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Abstract—We address the problem of secure wireless com-
munications over an untrusted full-duplex (FD) relay based
on the source jamming scheme. The optimal power allocation
between the confidential signal and the jamming signal is derived
to maximize the secrecy rate. Then the corresponding secrecy
outage probability (SOP) and the average secrecy rate (ASR)
are analyzed. A tight approximation and an asymptotic result
are further obtained for the single-antenna destination case
both in simple forms. The large-antenna destination case is also
analyzed rigorously. Further discussion reveals that transmit-
power dependent self-interference has significant negative impact
on the secrecy performance.

Index Terms—Full-duplex, optimal power allocation, physical
layer security, source jamming, untrusted relay.

I. INTRODUCTION

The rise of smart devices and Internet of Things (IoT)
has also coincided with a rise in potential attacks from
eavesdroppers. Physical-layer security (PLS) helps to some
extent to protect wireless systems from such attacks [1]. For
an untrusted cooperative network, the relay which is generally
implemented with the amplify-and-forward (AF) protocol op-
erates either in half-duplex (HD) or full-duplex (FD) mode.
When the residual self-interference (RSI) is suppressed to a
very low level, the FD mode achieves better multiplexing gain.
Thus, the PLS of AF-FD untrusted relaying is the focus of this
paper. While the PLS can be enhanced by proper resource
allocation [2]–[4], signal jamming is an alternative technique
to further improve the security. Depending on the application,
the jamming signal, e.g., artificial Gaussian noise, is generated
either from the source, the destination or an external friendly
node [1], [5], [6]. For an HD untrusted relaying, PLS has
been extensively investigated in the literature. For example,
the cooperative jamming is introduced in [1] where the secrecy
rate is analyzed from the information theoretic point of view.
For the destination jamming, the ergodic secrecy capacity is
derived in [7]. Recently, an FD destination jamming scheme
with optimal antenna selection is proposed in [8] where the se-
crecy rate is derived with approximate expressions. However,
when the relay operates in FD mode, FD destination jamming
may not be possible under some circumstances due to limited
resources, e.g., low-power IoT and sensors. Then, the source
jamming (SBJ) where a jamming signal is embedded with the
intended signals of the source, is a promising scheme [9].

In this paper, we consider the SBJ scheme for an FD-AF
relay network. First, we derive the optimal power allocation
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between the confidential and jamming signals with respect
to the secrecy capacity, and then analyze the secrecy outage
probability (SOP) and the average secrecy rate (ASR) of the
network achieved by the optimal power allocation. Further,
we provide insightful approximations and asymptotic results
of the system performance.

II. SYSTEM MODEL

Fig. 1: A full-duplex untrusted relay network.

Since the applications of FD relaying have been widely
investigated recently and malicious attack by untrusted nodes
is becoming an increasing concern in 5G candidate appli-
cations, e.g., uplink/downlink transmissions in sensor and
cellular networks [9], [10], we consider the SBJ scheme under
FD to enhance the system’s secrecy performance. As shown
in Fig. 1, a single-antenna source S communicates via an
untrusted FD-AF relay R having one pair of transmit-receive
antenna. Its destination D has N multiple antennas. Channel
gains of the S− R link and the `th antenna of the R−D link
are denoted hsr and hrd` , ` ∈ {1, · · · , N}, respectively. The
channels are assumed to be independent complex Gaussian
where hsr ∼ CN (0, σ2

sr) and hrd` ∼ CN (0, σ2
rd). With this

we have assumed that hrd` ’s ∀` have identical distribution, but
hsr and hrd` are not necessary identical. The direct S−D link
is not available due to obstacles and shadowing.

The source transmits a composite signal containing the
confidential signal xs with power aPs and the jamming signal
xj with power (1− a)Ps to R, where a ∈ [0, 1] is the power
allocation ratio. Both signals xs and xj are with unit average
energy. Power budgets are fixed as Ps and Pr for S and R,
respectively. We assume that D has full knowledge of xj , and
S− R and R−D channel state information (CSI) which helps
the jamming signal cancellation, maximum-ratio combining
and detection. The CSI can be obtained through a channel
estimation and CSI exchange procedure before data transmis-
sion, for which the untrusted relay does not harm the training
signals [11]. At time τ , the received signal at R is yr(τ) =[√

aPsxs(τ) +
√

(1− a)Psxj(τ)
]
hsr + i(τ) +nr(τ), where

nr(τ) is the noise at R with variance σ2
r and i(τ) is the receive

residual self-interference (RSI) resulting from several stages of
cancellation. The RSI is assumed to be independent to other
signals and follows Gaussian distribution with zero-mean and
σ2
i -variance. The variance may be modeled as σ2

i = ωP νr
where the two constants, ω > 0 and ν ∈ [0, 1], depend on the
interference cancellation scheme at R [12]. The transmit signal
from R is Gyr(τ−δ) where G ,

