WAl JA. ‘ ‘,l "
0 500 1000

cgMLST pairwise allelic differences
MLST of isolate pair: [ Different MLST ] Same MLST

Fig. 1 Comparison of genomic typing methods for E faecium. a Midpoint-rooted maximum-likelihood phylogenetic tree of E. faecium isolates. Tree includes
all isolates used in this study not including genetic outliers (n = 343). The reference genome is identified by the red triangle tip and is sequence type (ST)
1421. Singleton STs and core genome multilocus sequence type (cgMLST) clusters with only one isolate are shown in white. b Stacked histogram of
cgMLST allelic differences between all E. faecium isolate pairs (n =346 isolates). The total number of genes in the scheme is 1423. The red dashed line
represents a pairwise allelic difference threshold of 25. The inset graph shows the same data set but has been restricted to show only cgMLST pairwise
allelic difference of <50.

These results suggest that isolate clusters identified with For very closely related isolate pairs, direct pairwise compar-
cgMLST, and <25 allelic difference single-linkage clustering, ison tools should be used. After genetically similar isolates have
more accurately represent the population structure and isolate been broadly grouped together, ie. with MLST or cgMLST
relatedness when compared to traditional MLST and should be clustering, a finer-scale comparison is needed to identify possible
used instead. transmission events. Traditionally, this involves constructing core
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genome alignments and then calculating a pairwise SNP distance
between all isolate pairs. Numerous fine-scale genetic comparison
approaches were compared in order to determine which corre-
lated best to pairwise comparison using de novo references
(PCDR), the gold standard comparison method.

The isolate pairwise distances calculated using the multi-locus
sequence type core alignments (MLSTCA), core genome MLST
core alignments (cgMLSTCA) and core genome MLST with
cluster references core alignments (cgMLSTCRCA) approaches
did not correlate well with PCDR distances. (i.e., pairs that are
identified as closely related by one method are not always
identified as closely related by PCDR), however, this was not true
of split kmer analysis (SKA) which consistently correlated well
with PCDR (R2 > 0.83) (Supplementary Fig. 4a).

This was true even when considering isolate pairs that are
closely related (PCDR pairwise SNP distance < 50), the R? values
comparing PCDR distances and those derived from MLSTCA,
cgMLSTCA were again consistently low, particularly those
comparing the ST80, ST1424 and ST1421 backgrounds
(R?<0.24) (Supplementary Fig. 4b). cgMLSTCRCA, with refer-
ences more closely related to the sample group, correlated better
with PCDR values than MLSTCA and cgMLSTCA across all ST
backgrounds but R? values never reached more than 0.69. SKA
distances were strongly correlated (RZ>0.74) across all ST
backgrounds, representing the strong correlation between the
two methods.

These data clearly show that for very closely related isolate
pairs, when using PCDR as the gold standard, core genome
alignments of cgMLST cluster isolates provide an inaccurate
measure of relatedness and direct pairwise comparison tools
should be used instead. The pairwise distance data from
MLSTCA was not analysed further due to the consistently poor
R? values. MLSTCA had the smallest average core alignment
length as a percentage of reference (66%), while cgMLSTCA and
cgMLSTCRCA were comparable with an average of approxi-
mately 80% (Supplementary Data 1 and 2).

Pairwise genetic comparison methods produce the most simi-
lar putative transmission clusters. After quantifying the genetic
distance between isolates, a threshold was set based on intrapa-
tient diversity in order to identify genomic putative transmission
links (isolate pairs below the threshold). This threshold differed
between genomic methods with cgMLSTCRCA and SKA having
the most similar thresholds (<6 SNPs and <7 SNPs respectively)
and PCDR having a threshold of <10 SNPs and cgMLSTCA <44
SNPs (Supplementary Fig. 5). These thresholds were suggestive of
3704, 1363, 1023 and 1054 genomic putative transmission links
for cgMLSTCA, cgMLSTCRCA, PCDR and SKA, respectively
(Supplementary Fig. 6).

Single linkage clustering was then used to group isolates based
on the above SNP thresholds to determine genomic putative
transmission clusters. The clustering patterns of cgMLSTCA and
did not match c¢gMLSTCRCA (Fig. 2 and Supplementary Fig. 7),
with cgMLSTCA putative transmission clusters containing more
isolates than all other methods across all ST backgrounds.
Clusters identified through cgMLSTCRCA better-reflected PCDR
clusters, however, there were still a number of inconsistencies
with c¢gMLSTCRCA grouping isolates together that were
separated by PCDR (particularly in ST1421 and ST1424
backgrounds). The clustering patterns of SKA and PCDR were
very similar across all ST backgrounds.

