

1 2 3	Md. Jakaria (Orcid ID: 0000-0001-8216-1171), Abdel Ali Belaidi (Orcid ID: 0000-0003-0792-8728), Ashley I. Bush (Orcid ID: 0000-0001-8259-9069) and Scott Ayton (Orcid ID: 0000-0002-3479-2427)
4	Article type: Review article
5	Ferroptosis as a mechanism of neurodegeneration in
6	Alzheimer's disease
7	Md. Jakaria, Abdel Ali Belaidi, Ashley I. Bush and Scott Ayton*
8	
9 10	Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
11	*Correspondence
12 13	Scott Ayton, The Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia
14	Email: scott.ayton@florey.edu.au
15	
16	Abstract
17	Alzheimer's disease (AD) is the most prevalent form of dementia, with complex
18	pathophysiology that is not fully understood. While β -amyloid plaque and neurofibrillary
19 20	tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by
21	phospholipid peroxidation that has been observed in clinical AD samples. This review will
22	outline the growing molecular and clinical evidence implicating ferroptosis in the
23	pathogenesis of AD, with implications for disease-modifying therapies.
24	
25	Keywords: Alzheimer's disease, ferroptosis, iron, phospholipid peroxidation and
26	neurodegeneration This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record . Please cite this article as doi: 10.1111/jnc.15519

This article is protected by copyright. All rights reserved

1 Introduction

Alzheimer's disease (AD) is the most prevalent form of dementia and a leading cause of disability and death in older people (>65 years) worldwide. It is characterised pathologically by extracellular deposition of amyloid-beta (Aβ) that form senile plaques and accumulation of the abnormally modified tau proteins that comprise neurofibrillary tangles. The amyloid cascade hypothesis (first proposed in 1992) is the long postulated pathological model of AD, which positions Aβ as the initial pathological event in AD. More than 30 phase 3 clinical trials of drugs targeting Aβ were unsuccessful in slowing cognitive decline in AD. However, in a controversial decision that has divided the field, the Food and Drug Administration (FDA) in the USA has recently granted accelerated approval of the anti-amyloid immunotherapy, aducanumab, as a disease-modifying drug for AD. The events and discussion points surrounding this approval have been commentated on at length, and it is beyond the scope of this review to reiterate them. But regardless of the potential benefit of anti-Aß drugs, it is clear that the disease velocity is only marginally slowed by aducanumab and other Aβ antibody-based drugs, and there is a need for alternative or concurrent therapies to deliver substantial clinical impact. Understanding the molecular events that lead to damage downstream of AB pathology holds promise for new therapeutic avenues.

Iron elevation was one of the first described chemical changes in AD (Goodman 1953) and is a candidate target for disease-modifying therapies. In the brain, iron has a crucial role in various physiological processes, including oxygen transportation, mitochondrial respiration, DNA synthesis, and the synthesis and metabolism of neurotransmitters (Ward *et al.* 2014). However, as it can undergo redox cycling, labile iron also catalyses the formation of reactive oxygen species (ROS) via the Fenton reaction and facilitates the redox biology of many prooxidant enzymes, including lipoxygenase (Ward et al. 2014, Belaidi & Bush 2016).

Iron may also bind to and cause the aggregation of Aβ and tau (Smith *et al.* 2010, Liu *et al.* 2011). While iron has long been implicated in inducing pathology deposition and contributing to toxicity via oxidative stress, a putative role for iron in AD pathogenesis has been revitalised by discovering the cell death mechanism, ferroptosis. Ferroptosis is a unique form of iron-mediated programmed cell death evolutionarily conserved among eukaryotes (Plantae, Fungi and Animalia kingdoms), protozoa, and archaea (Dixon *et al.* 2012, Tang *et al.* 2021). The term "ferroptosis" was coined recently (2012); however, research on this type of cell death has its roots in work pioneered by Harry Eagle in the 1950s and 1960s, who demonstrated that amino acid cysteine deprivation led to cell death (Eagle 1955), while

endogenous synthesis of cysteine protected against cell death (Coltorti *et al.* 1956, Eagle *et al.* 1961). Similar studies in the 1970s (Mitchell *et al.* 1973, Bannai *et al.* 1977) also demonstrated that cystine starvation reduced glutathione levels and caused cell death, while lipophilic antioxidant, α-tocopherol (a type of vitamin E), rescued cell death without restoring glutathione levels (Bannai et al. 1977), and acetaminophen-induced hepatic necrosis accompanied by glutathione depletion in mice was shown to be rescued by pre-treatment of glutathione or cysteine (Mitchell et al. 1973). Joseph Coyle's group in the late 1980's (Murphy *et al.* 1988, Murphy *et al.* 1989) discovered that glutamate-induced cell death that was dependent on inhibition of cystine transport was later assigned the name oxytosis in 2001 (Tan *et al.* 2001, Maher *et al.* 2020, Ratan 2020), with many now regarding oxytosis a subtype of ferroptosis.

Ferroptotic cell death results from a redox inequity between iron-induced production of lipid hydroperoxides and several antioxidant defence layers, principally glutathione-dependent glutathione peroxidase 4 (GPX4) that detoxify free radicals and lipid oxidation products (Bersuker *et al.* 2019, Yang *et al.* 2014). In mammals, ferroptosis has been implicated in suppressing tumours and immunity (Tang et al. 2021) and pathologically in degenerative and ischemic diseases (Yan *et al.* 2021). The evidence of iron elevation and lipid peroxidation products in the AD brain implicates the role of ferroptosis in the pathogenesis of AD. While several prior reviews have focused on ferroptosis in Alzheimer's and other neurodegenerative diseases (Maher et al. 2020, Reichert *et al.* 2020, Derry *et al.* 2020, Ashraf & So 2020, Ficiarà *et al.* 2021, Vitalakumar *et al.* 2021, Zhang *et al.* 2021), the rapid accumulation of new findings in this field warrants an updated analysis and contextualisation in the extant literature. Here, we review the evidence for ferroptosis in the pathophysiology of AD and discusses its potential as a therapeutic target.

2 Iron, lipid peroxidation and experimental ferroptosis

Owing to its ability to undergo redox cycling, iron acting alone or as a cofactor in an enzyme can promote radical oxygen species that causes generalised oxidative damage to proteins and lipids. Ferroptosis is a type of oxidative stress that centrally involves the peroxidation of plasma membrane phospholipids. When fully expressed, ferroptosis is a cellular death event ultimately caused by iron-redox reactions but involves a host of feedback and feedforward cellular responses. In this regard, 'ferroptotic stress', which precedes the cell death event, is considered both the aberrant redox chemistry upon membrane phospholipids promoted by iron and also the limitation of defence against this redox imbalance, principally (but not

exclusively) by glutathione-dependent GPX4. Ferroptosis is not merely iron overload because 93 ferroptosis can be induced by limiting the defence against iron redox reactions without 94 changes to iron levels – indeed, this is the canonical instigator of ferroptosis. So ferroptosis is 95 not simply iron toxicity, but nor is it simply 'oxidative stress'. For example, hydrogen 96 peroxide intoxication, a classical inducer of oxidative stress, responds poorly to classical anti-97 98 ferroptotic compounds (Wenz et al. 2018). Oxidative stress of a more general nature that is induced by iron can cause peroxidation of proteins and non-membrane lipids, yet these 99 species can conceivably kindle membrane lipid peroxidation or divert the anti-oxidant 100 101 resources within the cell from protecting against ferroptosis. So, any increase in oxidative load by iron can contribute to chronic ferroptotic stress, and therefore, these concepts cannot 102 be fully delineated. This section discusses the underlying mechanism of iron-mediated redox 103 dyshomeostasis and lipid peroxidation, which, in turn, can contribute to ferroptotic stress. 104 105 Polyunsaturated fatty acids (PUFAs; long-chain fatty acids contain more than one double 106 bond), including arachidonic, linoleic and docosahexaenoic acids, are essential components of cell membrane phospholipids (Brand et al. 2010) but are also the principal fuel of 107 ferroptosis. PUFAs are highly susceptible to lipid peroxidation due to their reactive 108 109 hydrogens. They may undergo peroxidation by free 'labile' iron or by iron contained within lipooxygenase enzymes, particularly 12/15 lipoxygenases (Li et al. 1997, Khanna et al. 2003, 110 Yang et al. 2016). Lipoxygenases are ordinarily found in the cytosol but bind the scaffolding 111 protein, PEBP1 (Wenzel et al. 2017), which draws these enzymes to the membrane 112 permitting peroxidation of membrane PUFAs. 113 Lipid peroxidation is categorised into three phases: initiation, propagation, and termination 114 115 (Lane et al. 2018, Dodson et al. 2019). In the initiation phase, ROS, reactive nitrogen species and reactive lipid species remove a hydrogen atom from an allylic carbon, specifically in 116 membrane PUFAs, which helps to form a lipid radical (L.). The Fenton reaction, the 117 interaction of ferrous iron (Fe²⁺) with hydrogen peroxide (H₂O₂), generates the two notable 118 ROS initiators of lipid peroxidation: the hydroxyl radical (OH•) and hydroperoxyl radical 119 (OOH•). Reactive nitrogen species such as peroxynitrite (ONOO-) can also initiate lipid 120 121 peroxidation because of the interaction between nitric oxide (NO \bullet) and superoxide (O₂ \bullet -). The formed lipid radical rapidly reacts with oxygen to form a lipid peroxyl radical (LOO•) 122 during the propagation phase. LOO• then reacts with another PUFA to generate lipid 123 peroxide (LOOH) and a new L. The propagation stage persists until a termination reaction 124 125 occurs by either lack of lipid substrates or endogenous cellular antioxidants such as vitamin E

or glutathione that donate a hydrogen atom to form a stable non-radical product. Glutathione peroxidases (for instance, GPX4) can reduce the formed lipid peroxides during the propagation phase to lipid alcohols; otherwise, lipid peroxides degrade into hydroxy fatty acids or reactive aldehydes malondialdehyde (MDA) and 4-hydroxy-2-nominal (4-HNE). GPX4 is unique among glutathione peroxidases at being able to detoxify lipid hydroperoxides directly in membranes, and for that reason, it is the main ferroptosis checkpoint. Reactive lipid species that are not detoxified can cause extensive peroxidation of lipids, leading to alteration of the assembly, composition, structure and dynamics of lipid membranes, and ultimately death of the cell.

Experimental ferroptosis

- Ferroptosis can be induced experimentally by several small molecule compounds that directly or indirectly inhibit GPX4, leading to lipid hydroperoxides accumulation (**Figure 1**).
- 138 Glutathione depletion via starvation of cysteine, which is rate-limiting for glutathione
- synthesis, leads to loss of GPX4 activity due to cofactor depletion (Hayashima et al. 2021).
- Experimental ferroptosis inducers are classified into four major groups (Feng & Stockwell
- 141 2018). Class 1 ferroptosis inducers block the cystine-glutamate antiporter, system xCT (for
- example, erastin or glutamate), leading to inhibition of cystine import (Dixon et al. 2014).
- 143 Class 2 ferroptosis inducers cause ferroptosis by directly inhibiting the GPX4 enzymatic
- activity. RSL3/[1S,3R]-RSL3 induces ferroptosis via covalently interacting with the active
- site selenocysteine of GPX4, which, in turn, inhibits the enzymatic activity of GPX4,
- resulting in accumulation of lethal lipid peroxides, and eventually cell death (Yang et al.
- 147 2016).

126

127

128

129

130

131

132

133

134

- Mevalonate-derived ubiquinone (also known as coenzyme Q10, CoQ10) is an endogenous
- antioxidant and a vital molecule of mitochondrial electron transport present in the plasma
- membrane (Hernández-Camacho et al. 2018). Class 3 ferroptosis inducers act via depletion of
- 151 GPX4 protein and concurrent depletion of CoQ10, and examples include ferroptosis inducer
- 152 56 (FIN56; N2, N7-dicyclohexyl-9-(hydroxyimino)-9H-fluorene-2,7-sulfonamide) and
- 153 caspase-independent lethal 56 (CIL56; 2,7-Bis(1-piperidinylsulfonyl)-9H-fluoren-9-one
- oxime)(Shimada et al. 2016). CIL56 may initiate a distinct necrotic cell death signalling
- cascade, while FIN56 is a specific ferroptosis inducer (Feng & Stockwell 2018). An
- endoperoxide-containing 1,2-dioxolane, FINO2, is the only class 4 ferroptosis inducer, which

- causes both indirect inhibitions of GPX4 enzymatic function and the direct oxidation of iron
- 158 (Gaschler *et al.* 2018).
- 159 It is clear that iron availability is a factor involved in ferroptotic cell death. Transferrin
- receptor 1 (TfR1; a type II transmembrane glycoprotein) is ubiquitously expressed on the cell
- surface and is critically involved in cellular iron uptake (Fillebeen et al. 2019, Cui et al.
- 162 2019). Transferrin, an extracellular glycoprotein, binds extracellular Fe³⁺, delivered into the
- 163 cells via TfR1, and Fe³⁺ is reduced to Fe²⁺ via oxidoreductase (STEAP3) in the endosome.
- Divalent metal transporter 1 (DMT1) is a mammalian transmembrane proton-coupled metal-
- ion transporter that mediates the transport of multiple divalent metal ions (but highest affinity
- with iron), and DMT1 transport Fe²⁺ to the cytoplasm (Qian & Shen 2001).
- 167 Ferritin, a ubiquitously expressed cytosolic heteropolymer, comprises H-chains (FTH1) and
- L-chains (FTL), which stores excess iron from the labile iron pool (redox-inactive ferric iron)
- in the cell to avoid an increase in the size of the labile iron pool that typically follows iron
- overload (Hou et al. 2016, Ito et al. 2021). Iron is released from ferritin by a specialised
- autophagic mechanism termed ferritinophagy, in which nuclear receptor coactivator 4
- 172 (NCOA4)-binds to and directs ferritin toward the lysosome for degradation (Ito et al. 2021).
- 173 Ferroptosis inducers such as erastin can experimentally induce ferritinophagy (Gryzik et al.
- 174 2021), which accelerates ferroptosis.
- While iron has a crucial role in ferroptotic cell death, ferroptosis is not characterised by a
- poisonous iron elevation. Rather, as discussed in this section, iron available within the cell is
- liberated to enhance the formation of toxic lipid ROS by two major mechanisms: generation
- of lipid ROS via the Fenton reaction and/or iron-containing dioxygenase, lipooxygenase,
- which, in turn, catalyses the peroxidation of lipids. Therefore, a toxic elevation of iron need
- not occur for ferroptosis (Dixon et al. 2012); rather, the total iron levels dictate sensitivity
- toward ferroptosis.
- Ferroptotic cell death can be protected by lipid antioxidants such as liproxstatin-1 (Lip-1),
- 183 ferrostatin-1 (Fer-1), diacetyl-bis(4-methylthiosemicarbazonato)Cu(II)/Cu^{II}(ATSM),
- flavonoids such as quercetin, vitamin E and iron chelators such as desferrioxamine (Zilka et
- al. 2017, Southon et al. 2020, Wang et al. 2021, Hinman et al. 2018, Yao et al. 2019).

3 Iron dyshomeostasis and oxidative distress in AD

- 187 Iron levels are tightly regulated in the brain to maintain physiological homeostatic balance,
- while its imbalance leads to oxidative distress (a critical event in ferroptosis) associated with
- brain atrophy and cognitive decline. Iron elevation does not ordinarily occur during
- 190 ferroptosis; however, cells/tissues with higher iron levels have increased susceptibility toward
- 191 ferroptotic death (Lu et al. 2015, García-Yébenes et al. 2018). In this section, we discuss
- evidence of iron elevation in AD and, more importantly, the association between iron and
- disease progression in the context of ferroptosis.

3.1 Iron elevation in AD

186

- 195 Iron is elevated in several cortical areas of the AD-affected brain, evidenced by a meta-
- analysis of 300 AD cases in 19 investigations (Tao et al. 2014). In the largest single study of
- iron in post mortem AD cases (n=645), iron was recently shown to be elevated, particularly
- in the inferior temporal cortex of people with pathology-confirmed AD diagnosis, while
- 199 people with high pathology but without a clinical diagnosis did not have changes to iron
- 200 levels (Ayton et al. 2021). Several recent studies also found that iron is elevated in the
- 201 cerebral cortex (medial frontal and temporal gyrus) in the AD post-mortem brain (Ashraf et
- 202 al. 2020, Bulk et al. 2020).
- 203 A recent prospective in vivo study with quantitative susceptibility mapping-MRI reliably
- investigated brain iron levels in AD individuals and healthy control participants (Damulina et
- al. 2020) and found higher iron in the deep grey matter and neocortical regions in the brain of
- 206 AD patients compared to healthy controls. In addition, several in vivo and ex vivo MRI
- studies found that iron is elevated in basal ganglia, specifically in the caudate nucleus,
- putamen, globus pallidus in AD patients (Bartzokis et al. 2000, De Reuck et al. 2014, Du et
- 209 *al.* 2018).
- 210 Iron has been found in association with amyloid plaque pathology (Meadowcroft et al. 2015,
- 211 Ayton et al. 2017c, Everett et al. 2018) and tangle neuropathology (Smith et al. 1997, van
- Duijn et al. 2017, O'Callaghan et al. 2017, Bulk et al. 2018a, Spotorno et al. 2020, Ayton et
- 213 al. 2020, Brosseron et al. 2021). Ferrihydrite (hydrous ferric oxide) levels (measured by
- electron paramagnetic resonance) and magnetite/maghemite magnetic moment (measured by
- SQUID magnetometry) were elevated in the temporal cortex of the AD brain, possibly
- 216 interacting with Aβ (Bulk et al. 2018b). Several ex vivo studies revealed myelin-associated
- 217 cortical iron accumulation and lamination in AD patients (Bulk et al. 2018a, Kenkhuis et al.

- 218 2019). The lamination was found to be severely disrupted in AD, which correlated with layer-
- specific changes in myelin architecture, specifically in the medial temporal lobe.