√
Pr/(Ps|hsr|2 + σ2

i + σ2
n)

is the amplification coefficient and δ is the processing delay
[13]. The receive signal at the `th antenna of D at time τ is



2

yd`(τ) = Gyr(τ − δ)hrd` +nd`(τ), where nd`(τ) is the noise
at the `th antenna with variance σ2

d.
Let Γi , σ2

i /σ
2
r . The signal-to-interference-plus-noise ra-

tios (SINRs) at R and D can then be given, respectively, as

ΓR(a) =
aΓsr

(1− a)Γsr + 1
and ΓD(a) =

aΓsrΓrd
Γsr + Γrd + 1

. (1)

Here Γsr and Γrd are the instantaneous signal-to-noise ratios
(SNRs) of S− R and R−D links, respectively, given as

Γsr ,
Ps

σ2
r(1 + Γi)

|hsr|2 and Γrd ,
Pr
σ2
d

N∑
`=1

|hrd` |2. (2)

The instantaneous secrecy rate can then be expressed as

Cs(a) = [ln(1 + ΓD(a))− ln(1 + ΓR(a))]
+
, (3)

where [x]+ , max{0, x} and Cs(a) is in [nats/sec/Hz].

III. OPTIMAL POWER ALLOCATION

We set the power allocation factor a in order to maximize
the secrecy rate. The optimal value for a can be evaluated as

a∗ = arg max
0≤a≤1

Cs(a) = arg max
0≤a≤1

max{Ψ(a), 1}, (4)

where Ψ(a) , (1 + ΓD(a))/(1 + ΓR(a)) and the second
equality is due to the monotonicity of the logarithm function.
By noting that ∂2Ψ(a)/∂a2 < 0, we can find the unique
solution for a by solving the equation ∂Ψ(a)/∂a = 0 for
a. Since a ∈ [0, 1], the optimal power allocation factor a∗ or
the transmission policy can be given as follows.
• When Γrd < 1 + 1/Γsr, or equivalently,

Pr
σ2
d

N∑
`=1

|hrd` |2 < 1 +
σ2
i + σ2

r

Ps|hsr|2
, (5)

Cs(a) = 0 for any a ∈ [0, 1]. Thus the source should be
kept in the idle mode to save energy.

• When (5) does not hold, the optimal value is

a∗ =
1

2

(
1− 1 + Γsr

ΓsrΓrd

)
. (6)

With the optimal power allocation factor, we have

Γ∗R =
Γsr(Γrd − 1)− 1

(Γsr + 2) Γrd + Γsr + 1
, Γ∗D =

Γsr(Γrd − 1)− 1

2 (Γrd + Γsr + 1)
, (7)

where Γ∗R = ΓR(a∗) and Γ∗D = ΓD(a∗). The case of no
transmission, Γrd < 1 + 1/Γsr, happens when the S− R
channel or all the R−D channels are in deep fading. The
probability of this case decreases when the transmit power
of either the source or the relay increases. Also, it can be
easily seen that Γ∗R < 1 regardless of the channel realizations,
meaning that the relay has very low achievable rate. On the
other hand, the receive SINR of the destination does not
have an upper bound, meaning that with preferable channel
realizations, the destination can achieve high secrecy rate. Γ∗R
and Γ∗D have the same numerator; but the denominators are
quadratic and linear, respectively, in the link SNRs when γi is
fixed. Further, we have Γ∗D − Γ∗R ≥ 0, which implies that the
secure information transmission is possible.

IV. PERFORMANCE ANALYSIS

For a random variable (rv) X , we denote its probabil-
ity density function (p.d.f.), cumulative distribution function
(c.d.f.) and complementary c.d.f. (c.c.d.f.) as fX(t), FX(t)
and F̄X(t), respectively. The exponential rv X with rate
parameter c is denoted as X ∼ Exp(c) where fX(t) = c e−c t

and FX(t) = 1 − e−c t. Since the channels are independent
Rayleigh fading, from (2), it can be shown that

Γsr ∼ Exp (1/γ̄r) where γ̄r , Psσ
2
sr/σ

2
r(Γi + 1). (8)

γ̄r represents the average SINR of the S−R link. Further from
(2), Γrd is a sum of N i.i.d. exponential rvs whose p.d.f. and
c.d.f. are, respectively, for t ≥ 0

FΓrd(t) = 1−
N−1∑
k=0

tke−t/γ̄d

k!γ̄kd
and fΓrd(t) =

tN−1e−t/γ̄d

(N − 1)!γ̄Nd
, (9)

where γ̄d , Prσ
2
rd/σ

2
d is the average SNR of the R−D link.