Of the PCDR singleton clusters (ie., single isolates not
genomically linked to any other isolate n = 48), five were linked
to other isolates by SKA and 13 were linked to other isolates by
cgMLSTCRCA. Of the SKA (n = 44) and cgMLSTCRCA (n =42)

clusters with one isolate, one and seven respectively were
genomically linked to another isolate by PCDR. Of the PCDR
clusters containing more than one isolate, cgMLSTCRCA split 7
while SKA split only two (Supplementary Fig. 8). Data used to
conduct the above analyses can be found in Supplementary
Data 3.

cgMLSTCRCA, PCDR and SKA all had a similarly high level of
genomic putative transmission links that were supported by
epidemiological evidence. The epidemiological relationship
between isolate pairs were compared to genomic putative
transmission links to determine the extent they were sup-
ported by epidemiological evidence. In addition to identifying
a much greater number of genomic putative transmission
links, cgMLSTCA also had the greatest percentage of links that
were not supported by epidemiological evidence (46%, more
than double any other genomic method) (Fig. 3 and Supple-
mentary Fig. 6). A similarly high proportion of genomic
putative transmission links were supported by epidemiological
evidence (probable and possible transmission likelihood) for
cgMLSTCRCA (80%), PCDR (83%), SKA (83%).

Use of optimal genomic analysis pipeline provides valuable
insights into VREfm transmission. Based on the results of the
previous analysis and the method comparison in Fig. 3, an
optimal genomic analysis pipeline was determined. This pipeline
is outlined in Fig. 4. Using the proposed pipeline on a contained
single hospital case study identified 26 patients involved in
transmission event across six cgMLST clusters and nine genomic
transmission clusters (Fig. 5). Comparison to epidemiological
data revealed that two of these clusters only contained isolates
from the same patient. Of the remaining seven genomic trans-
mission clusters, five contained a combination of both screening
and clinical isolates. When comparing the genomic transmission
clusters to epidemiological data, 22 of the 71 genomic links (30%)
were also supported by epidemiological connections of the same
ward at the same time. Of the remaining 49 genomic links, 5 were
isolates from the same patient and 16 (23%) had been on the
same ward <60 days apart. Examination of the wards involved in
the epidemiological links revealed that each genomic cluster
contained one or two wards that were responsible for all same
ward at the same time links (Supplementary Fig. 9). A single ward
(Ward 5) had undergone enhanced VRE screening, and although
transmission events involving this ward were identified, clusters
also included patients that had not spent time on this ward
(Supplementary Fig. 9). The exact pairwise distances of all isolates
below the same patient threshold can be found in Supplementary
Data 4.

Discussion

Whilst MLST groups broadly correspond with phylogenetic
population structure for many species, the current MLST scheme
for E. faecium does not accurately reflect its population structure,
indicating that it may not be the most appropriate method for
identifying related isolate groups for further transmission ana-
lyses (Fig. 1). Clusters defined by cgMLST using an allelic-
difference threshold provide a much more accurate reflection of
population structure, with cgMLST clusters matching phyloge-
netic clusters (Fig. 1). When categorising isolate groups, cgMLST
incorporates significantly more genomic content than MLST but
still retains many important features of the MLST scheme such as
not being dataset-dependent and being able to compare between
datasets in a standardised manner. We therefore suggest that
cgMLST clustering should be used instead of MLST to initially
identify genetically similar isolates worth investigating for
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Fig. 2 Relationship between methods for determining genomic clusters for E. faecium isolates from the major multilocus sequence type (ST1421

n=134). Core genome multilocus sequence type (cgMLST) clusters are based on single-linkage clustering using a pairwise allelic difference threshold of
<25 alleles. cgMLST core alignment (cgMLSTCA), cgMLST with cluster reference core alignments (cgMLSTCRCA), pairwise comparison using de novo
references (PCDR) and split kmer analysis (SKA) clusters are based on a pairwise single nucleotide polymorphism (SNP) distance threshold determined
based on intrapatient SNP diversity (cgMLSTCA: <44 SNPs, cgMLSTCRCA: <6 SNPs, PCDR: <10 SNPs, SKA: <7 SNPs) and are generated using single
linkage clustering. The size of the nodes represents the number of isolates in each of the clusters and is relative for each multilocus sequence type (MLST)
and the number of isolates in each cluster is displayed in brackets. PCDR was used as the gold standard method and so the genomic clustering pattern of
the other methods should be as close as possible to PCDR.
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Fig. 3 Comparison of the major attributes of each of the methods used to determine genetic similarity. The number of isolate pairs below the