3.2 Dyshomeostasis in iron regulatory proteins in AD patients

- Several iron regulatory proteins were found to be altered in AD. Mitochondrial ferritin is an
- iron-storage protein found in mitochondria, which is structurally and functionally similar to
- 223 the well-categorised cytosolic ferritin. Both mRNA and protein levels of mitochondrial
- 224 ferritin were shown to be significantly elevated in the frontal cerebral cortex in AD patients
- 225 (Wang *et al.* 2011), possibly due to the elevated oxidative burden in the brain.
- Several other iron regulatory proteins were also found to be altered in AD patients, including
- 227 ceruloplasmin, transferrin and melanotransferrin. Ceruloplasmin is expressed in glia and
- abundantly found in plasma, which transports iron through the blood to numerous tissues,
- including the liver, spleen and bone marrow (Ayton et al. 2013, Ogun & Adeyinka 2021).
- 230 Ceruloplasmin is a ferroxidase enzyme that oxidises ferrous iron (Fe²⁺) to ferric (Fe³⁺), which
- is necessary for iron loading onto transferrin. Cerebrospinal fluid (CSF) ceruloplasmin levels
- predicted cognitive decline and brain atrophy in individuals with underlying Aβ pathology
- 233 (Diouf et al. 2020). High ceruloplasmin levels in CSF correlated with accelerated cognitive
- decline and ventricular volume enlargement in individuals with MCI and Aβ pathology. In
- addition, the ceruloplasmin to transferrin ratio and transferrin saturation were elevated in the
- serum of AD patients (Squitti et al. 2010), and the ratio was also associated with H₂O₂ levels
- and adversely with serum iron levels.

- Melanotransferrin or melanoma tumour antigen p97, an iron-binding transferrin homolog,
- was discovered initially at high levels on melanomas and other tumours, cell lines and fetal
- 240 tissues (Dunn et al. 2006). It exists as a plasma membrane glycosylphosphatidylinositol-
- 241 anchored protein or a soluble and actively secreted protein, and both forms have a
- 242 physiological function. Melanotransferrin was shown to be expressed in the brain capillary
- 243 endothelium of cognitively normal individuals, while in people who died of AD,
- melanotransferrin was found in reactive microglia and senile plaques (Jefferies et al. 1996,
- 245 Rothenberger et al. 1996, Yamada et al. 1999). Serum melanotransferrin was increased in
- AD patients (Kennard et al. 1996, Kim et al. 2001), while CSF melanotransferrin level was
- 247 diminished in MCI subjects who progressed to AD (Ashraf et al. 2019). The evidence
- suggests that ceruloplasmin, transferrin and melanotransferrin are associated with AD, and
- 249 they have the potential to contribute to ferroptotic stress through iron dysregulation.

Altered hepcidin (a crucial peptide hormone in chordates) and ferroportin (a major iron exporter) levels were also found in AD patients. Hepcidin is mainly produced by the liver and secreted into the circulation. The synthesis of hepcidin is increased in response to iron and inflammation while decreased during erythropoiesis (Zhao *et al.* 2013, Collins *et al.* 2008). Hepcidin regulates systemic iron metabolism via interacting with ferroportin (Collins et al. 2008), promoting cellular iron retention and lowering iron in the blood (Zhao et al. 2013). In the healthy human brain, hepcidin and ferroportin were found to be widely distributed and co-localised in neurons and astrocytes (Raha *et al.* 2013), suggesting their role in regulating iron release, while they were found to be downregulated in the hippocampus of AD patients, suggesting a role in an aberrant brain iron regulation in AD brains. Ferroportin was also found to be downregulated in APP/PS1 mouse brain and AD patients in a recent study (Bao *et al.* 2021). Ferroportin gene ablation in principal neurons of the neocortex and hippocampus in mice led to AD-like hippocampal atrophy and memory impairment.

3.3 Risk factors of iron elevation in AD

The cause of iron elevation in AD is unlikely due to the same factors that cause systemic iron overload in the body, including diet or peripheral disorders of iron metabolism, including haemochromatosis (Pirpamer *et al.* 2016). The blood-brain barrier (BBB) dissociates the brain and peripheral iron pools leading to a poor relationship between iron concentrations in the body and brain (Ayton *et al.* 2015). Rather, ageing (Hare *et al.* 2013) and inflammation (Nnah *et al.* 2020) have been reported to elevate brain iron levels and also increase the risk for AD. Brain injuries such as traumatic brain injury (Raz *et al.* 2011, Liu *et al.* 2013, Lu *et al.* 2015) and ischaemic stroke (Dávalos *et al.* 1994, Garg *et al.* 2020) have also been reported to elevate iron levels in the brain, which may also increase the risk for ferroptosis.

Iron selectively accumulates in several brain regions during ageing, including cortex, cerebellum, hippocampus and amygdala and substantia nigra (globus pallidus, caudate nucleus and putamen) (Connor *et al.* 1990, Aquino *et al.* 2009, Wang *et al.* 2012, Wang *et al.* 2014). The accumulated iron is found mainly bound within ferritin, transferrin and neuromelanin (a dark pigment expressed in the brain structurally similar to melanin) (Zecca et al. 2001, Connor et al. 1990). The BBB permeability is increased with age (Verheggen et al. 2020), which may contribute to raised iron levels in the aged brain.

Ageing is also associated with an elevated inflammatory state in the brain (Raj *et al.* 2017, Wander *et al.* 2020) by elevating glial cells, including astrocytes, oligodendrocytes and

microglia and their immunoreactivity in the brain (Connor et al. 1990). Iron elevation in AD may be contributed by iron loading in activated microglia (Bulk et al. 2018a), which are a feature of the AD brain (Angelova & Brown 2019). Microglia in AD patient brains were characterised with an elevated expression of ferritin light chain, along with increased expressions of Iba1 (an ionised calcium-binding adapter protein 1, which is specific only for microglia and macrophage expression), decreased transmembrane protein 119 (TMEM119) and purinergic receptor P2Y12 (P2RY12) (Kenkhuis et al. 2021), representing ironaccumulating and morphologically dystrophic microglia. Light chain ferritin and Iba1 positive microglia were also found to be increased in patients with high Aβ and tau load. By this mechanism, cellular iron retention is associated with microglial activation to influence AD pathology, especially with Aβ. In contrast, elevated iron may promote a proinflammatory state in microglia by the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome-mediated increase production of the pro-inflammatory cytokine interleukin-1ß, and the NLRP3-inflammasome activity was enhanced by elevated iron (Nakamura et al. 2016) or heme (Erdei et al. 2018). In addition, microglial cells with higher iron were shown to generate more interleukin-1β by activating nuclear factor kappaB (NF- κB) signalling in response to A β (Nnah et al. 2020).

3.4 Elevated brain iron links to oxidative distress and cognitive decline

The brain is physiologically enriched with unsaturated lipids and has a high demand for dynamic energy metabolism and redox-active metals such as iron. Yet, neurons have a modest antioxidant defence (Cobley *et al.* 2018), which may make them vulnerable to ferroptosis. Features of ferroptosis, including glutathione depletion and lipid peroxidation in the brain, were shown by several AD post-mortem studies (Ansari & Scheff 2010, Yoo *et al.* 2010, Chiang *et al.* 2017, Jenkins *et al.* 2020). Several other antioxidant enzymes, such as GPX, glutathione-S-transferase and superoxide dismutase, were shown to be reduced in mitochondrial and synaptosomal fractions of frontal cortex tissues in patients with MCI, mild AD and AD, while oxidative distress markers, including thiobarbituric acid reactive substances, 3-nitrotyrosine, protein carbonyls, 4-HNE and acrolein, were found to be significantly increased in AD patients (Ansari & Scheff 2010). In the same study, a negative association was also found between the elevated oxidative markers and Mini-Mental Status Examination (MMSE; a cognitive assessment) scores. The oxidative damage was shown to be localised to the synapses and increased in a disease-dependent fashion (Ansari & Scheff 2010), which implicates lipid peroxidation in AD-related synaptic loss.

- Several lines of evidence have shown that brain iron is associated with accelerated cognitive 315 decline in individuals with AD (Ayton et al. 2015, Ayton et al. 2017a, Ayton et al. 2017b, Du 316 et al. 2018, Diouf et al. 2019, Spotorno et al. 2020, Ayton et al. 2020, Damulina et al. 2020, 317 Ayton et al. 2021). Iron level and cognitive decline are consistent with ferroptosis since iron 318 levels increase susceptibility toward ferroptotic cell death. While iron independently predicts 319 320 disease progression, it also acts as a partial mediator of cognitive decline and brain atrophy associated with tangles (Spotorno et al. 2020, Ayton et al. 2020). These data position 321 ferroptosis downstream of tangle pathology, proximal to the neurodegeneration phase of the 322 323 disease.
 - 4 Links between iron and AD pathophysiology
 - 4.1 Iron and APP

324

- 326 The amyloid precursor protein (APP) is increasingly appreciated as a regulator of brain iron
- and regulated by brain iron (Figure 2). Iron regulatory proteins (IRP1/2) regulate cellular
- iron homeostasis via the iron-responsive elements (IRE) signalling pathway. IRP1/2 bind to
- RNA stem-loops, IRE, in the untranslated regions (UTRs) of their transcripts (Thomson et al.
- 330 1999, Anderson et al. 2013), which, in turn, control the expression levels of several iron
- 331 homeostatic proteins, including TfR1 and ferritin, for iron uptake and storage, respectively.
- When IRP1/2 binds to the 3'IRE of TfR1 mRNA, the translation is facilitated, whereas when
- these proteins bind to the 5'IRE on ferritin mRNA, the translation is inhibited. IRE is also
- found on the 5'- untranslated region of APP transcripts (Rogers et al. 2002, Rogers et al.
- 2008). In response to increased iron, IRP1/2 are prevented from binding to the IRE on the 5'-
- untranslated region of the APP transcript, which disinhibits APP translation (Cho et al. 2010,
- 337 Rogers *et al.* 2016).
- 338 APP expression is therefore controlled by iron, and conversely, APP influences cellular iron.
- APP binds to and stabilises ferroportin at the plasma membrane to promote iron efflux (Duce
- et al. 2010, McCarthy et al. 2014, Tsatsanis et al. 2020), and, accordingly, ferroportin was
- shown to be downregulated and iron elevated in APP knockout mice brains (Belaidi et al.
- 342 2018).
- 343 The influence of APP on iron export depends on how APP is processed, and iron also
- influences APP processing. APP is processed by two alternative pathways: amyloidogenic
- and non-amyloidogenic. Amyloidogenic processing involves sequential cleavage by β and γ -
- 346 secretase at the N and C termini of APP, respectively (Joshi & Wang 2015). β-secretase

(BACE1)-mediated cleavage of APP generates the 99-amino acid CTF (C99), which becomes 347 internalised and is then processed by y-secretase at multiple sites to generate cleavage 348 fragments of 43, 45, 46, 48, 49 and 51 amino acids. The fragments are then cleaved again by 349 γ -secretase that yields the final A β species (A β_{38} , A β_{40} , A β_{42} and A β_{43}) in endocytic 350 compartments (Takami et al. 2009, Olsson et al. 2014). Non-amyloidogenic processing 351 involves α-secretase-mediated APP cleavage that generates soluble amyloid precursor protein 352 (sAPP)α and an 83-amino-acid CTF (C83) (Haass et al. 1995). Iron was shown to affect APP 353 processing in retinal pigment epithelium cells (Guo et al. 2014), thereby increasing the 354 355 generation of APP processed products such as C83, C99 and A β_{42} . Iron treatment also altered APP processing by increasing BACE-1 activity, which, in turn, augments $A\beta_{42}$ release in BV-356 2 microglial cells (an immortalised mouse glial cell line) (Gong et al. 2019) and the medium 357 of SH-SY5Y cells (an immortalised human neuroblastoma cell line) (Banerjee et al. 2014). In 358 addition, non-amyloidogenic processing of APP was found to be affected by iron treatment, 359 which increased α-secretase activity and sAPPα distribution in primary cortical neurons 360 (Chen et al. 2018). 361 APP familial mutations that alter the APP proteolytic processing were shown to affect 362 intraneuronal iron by changing ferroportin location (Tsatsanis et al. 2020). The pathogenic 363 Italian-APP mutation (favours β-cut) was shown to elevate intracellular labile iron content 364 compared to wild type-APP, which was attributed to the destabilisation of membrane-365 associated APP and ferroportin (Tsatsanis et al. 2020). Conversely, the protective Icelandic-366

Pharmacological manipulation of APP processing caused the same consequence to iron as these genetic lesions. Inhibition or depletion of BACE-1 was shown to downregulate intraneuronal labile iron levels (Tsatsanis et al. 2020), in contrast, promoting the amyloidogenic APP processing by inhibiting α -secretase activity or siRNA knockdown of the

APP mutation (favours α-cut) lowered the intracellular labile iron content by maintaining

predominant α-secretase, ADAM10, led to a rise in neuronal labile iron.

membrane-associated ferroportin in neuronal cells.

367

368

369

370

371

372

373

APP trafficking may also influence neuronal iron status. β -secretase processing of APP, which occurs in the endocytic pathway, is clathrin-dependent and requires lipid rafts. Disrupting lipid rafts within the membrane reduced the intracellular labile iron in response to iron treatment while noticeably elevating APP and ferroportin on the cell surface (Tsatsanis et al. 2020). To achieve cleavage of APP, BACE1 also needs to be trafficked with APP in this

compartment. The GTPase, ADP-ribosylation factor 6 (ARF6), stimulates APP and BACE1 internalisation, promoting APP cleavage by β-secretase that favours ferroportin internalisation. Accordingly, siRNA-mediated depletion of ARF6 stabilised ferroportin and reduced intracellular iron levels (Tsatsanis et al. 2020). In addition, posttranslational modification of APP trafficking to the cell surface alters neuronal iron homeostasis (Tsatsanis et al. 2019).

4.2 Iron and Aβ

While APP has a vital role in brain iron physiology, iron has also been shown to act pathologically with Aβ that may affect AD pathogenesis. Several *in vitro* studies found that iron binds to Aβ (Liu et al. 2011, Bousejra-ElGarah *et al.* 2011, Lermyte *et al.* 2019), and the binding affinity of iron to Aβ was eight times higher than that of transferrin (Jiang et al. 2009), which causes Aβ to aggregate (Mantyh *et al.* 1993, Huang *et al.* 2004, Huang *et al.* 1999) and engenders toxicity (Rottkamp *et al.* 2001, Rival *et al.* 2009, Liu et al. 2011). Iron treatment was also shown to elevate Aβ levels in senescent microglia that were co-cultured with SH-SY5Y cells (Angelova & Brown 2018), and the elevation was linked to a decrease in release of the insulin-degrading enzyme (IDE), insulysin (a thiol zinc-metalloendopeptidase). While it has been assumed that this interaction with Aβ and iron is pathological, it is possible that this has a physiological role. Indeed, Aβ was shown to elevate intraneuronal Fe²⁺ by capturing and reducing Fe³⁺ from the ferritin core (Balejcikova *et al.* 2018), which may be a physiological mechanism of iron release from ferritin.

Iron in AD cortex measured using histochemistry was shown to be correlated with the severity of amyloid pathology (van Duijn et al. 2017), and, similarly CSF ferritin (a reporter of brain iron) was shown to predict longitudinal changes in CSF $A\beta_{42}$ levels (predicting plaque load) (Ayton *et al.* 2018). Several *in vivo* rodent model studies implicate iron with $A\beta$ deposition and cognitive impairment. In an APP/PS1 mouse model, x-ray microscopy techniques at submicron resolution revealed a direct association between the morphology of $A\beta$ plaque and iron (Telling *et al.* 2017), suggesting the development of an iron–amyloid complex. Magnetite iron species were also revealed in plaques (Telling *et al.* 2017), implying an aberrant iron redox chemistry. Iron treatment was shown to impair cognitive functions in APP/PS1 mice, accompanied by increasing $A\beta$ accumulation and phospho-tau expression (Becerril-Ortega *et al.* 2014, Chen *et al.* 2019). Accumulated iron with $A\beta$ deposition was also found in microglia of APP/PS1 mice and postulated to contribute to microglial dysfunction (McIntosh *et al.* 2019). Iron treatment was shown to cause a genotype-related

- elevation in glycolysis in APP/PS1 mouse microglia (Holland et al. 2018), accompanied by
- elevated 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and ferritin expression. The
- above findings suggest that elevated brain iron interacts with Aβ to cause oxidative distress
- and cognitive deficits in AD.

4.3 Iron and tau

- 417 Tau is a microtubule-associated protein and is the major component of neurofibrillary
- 418 tangles. Iron has been shown to mediate the association between tangle pathology with
- 419 cognitive decline and brain volume loss when measured by direct measurement of iron in the
- 420 postmortem brain (Ayton et al. 2020) and quantitative susceptibility mapping MRI as a
- reporter of iron (Spotorno et al. 2020). This finding suggests that iron may act downstream of
- 422 tau to cause damage. Indeed, treatment of an iron chelator, deferiprone, to a mouse model of
- 423 tauopathy (rTg(tau_{P301L})4510) lowered sarkosyl-insoluble tau and improved cognitive
- 424 function (Rao et al. 2020, Rao et al. 2021).
- 425 Iron was also shown to promote tau hyperphosphorylation (Lovell et al. 2004, Rao & Adlard
- 426 2018) via iron-mediated induction of cyclin-dependent (Cdk5)/P25 complex, glycogen
- 427 synthase kinase 3 beta (GSK-3β) kinase, and protein phosphatase 2A. In cell culture models,
- iron caused aggregation of hyperphosphorylated tau (Yamamoto et al. 2002, Wan et al. 2019)
- via an iron-binding motif in the tau protein and possibly by dysregulating insulin signalling
- 430 (Wan et al. 2019). The co-localisation of iron and tau in NFT-bearing neurons was also
- associated with progressive neurodegeneration in a recent post-mortem study (Hansra et al.
- 432 2019).
- Tau protein may also have a physiological role in iron homeostasis by promoting cellular iron
- efflux through the trafficking of APP to the cell surface, which acts to stabilise ferroportin
- (Lei et al. 2012, Lei et al. 2017). It is possible that this surface trafficking of APP may be
- 436 impaired by the hyperphosphorylation and aggregation of tau (thus lowering the soluble
- fraction of tau) during AD pathogenesis (Wong et al. 2014, Yan & Zhang 2020). Tau was
- also found to be suppressed in a transient middle cerebral artery occlusion rat model of
- 439 ischemic stroke. Tau loss preceded iron accumulation in this model, and APP treatment
- lowered iron and attenuated the infarct (Tuo et al. 2017). The above evidence suggests that
- iron interacts with tau to cause neurodegeneration in AD and related conditions; conversely,
- 442 tau maintains cellular iron homeostasis, but a putative role of an iron-tau interaction in
- 443 ferroptotic stress needs further investigation.

