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Abstract

Introduction
Cortical mastoidectomy is a core skil that Otolaryngologinées must gain competency in.
Automated scompetency assessments have the potential te @EB&ssment subjectivity and

bias, as well,asreducing the workload for surgical trainers.

Objectives
This study [aimed, to develop and validate an automated compedssessment system for

cortical mastoidectomy.

Participants

Data from 60 participants (Group 1) was used to develop and validaetamated
competency, assessment system for cortical mastoidectonty. frba 14 other participants
(Group 2) wasmused to test the generalisability of the atsoimassessment.

Design

Participants ‘driled cortical mastoidectomies on a virlity temporal bone simulator.
Procedures were graded by a blinded expert using the previealslgted Melbourne
Mastoidectomy Scale: a different expert assessed procedu@®iyys 1 and 2. Using data
from Group 1, simulator metrics were developed to map directlyetmdividual items of
this scale. Metric value thresholds were calculated ooyparing automated simulator metric
values to expert'scores. Binary scores per tem were atbaaing these thresholds.
Validation was performed using random sub-sampling. Therajsadility of the method
was investigated by performing the automated assessmenmhstoidectomies performed by

Group 2, and correlating these with scorea s#cond blinded expert.
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Results

The automated binary score compared to the expert scoremenad an accuracy,

sensttivity, and specificity of 0.9450, 0.9547, and 0.9343 respectively for Grond 1; a

0.8614, 0:8579yand 0.8654 respectively for Group 2. There was a strong corisddtieen

the total sgores per participant assigned by the expert anthieal by the automatic

assessment method for both Group 1 (r = 0.9144, p < 0.0001), and Group 2 (r = 0.7224, p <
0.0001).

Conclusion

This study ‘outlines a virtual reality-based method of authassessment of competency in
cortical mastoidectomy, which proved comparable to the assgspnmided by human

experts.

Key Words: Virtual reality; surgical training; competency-basedeassent; automated

assessment; temporal bone surgery; surgical simulation
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Key Points
e Cortical"mastoidectomy is a core-competency in Otolaryngology

e Validated=scoring systems have been created for asséssfiwartical mastoidectomy.

e Virtual reality simulators present an ideal platiorm dompetency assessments, able to
both present,a standardised task and record detailed performatr@s. m

e We developed a voxel based anatomical method of virtual readigdbautomatic
assessment of cortical mastoidectomy.

e The automated assessment method was comparable withnasgebyg human experts.
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I ntroduction

Competency=based training has become standard across stegwad) programmes,
requiring trainees to achieve a certain skil level pteadefined set of tasks before
progressing 1o the next stage of their training (1). Coniwdtoidectomy is one such task in
Otolaryngolegy training, involving the removal of mastoid caits as part of the
management of chronic otitis media, or as the first stepabfiear implant surgery and
various lateral skull base operations. To faciitate tlsesssnent of technical skils in cortical
mastoidectgmy, ‘valdated scoring systems have been devg@péd However, these
assessment scales are stil limited by potential swhjgctbias, and human errors by the
assessor, not to'mention the time and associated finaswsalof employing an expert grader
(8). Automated assessment of trainee performance offantuitine solution to these

shortcomings.

Automated “assessment of surgical performance is typicafiiemented through methods
such as teol“hand, and/or eye motion tracking and muscleactmnir analysis (8). Data is
usually extracted from sensors and/or video using compisien 9) and machine learning

is used to analyse the data and provide a performance val{@)ioPerformance assessment
in virtual reality (VR) is an alternative that hgown in popularity in recent years (1(®).

VR simulators hold promise for integration into competeneyeasments as they can present
trainees with a standardised surgical task and collecedeteetrics on performance. VR-
based automated assessment could provide trainees withevalisalback on their current
skill level and support further self-directed "deliberateciima’ (13).

Many simulator=metrics have been previously proposed fossisgemastoidectomy
performance=(14). These can be grouped into measures oflstegisaique (dril force,
velocity, and“burr size) (12,15), comparison of voxel removal witlexpert data set (11),
and voxel remeval in anatomically defined regions (16). $estel. proposed 20 simulator
metrics for assessing mastoidectomy performance: 15 wesures of driling and
suctioning technique, whilst 5 were voxel-based measures affape bone removal or
facial nerve damage (15). However, all metrics were compiare study-specific global

score rather than a valdated mastoidectomy assessnadant Aadersen et al. investigated a
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further 129 metrics collected by the Visible Ear Simulator, whath (including time,

force, burr size, hesitancy, and burr type) were able toglisgh between novices and
experts in temporal bone surgery and subsequently conttibetomated assessment (12).
Kerwin et al. described two voxel-based algorithms to compargolbme of bone removed
by trainees toran expert data set for anatomically segtheregions of a temporal bone (11).
However, the effectiveness of these methods was ongdtaghinst 5 expert-rated criteria.
Finally, Andersen et al. looked at whether the volume of bem@wved within segmented
sections representing steps of the mastoidectomy operaticlatamrwith an expert-graded
modified Weling, Scale (16). They did not find a correlation leetwvolumes of bone

removed inside_and outside of the operative steps and opgratie@mance.