intrapatient threshold was determined individually for each of the genomic methods and the epidemiological classification of isolate pairs only occurred for
pairs below the threshold. The epidemiological classification process of the isolate pairs is detailed in the Supplementary Fig. 10. Pairwise comparison using
de novo references (PCDR) was used as the gold standard genomic comparison method.
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transmission links, as the cgMLST clusters are more consistent in
the level of intra- and inter- cluster genomic diversity compared
to MLST.

When using genomics for VRE transmission surveillance it is
essential that analysis methods are reliable and valuable infection
control resources are not wasted by investigating cases that are
not truly linked or missing cases that are. Therefore, we aimed to
identify the best analysis approach for identifying genomic
putative transmission links. We tested multiple core alignment
methods, each time changing either the clustering of samples or
the relatedness of the reference genome. These approaches are
similar to those that are conventionally used when performing
genomic transmission analyses. We also tested two pairwise
comparison methods in order to determine how well these

correlated with the core alignment methods and if all methods
labelled the same isolate pairs as closely related (i.e., genomic
putative transmission link) (Fig. 6).

It was hypothesised that cgMLSTCA (cgMLST clusters, MLST
reference) pairwise distances would more closely reflect the
PCDR (direct pairwise alignment) distances compared to
MLSTCA (MLST clusters, MLST reference) distances. Although
cgMLSTCA (cgMLST clusters, MLST reference) pairwise dis-
tances better correlated with PCDR (direct pairwise alignment)
distances compared to MLSTCA (higher R? values), reflective of
this change in clustering method, cgMLSTCRCA (cgMLST clus-
ters, cgMLST reference) distances had an even stronger correla-
tion to PCDR (direct pairwise alignment) distances (higher R?
values), reflective of the more closely related reference genomes.
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Fig. 6 Methods for investigating the genomic diversity of vancomycin-resistant E. faecium. This flow chart provides an overview of all the genetic
comparison approaches used in the study. It has been split into three sections based on the type of analysis that each approach uses: typing, core genome
alignments and pairwise comparisons. Pairwise comparison using de novo references (PCDR) was used as the gold standard method for determining
genomic diversity. T core genome multilocus sequence type (cgMLST) allele scheme by de Been et al. 2 The COREugate pipeline was used to assign the
allelic profiles and build a matrix of the pairwise allelic differences. 3 Complete genomes were assembled using Unicycler/Canu (multilocus sequence type
(MLST) references) or Trycycler (cgMLST references). 4 Core genome alignments were performed using short-read data and snippy. Pairwise distances
were then generated from the core alignment. > Split kmers were generated from short read data at k=15. © de novo assemblies were performed using
SKESA. 7 Individual snippy alignments were performed using the de novo assemblies and short read data on each pair. Any self-single nucleotide
polymorphisms identified from mapping self reads to the de novo assembly were removed. The mean of the two reciprocal alignments was then used as the

pairwise distance.

This is consistent with a recent study by Gorrie et al. that detailed
the large effects that reference choice and sample diversity can
have on core alignments and showed that there were significant
differences in the distribution of pairwise distances depending on
how closely related the reference genome was’. Although gen-
erating reference genomes for each cgMLST cluster is possible, it
is an additional step that adds to the time and cost of the analysis
pipeline. As such, a method that does not require a within
cgMLST cluster de novo reference but can still accurately replicate
PCDR (direct pairwise alignment) results without the intense
computational requirements is preferred. Across all the major ST
backgrounds, SKA (direct pairwise kmer) and PCDR (direct
pairwise alignment) pairwise distances were consistently well
correlated, even when comparing isolates that were very closely
related. SKA (direct pairwise kmer) is significantly faster than
PCDR (direct pairwise alignment) and requires much fewer
computational resources, both in terms of processing and mem-
ory. Unlike cgMLSTCA (cgMLST clusters, MLST reference), SKA
(direct pairwise kmer) does not require de novo reference gen-
omes and the pairwise distances are not affected by changes in
sample diversity, making it an ideal alternative.