A. SOP and ASR under Optimal Power Allocation

We first work on the SOP. For secrecy communications, an
outage occurs when the secrecy rate Cs(a) is zero. With the
optimal power allocation, it happens when Γrd < 1 + 1/Γsr.
The SOP can thus be derived as

P ∗op =

∫ ∞
0

FΓrd

(
1 +

1

t

)
fΓsr (t)dt

(a)
= 1−

N−1∑
k=0

e
− 1
γ̄d

k!γ̄rγ̄kd

∫ ∞
0

(
1 +

1

t

)k
e
− 1
γ̄dt
− t
γ̄r dt

(b)
= 1−2e

− 1
γ̄d

√
γ̄rγ̄d

N−1∑
k=0

k∑
`=0

(
k
`

) (
γ̄d
γ̄r

) `
2

K`−1

(
2√
γ̄r γ̄d

)
k!γ̄kd

,

(10)

where (a) follows from (8) and (9); and (b) follows from the
identity

∫∞
0
x−`e−a/x−bxdx = 2 (a/b)

1−k
2 K`−1(2

√
ab) and

the binomial expansion. Here, Kn (·) is the modified Bessel
function of the second kind.

From (3) and (7), it can be seen that the following are all
equivalent to the condition in (5): 1) Γ∗D < 0, 2) Γ∗R < 0,
and 3) the instantaneous secrecy rate with the optimal power
allocation is zero. Thus, the ASR with the optimal power is
C̄∗s = E {log[1 + (Γ∗D)+]− log[1 + (Γ∗R)+]}, i.e.,

C̄∗s =

∫ ∞
0

F̄(Γ∗
D)+(t)

(1 + t)
dt−

∫ 1

0

F̄(Γ∗
R)+(t)

(1 + t)
dt, (11)

where E [·] is the expectation and this step comes by using the
integration-by-parts method. To evaluate (11), we first derive
an exact expression for the c.c.d.f. of (Γ∗D)+. For t ≥ 0,

F̄(Γ∗
D)+(t) = 1− Pr [Γ∗D = 0]− Pr [0 < Γ∗D ≤ t]

= 1− Pr

[
Γrd ≤ 1 +

1

Γsr

]
− Pr

[
Γrd >

(2t+ 1)(1 + Γsr)

(Γsr − 2)
,Γsr < 2t,Γrd > 1 +

1

Γsr

]
− Pr

[
Γrd ≤

(2t+ 1)(1 + Γsr)

(Γsr − 2t)
,Γsr ≥ 2t,Γrd > 1 +

1

Γsr

]
.
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By combining and canceling similar terms with straightforward
algebra, we have

F̄(Γ∗
D)+(t) =

∫ ∞
2t

F̄Γrd

(
(2t+ 1)(1 + x)

(x− 2t)

)
fΓsr (x)dx

(a)
=

2(2t+ 1)e
−2t( 1

γ̄r
+ 1
γ̄d

)

√
γ̄rγ̄de

1
γ̄d

N−1∑
k=0

k∑
j=0

(
k
j

)
Kj−1

(
2(2t+1)√
γ̄r γ̄d

)
k!(2t+ 1)−kγ̄

k− j
2

d γ̄
j
2
r

(12)

where (a) follows by first using (8) and (9) in (12), and then
applying the transformation y = x− 2t. Similarly, the c.c.d.f.
of F̄(Γ∗

R)+(t), 0 ≤ t < 1, can be derived as

F̄(Γ∗
R)+(t) =

2(1 + t)e
− (1+t)
γ̄d(1−t)−

2t
γ̄r(1−t)

√
γ̄rγ̄d(1− t)

N−1∑
k=0

k∑
j=0

(
k
j

) (
1+t
1−t

)k
Kj−1

(
2(1+t)√
γ̄r γ̄d(1−t)

)
k!γ̄

k− j
2

d γ̄
j
2
r

.

(13)

By substituting (12) and (13) into (11), an analytical ex-
pression is obtained for the ASR. Unfortunately, it is in an
integration form that cannot be further simplified. We thus
use numerical integration techniques for its evaluation.