4.4 Iron and apoE

Allelic variation to apolipoprotein E (*APOE*- gene; apoE- protein) is the major genetic risk factor for sporadic AD, but the reason is uncertain and may involve iron (Mahoney-Sanchez *et al.* 2016). The *APOE* ε4 isoform increases risk, the ε2 isoform decreases risk, while the ε3 isoform is benign. *APOE* gene knockout was shown to cause progressive iron accumulation in the liver and spleen of aged mice (Ma *et al.* 2021). The attributed mechanism explaining iron elevation in *APOE* knockout mice was increased phosphorylation of extracellular regulated protein kinase (ERK1/2) that led to up-regulation of TfR1 (promotes iron import) and nuclear factor erythroid 2-related factor-2 (Nrf2)-dependent downregulation of ferroportin (promotes iron export). In contrast, iron treatment was shown to upregulate intracellular apoE levels in neurons and astrocytes *in vitro* (Xu *et al.* 2016), while neuronand astrocyte-secreted full-length apoE was reduced upon iron treatment.

Several clinical studies have also investigated the link between *APOE* isoforms and iron (Ayton et al. 2015, van Bergen *et al.* 2016, Ayton et al. 2017a, Kagerer *et al.* 2020). An association between CSF ferritin and apoE levels was found, and *APOE4* was reported to elevate ferritin levels in the longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (Ayton et al. 2015). The association of ferritin with longitudinal cognitive decline was increased in £4 carriers compared to non-carriers (Ayton et al. 2017a).

The default mode network DMN is an MRI-determined distinctive connectivity model of synchronous cortical neuronal activity activated at resting state and involves spatially distant brain regions such as the medial prefrontal cortex and lateral parietal cortices, posterior cingulate and hippocampus (Kagerer et al. 2020). The default mode network is impaired in the early stages of AD (Sheline *et al.* 2010) and in *APOE4* carriers (Hahn *et al.* 2019, Kagerer et al. 2020). This change in default mode network activity in *APOE4* carriers was found to be correlated to the MRI-determined cortical iron load (Kagerer et al. 2020), signifying a synergistic interaction between *APOE4* and cortical iron with brain function. These laboratory and clinical studies show a surprising relationship between iron and *APOE* and await further mechanistic evaluation.

5 Iron and ferroptosis as therapeutic targets for AD

The previous discussion supports that iron and ferroptosis may contribute to neurodegeneration in AD; therefore, targeting iron and ferroptosis could be a promising 476 therapeutic option for AD. Different classes of anti-ferroptotic agents that are of potential

477 benefit are described below.

5.1 Iron chelators

Iron chelators currently in clinical use such as desferrioxamine, deferasirox and deferiprone, have been shown therapeutic promise in preclinical and clinical AD models (Gleason & Bush 2020). Desferrioxamine is hydrophilic and a relatively large compound, which predominantly acts on extracellular iron (binding ratio: desferrioxamine and iron are 1:1) with subsequent poor oral bioavailability and BBB permeability, and a short half-life (Neufeld 2006). In contrast, deferasirox (binding ratio: 2:1) and deferiprone (binding ratio: 3:1) are orally bioavailable and have a high affinity for intracellular iron (Neufeld 2006, Vlachodimitropoulou et al. 2017). The main advantage of deferiprone is that it penetrates the BBB and chelates intracellular iron but has less affinity than deferasirox; therefore, it has less tendency to deplete stored body iron. Deferiprone mechanistically penetrates cell membranes, forms a complex with iron, exits cells, and redistributes iron to transferrin for recycling (Boddaert et al. 2007, Sohn et al. 2008).

Intranasal administration of desferrioxamine was shown to ameliorate high iron diet-induced altered pathology and cognitive deficits in APP/PS1 mice (Guo *et al.* 2013b, Guo *et al.* 2013a). Iron-mediated enhanced phosphorylation, amyloidogenic processing of APP and deposition of Aβ in APP/PS1 mouse brain were ameliorated by desferrioxamine treatment (Guo et al. 2013b). Desferrioxamine also reduced high iron diet-induced hippocampal tau phosphorylation (at the Thr205, Thr231 and Ser396 sites) in APP/PS1 mouse via CDK5 and GSK-3β kinase pathways (Guo et al. 2013a). Desferrioxamine treatment via intraperitoneal injection also prevented apoptosis in the brain and resulted in M2 activation and inhibition of M1 activation in microglia in the same mouse model (Zhang & He 2017). In a recent study, desferrioxamine via intraperitoneal injection also demonstrated neuroprotective activity, possibly by preventing ferroptosis in a rat model of spinal cord injury (Yao et al. 2019), and the activity was attributed to the amelioration of impairment due to iron dyshomeostasis, lipid peroxidation, gliosis, which, in turn, increased neuronal survival.

Moreover, an oral administration with deferasirox demonstrated neuroprotective activity by preventing age-related iron accumulation, reducing ferritin and TfR1 expression and reversing altered A β metabolism in the brain conducted in an Albino Wistar rat model (Banerjee *et al.* 2016). The study also found that iron accumulation resulted in oxidative

stress and NF-kB activation in the rat brain, which deferasirox treatment ameliorated. While 508 deferasirox demonstrated promising neuroprotective effects, the BBB penetration property of 509 deferasirox is limited but improves when conjugated with lactoferrin (Kamalinia et al. 2013). 510 Lactoferrin-deferasirox conjugates mitigated Aβ-induced learning deficits in a rat model of 511 AD (Kamalinia et al. 2013). 512 Another iron chelator, deferiprone, also demonstrated neuroprotective activity in several 513 preclinical studies (Molina-Holgado et al. 2008, Prasanthi et al. 2012, Fawzi et al. 2020, Rao 514 et al. 2020). It protected against H_2O_2 - and $A\beta_{1-40}$ -induced death in primary cortical neurons 515 and SH-SY5Y cells (Molina-Holgado et al. 2008) and demonstrated (administered orally) 516 517 neuroprotective activity in rodent models (Prasanthi et al. 2012, Fawzi et al. 2020, Rao et al. 2020). Deferiprone rescued against hypercholesterolemia-induced AD pathology by reducing 518 519 Aβ and tau phosphorylation levels in the hippocampus, plasma iron and cholesterol levels (Prasanthi et al. 2012). It also attenuated scopolamine-induced cognitive impairment, 520 521 increased acetylcholinesterase activity, AB levels and iron deposition in rats (Fawzi et al. 2020), and significantly ameliorated anxiety-like behaviour and improved cognitive function 522 in a mouse model of tauopathy (rTg(tauP301L)4510) (Rao et al. 2020). 523 Deferiprone also conferred potential therapeutic activity against several neurodegenerative 524 diseases in clinical trials, which was found to be well-tolerated in a 12-month trial in 525 neurodegeneration with brain iron accumulation (NBIA) (Abbruzzese et al. 2011). In a pilot 526 study in Friedreich's ataxia, followed by a 6-month randomised controlled trial, deferiprone 527 was shown to be safe and mitigate brain iron deposition (Pandolfo et al. 2014). Deferiprone 528 improved motor performance in a phase II clinical trial of PD (Devos et al. 2014). The phase 529 530 II clinical study of deferiprone in AD, the Deferiprone to Delay Dementia (3D Study; clinicaltrials.gov/ct2/show/NCT03234686), is currently recruiting. Besides deferiprone, 531 532 desferrioxamine (intramuscular administration) was tested in an early-stage clinical trial reported to slow cognitive decline in AD patients by 50% over 24 months in 1991, but this 533 was never followed up (Crapper McLachlan et al. 1991). The available studies indicate that 534 iron chelators could be promising therapeutics for AD. 535 536 Clioquinol (CQ; an iodinated 8-hydroxyquinoline) is a copper/zinc ionophore and a mild iron chelator withdrawn from the market due to a potential side effect: subacute myelo-optico 537 neuropathy in Japanese patients in the early 1970s (Mao & Schimmer 2008). Development of 538 this drug was stopped due to the complications with large-scale manufacture (Gleason & 539

Bush 2020). CQ (oral administration) was shown to decrease iron-induced Aβ42 aggregation in vitro and inhibit Aß accumulation in AD transgenic mice (Cherny et al. 2001). In a placebo-controlled phase II trial of 32 patients, CQ ameliorated cognitive deficits and lowered the level of plasma Aβ-42 (Ritchie et al. 2003). Oral administration with CQ also demonstrated neuroprotective activity, accompanied by antiferroptotic activity, via alleviation of MPTP-induced iron dysregulation and lipid peroxidation in substantia nigra studied in a monkey model (Shi et al. 2020). The activity was also possibly attributed to the activation of protein kinase B/mechanistic target of rapamycin survival pathway and prevention of p53-mediated cell death.

5.2 Dexmedetomidine

Dexmedetomidine, an α 2-adrenoceptor agonist, is commonly used in the perioperative period for critical intensive care unit patients for sedation, analgesia and anxiolysis. It demonstrated neuroprotective activity in several preclinical studies, including against neonatal brain injury (Sanders *et al.* 2010, Degos *et al.* 2013, Sifringer *et al.* 2015, Endesfelder *et al.* 2017, Perez-Zoghbi *et al.* 2017, Wang *et al.* 2019a, Sun *et al.* 2020a), traumatic brain injury (Schoeler *et al.* 2012, Wu *et al.* 2018, Zhang *et al.* 2018a, Li *et al.* 2019a, Feng *et al.* 2021) and stroke (Wang *et al.* 2016, Wang *et al.* 2020, Yang *et al.* 2021). The administration with dexmedetomidine via tail vein injection protected against A β_{1-42} -induced memory impairment by increasing miR-129 expression and reducing hippocampal apoptosis in a mouse model of AD (Sun *et al.* 2020b). Dexmedetomidine was also shown to protect against A β_{1-42} -induced apoptosis in hippocampal neurons and astrocytes *in vitro* (Wang *et al.* 2019b); however, the neuroprotection was also attributed to the amelioration of A β_{1-42} -induced deacetylation of histone H3 by promoting the accumulation of histone deacetylase (HDAC)-2 and HDAC5 in the cell nucleus and the reduced production of brain-derived neurotrophic factor.

Several studies demonstrated that dexmedetomidine activates the Nrf2 signalling pathway to protect against inflammation and oxidative stress (Li et al. 2019a, Lan *et al.* 2020, Feng et al. 2021, Yang et al. 2021). Dexmedetomidine was also found to be protective against ferroptosis, demonstrated by recent cell culture studies (Qiu *et al.* 2020, Chen *et al.* 2021). It prevented tert-butyl hydroperoxide-induced cell death in SK-N-SH cells (an immortalised human neuroblastoma cell line) by reducing iron accumulation and ferroptosis (Qiu et al. 2020). The antiferroptotic activity of dexmedetomidine involved regulating iron importers and exporters via c-Jun NH2-terminal kinase (JNK)- and signal transducer and activator of

transcription 4 (STAT4)-Sp1 signalling. Dexmedetomidine was also found to be protective against methotrexate-induced neurotoxicity in HT-22 cells (an immortalised mouse hippocampal cell line) via amelioration of neuroinflammation, oxidative stress and iron dysregulation (Chen et al. 2021). The demonstrated protective effect by dexmedetomidine was found to be attenuated by NCOA4 siRNA transfection, suggesting that dexmedetomidine-mediated antiferroptotic activity was largely dependent on the prevention

of ferritinophagy.

In addition to its promising neuroprotective effects in the preclinical AD models, the phase II clinical study of dexmedetomidine in dementia, Sub-Lingual Dexmedetomidine in Agitation Associated With Dementia (TRANQUILITY); clinicaltrials.gov/ct2/show/NCT04251910), is currently recruiting. Dexmedetomidine (200 µg or 400 µg, continuous infusion) in patient-controlled analgesia (a method of pain control) was also shown to significantly decrease the incidence of postoperative delirium and early postoperative cognitive dysfunction 7 days after major surgery without increasing any side effects in a randomised, double-blind clinical trial (Zhao *et al.* 2020).

5.3 Antioxidants

Vitamin E

Vitamin E (tocols) represents a family of compounds categorised into two subgroups as tocotrienols (four unsaturated analogues) and tocopherols (four saturated analogues α , β , γ and δ) (Singh *et al.* 2013). These tocol species, and many of their derivatives, act as lipophilic radical trapping antioxidants (RTAs; α -tocopherol is the most biologically active form of vitamin E) to prevent phospholipid hydroperoxide formation (Burton *et al.* 1980, Liebler *et al.* 1990, Yamauchi 1997, Zilka et al. 2017, Angeli *et al.* 2017). The antiferroptotic activity of vitamin E species may also involve the prevention of lipoxygenases such as 5 and 15 lipoxygenases (Maccarrone *et al.* 2001, Hinman et al. 2018). Alpha-tocopherol hydroquinone, an endogenous metabolite of vitamin E, demonstrated potent antiferroptotic activity via reduction of the non-heme iron in 15-lipoxygenase from its active Fe³⁺ state to its inactive Fe²⁺ state (Hinman et al. 2018).

Several pre-clinical studies have been suggested the therapeutic promise of vitamin E against ferroptotic stress (Wortmann *et al.* 2013, Hambright *et al.* 2017, Hu *et al.* 2021). Gpx4BIKO mice (conditional deletion of *Gpx4* in forebrain neurons) supplemented a vitamin E deficient diet showed an accelerated rate of hippocampal neurodegeneration and dysfunctional

behaviours compared to vitamin E-supplemented mice (Hambright et al. 2017). An *in vitro* study found that α -tocopherol protected against ferroptosis in *Gpx4*-deficient hematopoietic stem and progenitor cells via ameliorating lipid ROS (Hu et al. 2021). These laboratory findings suggest that loss of vitamin E may lead to neurodegeneration, while treatment with vitamin E may potentially protect against ferroptotic stress.

The levels of vitamin E were shown to be reduced in plasma, serum and CSF of AD patients (de Wilde *et al.* 2017). Some clinical trials have found that high vitamin E supplementation slowed cognitive deterioration in AD patients (Devore *et al.* 2010, Basambombo *et al.* 2017); however, other trials found that vitamin E did not decrease AD risk or slow down the progression of AD (Gray *et al.* 2008, Kryscio *et al.* 2017). In a recent *ex vivo* clinical study conducted on 113 deceased participants from the Memory and Aging Project (de Leeuw *et al.* 2020), higher levels of α - and γ -tocopherols were found to be associated with lower activated microglia density in cortical brain regions, suggesting that brain α -tocopherol levels may generate an anti-inflammatory environment to reduce total microglia density.

Selenium

Selenium is a trace element essential for GPX4 synthesis (Conrad & Proneth 2020) and also inhibits ferroptosis (Alim *et al.* 2019, Ingold *et al.* 2018). Treatment of sodium selenate (an inorganic compound of selenium produced by selenium oxidation) via intracerebroventricular injection in a mouse model of stroke was shown to protect neurons by augmenting GPX4 via coordinated activation of transcription factor AP-2 gamma and specificity protein 1 (Sp1) (Alim et al. 2019); however, it also defended against GPX4-independent excitotoxicity- or ER stress-mediated cell death.

Several clinical studies have demonstrated the beneficial role of selenium against cognitive decline. Supplementation of Brazil nuts (containing high selenium) for six months was shown to replenish selenium levels and improve verbal fluency and constructional praxis in MCI patients (Rita Cardoso *et al.* 2016). A recent Randomized Controlled Pilot Trial found that a high or super nutritional supplementation (24-week) of sodium selenate increased selenium uptake into the CNS. While the treatment did not cause an improvement to clinical function in this small study, cognitive function was associated with selenium levels when stratifying the study groups as either responsive or non-responsive to selenate supplementation (Cardoso *et al.* 2019). Conversely, selenomethionine (a selenoamino acid) did not reduce the incidence

of dementia in cognitively healthy males (aged >60 years) in the vitamin E and selenium (PREADVISE) clinical trial (Kryscio et al., 2017); however, the study subjects were not stratified corresponding to their CSF selenium status.

N-acetylcysteine

- N-acetylcysteine (NAC, a thiol-containing redox modulatory dietary supplement) is a precursor of L-cysteine, which can penetrate the BBB. NAC was shown to increase glutathione levels, protect against oxidative stress, stimulate redox-regulated cell signalling and enhance immune responses (Hara *et al.* 2017, Faria *et al.* 2019). Intraperitoneal injection with NAC restored brain glutathione levels and prevented lipid peroxidation in an AD mouse model (Fu *et al.* 2006). A recent study demonstrated the antiferroptotic activity of NAC against hemin-induced hemorrhagic stroke (Karuppagounder *et al.* 2018) by neutralising arachidonate-dependent generation of toxic lipids.
- NAC was found to be well-tolerated in probable AD patients studied in a 6-month randomised controlled trial (Adair *et al.* 2001). In several secondary measures, including the Wechsler Memory Scale and letter fluency tests, NAC therapy significantly improved cognitive functions in the treatment group (n=23) compared to placebo (n=20). However, NAC therapy did not alter several primary outcome measures, such as the MMSE score in this preliminary study, and larger sample sizes may be required to determine whether NAC effectively improves cognition in AD patients.

Polyphenols

Polyphenols are naturally occurring antioxidants that can prevent oxytosis and ferroptosis due to their ROS scavenging property in preclinical studies (Darvesh *et al.* 2010, Zheng *et al.* 2021). Polyphenols such as quercetin and fisetin can also regulate several signalling pathways to provide neuroprotection (Ehren & Maher 2013, Jakaria *et al.* 2019). The BBB penetrating and iron-binding properties of curcumin (an active hydrophobic polyphenol) suggest its potential role in AD therapy (Mishra & Palanivelu 2008, Jiao *et al.* 2006). Curcumin demonstrated promising effects in 32 AD preclinical studies (Voulgaropoulou *et al.* 2019); however, the effects were largely dependent on its antioxidant and anti-inflammatory properties. Curcumin also ameliorated erastin-induced cell death in MIN6 pancreatic β-cells by lessening iron accumulation and lipid peroxidation (Kose *et al.* 2019).