When translating genomic putative transmission links into
putative transmission clusters, via single-linkage clustering, there
were a similar number of inconsistencies in cgMLSTCRCA
(cgMLST clusters, cgMLST reference) and SKA (direct pairwise
kmer) clusters compared to PCDR (direct pairwise alignment).
Minor errors in genomic putative transmission linkage were

classified as isolates identified as being involved in transmission
by the respective genomic method but not by the gold standard
(PCDR). SKA (direct pairwise kmer) had five minor errors and
cgMLSTCRCA (cgMLST clusters, cgMLST reference) had 13.
Major errors in genomic putative transmission linkage were
classified as isolates identified as being involved in transmission
by the gold standard genomic method (PCDR) but not by the
respective genomic method. SKA (direct pairwise kmer) had one
major error and cgMLSTCRCA (cgMLST clusters, cgMLST
reference) had seven. However, the practical benefits of SKA (fast,
not computationally intensive, and pairwise SNP distances stable
over time) and the extra sequencing requirements for cgMLST
cluster references in cgMLSTCRCA (cgMLST clusters, cgMLST
reference) mean that SKA (direct pairwise kmer) is likely to be a
much more desirable method in a real-world scenario.

The pairwise SNP distance genomic transmission thresholds
derived from intra-patient diversity for cgMLSTCRCA (cgMLST
clusters, cgMLST reference), PCDR (direct pairwise alignment)
and SKA (direct pairwise kmer) were similar in magnitude to
those previously described!%1213. However, we have shown that
the methods used in these studies (ST-based core alignments and
in some cases species core alignments) do not accurately reflect
the degree of relatedness between all isolate pairs and conse-
quently can result in mislabelling isolates as involved or not
involved in transmission. This can have large implications in the
hospital environment where the use of finite infection control
resources needs to be as targeted as possible. This phenomenon
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was observed in the cgMLSTCA transmission threshold, which
was considerably higher than the other methods and subse-
quently classified a much higher number of isolates as involved in
transmission. Additionally, sequencing multiple colonies from
individual cultures would have provided a more accurate
assessment of the level of intra-patient genomic diversity.
Although this was not performed in our study, we used data from
Gouliouris et al.!3, who sequenced extensively from the same
patient, along with our preferred genomic comparison method
SKA and found an equivalent threshold of <5 SNPs. Although
slightly lower than our SKA threshold of <7 SNPs, we felt it
appropriate for the threshold to remain at <7 SNPs to ensure no
potential transmission pairs were missed.

In summation, to identify genomic putative transmission
clusters we propose using cgMLST clustering to broadly group
genetically similar isolates and then split kmer analysis on the
isolates within these cgMLST clusters (SKA) to identify putative
transmission links. This proposed pipeline is outlined in Fig. 4.
SKA fulfills all the proposed requirements of an implementable
analysis pipeline: the pairwise differences generated are stable
over time as additional isolates are added to the analysis; the
analysis can be easily standardised with SNP transmission
thresholds; it requires minimal computational resources; and can
be easily automated (Fig. 3). These attributes mean that the
method we have presented can be used prospectively with data
interpretation happening immediately after sequencing and
quality control has finished. In addition, the standardised nature
of this approach would allow the prevalence of VRE transmission
to be compared between hospitals, making it easier to understand
the effects of different screening, cleaning, and isolation practices.
Although setting a hard SNP threshold for identifying genomic
transmission events leads to some ambiguity in the status of
isolate pairs with distances very close to the threshold, it does
mean that such a method can be more easily applied without
requiring extensive bioinformatic expertise. The systematic
approach used in this study to identify the optimal analysis
method for identifying putative transmission links could be
applied to the investigation and tracking of other major AMR
pathogens. The ability of this approach to appropriately com-
pensate for large differences in the genomic diversity of VRE ST's
is further evidence of its applicability to other species.