B. Special Scenarios and Discussion
1) High SNR Diversity Analysis: For high SNR, we assume

that σ2
r = σ2

d = 1 and P = Ps = δPr � 1.
When N = 1, by using xK1(x) ≈ 1 for small x, we can

approximate (10) as P ∗op ≈ 1 − e−β ≈ O(P−1), where the
SOP decreases with order one.

For N > 1, we can lower bound P ∗op as

P ∗op ≥ max
{

Pr(Γrd < 1),Pr

(
Γrd <

1

Γsr

)}
=

{
max{O(P−N ), δ(ω+1)

P 2(N−1)} = O(P−2); ν = 0

max{O(P−N ), δ(ωP/δ+1)
P 2(N−1) } = O(P−1); ν = 1

(14)

where the last approximation comes for high P as: i) FW (1) ≈
(β)N/N !; and ii) the integration can be solved by using
FZ(t) =

∑∞
k=1(−t/γ̄r)k+1/k! ≈ t/γ̄r for γ̄r � 1, and fW (t)

in (8). Further, the SOP can be upper bounded by

P ∗op ≤ Pr(Γrd < 2) + Pr

(
Γrd <

2

Γsr

)
,

from which the same diversity order as in (14) can be obtained.
Thus the outage probability decreases with order one and two
for the two interference models σ2

i = ωPr and σ2
i = ω,

respectively. Having N ≥ 2 does not have significant impact
on the outage at high SNR (which will be shown in Fig. 2c).

2) ASR for Single-Antenna Destination: We now consider
the special case of single-antenna destination where N = 1.
The c.c.d.f. F̄Γ∗

D
(t) and F̄Γ∗

R
(t) can be approximated as

F̄(Γ∗
D)+(t) ≈ e−

1
γ̄d
−2t( 1

γ̄r
+ 1
γ̄d

)
, F̄(Γ∗

R)+(t) ≈ e−
(1+t)
γ̄d(1−t)−

2t
γ̄r(1−t)

for t ≥ 0 by using xK1(x) ≈ 1 for small x. The ap-
proximations are tight for high SNR/SINR. By using these
approximations and (11), we have

C̄∗s≈ e
1
γ̄r Ei

(
− 1

γ̄r
− 1

γ̄d

)
− 2e

2
γ̄r

+ 1
γ̄d Ei

(
− 2

γ̄r
− 2

γ̄d

)
=

{
ln (P )− γ +O

(
1
P

)
; ν = 0

e
ω
δ Ei(−ωδ )− 2e

2ω
δ Ei(−2ω

δ ) +O
(

1
P

)
; ν = 1

(15)

where Ei(·) is the exponential integral function, γ is the Euler’s
constant, and we use σ2

r = σ2
d = 1 and P = Ps = δPr � 1.

This shows that, for high SNR, the ASR increases logarithmi-
cally with transmit power for the RSI model where σ2

i = ω,
and has an ASR floor for the RSI model where σ2

i = ωPr.
3) Large-Antenna Destination: For N → ∞, the R − D

channel Γrd is said to provide asymptotic channel hardening
as Γrd/N → γ̄d almost surely. The instantaneous channel gain
converges to the deterministic average channel gain. Thus, for
this asymptotic analysis, we use Γrd ≈ Nγ̄d. For Nγ̄d <
1 + 1/Γsr and given Nγ̄d > 1, the SOP under the optimal
power allocation is then derived as

P ∗op = 1− e−
1

γ̄r(Nγ̄d−1) ≈ 1

γ̄rγ̄dN
+O

(
1

N2

)
, (16)

which is inversely proportional to N .
To evaluate the ASR, we can derive exact expressions for the
c.c.d.f.s of (Γ∗D)+ for t ≥ 0 and (Γ∗R)+ for 0 ≤ t < 1,
respectively, as

F̄(Γ∗
D)+(t) = F̄Γsr

(
2t(Nγ̄d + 1) + 1

Nγ̄d − 1− 2t

)
; t ≤ Nγ̄d − 1

2
,

F̄(Γ∗
R)+(t) = F̄Γsr

(
t(2Nγ̄d + 1) + 1

(Nγ̄d − 1)− t(Nγ̄d + 1)

)
; t ≤ Nγ̄d − 1

Nγ̄d + 1
,

where F̄Γsr (t) = e−t/γ̄r and c.c.d.f. values are zero for
other t values. With the aid of (11) and further mathematical
manipulations, the ASR can be derived as

C̄∗s = e
1
γ̄r

[
e
w
γ̄r Ei

(
w2

γ̄r(1− w)

)
−2e

w
γ̄r(w+1) Ei

(
2w2

γ̄r(1− w2)

)
+ Ei

(
w

γ̄r(1− w)

)]
(17)

≈ e
1
γ̄r Ei

(
− 1

γ̄r

)
− 2e

2
γ̄r Ei

(
− 2

γ̄r

)
+O

(
1

N

)
, (18)

which is independent from N and statistic of R−D channel.