Numerous curcumin derivatives, including coumarin-quinoline hybrids, were also shown to 668 possess acetylcholinesterase inhibitory and iron chelation activities (Duarte et al. 2019), and 669 hybrids of hydroxypyridinone and coumarin were shown to have a protective effect against 670 H₂O₂-induced cytotoxicity in U-251 cells (an immortalised human glioma cell line) and 671 ameliorate cognitive impairment in a scopolamine-induced AD mouse model (Zhang et al. 672 2019). While curcumin shows potential effect in preclinical investigations, current clinical 673 evidence is not positive, with one significant limitation being the low bioavailability of 674 curcumin (Ringman et al. 2012, Voulgaropoulou et al. 2019). 675 Some other polyphenols with the ability to penetrate the BBB, such as gastrodin (Zeng et al. 676 677 2021) and baicalein/5,6,7-trihydroxyflavone (Wei et al. 2014), demonstrated anti-ferroptotic activity in cell culture models (Jiang et al. 2020a, Li et al. 2019b). Gastrodin protected 678 679 against H₂O₂- and glutamate-induced ferroptotic lethality (Jiang et al. 2020a, Jiang et al. 2020b), possibly via upregulation of Nrf2, heme oxygenase (HO)-1, glutathione and GPX4 680 681 and downregulation of MDA levels in vitro. Glutamate-induced increase in acyl-CoA synthetase long-chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 682 (PTGS2) expressions were shown to be downregulated by gastrodin treatment in HT-22 cells 683 (Jiang et al. 2020a). Gastrodin treatment also attenuated glutamate-induced iron dysregulation 684 in HT-22 cells (Jiang et al. 2020a) by increasing ferroportin and decreasing iron levels. 685 Several mechanistic studies also demonstrated its neuroprotective activity against Aβ₄₂-686 induced neurotoxicity in SH-SY5Y cells (Zhang et al. 2016, Zeng et al. 2021) and transgenic 687 AD mouse models, including Tg2576 (Zhang et al. 2016) and APP/PS1 (Zeng et al. 2021) by 688 alleviating oxidative stress, neuroinflammation and AD-like pathology. 689 690 Baicalein also demonstrated neuroprotective activity in AD models. It protected against heparin-induced Tau40 (2N/4R, the longest isoform of human tau) aggregation by enhancing 691 692 the formation of SDS-stable oligomers and preventing fibril formation in vitro (Sonawane et al. 2021). The treatment with baicalein also prevented $A\beta_{1-40}$ -induced memory impairment in 693 694 a rat model of AD (Wei et al. 2014) by promoting energy metabolism and neurotransmission and preventing apoptosis and oxidative stress. In addition, it attenuated cognitive impairment 695 696 in the APP/PS1 mouse model by preventing the activation of NLRP3 inflammasomes and the

toll-like receptor 4/NF-κB signalling pathway (Jin et al. 2019). Baicalein conferred

antiferroptotic activity in several cell lines such as pancreatic cancer cells (Xie et al. 2016),

HT-22 cells (Li et al. 2019b), PC12 cells (an immortalised differentiated rat

697

698

- 700 pheochromocytoma line) and primary cortical neurons (Duan et al. 2021), and the anti-
- 701 ferroptotic activity was mainly attributed to the prevention of lipid peroxidation.
- Moreover, a diet containing high polyphenols (26 polyphenol subclasses) was associated with
- reduced risk of dementia in the Three-City (3C) Study, a large prospective French cohort of
- older persons (1,329 adults) (Lefèvre-Arbogast et al. 2018). However, a systemic review on
- 705 24 studies (18 clinical and six observational trials) of polyphenols did not provide supportive
- evidence of clinical benefit (Colizzi 2018). Further clinical studies on larger cohorts may be
- required to determine whether polyphenols may benefit AD patients more definitively.

5.4 Alpha-lipoic acid

708

- 709 Alpha-lipoic acid, an organosulfur compound, is found naturally in fruits and vegetables,
- which can also be synthesised in animals and humans, and is a key player in mitochondrial
- 711 energy production. It demonstrated neuroprotective activity in preclinical experiments by
- preventing inflammation (Kamarudin et al. 2014, Ahuja et al. 2019, Choi et al. 2020),
- apoptosis (Zara et al. 2013) and oxidative stress (Kamarudin et al. 2014, Ahuja et al. 2019,
- 714 Uppakara et al. 2020, Camiolo et al. 2019).
- 715 Alpha-lipoic acid treatment demonstrated the formation of chelates with iron in human
- mesenchymal stem cells and zebrafish models (Camiolo et al. 2019). It ameliorated copper
- 717 metabolism via translocation of copper from the extracellular to intracellular space in the SH-
- 718 SY5Y cell line (Metsla et al. 2021). Alpha-lipoic acid treatment reversed ferric ammonium
- 719 citrate-induced increase in tissue iron accumulation and oxidative stress (Camiolo et al.
- 720 2019). Several recent studies have demonstrated antiferroptotic activity of alpha-lipoic acid in
- 721 cell culture models (Liu et al. 2020, Liu et al. 2021). The treatment with alpha-lipoic acid
- 722 was shown to alleviate MPP+ -induced ferroptosis in PC12 cells by activating the
- 723 PI3K/Akt/Nrf2 pathway (Liu et al. 2021) and ameliorate AD-like pathology in animal models
- 724 (Zara et al. 2013, Rodriguez-Perdigon et al. 2016, Liu et al. 2017, Zhang et al. 2018b, Zhang
- et al. 2020). Consistent with these preclinical data, alpha-lipoic acid has shown promising
- effects in small AD clinical studies (Hager et al. 2007, Fava et al. 2013, Shinto et al. 2014).

6 Conclusion

- 728 Understanding the complicated pathophysiology of AD is a priority for identifying new
- 729 therapeutic targets for AD drug discovery. Iron dyshomeostasis may contribute to ferroptotic
- stress associated with AD pathogenesis, evidenced by several preclinical and clinical studies.

Therefore, iron and ferroptosis could be possible targets for AD therapy. However, iron- and ferroptosis-mediated aberrant cellular signalling pathways that may cause neurodegeneration in AD need further investigation. Several AD-implicated proteins, including APP, tau and apoE, have been shown to regulate brain iron homeostasis, and disease-related changes to these proteins may affect iron biochemistry and associate with ferroptotic damage. Therefore, the role of these proteins needs to be examined in ferroptosis signalling pathways to understand AD pathophysiology and provide opportunities for developing disease-modifying therapeutics.

More than 30 failed phase 3 clinical trials of drugs targeting β-amyloid have yet to provide compelling evidence that reducing this pathology is an effective therapeutic strategy, yet there are lessons from these trials that could be applied for other drug targets such as iron and ferroptosis. For example, enrolling only subjects who have biomarker-confirmed AD, utilising target engagement biomarkers to prioritise drugs (possibly selecting patients who only have biomarker evidence of high iron), and using additional biomarkers of disease progression such as neurofilament light in plasma and brain volume using MRI.

Figure legends

Fig. 1 Schematic representation of the mechanism of ferroptosis induction

The regulatory pathways of ferroptosis are interlinked and tightly regulated, including glutathione (GSH)/GPX4 pathway, iron and lipid metabolism. Erastin, sorafenib, glutamate, and/or sulfasalazine blocks the system xCT (Dixon et al. 2014, Sato *et al.* 2018, Tang & Tang 2019), BSO inhibits gamma-glutamylcysteine synthetase (γ-GCS; the rate-limiting enzyme for the synthesis of glutathione) (Reliene & Schiestl 2005), and RSL3, altretamine and/or ML162 blocks the GPX4 activity (Sui *et al.* 2018, Hassannia *et al.* 2018), which results in lipid peroxidation-mediated ferroptotic cell death. Transferrin (Tf)-bound Fe³⁺ is delivered into the cells via transferrin receptor 1 (TfR1), which is then reduced to Fe²⁺ via oxidoreductase (STEAP3) in the endosome, followed by divalent metal transporter (DMT1)-mediated Fe²⁺ transportation into the cytoplasm (Qian & Shen 2001). Excess iron from the labile iron pool is stored in ferritin (redox-inactive ferric iron), which can be degraded by ferritinophagy and releases a free iron pool (Hou et al. 2016). Low cysteine levels promote ferroptosis by depleting glutathione and fostering ferritin degradation to release cytoplasmic iron to fuel the peroxidation reaction (Hayashima et al. 2021). Iron chelators (such as desferrioxamine/DFO or curcumin) prevent iron from participating in the Fenton reaction

(Rainey *et al.* 2019). Acyl-CoA synthetase long-chain family member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) participate in incorporating polyunsaturated fatty acids (PUFAs) into cellular membranes, sensitising them toward ferroptosis initiation. Lipoxygenase (LOXs; iron-containing dioxygenases) can oxidise phospholipids containing polyunsaturated fatty acid chains (PUFA-PLs) to polyunsaturated-fatty acid-containing-phospholipid hydroperoxide (PUFA-OOH) to accumulate lipid peroxides and their degradation products, which, in turn, initiates ferroptosis possibly via membrane destabilisation, cytoskeletal changes, and altered proteostasis (Kuhn *et al.* 2015, Dodson et al. 2019). Erastin- and RSL3-induced PUFAs peroxidation-mediated ferroptosis can be inhibited by several antioxidants such as liproxstatin-1 (Lip-1) and ferrostatin-1 (Fer-1), flavonoids and Cu^{II}(ATSM). Created with BioRender.com

Fig. 2 APP exports iron via maintenance of ferroportin

APP promotes the stabilisation of surface ferroportin (FPN1). Disrupted/decreased APP translation is controlled by IRP/IRE iron-dependent signalling, which may inhibit efflux of intraneuronal iron export. APP proteolytic processing interferes with iron efflux by influencing ferroportin, while APP α-Secretase-dependent processing raises APP binding to ferroportin on the cell surface to aid iron efflux. The amyloidogenic processing of APP via clathrin and lipid raft reliant endocytosis and ARF6 reliant internalisation of the BACE1 represses APP on the cell surface (Tsatsanis et al. 2020). Thus, destabilisation of ferroportin leads to degradation of internalised ferroportin and impairs iron export. Long-term amyloidogenic processing of APP in some forms of familial AD (Tsatsanis et al. 2020) may lead to an elevated neuronal iron burden and associate neurotoxicity. Created with BioRender.com

Abbreviations

- 789 AD: Alzheimer's disease
- 790 AICD: APP intracellular domain
- 791 APP: Amyloid precursor protein
- 792 ARF6: ADP-ribosylation factor 6

- 793 Aβ: amyloid-beta BACE1: beta-secretase 1 794 795 BBB: blood-brain barrier CoQ10: Coenzyme Q10 796 CTF: c terminal fragment. 797 DMT1: divalent metal transporter 798 799 Fer-1: ferrostatin-1 GPX4: glutathione peroxidase 4 800 GSGG: glutathione disulphide 801 802 GSH: glutathione 803 4-HNE: 4-hydroxy-2-nominal HO-1: heme oxygenase 1 804 IRE: iron-responsive element 805 LAMP2: lysosomal membrane-associated protein 2 806 Lip-1: liproxstatin-1 807 LPCAT3: lysophosphatidylcholine acyltransferase 3 808 MDA: malondialdehyde 809 NAC: N-acetylcysteine 810
- PTGS2: prostaglandin-endoperoxide synthase 2
 PUFA-OOH: polyunsaturated-fatty acid-containing-phospholipid hydroperoxide
- PUFA-PLs: phospholipids containing polyunsaturated fatty acid chains

Nrf2: Nuclear factor erythroid 2-related factor 2

815 ROS: reactive oxygen species

811

sAPP: soluble amyloid precursor protein

817	Sp1: specificity protein 1
818	system Xc-: cystine/glutamate transporter
819	TfR1: transferrin receptor 1
820	γ-GCS: gamma-glutamylcysteine synthetase
821	
822	Acknowledgment
823	We acknowledge funding from the Australian National Health & Medical Research Council
824	(NHMRC). The Florey Institute of Neuroscience and Mental Health acknowledges support
825	from the Victorian Government, in particular, funding from the Operational Infrastructure
826	Support Grant. MJ is supported by an Australian Government Research Training Program
827	(RTP) Stipend and RTP Fee-Offset Scholarship through the University of Melbourne,
828	Australia. Figures were created with BioRender.com
829	Author contributions
830	MJ and SA drafted the manuscript; MJ, SA, AAB and AIB critically evaluated and edited the
831	manuscript
832	
833	Conflict of interest statement
834	AIB is a shareholder in Alterity Biotechnology Ltd, Cogstate Ltd, and Mesoblast Ltd. He is a
835	paid consultant for, and has a profit share interest in, Collaborative Medicinal Development
836	Pty Ltd.
837	References
838	Abbruzzese, G., Cossu, G., Balocco, M. et al. (2011) A pilot trial of deferiprone for neurodegeneration
839	with brain iron accumulation. Haematologica, 96, 1708-1711.
840	Adair, J. C., Knoefel, J. E. and Morgan, N. (2001) Controlled trial of N-acetylcysteine for patients with
841	probable Alzheimer's disease. <i>Neurology,</i> 57, 1515-1517.
842	Ahuja, S., Uniyal, A., Akhtar, A. and Sah, S. P. (2019) Alpha lipoic acid and metformin alleviates
843	experimentally induced insulin resistance and cognitive deficit by modulation of TLR2
844	signalling. Pharmacological reports: PR, 71, 614-623.
845	Alim, I., Caulfield, J. T., Chen, Y. et al. (2019) Selenium Drives a Transcriptional Adaptive Program to
846	Block Ferrontosis and Treat Stroke Cell 177, 1262-1279 e1225

847	Anderson, S. A., Nizzi, C. P., Chang, Y. I. et al. (2013) The IRP1-HIF-2 α axis coordinates iron and
848	oxygen sensing with erythropoiesis and iron absorption. Cell metabolism, 17, 282-290.
849	Angeli, J. P. F., Shah, R., Pratt, D. A. and Conrad, M. (2017) Ferroptosis Inhibition: Mechanisms and
850	Opportunities. Trends in pharmacological sciences, 38, 489-498.
851	Angelova, D. M. and Brown, D. R. (2018) Altered Processing of β-Amyloid in SH-SY5Y Cells Induced by
852	Model Senescent Microglia. ACS chemical neuroscience, 9, 3137-3152.
853	Angelova, D. M. and Brown, D. R. (2019) Microglia and the aging brain: are senescent microglia the
854	key to neurodegeneration? Journal of neurochemistry, 151, 676-688.
855	Ansari, M. A. and Scheff, S. W. (2010) Oxidative stress in the progression of Alzheimer disease in the
856	frontal cortex. Journal of neuropathology and experimental neurology, 69, 155-167.
857	Aquino, D., Bizzi, A., Grisoli, M., Garavaglia, B., Bruzzone, M. G., Nardocci, N., Savoiardo, M. and
858	Chiapparini, L. (2009) Age-related iron deposition in the basal ganglia: quantitative analysis
859	in healthy subjects. Radiology, 252, 165-172.
860	Ashraf, A., Alepuz Guillen, J. A., Aljuhani, M., Hubens, C. and So, PW. (2019) Low Cerebrospinal
861	Fluid Levels of Melanotransferrin Are Associated With Conversion of Mild Cognitively
862	Impaired Subjects to Alzheimer's Disease. Front Neurosci, 13, 181-181.
863	Ashraf, A., Jeandriens, J., Parkes, H. G. and So, P. W. (2020) Iron dyshomeostasis, lipid peroxidation
864	and perturbed expression of cystine/glutamate antiporter in Alzheimer's disease: Evidence
865	of ferroptosis. <i>Redox biology,</i> 32, 101494.
866	Ashraf, A. and So, P. W. (2020) Spotlight on Ferroptosis: Iron-Dependent Cell Death in Alzheimer's
867	Disease. Front Aging Neurosci, 12, 196.
868	Ayton, S., Diouf, I. and Bush, A. I. (2018) Evidence that iron accelerates Alzheimer's pathology: a CSF
869	biomarker study. Journal of neurology, neurosurgery, and psychiatry, 89, 456-460.
870	Ayton, S., Faux, N. G. and Bush, A. I. (2015) Ferritin levels in the cerebrospinal fluid predict
871	Alzheimer's disease outcomes and are regulated by APOE. Nat Commun, 6, 6760.
872	Ayton, S., Faux, N. G. and Bush, A. I. (2017a) Association of Cerebrospinal Fluid Ferritin Level With
873	Preclinical Cognitive Decline in APOE-ε4 Carriers. JAMA neurology, 74 , 122-125.
874	Ayton, S., Fazlollahi, A., Bourgeat, P. et al. (2017b) Cerebral quantitative susceptibility mapping
875	predicts amyloid- β -related cognitive decline. Brain: a journal of neurology, 140 , 2112-2119.
876	Ayton, S., James, S. A. and Bush, A. I. (2017c) Nanoscale Imaging Reveals Big Role for Iron in
877	Alzheimer's Disease. Cell chemical biology, 24, 1192-1194.
878	Ayton, S., Lei, P., Duce, J. A., Wong, B. X., Sedjahtera, A., Adlard, P. A., Bush, A. I. and Finkelstein, D. I.
879	(2013) Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann
880	Neurol, 73, 554-559.