Implementation of this proposed method into routine use
relies on it having added clinical value which was demonstrated
in the hospital case study. Use of cgMLST was able to differentiate
the ST78 isolates into two distinct clusters (cgMLST cluster 3 and
cgMLST cluster 5). These well-defined transmission clusters
allowed for easy identification of high-risk wards which may
inform targeted interventions. The use of SKA to identify geno-
mic clusters allowed the differentiation of singular cgMLST
clusters into multiple distinct genomic transmission clusters
(ST78) (Fig. 5), of which one cluster (cluster 3) was associated
with completely different wards. This case study also highlighted
the importance of including both clinical and screening isolates in
the analysis as 5 SKA genomic transmission clusters contained
isolates from screening and clinical samples. In addition, when
comparing the genomic clusters to epidemiological data, clear
wards of interest could be defined based on the predominant
ward in the cluster where patients overlapped in space and time,
allowing for the direct targeting of infection control resources.
This case study further reinforces the importance of a coordi-
nated and hospital-wide transmission detection approach and
demonstrated that the approach we have defined can be applied
effectively in a real-world setting to identify transmission events
and clusters.

This study relies on the isolate sequences from the Controlling
Superbugs study, and its limitations. Transmission of VREfm in

hospitals is inherently difficult to study, depending heavily on the
screening strategies employed at each hospital, and the veracity of
epidemiologic data used to define likely transmission (in com-
bination with genomic data in this case). In the Controlling
Superbugs study, sampling strategies differed between hospitals,
with some hospitals sampling patients more extensively than
others and hence making it more likely that putative transmission
links are identified. Although the ward move data is highly
detailed, it can contain errors and may miss other patient con-
tacts. These errors may explain some of the genomic putative
transmission links that were not supported by epidemiological
data. However, the purpose of this study was focussed on
exploring the differences in genomic methods rather than
quantifying the exact number of the transmission events that have
occurred and their directionality and source. Hence these lim-
itations have minimal impact on the results in this case. Differ-
ences in genomic relatedness caused by variant calling software
(snippy and SKA) and input parameters may also have resulted in
the erroneous classification of isolates as linked. However, snippy
has been shown to be among the best bacterial SNP callers in a
comparison by Bush et al. and the purpose of this study was to
explore the key issues with using core alignments to identify
putative transmission links rather than the effect of changing the
variant caller!®. Hence, we chose to use snippy as the variant
caller for all alignment methods. Using single linkage clustering to
cluster cgMLST may result in the joining of clusters over time as
isolates continue to be added to the analysis, however, we believe
the extra detail provided by this method outweighs this limitation
and can be managed with appropriate nomenclature and educa-
tion of the recipients of these data. Although a relatively small
number of intra-patient pairs were used to define the threshold
for genomic transmission links making it more susceptible to
outliers, the threshold is consistent with previous studies and we
therefore suggest the threshold is appropriate!®:12:13,

In conclusion, we demonstrate the benefits of using cgMLST
clustering as an alternative to MLST to cluster genetically similar
E. faecium isolates. We have then explored how these clusters can
be analysed to identify putative transmission links based on
genomic similarity and suggest that the optimal method is SKA.
These data will inform the future translation of VREfm sequen-
cing data into routine outbreak detection and investigation.

Methods

Study design and data collection. This project used data arising from the
“Controlling Superbugs” study; a 15-month (April—June 2017'¢ and October
2017—November 2018) prospective study that aimed to investigate the use of
genomics to predict in-hospital multidrug-resistant organism transmission for a
range of species, including vanA VREfm. Eight hospital sites across four hospital
networks were involved in the study, resulting in 346 vanA VREfm isolates (308
patients) sent for WGS (pilot study!® and implementation study!”). Isolates were
collected from patient samples (either clinical or screening samples) collected
routinely from hospital inpatients (>24 h) at any time during their admission.
Duplicate isolates were excluded as defined by; screening isolates of the same type
(species and multilocus sequence type) already included in the study (first isolate
collected included) or clinical isolates of the same type collected within 14 days of
the previous clinical sample. An overview of the VRE screening and infection
control practices can be found in Supplementary Table 1. Approximately two years
of data detailing patient movements within and between wards were collected for
all patients and the temporospatial overlaps for each patient pair determined. The
sample collection strategy, sequencing and epidemiological data collection and
categorisation are all as previously described!®. Briefly, patient pairs were classified
according to previously published definitions!® as ‘probable transmission’ if on the
same ward at the same time, ‘possible transmission’ if admitted to the same ward at
a different time (within 60 days), or admitted to the same hospital at the same time;
all other patients were classified as ‘unlikely transmission’. An overview of the
epidemiological data categorisation decision tree is provided in Supplementary
Fig. 10.