4) Power Allocation Independent of Instantaneous Channel
Values: The optimal power allocation depends on the instan-
taneous channel values. If instantaneous CSI is unavailable we
may select a based on the statistical information of channels.
For an arbitrary but constant a, the event Cs(a) = 0 occurs
when γD ≤ γR, equivalently, (1− a)Γrd < (1 + 1/Γsr). The
outage probability can then be derived as

Pop(a) = Pr

[
Γrd <

1 + 1
Γsr

1− a

]
= P ∗op

∣∣∣
γ̄d=(1−a)γ̄d

, (19)

which means that the outage probability can be obtained from
that of the optimal power allocation case by replacing γ̄d in
(10) with (1 − a)γ̄d. When instantaneous CSI is unavailable,
according to (6), a reasonable choice of a is

â =
1

2

(
1− γ̄r + 1

γ̄rγ̄d

)
, (20)

whose SOP can be calculated from (19) and (10). However,
the ASR achieved by â cannot be derived similarly from the
result of the optimal power allocation case. The reason is that
the SINR expressions ΓR(â) and ΓD(â) in (1) do not have the
advantageous structure as in (7) (where ΓR(a∗) and ΓD(a∗)
as have the same numerator).
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Fig. 2: The SOP/ASR vs Ps when Pr = Ps/2 for different scenarios.

V. NUMERICAL RESULTS

We set channel variances σ2
hs = σ2

rd`
= 1, RSI parameter

ω = 0.1, noise variances σ2
r = σ2

d = 0.01 and Pr = Ps/2.
Fig. 2a shows the SOP vs Ps for different cases. Several

observations are gained: i) Our analytical results closely match
with the simulation results, which confirms the accuracy of
our analysis; ii) The optimal power allocation in (6) always
outperforms the fixed allocation in (20) where we achieve
around 3.5 dB gain with N = 3 at 10 dBm; iii) The case with
σ2
i = ω outperforms the case with σ2

i = ωPr because self-
interference with ν = 1 increases with Pr which decreases
SINR at D; and iv) For N = 1, the SOP decreases with Ps
of order one for both ν = 0 and ν = 1. For N = 3, the SOP
decreases with Ps of order one and two for ν = 1 and ν = 0,
respectively. This confirms the results in Section IV-B, and
shows the benefit of having multiple antennas at D. Fig. 2b
shows the ASR vs Ps for N = 1. While exact analytical
results are evaluated numerically by using (11), (12) and (13),
the approximation and asymptotic results are obtained by using
(15). The ASR increases linearly with log-scale Ps for σ2

i = ω
and has an ASR floor for σ2

i = ωPr which confirms the result
in (15), e.g., the ASR gap is around 2 [nats/sec/Hz] (or 4 dB
gain) at 15 dBm. Also, the fixed â has very close ASR as
the optimal a∗ with negligible gap at moderate Ps. Further,
FD relaying outperforms the HD relaying when σ2

i = ω.
Fig. 2c shows the ASR vs N and SOP vs N for a large-
antenna destination with Ps = 0 dBm, σ2

i = 0.1 and 0.1 noise
variance. Numerical results are evaluated by using (16), (17)
and (18). Simulation and analytical results match tightly. The
ASR gradually increases with N and approaches its asymptotic
value 0.74 which is determined by (18). The SOP decreases
with order one of N as shown in (16).

VI. CONCLUSION

The SBJ is considered for a network with a source, an FD-
AF untrusted relay and a multiple-antenna destination. We first
derive the optimal power allocation factor between intended
and jamming signals at the source. For the optimal case, we
derive i) the exact SOP; ii) asymptotic SOP expressions and
iii) distributions of optimal SINRs at the relay and destination

in order to evaluate the average secrecy rate. For a single-
antenna destination, we provide approximation and asymptotic
expressions. We then discuss the applications of these results
for fixed-power allocation and large-antenna destination. It is
revealed that the impact of having N ≥ 2 on the outage
is not significant. By suppressing self-interference, as it is
independent of transmit power, FD achieves higher secrecy
rate than HD relaying.
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