881	Ayton, S., Portbury, S., Kalinowski, P., Agarwal, P., Diouf, I., Schneider, J. A., Morris, M. C. and Bush,
882	A. I. (2021) Regional brain iron associated with deterioration in Alzheimer's disease: A large
883	cohort study and theoretical significance. Alzheimer's & dementia: the journal of the
884	Alzheimer's Association, 17, 1244-1256.
885	Ayton, S., Wang, Y., Diouf, I., Schneider, J. A., Brockman, J., Morris, M. C. and Bush, A. I. (2020) Brain
886	iron is associated with accelerated cognitive decline in people with Alzheimer pathology.
887	Molecular Psychiatry, 25, 2932-2941.
888	Balejcikova, L., Siposova, K., Kopcansky, P. and Safarik, I. (2018) Fe(II) formation after interaction of
889	the amyloid β -peptide with iron-storage protein ferritin. Journal of Biological Physics, 44,
890	237-243.
891	Banerjee, P., Sahoo, A., Anand, S., Bir, A. and Chakrabarti, S. (2016) The Oral Iron Chelator,
892	Deferasirox, Reverses the Age-Dependent Alterations in Iron and Amyloid- β Homeostasis in
893	Rat Brain: Implications in the Therapy of Alzheimer's Disease. Journal of Alzheimer's disease:
894	<i>JAD,</i> 49, 681-693.
895	Banerjee, P., Sahoo, A., Anand, S., Ganguly, A., Righi, G., Bovicelli, P., Saso, L. and Chakrabarti, S.
896	(2014) Multiple Mechanisms of Iron-Induced Amyloid Beta-Peptide Accumulation in SHSY5Y
897	Cells: Protective Action of Negletein. NeuroMolecular Medicine, 16, 787-798.
898	Bannai, S., Tsukeda, H. and Okumura, H. (1977) Effect of antioxidants on cultured human diploid
899	fibroblasts exposed to cystine-free medium. Biochem Biophys Res Commun, 74, 1582-1588.
900	Bao, WD., Pang, P., Zhou, XT. et al. (2021) Loss of ferroportin induces memory impairment by
901	promoting ferroptosis in Alzheimer's disease. Cell Death & Differentiation, 28, 1548-1562.
902	Bartzokis, G., Sultzer, D., Cummings, J., Holt, L. E., Hance, D. B., Henderson, V. W. and Mintz, J. (2000)
903	In Vivo Evaluation of Brain Iron in Alzheimer Disease Using Magnetic Resonance Imaging.
904	Archives of General Psychiatry, 57, 47-53.
905	Basambombo, L. L., Carmichael, P. H., Côté, S. and Laurin, D. (2017) Use of Vitamin E and C
906	Supplements for the Prevention of Cognitive Decline. The Annals of pharmacotherapy, 51,
907	118-124.
908	Becerril-Ortega, J., Bordji, K., Freret, T., Rush, T. and Buisson, A. (2014) Iron overload accelerates
909	neuronal amyloid-beta production and cognitive impairment in transgenic mice model of
910	Alzheimer's disease. Neurobiology of aging, 35, 2288-2301.
911	Belaidi, A. A. and Bush, A. I. (2016) Iron neurochemistry in Alzheimer's disease and Parkinson's
912	disease: targets for therapeutics. Journal of neurochemistry, 179-197.

913	Belaidi, A. A., Gunn, A. P., Wong, B. X., Ayton, S., Appukuttan, A. T., Roberts, B. R., Duce, J. A. and
914	Bush, A. I. (2018) Marked Age-Related Changes in Brain Iron Homeostasis in Amyloid Protein
915	Precursor Knockout Mice. Neurotherapeutics, 15, 1055-1062.
916	Bersuker, K., Hendricks, J. M., Li, Z. et al. (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4
917	to inhibit ferroptosis. <i>Nature,</i> 575, 688-692.
918	Boddaert, N., Le Quan Sang, K. H., Rötig, A. et al. (2007) Selective iron chelation in Friedreich ataxia:
919	biologic and clinical implications. <i>Blood</i> , 110 , 401-408.
920	Bousejra-ElGarah, F., Bijani, C., Coppel, Y., Faller, P. and Hureau, C. (2011) Iron(II) binding to amyloid
921	β, the Alzheimer's peptide. <i>Inorganic chemistry,</i> 50, 9024-9030.
922	Brand, A., Bauer, N. G., Hallott, A., Goldbaum, O., Ghebremeskel, K., Reifen, R. and Richter-
923	Landsberg, C. (2010) Membrane lipid modification by polyunsaturated fatty acids sensitizes
924	oligodendroglial OLN-93 cells against oxidative stress and promotes up-regulation of heme
925	oxygenase-1 (HSP32). Journal of neurochemistry, 113, 465-476.
926	Brosseron, F., Kleemann, K., Kolbe, C. C., Santarelli, F., Castro-Gomez, S., Tacik, P., Latz, E., Jessen, F.
927	and Heneka, M. T. (2021) Interrelations of Alzheimer's disease candidate biomarkers
928	neurogranin, fatty acid-binding protein 3 and ferritin to neurodegeneration and
929	neuroinflammation. Journal of neurochemistry, 157, 2210-2224.
930	Bulk, M., Abdelmoula, W. M., Geut, H., Wiarda, W., Ronen, I., Dijkstra, J. and van der Weerd, L.
931	(2020) Quantitative MRI and laser ablation-inductively coupled plasma-mass spectrometry
932	imaging of iron in the frontal cortex of healthy controls and Alzheimer's disease patients.
933	Neurolmage, 215, 116808.
934	Bulk, M., Abdelmoula, W. M., Nabuurs, R. J. A. et al. (2018a) Postmortem MRI and histology
935	demonstrate differential iron accumulation and cortical myelin organization in early- and
936	late-onset Alzheimer's disease. Neurobiology of aging, 62, 231-242.
937	Bulk, M., van der Weerd, L., Breimer, W. et al. (2018b) Quantitative comparison of different iron
938	forms in the temporal cortex of Alzheimer patients and control subjects. Scientific reports, 8,
939	6898.
940	Burton, G. W., Le Page, Y., Gabe, E. J. and Ingold, K. U. (1980) Antioxidant activity of vitamin E and
941	related phenols. Importance of stereoelectronic factors. Journal of the American Chemical
942	Society, 102, 7791-7792.
943	Camiolo, G., Tibullo, D., Giallongo, C. et al. (2019) α -Lipoic Acid Reduces Iron-induced Toxicity and
944	Oxidative Stress in a Model of Iron Overload. International journal of molecular sciences, 20.

343	Cardoso, B. N., Noberts, B. N., Ivialpas, C. B. et al. (2013) Supranutritional Societiate
946	Supplementation Delivers Selenium to the Central Nervous System: Results from a
947	Randomized Controlled Pilot Trial in Alzheimer's Disease. Neurotherapeutics, 16, 192-202.
948	Chen, J., Wang, J., Li, C., Ding, H., Ye, J. and Xia, Z. (2021) Dexmedetomidine reverses MTX-induced
949	neurotoxicity and inflammation in hippocampal HT22 cell lines via NCOA4-mediated
950	ferritinophagy. Aging (Albany NY), 13, 6182-6193.
951	Chen, M., Zheng, J., Liu, G., Zeng, C., Xu, E., Zhu, W., Anderson, G. J. and Chen, H. (2019) High Dietary
952	Iron Disrupts Iron Homeostasis and Induces Amyloid-beta and Phospho-tau Expression in the
953	Hippocampus of Adult Wild-Type and APP/PS1 Transgenic Mice. The Journal of nutrition,
954	149, 2247-2254.
955	Chen, Yt., Chen, Wy., Huang, Xt., Xu, Yc. and Zhang, Hy. (2018) Iron dysregulates APP
956	processing accompanying with sAPP $lpha$ cellular retention and eta -secretase inhibition in rat
957	cortical neurons. Acta Pharmacologica Sinica, 39, 177-183.
958	Cherny, R. A., Atwood, C. S., Xilinas, M. E. et al. (2001) Treatment with a copper-zinc chelator
959	markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer's disease transgenic
960	mice. <i>Neuron,</i> 30, 665-676.
961	Chiang, G. C., Mao, X., Kang, G., Chang, E., Pandya, S., Vallabhajosula, S., Isaacson, R., Ravdin, L. D.
962	and Shungu, D. C. (2017) Relationships among Cortical Glutathione Levels, Brain Amyloidosis
963	and Memory in Healthy Older Adults Investigated In Vivo with (1)H-MRS and Pittsburgh
964	Compound-B PET. AJNR. American journal of neuroradiology, 38, 1130-1137.
965	Cho, HH., Cahill, C. M., Vanderburg, C. R., Scherzer, C. R., Wang, B., Huang, X. and Rogers, J. T.
966	(2010) Selective translational control of the Alzheimer amyloid precursor protein transcript
967	by iron regulatory protein-1. J Biol Chem, 285, 31217-31232.
968	Choi, HR., Ha, J. S., Kim, I. S. and Yang, SJ. J. K. J. o. C. L. S. (2020) Metformin or α -Lipoic Acid
969	Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells.
970	Korean Journal of Clinical Laboratory Science, 52, 253-260.
971	Cobley, J. N., Fiorello, M. L. and Bailey, D. M. (2018) 13 reasons why the brain is susceptible to
972	oxidative stress. <i>Redox biology,</i> 15, 490-503.
973	Colizzi, C. (2018) The protective effects of polyphenols on Alzheimer's disease: A systematic review.
974	Alzheimer's & dementia (New York, N. Y.), 5, 184-196.
975	Collins, J. F., Wessling-Resnick, M. and Knutson, M. D. (2008) Hepcidin regulation of iron transport. J
976	Nutr, 138, 2284-2288.
977	Coltorti, M., De Ritis, F. and Giusti, G. (1956) [Enzymatic mechanisms of transsulfuration in biology
978	and clinical practice]. Giornale di clinica medica. 37, 285-323.

3/3	Comor, J. N., Menzies, S. L., St Martin, S. M. and Murson, E. J. (1990) Cendial distribution of
980	transferrin, ferritin, and iron in normal and aged human brains. Journal of neuroscience
981	research, 27, 595-611.
982	Conrad, M. and Proneth, B. (2020) Selenium: Tracing Another Essential Element of Ferroptotic Cell
983	Death. Cell chemical biology, 27, 409-419.
984	Crapper McLachlan, D. R., Dalton, A. J., Kruck, T. P., Bell, M. Y., Smith, W. L., Kalow, W. and Andrews
985	D. F. (1991) Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet
986	(London, England), 337, 1304-1308.
987	Cui, C., Cheng, X., Yan, L., Ding, H., Guan, X., Zhang, W., Tian, X. and Hao, C. (2019) Downregulation
988	of TfR1 promotes progression of colorectal cancer via the JAK/STAT pathway. Cancer
989	management and research, 11 , 6323.
990	Damulina, A., Pirpamer, L., Soellradl, M. et al. (2020) Cross-sectional and Longitudinal Assessment o
991	Brain Iron Level in Alzheimer Disease Using 3-T MRI. Radiology, 296, 619-626.
992	Darvesh, A. S., Carroll, R. T., Bishayee, A., Geldenhuys, W. J. and Van der Schyf, C. J. (2010) Oxidative
993	stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents. Expert
994	review of neurotherapeutics, 10, 729-745.
995	Dávalos, A., Fernandez-Real, J. M., Ricart, W., Soler, S., Molins, A., Planas, E. and Genís, D. (1994)
996	Iron-related damage in acute ischemic stroke. Stroke, 25, 1543-1546.
997	de Leeuw, F. A., Schneider, J. A., Agrawal, S., Leurgans, S. E. and Morris, M. C. (2020) Brain
998	tocopherol levels are associated with lower activated microglia density in elderly human
999	cortex. Alzheimer's & dementia (New York, N. Y.), 6, e12021.
1000	De Reuck, J. L., Deramecourt, V., Auger, F. et al. (2014) Iron deposits in post-mortem brains of
1001	patients with neurodegenerative and cerebrovascular diseases: a semi-quantitative 7.0 T
1002	magnetic resonance imaging study. European journal of neurology, 21, 1026-1031.
1003	de Wilde, M. C., Vellas, B., Girault, E., Yavuz, A. C. and Sijben, J. W. (2017) Lower brain and blood
1004	nutrient status in Alzheimer's disease: Results from meta-analyses. Alzheimer's & dementia
1005	(New York, N. Y.), 3, 416-431.
1006	Degos, V., Charpentier, T. L., Chhor, V. et al. (2013) Neuroprotective effects of dexmedetomidine
1007	against glutamate agonist-induced neuronal cell death are related to increased astrocyte
1008	brain-derived neurotrophic factor expression. Anesthesiology, 118, 1123-1132.
1009	Derry, P. J., Hegde, M. L., Jackson, G. R., Kayed, R., Tour, J. M., Tsai, A. L. and Kent, T. A. (2020)
1010	Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's
1011	disease from a ferroptosis perspective. Progress in neurobiology, 184, 101716.

1012	Devore, E. E., Grodstein, F., van Rooij, F. J., Hofman, A., Stampfer, M. J., Witteman, J. C. and Breteler,
1013	M. M. (2010) Dietary antioxidants and long-term risk of dementia. Archives of neurology, 67,
1014	819-825.
1015	Devos, D., Moreau, C., Devedjian, J. C. et al. (2014) Targeting Chelatable Iron as a Therapeutic
1016	Modality in Parkinson's Disease. Antioxidants & redox signaling, 21, 195-210.
1017	Diouf, I., Bush, A. I. and Ayton, S. (2020) Cerebrospinal fluid ceruloplasmin levels predict cognitive
1018	decline and brain atrophy in people with underlying beta-amyloid pathology. Neurobiol Dis,
1019	139, 104810.
1020	Diouf, I., Fazlollahi, A., Bush, A. I. and Ayton, S. (2019) Cerebrospinal fluid ferritin levels predict brain
1021	hypometabolism in people with underlying β -amyloid pathology. Neurobiol Dis, 124, 335-
1022	339.
1023	Dixon, S. J., Lemberg, K. M., Lamprecht, M. R. et al. (2012) Ferroptosis: an iron-dependent form of
1024	nonapoptotic cell death. Cell, 149, 1060-1072.
1025	Dixon, S. J., Patel, D. N., Welsch, M. et al. (2014) Pharmacological inhibition of cystine-glutamate
1026	exchange induces endoplasmic reticulum stress and ferroptosis. Elife, 3 , e02523-e02523.
1027	Dodson, M., Castro-Portuguez, R. and Zhang, D. D. (2019) NRF2 plays a critical role in mitigating lipid
1028	peroxidation and ferroptosis. <i>Redox biology,</i> 23, 101107.
1029	Du, L., Zhao, Z., Cui, A. et al. (2018) Increased Iron Deposition on Brain Quantitative Susceptibility
1030	Mapping Correlates with Decreased Cognitive Function in Alzheimer's Disease. ACS chemical
1031	neuroscience, 9, 1849-1857.
1032	Duan, L., Zhang, Y., Yang, Y. et al. (2021) Baicalin Inhibits Ferroptosis in Intracerebral Hemorrhage.
1033	Front Pharmacol, 12, 629379.
1034	Duarte, Y., Fonseca, A., Gutiérrez, M. et al. (2019) Novel Coumarin-Quinoline Hybrids: Design of
1035	Multitarget Compounds for Alzheimer's Disease. ChemistrySelect, 4, 551-558.
1036	Duce, J. A., Tsatsanis, A., Cater, M. A. et al. (2010) Iron-export ferroxidase activity of β-amyloid
1037	precursor protein is inhibited by zinc in Alzheimer's disease. Cell, 142, 857-867.
1038	Dunn, L. L., Sekyere, E. O., Suryo Rahmanto, Y. and Richardson, D. R. (2006) The function of
1039	melanotransferrin: a role in melanoma cell proliferation and tumorigenesis. Carcinogenesis,
1040	27, 2157-2169.
1041	Eagle, H. (1955) Nutrition needs of mammalian cells in tissue culture. Science (New York, N.Y.), 122,
1042	501-514.
1043	Eagle, H., Piez, K. A. and Oyama, V. I. (1961) The biosynthesis of cystine in human cell cultures. <i>J Biol</i>
1044	Chem 236 1425-1428

1045	Ehren, J. L. and Maher, P. (2013) Concurrent regulation of the transcription factors Nrf2 and ATF4
1046	mediates the enhancement of glutathione levels by the flavonoid fisetin. Biochemical
1047	pharmacology, 85, 1816-1826.
1048	Endesfelder, S., Makki, H., von Haefen, C., Spies, C. D., Bührer, C. and Sifringer, M. (2017)
1049	Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the
1050	developing rat brain. <i>PloS one</i> , 12 , e0171498-e0171498.
1051	Erdei, J., Tóth, A., Balogh, E., Nyakundi, B. B., Bányai, E., Ryffel, B., Paragh, G., Cordero, M. D. and
1052	Jeney, V. (2018) Induction of NLRP3 Inflammasome Activation by Heme in Human
1053	Endothelial Cells. Oxid Med Cell Longev, 2018, 4310816.
1054	Everett, J., Collingwood, J. F., Tjendana-Tjhin, V. et al. (2018) Nanoscale synchrotron X-ray speciation
1055	of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects.
1056	Nanoscale, 10, 11782-11796.
1057	Faria, M., Prats, E., Gómez-Canela, C. et al. (2019) Therapeutic potential of N-acetylcysteine in
1058	acrylamide acute neurotoxicity in adult zebrafish. Scientific reports, 9, 16467.
1059	Fava, A., Pirritano, D., Plastino, M. et al. (2013) The Effect of Lipoic Acid Therapy on Cognitive
1060	Functioning in Patients with Alzheimer's Disease. Journal of Neurodegenerative Diseases,
1061	2013, 454253.
1062	Fawzi, S. F., Menze, E. T. and Tadros, M. G. (2020) Deferiprone ameliorates memory impairment in
1063	Scopolamine-treated rats: The impact of its iron-chelating effect on β -amyloid disposition.
1064	Behavioural Brain Research, 378, 112314.
1065	Feng, H. and Stockwell, B. R. (2018) Unsolved mysteries: How does lipid peroxidation cause
1066	ferroptosis? <i>PLoS Biol,</i> 16, e2006203-e2006203.
1067	Feng, X., Ma, W., Zhu, J., Jiao, W. and Wang, Y. (2021) Dexmedetomidine alleviates early brain injury
1068	following traumatic brain injury by inhibiting autophagy and neuroinflammation through the
1069	ROS/Nrf2 signaling pathway. Molecular medicine reports, 24.
1070	Ficiarà, E., Munir, Z., Boschi, S., Caligiuri, M. E. and Guiot, C. (2021) Alteration of Iron Concentration
1071	in Alzheimer's Disease as a Possible Diagnostic Biomarker Unveiling Ferroptosis.
1072	International journal of molecular sciences, 22.
1073	Fillebeen, C., Charlebois, E., Wagner, J., Katsarou, A. and Mui, J. (2019) Transferrin receptor 1
1074	controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron
1075	load. 133, 344-355.
1076	Fu, AL., Dong, ZH. and Sun, MJ. (2006) Protective effect of N-acetyl-l-cysteine on amyloid β -
1077	peptide-induced learning and memory deficits in mice. Brain research, 1109, 201-206.