Whole-genome sequencing. Genomic DNA was extracted from bacterial isolates
using a JANUS automated workstation (PerkinElmer) and Chemagic magnetic
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bead technology (PerkinElmer). Genomic DNA libraries were then prepared using
the Nextera XT kit according to the manufacturer’s instructions (Illumina Inc.).
Whole-genome sequencing was performed on the Illumina NextSeq platform using
2 x150 bp paired-end chemistry as before!®.

Multilocus sequence typing (MLST). All isolates underwent in silico MLST, to
determine their sequence type (ST), using the mist tool (v2.19.0) (https://
github.com/tseemann/mlst) and the pubMLST database (https://pubmlst.org)!® for
E. faecium.

Core genome MLST (cgMLST) and clustering. cgMLST alleles of each isolates
were defined using the public E. faecium cgMLST scheme, created by de Been

et al?%. and chewBBACA (v2.0.16)2, implemented locally in the COREugate
pipeline (v2.0.4) (https://github.com/kristyhoran/Coreugate). This pipeline deter-
mines the alleles of each core gene for every isolate as defined by the specific
pathogen scheme. The E. faecium cgMLST scheme contains 1,423 genes. The
number of allelic differences between each isolate within this core set of genes is
then determined. The cgMLST clusters were then determined using single linkage
clustering and a pairwise allelic difference threshold of < 25. This threshold was
determined based on the distribution of pairwise allelic differences and the inter-
MLST pairwise allelic difference (see results).

Reference genome selection. The MLST core alignments (MLSTCA) used an
“MLST reference” (published local complete genomes of the same ST). The
cgMLST core alignments (cgMLSTCA) also used an “MLST reference” based on
the ST of the cgMLST cluster. The cgMLST within-cluster reference core align-
ments (cgMLSTCRCA) used a “cgMLST cluster reference” (first isolate collected
from each of the cgMLST clusters). A complete list of reference genomes is
available in Supplementary Data 2. The method used to assemble all cgMLST
cluster references is listed below.

cgMLST cluster reference sequencing and assembly. The earliest collected
isolate from each of the cgMLST groups with more than two isolates were chosen
for Oxford Nanopore sequencing (GridION). These isolates are listed in Supple-
mentary Data 2. Genomic DNA was extracted using the Sigma-Aldrich GenElute
Bacterial Genomic DNA kit according to the manufacturer’s instructions. 1D
Native Barcoding + Ligation Sequencing Kit (Oxford Nanopore) were used for
library preparation and the GridION X5 (cell FLO-MIN106D R9) (Oxford
Nanopore) was used for sequencing according to the manufacturer’s instructions.
Reads were filtered using porechop (v.0.2.4) (https://github.com/rrwick/Porechop)
(barcode threshold 90 and two barcodes required) and filtlong (v.0.2.0) (https://
github.com/rrwick/Filtlong) (minimum length 1000 bp and keep percent 95).
Reads were then assembled using the Trycycler pipeline (v.0.3.3) (https:/
github.com/rrwick/Trycycler). This involved first subsampling the reads based on
an estimated genome size of 3 Mb using the default method provided by Trycycler.
Three different assemblers were used to generate nine draft assemblies (three with
each assembler) - flye (v2.8.1)22, miniasm-+minipolish (v2.17) (https://github.com/
1h3/miniasm)?3 and raven (v1.1.0) (https://github.com/Ibcb-sci/raven). All assem-
blers were used with default settings. The contigs in all assemblies were then
clustered and any cluster containing contigs from six or more assemblies proceeded
to the reconcile step. Any contigs that prevented the reconcile step from com-
pleting were removed from the cluster. Following the reconcile, sequence alignment
and the consensus step, the consensus sequences were polished with Illumina short
reads using snippy (v4.6.0) (https://github.com/tseemann/snippy), the same pro-
gram used in the core and pairwise alignments. Two rounds of polishing using
short read data were completed with bcftools (v1.9) (https://github.com/samtools/
beftools) being used to edit the consensus sequence based on the SNPs identified

using snippy.

Phylogenetic trees. When generating the species phylogenetic tree, three
isolates were excluded from the study isolate core alignment analysis due to
their divergence from the rest of the study isolate (Supplementary Fig. 11a). To
better understand why these isolates were so divergent, the study isolates were
put into context with global isolates. These global isolates randomly selected from
a recent study by van Hal et al?. (n =297) and had been divided into clade

Al, A2 and B based on their genomic similarity. After constructing a phylogenetic
tree using study and global context isolates, the divergent study isolates were
found to cluster with clades A2 and B (Supplementary Fig. 11b). The study out-
liers and global context isolates are listed in Supplementary Data 1. The reference
used for the species and global context trees was CP027497 (ST1421) [https:/
www.ncbi.nlm.nih.gov/genome/8712genome_assembly_id=368493] and it was
chosen because it was the same ST as most study isolates and was also collected
locally. Phylogenetic trees for each of the major ST's is contained in Supplementary
Fig. 12 and the references for the corresponding core alignments are in Supple-
mentary Data 2. All phylogenetic trees were inferred using IQtree (v1.6.12)*> with
constant sites, 1000 bootstraps and a generalised time-reversible model of evolution
(GTR + G4). For the species alignment, the core alignment length was 1,059,458
base pairs, the core SNP alignment was 4,020 sites and the core SNP alignment
after masking for recombination using Gubbins2® was 39 sites. All trees were made

using core SNP alignments that did not have recombination masking due to the
highly variable effect that omitting recombination regions can have on pairwise
distances’ and the small size of the resulting core alignment. All trees were mid-
point rooted and visualised in R (v4.0.2, https://www.R-project.org/) using phan-
gorn (v2.5.5)%7, ape (v5.4)28, ggtree (v2.3.4)%° and ggplot (v.3.3.2)%.

Genomic comparisons. Only isolates from the four major STs (ST1421, ST1424,
ST80 and ST203) with more than three isolates in their respective cgMLST clusters
were used in the genomic comparisons (1 = 278). The four major STs were chosen
as they comprise 88% of all study isolates. Only cgMLST clusters with three or
more isolates can be used in subsequent analyses due to the requirements of the
core genome alignments. An overview of the following methods is shown in Fig. 6.
Isolate and reference details can be found in Supplementary Data 1 and 2.

Core genome alignments. Multi-locus sequence type core alignments (MLSTCA)
were performed on all isolates in the same ST using a reference of the same ST.
Core genome MLST core alignments (cgMLSTCA) were performed on all cgMLST
clusters with greater than two isolates using reference genome of the same ST. Core
genome MLST with cluster reference core alignments (cgMLSTCRCA) were core
alignments performed on all cgMLST clusters with greater than two isolates using a
reference of the same cgMLST cluster. All core genome alignments were performed
using snippy (v4.6.0) (https://github.com/tseemann/snippy) with minfrac set to 0.9
and mincov set to 10. Pairwise SNP distances were calculated in R using harrietr
(v0.2.3, https://github.com/andersgs/harrietr). Recombination masking was not
performed for any core alignments to allow for comparison between all methods
(PCDR and SKA cannot be screened for recombination). It has also been shown
that recombination screening can have a highly variable effect on isolate pairwise
distances, often inflating the number of closely related pairs’. An overview of these
methods is shown in Fig. 6 and a list of all reference genomes can be found in
Supplementary Data 2.

PCDR (Pairwise comparison using de novo references). Reads were assembled
using SKESA3! (v2.3.0) with default settings. SKESA was chosen due to its speed
and high sequence quality. Mapping and variant calling was performed using
snippy (v4.6.0) with minfrac set to 0.9 and mincov set to 10. Firstly, each isolate
read set was first mapped to its corresponding SKESA assembly to identify any “self
SNPs” and these “self SNPs” were removed from any subsequent pairwise com-
parisons based on their location in each contig. A breakdown of the number of “self
SNPs” identified can be found in Supplementary Fig. 13. Next, SKESA assemblies
were used as the de novo references for the pairwise comparison, with the reads
from each isolate in the pair, being mapped to the de novo assembly of the other
(non-self) isolate. The average number of SNP variants (excluding any “self SNPs”),
calculated from these two alignments, was used as the pairwise SNP distance
between two isolates. All PCDR distances presented and referenced in the paper are
those that were adjusted for “self SNPs”. PCDR was used as the gold standard for
determining isolate relatedness, as this method is consistent with the traditional
mapping and core alignment approach but also maximises the proportion of
genome considered in each pairwise alignment (Fig. 4).