10/8	Garcia-Yebenes, I., Garcia-Culebras, A., Pena-Martinez, C. et al. (2018) Iron Overload Exacerbates the
1079	Risk of Hemorrhagic Transformation After tPA (Tissue-Type Plasminogen Activator)
1080	Administration in Thromboembolic Stroke Mice. Stroke, 49, 2163-2172.
1081	Garg, R., Aravind, S., Kaur, S., Singh Chawla, S. P., Aggarwal, S. and Goyal, G. (2020) Role of serum
1082	ferritin as a prognostic marker in acute ischemic stroke: A preliminary observation. Ann Afr
1083	Med, 19, 95-102.
1084	Gaschler, M. M., Andia, A. A., Liu, H. et al. (2018) FINO(2) initiates ferroptosis through GPX4
1085	inactivation and iron oxidation. Nat Chem Biol, 14, 507-515.
1086	Gleason, A. and Bush, A. I. (2020) Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease
1087	Neurotherapeutics, 18, 252-264.
1088	Gong, L., Tian, X., Zhou, J., Dong, Q., Tan, Y., Lu, Y., Wu, J., Zhao, Y. and Liu, X. (2019) Iron
1089	dyshomeostasis induces binding of APP to BACE1 for amyloid pathology, and impairs
1090	APP/Fpn1 complex in microglia: implication in pathogenesis of cerebral microbleeds. Cell
1091	transplantation, 28, 1009-1017.
1092	Goodman, L. (1953) Alzheimer's disease; a clinico-pathologic analysis of twenty-three cases with a
1093	theory on pathogenesis. The Journal of nervous and mental disease, 118, 97-130.
1094	Gray, S. L., Anderson, M. L., Crane, P. K., Breitner, J. C., McCormick, W., Bowen, J. D., Teri, L. and
1095	Larson, E. (2008) Antioxidant vitamin supplement use and risk of dementia or Alzheimer's
1096	disease in older adults. Journal of the American Geriatrics Society, 56, 291-295.
1097	Gryzik, M., Asperti, M., Denardo, A., Arosio, P. and Poli, M. (2021) NCOA4-mediated ferritinophagy
1098	promotes ferroptosis induced by erastin, but not by RSL3 in HeLa cells. Biochimica et
1099	biophysica acta. Molecular cell research, 1868, 118913.
1100	Guo, C., Wang, P., Zhong, M. L., Wang, T., Huang, X. S., Li, J. Y. and Wang, Z. Y. (2013a) Deferoxamine
1101	inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse
1102	brain. Neurochemistry international, 62, 165-172.
1103	Guo, C., Wang, T., Zheng, W., Shan, Z. Y., Teng, W. P. and Wang, Z. Y. (2013b) Intranasal
1104	deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP
1105	processing in a transgenic mouse model of Alzheimer's disease. Neurobiol Aging, 34, 562-
1106	575.
1107	Guo, L. Y., Alekseev, O., Li, Y., Song, Y. and Dunaief, J. L. (2014) Iron increases APP translation and
1108	amyloid-beta production in the retina. Experimental eye research, 129, 31-37.
1109	Haass, C., Lemere, C. A., Capell, A., Citron, M., Seubert, P., Schenk, D., Lannfelt, L. and Selkoe, D. J.
1110	(1995) The Swedish mutation causes early-onset Alzheimer's disease by beta-secretase
1111	cleavage within the secretory nathway. Nature medicine, 1, 1291-1296

1112	nager, κ., Kerikiles, M., McAloose, J., Enger, J. and Murich, G. (2007) α-Eipoic acid as a new treatment
1113	option for Alzheimer's disease — a 48 months follow-up analysis. In: $Neuropsychiatric$
1114	Disorders An Integrative Approach, (M. Gerlach, J. Deckert, K. Double and E. Koutsilieri eds.),
1115	pp. 189-193. Springer Vienna, Vienna.
1116	Hahn, A., Strandberg, T. O., Stomrud, E., Nilsson, M., van Westen, D., Palmqvist, S., Ossenkoppele, R.
1117	and Hansson, O. (2019) Association Between Earliest Amyloid Uptake and Functional
1118	Connectivity in Cognitively Unimpaired Elderly. Cerebral cortex (New York, N.Y.: 1991), 29,
1119	2173-2182.
1120	Hambright, W. S., Fonseca, R. S., Chen, L., Na, R. and Ran, Q. (2017) Ablation of ferroptosis regulator
1121	glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and
1122	neurodegeneration. Redox biology, 12, 8-17.
1123	Hansra, G. K., Popov, G., Banaczek, P. O., Vogiatzis, M., Jegathees, T., Goldsbury, C. S. and Cullen, K.
1124	M. (2019) The neuritic plaque in Alzheimer's disease: perivascular degeneration of neuronal
1125	processes. Neurobiol Aging, 82, 88-101.
1126	Hara, Y., McKeehan, N., Dacks, P. A. and Fillit, H. M. (2017) Evaluation of the Neuroprotective
1127	Potential of N-Acetylcysteine for Prevention and Treatment of Cognitive Aging and
1128	Dementia. The journal of prevention of Alzheimer's disease, 4, 201-206.
1129	Hare, D., Ayton, S., Bush, A. and Lei, P. (2013) A delicate balance: Iron metabolism and diseases of
1130	the brain. Front Aging Neurosci, 5, 34-34.
1131	Hassannia, B., Wiernicki, B., Ingold, I. et al. (2018) Nano-targeted induction of dual ferroptotic
1132	mechanisms eradicates high-risk neuroblastoma. J Clin Invest, 128, 3341-3355.
1133	Hayashima, K., Kimura, I. and Katoh, H. (2021) Role of ferritinophagy in cystine deprivation-induced
1134	cell death in glioblastoma cells. Biochemical and Biophysical Research Communications, 539,
1135	56-63.
1136	Hernández-Camacho, J. D., Bernier, M., López-Lluch, G. and Navas, P. (2018) Coenzyme Q(10)
1137	Supplementation in Aging and Disease. Front Physiol, 9, 44-44.
1138	Hinman, A., Holst, C. R., Latham, J. C. et al. (2018) Vitamin E hydroquinone is an endogenous
1139	regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One, 13, e0201369.
1140	Holland, R., McIntosh, A. L., Finucane, O. M., Mela, V., Rubio-Araiz, A., Timmons, G., McCarthy, S. A.,
1141	Gun'ko, Y. K. and Lynch, M. A. (2018) Inflammatory microglia are glycolytic and iron retentive
1142	and typify the microglia in APP/PS1 mice. Brain, behavior, and immunity, 68, 183-196.
1143	Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M. T., Zeh, H. J., 3rd, Kang, R. and Tang, D. (2016) Autophagy
1144	promotes ferroptosis by degradation of ferritin, Autophagy, 12, 1425-1428.

1145	Hu, Q., Zhang, Y., Lou, H. et al. (2021) GPX4 and vitamin E cooperatively protect hematopoietic stem
1146	and progenitor cells from lipid peroxidation and ferroptosis. Cell Death & Disease, 12, 706.
1147	Huang, X., Atwood, C. S., Hartshorn, M. A. et al. (1999) The A beta peptide of Alzheimer's disease
1148	directly produces hydrogen peroxide through metal ion reduction. Biochemistry, 38, 7609-
1149	7616.
1150	Huang, X., Atwood, C. S., Moir, R. D., Hartshorn, M. A., Tanzi, R. E. and Bush, A. I. (2004) Trace metal
1151	contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of
1152	Alzheimer's Abeta peptides. Journal of biological inorganic chemistry: JBIC: a publication of
1153	the Society of Biological Inorganic Chemistry, 9, 954-960.
1154	Ingold, I., Berndt, C., Schmitt, S. et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent
1155	Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e421.
1156	Ito, J., Omiya, S., Rusu, M. C. et al. (2021) Iron derived from autophagy-mediated ferritin degradation
1157	induces cardiomyocyte death and heart failure in mice. Elife, 10, e62174.
1158	Jakaria, M., Azam, S., Jo, S. H., Kim, I. S., Dash, R. and Choi, D. K. (2019) Potential Therapeutic Targets
1159	of Quercetin and Its Derivatives: Its Role in the Therapy of Cognitive Impairment. Journal of
1160	clinical medicine, 8, 1789.
1161	Jefferies, W. A., Food, M. R., Gabathuler, R., Rothenberger, S., Yamada, T., Yasuhara, O. and McGeer,
1162	P. L. (1996) Reactive microglia specifically associated with amyloid plaques in Alzheimer's
1163	disease brain tissue express melanotransferrin. Brain research, 712, 122-126.
1164	Jenkins, N. L., James, S. A., Salim, A., Sumardy, F., Speed, T. P., Conrad, M., Richardson, D. R., Bush, A.
1165	I. and McColl, G. (2020) Changes in ferrous iron and glutathione promote ferroptosis and
1166	frailty in aging Caenorhabditis elegans. Elife, 9, e56580.
1167	Jiang, T., Cheng, H., Su, J., Wang, X., Wang, Q., Chu, J. and Li, Q. (2020a) Gastrodin protects against
1168	glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway.
1169	Toxicology in Vitro, 62, 104715.
1170	Jiang, T., Chu, J., Chen, H., Cheng, H., Su, J., Wang, X., Cao, Y., Tian, S. and Li, Q. (2020b) Gastrodin
1171	Inhibits H(2)O(2)-Induced Ferroptosis through Its Antioxidative Effect in Rat Glioma Cell Line
1172	C6. Biological & pharmaceutical bulletin, 43, 480-487.
1173	Jiao, Y., Wilkinson, J., Christine Pietsch, E., Buss, J. L., Wang, W., Planalp, R., Torti, F. M. and Torti, S.
1174	V. (2006) Iron chelation in the biological activity of curcumin. Free Radical Biology and
1175	Medicine, 40 , 1152-1160.
1176	Jin, X., Liu, M. Y., Zhang, D. F., Zhong, X., Du, K., Qian, P., Yao, W. F., Gao, H. and Wei, M. J. (2019)

Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated

1177

1178	neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-кВ signaling
1179	pathway. CNS neuroscience & therapeutics, 25, 575-590.
1180	Joshi, G. and Wang, Y. (2015) Golgi defects enhance APP amyloidogenic processing in Alzheimer's
1181	disease. BioEssays: news and reviews in molecular, cellular and developmental biology, 37,
1182	240-247.
1183	Kagerer, S. M., van Bergen, J. M. G., Li, X. et al. (2020) APOE4 moderates effects of cortical iron on
1184	synchronized default mode network activity in cognitively healthy old-aged adults.
1185	Alzheimer's & dementia (Amsterdam, Netherlands), 12, e12002.
1186	Kamalinia, G., Khodagholi, F., Atyabi, F., Amini, M., Shaerzadeh, F., Sharifzadeh, M. and Dinarvand, R.
1187	(2013) Enhanced brain delivery of deferasirox-lactoferrin conjugates for iron chelation
1188	therapy in neurodegenerative disorders: in vitro and in vivo studies. Molecular
1189	pharmaceutics, 10 , 4418-4431.
1190	Kamarudin, M. N., Mohd Raflee, N. A., Hussein, S. S., Lo, J. Y., Supriady, H. and Abdul Kadir, H. (2014)
1191	(R)-(+)- α -lipoic acid protected NG108-15 cells against H_2O_2 -induced cell death through PI3K-
1192	Akt/GSK-3 β pathway and suppression of NF- $\kappa\beta$ -cytokines. Drug design, development and
1193	therapy, 8, 1765-1780.
1194	Karuppagounder, S. S., Alin, L., Chen, Y. et al. (2018) N-acetylcysteine targets 5 lipoxygenase-derived,
1195	toxic lipids and can synergize with prostaglandin E2 to inhibit ferroptosis and improve
1196	outcomes following hemorrhagic stroke in mice. Annals of neurology, 84, 854-872.
1197	Kenkhuis, B., Jonkman, L. E., Bulk, M., Buijs, M., Boon, B. D. C., Bouwman, F. H., Geurts, J. J. G., van
1198	de Berg, W. D. J. and van der Weerd, L. (2019) 7T MRI allows detection of disturbed cortical
1199	lamination of the medial temporal lobe in patients with Alzheimer's disease. NeuroImage:
1200	Clinical, 21, 101665.
1201	Kenkhuis, B., Somarakis, A., de Haan, L. et al. (2021) Iron loading is a prominent feature of activated
1202	microglia in Alzheimer's disease patients. Acta neuropathologica communications, 9, 27.
1203	Kennard, M. L., Feldman, H., Yamada, T. and Jefferies, W. A. (1996) Serum levels of the iron binding
1204	protein p97 are elevated in Alzheimer's disease. Nature medicine, 2, 1230-1235.
1205	Khanna, S., Roy, S., Ryu, H., Bahadduri, P., Swaan, P. W., Ratan, R. R. and Sen, C. K. (2003) Molecular
1206	basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of
1207	glutamate-induced neurodegeneration. The Journal of biological chemistry, 278, 43508-
1208	43515.
1209	Kim, D. K., Seo, M. Y., Lim, S. W., Kim, S., Kim, J. W., Carroll, B. J., Kwon, D. Y., Kwon, T. and Kang, S. S.
1210	(2001) Serum melanotransferrin, p97 as a biochemical marker of Alzheimer's disease.

1211	Neuropsychopharmacology : official publication of the American College of
1212	Neuropsychopharmacology, 25 , 84-90.
1213	Kose, T., Vera-Aviles, M., Sharp, P. A. and Latunde-Dada, G. O. (2019) Curcumin and (-)-
1214	Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells Against Iron Toxicity
1215	and Erastin-Induced Ferroptosis. Pharmaceuticals (Basel), 12, 26.
1216	Kryscio, R. J., Abner, E. L., Caban-Holt, A., Lovell, M., Goodman, P., Darke, A. K., Yee, M., Crowley, J.
1217	and Schmitt, F. A. (2017) Association of Antioxidant Supplement Use and Dementia in the
1218	Prevention of Alzheimer's Disease by Vitamin E and Selenium Trial (PREADViSE). JAMA
1219	neurology, 74, 567-573.
1220	Kuhn, H., Banthiya, S. and van Leyen, K. (2015) Mammalian lipoxygenases and their biological
1221	relevance. Biochim Biophys Acta, 1851, 308-330.
1222	Lan, J., Zheng, J., Feng, J. and Peng, W. (2020) Nrf2 mediates the antinociceptive activity of
1223	dexmedetomidine in an acute inflammatory visceral pain rat model by activating the NF-кВ
1224	sensor. Cell biochemistry and function, 38, 97-105.
1225	Lane, D. J. R., Ayton, S. and Bush, A. I. (2018) Iron and Alzheimer's Disease: An Update on Emerging
1226	Mechanisms. Journal of Alzheimer's disease: JAD, 64, S379-s395.
1227	Lefèvre-Arbogast, S., Gaudout, D., Bensalem, J., Letenneur, L., Dartigues, J. F., Hejblum, B. P., Féart,
1228	C., Delcourt, C. and Samieri, C. (2018) Pattern of polyphenol intake and the long-term risk of
1229	dementia in older persons. Neurology, 90, e1979-e1988.
1230	Lei, P., Ayton, S., Appukuttan, A. T. et al. (2017) Lithium suppression of tau induces brain iron
1231	accumulation and neurodegeneration. Molecular Psychiatry, 22, 396-406.
1232	Lei, P., Ayton, S., Finkelstein, D. I. et al. (2012) Tau deficiency induces parkinsonism with dementia by
1233	impairing APP-mediated iron export. Nature Medicine, 18, 291-295.
1234	Lermyte, F., Everett, J., Lam, Y. P. Y. et al. (2019) Metal Ion Binding to the Amyloid β Monomer
1235	Studied by Native Top-Down FTICR Mass Spectrometry. Journal of The American Society for
1236	Mass Spectrometry, 30 , 2123-2134.
1237	Li, F., Wang, X., Zhang, Z., Zhang, X. and Gao, P. (2019a) Dexmedetomidine Attenuates
1238	Neuroinflammatory-Induced Apoptosis after Traumatic Brain Injury via Nrf2 signaling
1239	pathway. Annals of clinical and translational neurology, 6, 1825-1835.
1240	Li, Q., Li, QQ., Jia, JN., Sun, QY., Zhou, HH., Jin, WL. and Mao, XY. (2019b) Baicalein Exerts
1241	Neuroprotective Effects in FeCl(3)-Induced Posttraumatic Epileptic Seizures via Suppressing
1242	Ferroptosis. Front Pharmacol, 10, 638-638.
1243	Li, Y., Maher, P. and Schubert, D. (1997) A role for 12-lipoxygenase in nerve cell death caused by
1244	glutathione depletion. Neuron, 19, 453-463.