SKA (split kmer analysis). The SKA (v1.0) package3? was used to generate kmer
files (k = 15) for each of the input isolates from the short-read data, using the fastq
subcommand (default thresholds were used for all variables). Isolate-to-isolate
pairwise SNP distances were then calculated using ska distance with default set-
tings. When using ska distance, a SNP is defined as “Number of split kmers found
in both samples where the middle base is an A, C, G or T but differs between files”.
In contrast to a traditional core genome alignment, SKA compares isolate pairs
based on all genomic data contained in the read files, which is equivalent to a
whole-genome comparison.

SNP distance threshold for transmission inference. To determine an appro-
priate SNP distance threshold for putative transmission links, we assessed the level
of genetic diversity between isolate pairs sampled from the same patient for each of
the genomic methods (intrapatient diversity). Only isolate pairs arising from the
same patient and from within the same cgMLST cluster were considered (n = 30
isolate pairs) to avoid comparing distant isolates from different acquisition events.
Within patient pairs from different cgMLST clusters (n = 10) were shown to have a
much greater SNP distance using SKA (distances ranging from 396 to 3176 SNPs)
than those of the same cgMLST cluster (0-34 SNPs). These pairwise distances can
be found in Supplementary Data 3. A threshold of <90 days between isolate pair
dates of collection was subsequently used to exclude temporally distant outliers
(n =2 isolate pairs excluded) (Supplementary Fig. 5a). The pairwise SNP distances
for the remaining 28 isolate pairs were calculated for all four genomic methods
assessed (cgMLSTCA, cgMLSTCRCA, PCDR and SKA). The pairwise SNP dis-
tance representing the 90th percentile for each of these methods (Supplementary
Fig. 5b) was used as the threshold for putative transmission links for inter-patient
isolate pairs. An overview of this process is shown in Supplementary Fig. 14.
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Hospital case study. Vancomycin-resistant Enterococcus faecium isolates collected
between January 2021 and July 2021 from a single hospital as part of standard
practice were sequenced as above. These isolates were a combination of screening
and clinical samples. This data set included 50 Enterococcus faecium isolates (a
combination of VanA, VanB and vancomycin susceptible enterococci) from 45
patients. Isolates were assessed for genomic transmission links using cgMLST
clustering (pairwise allelic difference of <25) and SKA. A pairwise genomic dis-
tance of <7 SNPs was used to define SKA genomic transmission links. Any pairs
that were identified as being genomically linked were then assessed for epide-
miological links. Bed move data was collected for all patients between July 2019 and
July 2021 (2 years). The same decision tree that was used in the main study was
used to categorise the degree of epidemiological links, except as all isolates in the
case study were from the same hospital, the hospital unit was used instead of
hospital to provide greater resolution in links (Supplementary Fig. 10).

Data visualisation and statistics. Figures were generated in R (v4.0.2, https://
www.R-project.org/) using tidyverse33, networkD34, naniar®®, ggpubr3¢,
patchwork®’, htmlwidgets3® and htmltools®. Flow diagrams were generated using
LucidChart (https://www.lucidchart.com). The coefficient of determination (R2)
was calculated using ggpmisc?’ and was based on a linear regression model.

Ethics approval. The “Controlling Superbugs” study was approved by the Mel-
bourne Health Human Research Ethics Committee (HREC) and endorsed by the
corresponding HREC at each participating site (HREC/13/MH/326). This ethical
approval also covered the hospital case study.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Ilumina sequencing reads for all samples from the formal “Controlling Superbugs” were
deposited into GenBank under BioProject PRINA565795. Illumina sequence reads for all
samples part of the case study were deposited into BioProject PRJEB49226. Reference
assemblies used can be found in BioProject PRINA565795 or PRINA433676. A full
isolate list and associated metadata can be found in Supplementary Data 1.
Supplementary Data 2 contains a list of all reference genomes used in the study and
summary statistics for the core genome alignments. Genetic distance data for the method
comparison and ward move data can be found in Supplementary Data 3. An isolate list,
associated metadata and ward move data for the hospital case study can be found in
Supplementary Data 4. Only the processed ward move data is available in the
supplementary data, the raw ward move data are not available due to data privacy laws.
The deidentified raw ward move data are available upon request from the corresponding
author (BPH) and will be actioned within 1 month. There are no conditions of access and
the data can be used freely for research activities.

Code availability

All code used for the genomic comparisons can be found in Supplementary Data 5.
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