1245	Liebier, D. C., Baker, P. F. and Kaysen, K. L. (1990) Oxidation of vitamin E: evidence for competing
1246	autoxidation and peroxyl radical trapping reactions of the tocopheroxyl radical. Journal of
1247	the American Chemical Society, 112, 6995-7000.
1248	Liu, B., Moloney, A., Meehan, S. et al. (2011) Iron promotes the toxicity of amyloid beta peptide by
1249	impeding its ordered aggregation. J Biol Chem, 286, 4248-4256.
1250	Liu, H. D., Li, W., Chen, Z. R., Zhou, M. L., Zhuang, Z., Zhang, D. D., Zhu, L. and Hang, C. H. (2013)
1251	Increased expression of ferritin in cerebral cortex after human traumatic brain injury.
1252	Neurological sciences : official journal of the Italian Neurological Society and of the Italian
1253	Society of Clinical Neurophysiology, 34, 1173-1180.
1254	Liu, L., Yang, S. and Wang, H. (2021) α -Lipoic acid alleviates ferroptosis in the MPP(+) -induced PC12
1255	cells via activating the PI3K/Akt/Nrf2 pathway. Cell biology international, 45, 422-431.
1256	Liu, Y., Zhu, W., Ni, D., Zhou, Z., Gu, J. H., Zhang, W., Sun, H. and Liu, F. (2020) Alpha lipoic acid
1257	antagonizes cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis-like cell death.
1258	Journal of nanobiotechnology, 18, 141.
1259	Liu, Z., Patil, I., Sancheti, H., Yin, F. and Cadenas, E. (2017) Effects of Lipoic Acid on High-Fat Diet-
1260	Induced Alteration of Synaptic Plasticity and Brain Glucose Metabolism: A PET/CT and 13C-
1261	NMR Study. Scientific reports, 7, 5391.
1262	Lovell, M. A., Xiong, S., Xie, C., Davies, P. and Markesbery, W. R. (2004) Induction of
1263	hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative
1264	stress and glycogen synthase kinase-3. Journal of Alzheimer's disease: JAD, 6, 659-671;
1265	discussion 673-681.
1266	Lu, L., Cao, H., Wei, X., Li, Y. and Li, W. (2015) Iron Deposition Is Positively Related to Cognitive
1267	Impairment in Patients with Chronic Mild Traumatic Brain Injury: Assessment with
1268	Susceptibility Weighted Imaging. Biomed Res Int, 2015, 470676.
1269	Ma, J., Qian, C., Bao, Y. et al. (2021) Apolipoprotein E deficiency induces a progressive increase in
1270	tissue iron contents with age in mice. Redox biology, 40, 101865-101865.
1271	Maccarrone, M., Meloni, C., Manca-di-Villahermosa, S., Cococcetta, N., Casciani, C. U., Finazzi-Agrò,
1272	A. and Taccone-Gallucci, M. (2001) Vitamin E suppresses 5-lipoxygenase-mediated oxidative
1273	stress in peripheral blood mononuclear cells of hemodialysis patients regardless of
1274	administration route. American journal of kidney diseases: the official journal of the
1275	National Kidney Foundation, 37 , 964-969.
1276	Maher, P., Currais, A. and Schubert, D. (2020) Using the Oxytosis/Ferroptosis Pathway to Understand
1277	and Treat Age-Associated Neurodegenerative Diseases. Cell chemical highagy. 27, 1456-1471

1278	Mahoney-Sanchez, L., Belaidi, A. A., Bush, A. I. and Ayton, S. (2016) The Complex Role of
1279	Apolipoprotein E in Alzheimer's Disease: an Overview and Update. Journal of molecular
1280	neuroscience : MN, 60, 325-335.
1281	Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R. and Maggio, J. E.
1282	(1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of
1283	beta-amyloid peptide. Journal of neurochemistry, 61, 1171-1174.
1284	Mao, X. and Schimmer, A. D. (2008) The toxicology of Clioquinol. Toxicology letters, 182, 1-6.
1285	McCarthy, R. C., Park, Y. H. and Kosman, D. J. (2014) sAPP modulates iron efflux from brain
1286	microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO
1287	reports, 15, 809-815.
1288	McIntosh, A., Mela, V., Harty, C., Minogue, A. M., Costello, D. A., Kerskens, C. and Lynch, M. A.
1289	(2019) Iron accumulation in microglia triggers a cascade of events that leads to altered
1290	metabolism and compromised function in APP/PS1 mice. Brain pathology (Zurich,
1291	Switzerland), 29, 606-621.
1292	Meadowcroft, M. D., Peters, D. G., Dewal, R. P., Connor, J. R. and Yang, Q. X. (2015) The effect of iron
1293	in MRI and transverse relaxation of amyloid-beta plaques in Alzheimer's disease. NMR in
1294	biomedicine, 28, 297-305.
1295	Metsla, K., Kirss, S., Laks, K., Sildnik, G., Palgi, M., Palumaa, T., Tõugu, V. and Palumaa, P. (2021) α -
1296	lipoic acid has the potential to normalize copper metabolism, which is dysregulated in
1297	Alzheimer's disease. 2021.2003.2015.435417.
1298	Mishra, S. and Palanivelu, K. (2008) The effect of curcumin (turmeric) on Alzheimer's disease: An
1299	overview. Ann Indian Acad Neurol, 11, 13-19.
1300	Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gillette, J. R. and Brodie, B. B. (1973) Acetaminophen-
1301	induced hepatic necrosis. IV. Protective role of glutathione. The Journal of pharmacology
1302	and experimental therapeutics, 187 , 211-217.
1303	Molina-Holgado, F., Gaeta, A., Francis, P. T., Williams, R. J. and Hider, R. C. (2008) Neuroprotective
1304	actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. Journal of
1305	neurochemistry, 105 , 2466-2476.
1306	Murphy, T. H., Malouf, A. T., Sastre, A., Schnaar, R. L. and Coyle, J. T. (1988) Calcium-dependent
1307	glutamate cytotoxicity in a neuronal cell line. Brain research, 444, 325-332.
1308	Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. (1989) Glutamate toxicity in a
1309	neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron,
1310	2, 1547-1558.

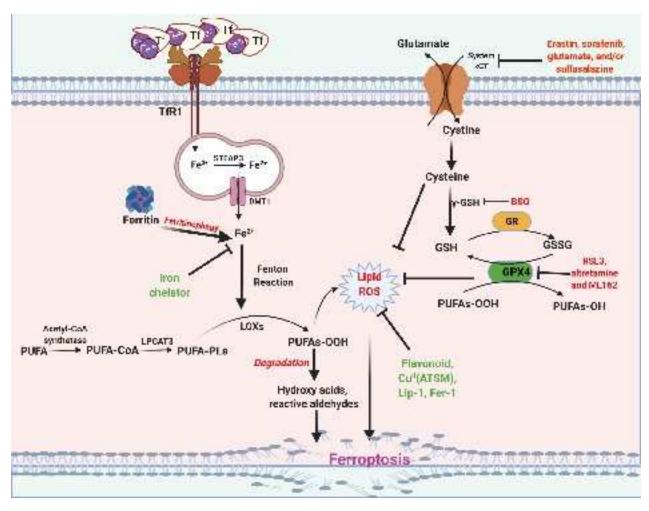
1311	Nakamura, K., Kawakami, T., Yamamoto, N., Tomizawa, M., Fujiwara, T., Ishii, T., Harigae, H. and
1312	Ogasawara, K. (2016) Activation of the NLRP3 inflammasome by cellular labile iron.
1313	Experimental Hematology, 44, 116-124.
1314	Neufeld, E. J. (2006) Oral chelators deferasirox and deferiprone for transfusional iron overload in
1315	thalassemia major: new data, new questions. Blood, 107, 3436-3441.
1316	Nnah, I. C., Lee, C. H. and Wessling-Resnick, M. (2020) Iron potentiates microglial interleukin- 1β
1317	secretion induced by amyloid-β. Journal of neurochemistry, 154 , 177-189.
1318	O'Callaghan, J., Holmes, H., Powell, N. et al. (2017) Tissue magnetic susceptibility mapping as a
1319	marker of tau pathology in Alzheimer's disease. Neuroimage, 159, 334-345.
1320	Ogun, A. S. and Adeyinka, A. (2021) Biochemistry, Transferrin. In: StatPearls. StatPearls Publishing
1321	Copyright © 2021, StatPearls Publishing LLC., Treasure Island (FL).
1322	Olsson, F., Schmidt, S., Althoff, V., Munter, L. M., Jin, S., Rosqvist, S., Lendahl, U., Multhaup, G. and
1323	Lundkvist, J. (2014) Characterization of intermediate steps in amyloid beta (Abeta)
1324	production under near-native conditions. J Biol Chem, 289, 1540-1550.
1325	Pandolfo, M., Arpa, J., Delatycki, M. B. et al. (2014) Deferiprone in Friedreich ataxia: a 6-month
1326	randomized controlled trial. Annals of neurology, 76, 509-521.
1327	Perez-Zoghbi, J. F., Zhu, W., Grafe, M. R. and Brambrink, A. M. (2017) Dexmedetomidine-mediated
1328	neuroprotection against sevoflurane-induced neurotoxicity extends to several brain regions
1329	in neonatal rats. BJA: British Journal of Anaesthesia, 119, 506-516.
1330	Pirpamer, L., Hofer, E., Gesierich, B. et al. (2016) Determinants of iron accumulation in the normal
1331	aging brain. Neurobiology of aging, 43, 149-155.
1332	Prasanthi, J. R. P., Schrag, M., Dasari, B., Marwarha, G., Dickson, A., Kirsch, W. M. and Ghribi, O.
1333	(2012) Deferiprone reduces amyloid- β and tau phosphorylation levels but not reactive
1334	oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet. Journal
1335	of Alzheimer's disease : JAD, 30, 167-182.
1336	Qian, Z. M. and Shen, X. (2001) Brain iron transport and neurodegeneration. Trends in molecular
1337	medicine, 7, 103-108.
1338	Qiu, L., Ge, L. and Hu, Q. (2020) Dexmedetomidine Protects SK-N-SH Nerve Cells from Oxidative
1339	Injury by Maintaining Iron Homeostasis. Biological & pharmaceutical bulletin, 43, 424-431.
1340	Raha, A. A., Vaishnav, R. A., Friedland, R. P., Bomford, A. and Raha-Chowdhury, R. (2013) The
1341	systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in
1342	Alzheimer's disease. Acta Neuropathologica Communications, 1, 55.

1343	Rainey, N. E., Moustapha, A., Saric, A., Nicolas, G., Sureau, F. and Petit, P. X. (2019) Iron chelation by
1344	curcumin suppresses both curcumin-induced autophagy and cell death together with iron
1345	overload neoplastic transformation. Cell Death Discov, 5, 150-150.
1346	Raj, D., Yin, Z., Breur, M. et al. (2017) Increased White Matter Inflammation in Aging- and
1347	Alzheimer's Disease Brain. Frontiers in molecular neuroscience, 10, 206-206.
1348	Rao, S. S. and Adlard, P. A. (2018) Untangling Tau and Iron: Exploring the Interaction Between Iron
1349	and Tau in Neurodegeneration. Frontiers in molecular neuroscience, 11, 276.
1350	Rao, S. S., Lago, L., Volitakis, I., Shukla, J. J., McColl, G., Finkelstein, D. I. and Adlard, P. A. (2021)
1351	Deferiprone Treatment in Aged Transgenic Tau Mice Improves Y-Maze Performance and
1352	Alters Tau Pathology. Neurotherapeutics.
1353	Rao, S. S., Portbury, S. D., Lago, L., McColl, G., Finkelstein, D. I., Bush, A. I. and Adlard, P. A. (2020)
1354	The Iron Chelator Deferiprone Improves the Phenotype in a Mouse Model of Tauopathy.
1355	Journal of Alzheimer's disease : JAD, 77, 753-771.
1356	Ratan, R. R. (2020) The Chemical Biology of Ferroptosis in the Central Nervous System. Cell chemical
1357	biology, 27, 479-498.
1358	Raz, E., Jensen, J. H., Ge, Y., Babb, J. S., Miles, L., Reaume, J., Grossman, R. I. and Inglese, M. (2011)
1359	Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study.
1360	AJNR. American journal of neuroradiology, 32, 1851-1856.
1361	Reichert, C. O., de Freitas, F. A., Sampaio-Silva, J., Rokita-Rosa, L., Barros, P. L., Levy, D. and
1362	Bydlowski, S. P. (2020) Ferroptosis Mechanisms Involved in Neurodegenerative Diseases.
1363	International journal of molecular sciences, 21.
1364	Reliene, R. and Schiestl, R. H. (2005) Glutathione depletion by buthionine sulfoximine induces DNA
1365	deletions in mice. Carcinogenesis, 27, 240-244.
1366	Ringman, J. M., Frautschy, S. A., Teng, E. et al. (2012) Oral curcumin for Alzheimer's disease:
1367	tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study.
1368	Alzheimer's Research & Therapy, 4, 43.
1369	Rita Cardoso, B., Apolinário, D., da Silva Bandeira, V., Busse, A. L., Magaldi, R. M., Jacob-Filho, W. and
1370	Cozzolino, S. M. F. (2016) Effects of Brazil nut consumption on selenium status and cognitive
1371	performance in older adults with mild cognitive impairment: a randomized controlled pilot
1372	trial. European Journal of Nutrition, 55, 107-116.
1373	Ritchie, C. W., Bush, A. I., Mackinnon, A. et al. (2003) Metal-protein attenuation with
1374	iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in
1375	Alzheimer disease: a pilot phase 2 clinical trial. Archives of neurology, 60, 1685-1691.

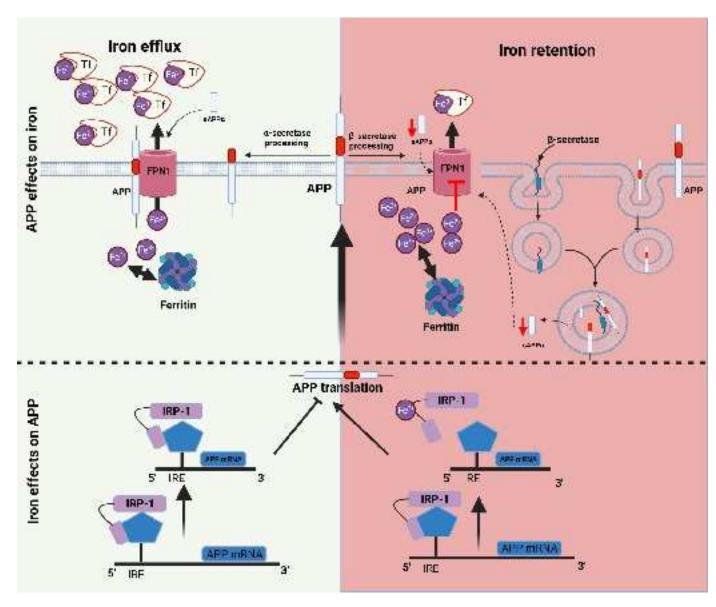
13/0	nival, 1., rage, n. ivi., Chandratatia, D. 3. et al. (2009) Feritori Chemistry and Oxidative Stress mediate
1377	the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer's disease. The
1378	European journal of neuroscience, 29, 1335-1347.
1379	Rodriguez-Perdigon, M., Solas, M., Moreno-Aliaga, M. J. and Ramirez, M. J. (2016) Lipoic acid
1380	improves neuronal insulin signalling and rescues cognitive function regulating VGlut1
1381	expression in high-fat-fed rats: Implications for Alzheimer's disease. Biochimica et biophysica
1382	acta, 1862, 511-517.
1383	Rogers, J. T., Bush, A. I., Cho, HH. et al. (2008) Iron and the translation of the amyloid precursor
1384	protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in
1385	Alzheimer's disease. Biochem Soc Trans, 36, 1282-1287.
1386	Rogers, J. T., Randall, J. D., Cahill, C. M. et al. (2002) An iron-responsive element type II in the 5'-
1387	untranslated region of the Alzheimer's amyloid precursor protein transcript. J Biol Chem,
1388	277, 45518-45528.
1389	Rogers, J. T., Venkataramani, V., Washburn, C., Liu, Y., Tummala, V., Jiang, H., Smith, A. and Cahill, C.
1390	M. (2016) A role for amyloid precursor protein translation to restore iron homeostasis and
1391	ameliorate lead (Pb) neurotoxicity. Journal of neurochemistry, 138, 479-494.
1392	Rothenberger, S., Food, M. R., Gabathuler, R., Kennard, M. L., Yamada, T., Yasuhara, O., L. McGeer,
1393	P. and Jefferies, W. A. (1996) Coincident expression and distribution of melanotransferrin
1394	and transferrin receptor in human brain capillary endothelium. Brain research, 712, 117-121
1395	Rottkamp, C. A., Raina, A. K., Zhu, X., Gaier, E., Bush, A. I., Atwood, C. S., Chevion, M., Perry, G. and
1396	Smith, M. A. (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med,
1397	30, 447-450.
1398	Sanders, R. D., Sun, P., Patel, S., Li, M., Maze, M. and Ma, D. (2010) Dexmedetomidine provides
1399	cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat
1400	developing brain. Acta anaesthesiologica Scandinavica, 54, 710-716.
1401	Sato, M., Kusumi, R., Hamashima, S. et al. (2018) The ferroptosis inducer erastin irreversibly inhibits
1402	system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells.
1403	Scientific Reports, 8, 968.
1404	Schoeler, M., Loetscher, P. D., Rossaint, R., Fahlenkamp, A. V., Eberhardt, G., Rex, S., Weis, J. and
1405	Coburn, M. (2012) Dexmedetomidine is neuroprotective in an in vitro model for traumatic
1406	brain injury. BMC Neurology, 12, 20.
1407	Sheline, Y. I., Morris, J. C., Snyder, A. Z. et al. (2010) APOE4 allele disrupts resting state fMRI
1408	connectivity in the absence of amyloid plagues or decreased CSF AB42, 30. 17035-17040.

1409	Sni, L., Huang, C., Luo, Q., Xia, Y., Liu, W., Zeng, W., Cheng, A., Sni, R. and Zhengii, C. (2020) Ciloquino
1410	improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson's
1411	disease through AKT/mTOR pathway. Aging (Albany NY), 12, 9515-9533.
1412	Shimada, K., Skouta, R., Kaplan, A. et al. (2016) Global survey of cell death mechanisms reveals
1413	metabolic regulation of ferroptosis. Nat Chem Biol, 12, 497-503.
1414	Shinto, L., Quinn, J., Montine, T. et al. (2014) A randomized placebo-controlled pilot trial of omega-3
1415	fatty acids and alpha lipoic acid in Alzheimer's disease. Journal of Alzheimer's disease: JAD,
1416	38, 111-120.
1417	Sifringer, M., von Haefen, C., Krain, M., Paeschke, N., Bendix, I., Bührer, C., Spies, C. D. and
1418	Endesfelder, S. (2015) Neuroprotective effect of dexmedetomidine on hyperoxia-induced
1419	toxicity in the neonatal rat brain. Oxid Med Cell Longev, 2015, 530371.
1420	Singh, V. K., Beattie, L. A. and Seed, T. M. (2013) Vitamin E: tocopherols and tocotrienols as potentia
1421	radiation countermeasures. Journal of Radiation Research, 54, 973-988.
1422	Smith, M. A., Harris, P. L., Sayre, L. M. and Perry, G. (1997) Iron accumulation in Alzheimer disease is
1423	a source of redox-generated free radicals. Proceedings of the National Academy of Sciences
1424	of the United States of America, 94, 9866-9868.
1425	Smith, M. A., Zhu, X., Tabaton, M. et al. (2010) Increased iron and free radical generation in
1426	preclinical Alzheimer disease and mild cognitive impairment. Journal of Alzheimer's disease :
1427	<i>JAD,</i> 19, 363-372.
1428	Sohn, Y. S., Breuer, W., Munnich, A. and Cabantchik, Z. I. (2008) Redistribution of accumulated cell
1429	iron: a modality of chelation with therapeutic implications. Blood, 111, 1690-1699.
1430	Sonawane, S. K., Uversky, V. N. and Chinnathambi, S. (2021) Baicalein inhibits heparin-induced Tau
1431	aggregation by initializing non-toxic Tau oligomer formation. Cell Communication and
1432	Signaling, 19, 16.
1433	Southon, A., Szostak, K., Acevedo, K. M. et al. (2020) Cu(II) (atsm) inhibits ferroptosis: Implications
1434	for treatment of neurodegenerative disease. British journal of pharmacology, 177, 656-667.
1435	Spotorno, N., Acosta-Cabronero, J., Stomrud, E., Lampinen, B., Strandberg, O. T., van Westen, D. and
1436	Hansson, O. (2020) Relationship between cortical iron and tau aggregation in Alzheimer's
1437	disease. Brain: a journal of neurology, 143, 1341-1349.
1438	Squitti, R., Salustri, C., Siotto, M., Ventriglia, M., Vernieri, F., Lupoi, D., Cassetta, E. and Rossini, P. M.
1439	(2010) Ceruloplasmin/Transferrin ratio changes in Alzheimer's disease. International journal
1440	of Alzheimer's disease, 2011, 231595.
1441	Sui, X., Zhang, R., Liu, S. et al. (2018) RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS
1//2	Production in Colorectal Cancer Front Pharmacol 9 1371-1371

1443	Sun, w., wang, i., cai, b. and Fei, L. (2020a) Neuroprotection of the Developing Brain by
1444	Dexmedetomidine Is Mediated by Attenuating Single Propofol-induced Hippocampal
1445	Apoptosis and Synaptic Plasticity Deficits. Experimental neurobiology, 29, 356-375.
1446	Sun, W., Zhao, J. and Li, C. (2020b) Dexmedetomidine Provides Protection Against Hippocampal
1447	Neuron Apoptosis and Cognitive Impairment in Mice with Alzheimer's Disease by Mediating
1448	the miR-129/YAP1/JAG1 Axis. Molecular Neurobiology, 57, 5044-5055.
1449	Takami, M., Nagashima, Y., Sano, Y., Ishihara, S., Morishima-Kawashima, M., Funamoto, S. and Ihara
1450	Y. (2009) gamma-Secretase: successive tripeptide and tetrapeptide release from the
1451	transmembrane domain of beta-carboxyl terminal fragment. The Journal of neuroscience:
1452	the official journal of the Society for Neuroscience, 29, 13042-13052.
1453	Tan, S., Schubert, D. and Maher, P. (2001) Oxytosis: A novel form of programmed cell death. Current
1454	topics in medicinal chemistry, 1, 497-506.
1455	Tang, D., Chen, X., Kang, R. and Kroemer, G. (2021) Ferroptosis: molecular mechanisms and health
1456	implications. Cell research, 31, 107-125.
1457	Tang, H. M. and Tang, H. L. (2019) Cell recovery by reversal of ferroptosis. Biology Open, 8,
1458	bio043182.
1459	Tao, Y., Wang, Y., Rogers, J. T. and Wang, F. (2014) Perturbed iron distribution in Alzheimer's disease
1460	serum, cerebrospinal fluid, and selected brain regions: a systematic review and meta-
1461	analysis. Journal of Alzheimer's disease: JAD, 42, 679-690.
1462	Telling, N. D., Everett, J., Collingwood, J. F., Dobson, J., van der Laan, G., Gallagher, J. J., Wang, J. and
1463	Hitchcock, A. P. (2017) Iron Biochemistry is Correlated with Amyloid Plaque Morphology in
1464	an Established Mouse Model of Alzheimer's Disease. Cell chemical biology, 24, 1205-
1465	1215.e1203.
1466	Thomson, A. M., Rogers, J. T. and Leedman, P. J. (1999) Iron-regulatory proteins, iron-responsive
1467	elements and ferritin mRNA translation. The international journal of biochemistry & cell
1468	biology, 31, 1139-1152.
1469	Tsatsanis, A., Dickens, S., Kwok, J. C. F., Wong, B. X. and Duce, J. A. (2019) Post Translational
1470	Modulation of $\beta\text{-}Amyloid\ Precursor\ Protein\ Trafficking\ to\ the\ Cell\ Surface\ Alters\ Neuronal$
1471	Iron Homeostasis. Neurochemical research, 44, 1367-1374.
1472	Tsatsanis, A., Wong, B. X., Gunn, A. P., Ayton, S., Bush, A. I., Devos, D. and Duce, J. A. (2020)
1473	Amyloidogenic processing of Alzheimer's disease β -amyloid precursor protein induces
1474	cellular iron retention. Mol Psychiatry, 25, 1958-1966.
1475	Tuo, Q. Z., Lei, P., Jackman, K. A. et al. (2017) Tau-mediated iron export prevents ferroptotic damage
1476	after ischemic stroke. Mol Psychiatry. 22, 1520-1530.


1477	Uppakara, K., Jamornwan, S., Duan, Lx., Yue, Kr., Sunrat, C., Dent, E. W., Wan, Sb. and
1478	Saengsawang, W. (2020) Novel α -Lipoic Acid/3-n-Butylphthalide Conjugate Enhances
1479	Protective Effects against Oxidative Stress and 6-OHDA Induced Neuronal Damage. ACS
1480	chemical neuroscience, 11, 1634-1642.
1481	van Bergen, J. M. G., Li, X., Hua, J. et al. (2016) Colocalization of cerebral iron with Amyloid beta in
1482	Mild Cognitive Impairment. Scientific reports, 6, 35514.
1483	van Duijn, S., Bulk, M., van Duinen, S. G., Nabuurs, R. J. A., van Buchem, M. A., van der Weerd, L. and
1484	Natte, R. (2017) Cortical Iron Reflects Severity of Alzheimer's Disease. Journal of Alzheimer's
1485	disease : JAD, 60, 1533-1545.
1486	Vitalakumar, D., Sharma, A. and Flora, S. J. S. (2021) Ferroptosis: A potential therapeutic target for
1487	neurodegenerative diseases. Journal of biochemical and molecular toxicology, e22830.
1488	Vlachodimitropoulou, E., Chen, YL., Garbowski, M., Koonyosying, P., Psaila, B., Sola-Visner, M.,
1489	Cooper, N., Hider, R. and Porter, J. (2017) Eltrombopag: a powerful chelator of cellular or
1490	extracellular iron(III) alone or combined with a second chelator. Blood, 130, 1923-1933.
1491	Voulgaropoulou, S. D., van Amelsvoort, T. A. M. J., Prickaerts, J. and Vingerhoets, C. (2019) The effect
1492	of curcumin on cognition in Alzheimer's disease and healthy aging: A systematic review of
1493	pre-clinical and clinical studies. Brain research, 1725, 146476.
1494	Wan, W., Cao, L., Kalionis, B., Murthi, P., Xia, S. and Guan, Y. (2019) Iron Deposition Leads to
1495	Hyperphosphorylation of Tau and Disruption of Insulin Signaling. Front Neurol, 10, 607-607.
1496	Wander, C. M., Tseng, JH., Song, S. et al. (2020) The Accumulation of Tau-Immunoreactive
1497	Hippocampal Granules and Corpora Amylacea Implicates Reactive Glia in Tau Pathogenesis
1498	during Aging. iScience, 23, 101255.
1499	Wang, D., Li, WB., Wei, XE., Li, YH. and Dai, YM. (2012) An investigation of age-related iron
1500	deposition using susceptibility weighted imaging. PloS one, 7, e50706-e50706.
1501	Wang, D., Li, Y. Y., Luo, J. H. and Li, Y. H. (2014) Age-related iron deposition in the basal ganglia of
1502	controls and Alzheimer disease patients quantified using susceptibility weighted imaging.
1503	Archives of gerontology and geriatrics, 59 , 439-449.
1504	Wang, L., Liu, W., Zhang, Y., Hu, Z., Guo, H., Lv, J. and Du, H. (2020) Dexmedetomidine had
1505	neuroprotective effects on hippocampal neuronal cells via targeting lncRNA SHNG16
1506	mediated microRNA-10b-5p/BDNF axis. Molecular and Cellular Biochemistry, 469, 41-51.
1507	Wang, L., Yang, H., Zhao, S., Sato, H., Konishi, Y., Beach, T. G., Abdelalim, E. M., Bisem, N. J. and
1508	Tooyama, I. (2011) Expression and localization of mitochondrial ferritin mRNA in Alzheimer's
1509	disease cerebral cortex. PLoS One. 6. e22325.

1310	wang, A., Shan, T., Tang, Z., Gao, E. and Eld, H. (2015a) Neuroprotective effects of dexinedetorname
1511	against isoflurane-induced neuronal injury via glutamate regulation in neonatal rats. Drug
1512	design, development and therapy, 13, 153-160.
1513	Wang, Y., Han, R. and Zuo, Z. (2016) Dexmedetomidine post-treatment induces neuroprotection via
1514	activation of extracellular signal-regulated kinase in rats with subarachnoid haemorrhage.
1515	BJA: British Journal of Anaesthesia, 116, 384-392.
1516	Wang, Y., Jia, A. and Ma, W. (2019b) Dexmedetomidine attenuates the toxicity of β -amyloid on
1517	neurons and astrocytes by increasing BDNF production under the regulation of HDAC2 and
1518	HDAC5. Molecular medicine reports, 19, 533-540.
1519	Wang, Y., Quan, F., Cao, Q. et al. (2021) Quercetin alleviates acute kidney injury by inhibiting
1520	ferroptosis. Journal of Advanced Research, 28, 231-243.
1521	Ward, R. J., Zucca, F. A., Duyn, J. H., Crichton, R. R. and Zecca, L. (2014) The role of iron in brain
1522	ageing and neurodegenerative disorders. Lancet Neurol, 13, 1045-1060.
1523	Wei, D., Tang, J., Bai, W., Wang, Y. and Zhang, Z. (2014) Ameliorative effects of baicalein on an
1524	amyloid- β induced Alzheimer's disease rat model: a proteomics study. Current Alzheimer
1525	research, 11 , 869-881.
1526	Wenz, C., Faust, D., Linz, B. et al. (2018) t-BuOOH induces ferroptosis in human and murine cell lines.
1527	Archives of toxicology, 92, 759-775.
1528	Wenzel, S. E., Tyurina, Y. Y., Zhao, J. et al. (2017) PEBP1 Wardens Ferroptosis by Enabling
1529	Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641 e626.
1530	Wong, B. X., Tsatsanis, A., Lim, L. Q., Adlard, P. A., Bush, A. I. and Duce, J. A. (2014) β-Amyloid
1531	precursor protein does not possess ferroxidase activity but does stabilize the cell surface
1532	ferrous iron exporter ferroportin. PLoS One, 9, e114174.
1533	Wortmann, M., Schneider, M., Pircher, J. et al. (2013) Combined deficiency in glutathione peroxidase
1534	4 and vitamin E causes multiorgan thrombus formation and early death in mice. Circulation
1535	research, 113, 408-417.
1536	Wu, J., Vogel, T., Gao, X., Lin, B., Kulwin, C. and Chen, J. (2018) Neuroprotective effect of
1537	dexmedetomidine in a murine model of traumatic brain injury. Scientific reports, 8, 4935.
1538	Xie, Y., Song, X., Sun, X., Huang, J., Zhong, M., Lotze, M. T., Zeh, H. J., Kang, R. and Tang, D. (2016)
1539	Identification of baicalein as a ferroptosis inhibitor by natural product library screening.
1540	Biochemical and Biophysical Research Communications, 473, 775-780.
1541	Xu, H., Perreau, V. M., Dent, K. A., Bush, A. I., Finkelstein, D. I. and Adlard, P. A. (2016) Iron Regulates
1542	Apolipoprotein E Expression and Secretion in Neurons and Astrocytes. Journal of Alzheimer's
1543	disease : JAD. 51. 471-487.


1544	Yamada, T., Tsujioka, Y., Taguchi, J., Takahashi, M., Tsuboi, Y., Moroo, I., Yang, J. and Jefferies, W. A.
1545	(1999) Melanotransferrin is produced by senile plaque-associated reactive microglia in
1546	Alzheimer's disease. Brain research, 845, 1-5.
1547	Yamamoto, A., Shin, R. W., Hasegawa, K., Naiki, H., Sato, H., Yoshimasu, F. and Kitamoto, T. (2002)
1548	Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II)
1549	reverses the aggregation: implications in the formation of neurofibrillary tangles of
1550	Alzheimer's disease. Journal of neurochemistry, 82, 1137-1147.
1551	Yamauchi, R. (1997) Vitamin E: mechanism of its antioxidant activity. Food Science and Technology
1552	International Tokyo, 3, 301-309.
1553	Yan, H. F., Zou, T., Tuo, Q. Z., Xu, S., Li, H., Belaidi, A. A. and Lei, P. (2021) Ferroptosis: mechanisms
1554	and links with diseases. Signal Transduct Target Ther, 6, 49.
1555	Yan, N. and Zhang, J. (2020) Iron Metabolism, Ferroptosis, and the Links With Alzheimer's Disease.
1556	Front Neurosci, 13, 1443-1443.
1557	Yang, J. J., Zhao, Y. H., Yin, K. W., Zhang, X. Q. and Liu, J. (2021) Dexmedetomidine inhibits
1558	inflammatory response and oxidative stress through regulating miR-205-5p by targeting
1559	HMGB1 in cerebral ischemic/reperfusion. Immunopharmacology and immunotoxicology, 43
1560	478-486.
1561	Yang, W. S., Kim, K. J., Gaschler, M. M., Patel, M., Shchepinov, M. S. and Stockwell, B. R. (2016)
1562	Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proceedings
1563	of the National Academy of Sciences, 113, E4966.
1564	Yang, W. S., SriRamaratnam, R., Welsch, M. E. et al. (2014) Regulation of ferroptotic cancer cell
1565	death by GPX4. <i>Cell,</i> 156, 317-331.
1566	Yao, X., Zhang, Y., Hao, J. et al. (2019) Deferoxamine promotes recovery of traumatic spinal cord
1567	injury by inhibiting ferroptosis. Neural Regen Res, 14, 532-541.
1568	Yoo, M. H., Gu, X., Xu, X. M., Kim, J. Y., Carlson, B. A., Patterson, A. D., Cai, H., Gladyshev, V. N. and
1569	Hatfield, D. L. (2010) Delineating the role of glutathione peroxidase 4 in protecting cells
1570	against lipid hydroperoxide damage and in Alzheimer's disease. Antioxidants & redox
1571	signaling, 12, 819-827.
1572	Zara, S., De Colli, M., Rapino, M., Pacella, S., Nasuti, C., Sozio, P., Di Stefano, A. and Cataldi, A. (2013)
1573	Ibuprofen and lipoic acid conjugate neuroprotective activity is mediated by Ngb/Akt
1574	intracellular signaling pathway in Alzheimer's disease rat model. Gerontology, 59, 250-260.
1575	Zeng, YQ., Gu, JH., Chen, L., Zhang, TT. and Zhou, XF. (2021) Gastrodin as a multi-target
1576	protective compound reverses learning memory deficits and AD-like pathology in APP/PS1
1577	transgenic mice. Journal of Functional Foods, 77, 104324.

1578	Zhang, C., Yang, K., Yu, S. et al. (2019) Design, synthesis and biological evaluation of
1579	hydroxypyridinone-coumarin hybrids as multimodal monoamine oxidase B inhibitors and
1580	iron chelates against Alzheimer's disease. European journal of medicinal chemistry, 180, 367-
1581	382.
1582	Zhang, G., Zhang, Y., Shen, Y., Wang, Y., Zhao, M. and Sun, L. (2021) The Potential Role of Ferroptosis
1583	in Alzheimer's Disease. Journal of Alzheimer's disease: JAD, 80, 907-925.
1584	Zhang, J. S., Zhou, S. F., Wang, Q., Guo, J. N., Liang, H. M., Deng, J. B. and He, W. Y. (2016) Gastrodin
1585	suppresses BACE1 expression under oxidative stress condition via inhibition of the
1586	PKR/eIF2 α pathway in Alzheimer's disease. <i>Neuroscience</i> , 325 , 1-9.
1587	Zhang, M. H., Zhou, X. M., Cui, J. Z., Wang, K. J., Feng, Y. and Zhang, H. A. (2018a) Neuroprotective
1588	effects of dexmedetomidine on traumatic brain injury: Involvement of neuronal apoptosis
1589	and HSP70 expression. Molecular medicine reports, 17, 8079-8086.
1590	Zhang, Y. and He, M. L. (2017) Deferoxamine enhances alternative activation of microglia and
1591	inhibits amyloid beta deposits in APP/PS1 mice. Brain research, 1677, 86-92.
1592	Zhang, Y. H., Wang, D. W., Xu, S. F. et al. (2018b) alpha-Lipoic acid improves abnormal behavior by
1593	mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau
1594	transgenic mice. Redox biology, 14, 535-548.
1595	Zhang, Y. H., Yan, X. Z., Xu, S. F. et al. (2020) α -Lipoic Acid Maintains Brain Glucose Metabolism via
1596	BDNF/TrkB/HIF-1 α Signaling Pathway in P301S Mice. Front Aging Neurosci, 12, 262.
1597	Zhao, N., Zhang, AS. and Enns, C. A. (2013) Iron regulation by hepcidin. J Clin Invest, 123, 2337-
1598	2343.
1599	Zhao, W., Hu, Y., Chen, H., Wang, X., Wang, L., Wang, Y., Wu, X. and Han, F. (2020) The Effect and
1600	Optimal Dosage of Dexmedetomidine Plus Sufentanil for Postoperative Analgesia in Elderly
1601	Patients With Postoperative Delirium and Early Postoperative Cognitive Dysfunction: A
1602	Single-Center, Prospective, Randomized, Double-Blind, Controlled Trial. Front Neurosci, 14,
1603	549516.
1604	Zheng, K., Dong, Y., Yang, R., Liang, Y., Wu, H. and He, Z. (2021) Regulation of ferroptosis by bioactive
1605	phytochemicals: Implications for medical nutritional therapy. Pharmacological Research,
1606	168, 105580.
1607	Zilka, O., Shah, R., Li, B., Friedmann Angeli, J. P., Griesser, M., Conrad, M. and Pratt, D. A. (2017) On
1608	the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid
1609	Peroxidation in Ferroptotic Cell Death. ACS Cent Sci, 3, 232-243.

1610

jnc_15519_f1.png

jnc_15519_f2.png