To our knowledge, none of the existing VR-based automated mestssalign fully with
validated surgical assessment scales. Therefore, altttbaglprovide important information
on performance, these methods are not able to provide detaifthd&eon different aspects
of performance that typically define surgical competence.

Objectives

The main objective of this study was to use a voxel-basatbranal approach to develop a
VR-based method of automatic assessment for cortical mastoidectaible to emulate the
assessment of human experts. We aimed to provide detailed feerftbeach stage of the
procedure by mapping a specific metric, in terms of voxel raimovan anatomical region,
to each item of a validated assessment scale (2).

M aterials and M ethods

Ethical Considerations
Ethics appreval was obtained by the Human Ethics Comnitfébe Royal Victorian Eye
and Ear Hospital (Group 1:#19/1419HL; Group 2: #19/1441HL and #16/1300H). All

participants provided signed consent.

Setting
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We use the University of Melbourne VR temporal bone surgemylator (Figure 1) as our
platiorm. The simulator comprises virtual models of humarpdeah bones, a haptic device
(SensAble PHANTOM Omni) that provides the user withrtaal surgical dril and delivers
tactle feedback, and a MIDI controller that is used aspn idevice to change environment
variableswsuehras magnification level and burr size. lDpetception is achieved through
NVIDIA 3D'vision technology.

Participants

Data from Group 1 was used to develop and valdate an autonssessment method for
cortical mastoidectomy. This comprised 60 surgeries from 10r@igd&Elogy consultants
(experts), 10 Otolaryngology registrars (intermediatesg, 48nUniversity students with an

interest in surgery (novices).

Data from Group 2 was used to test the generalisabilithecdutomated assessment. This
was comprised«of 35 surgeries from 4 experts (12 surgeries), Meidiates (11 surgeries),

and 6 novices' (12 surgeries).

Study Procedure

After a 5-minute familiarisation period, participants perfed a cortical mastoidectomy on
the simulator.” As the students had no prior surgical exmper they were shown a 15-minute
video tutorial onhow to perform a mastoidectomy first. No forrguifance or feedback
was provided_during the procedure. Al procedures were recordée Isymulator and using

screen-capture software for later grading.

Performance"Assessment

Video recordings of all procedures were evaluated by a blingdpdrte using the Melbourne
Mastoidectomy, Scale (MMS), an end-product dissection scalgndd for cortical
mastoidectomy (2). This scale was validated on a VR sonulds inter-rater reliability
(between 3 expert graders) was shown to be high (r= 0.921, p < 0.0001) arityitsoabi
differentiate between skil levels (novice, intermediata expert) was also high (p < 0.0001)
(2). The MMS comprises 20 items, outined in Table 1. To enbatepbints are not awarded
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for incomplete dissection, it has dependencies between (gegs if a structure has not been

identified, points are not awarded for avoiding damage of thattse).

Automation of the MMS

As the first /stepin the automation process, we cledsifhe different types of items in the
MMS. Consultation with expert surgeons resulted in thetift&tion of 3 types of items,
based on what they assessed. The first of these, is whadnaalk/anatomical structure is
broadly exposed (e.g., temporal line). The second item typbeis an anatomical structure
is skeletonised (e.g., adequate exposure of the sigmoid simlitheathird is based on the
damage catisedito an anatomical structure (e.g., middle plagsadentification without
damage). We call these 3 types ‘exposure-based’, ‘skeletonisation-based’, and ‘damage-

based’ respectively.

Then, we determined how an expert surgeon marked eackypemFor exposure-based
ttems, a minimum amount of bone had to be removed from a givern refthe temporal
bone. Additienally, greater importance was allocated to partiquéirts of that region. For
skeletonisation-based items, the decision was based on wheatmeimum amount of the
anatomical structure was skeletonised anywhere alompihage-based items were scored

on the amount of damage caused to an anatomical structure.

To map how an expert scored items to our automatic assessoa®j we identified

simulator metrics that defined these items.

For exposure-based items, we asked an expert surgeon toedrédigibn of the temporal
bone required..to identify the landmark associated with tHdSNlem. Examples are shown
in Figure 2ywhere dark green, light green, and blue greestedére regions that need to be
removed torexpose the external ear canal, dura, and sigmo&l regpectively. Next, we
determinedthe relatve importance of driling each voxebmglysing the mastoidectomies
driled by thesexpert participants in Group 1 of our study afwllating how many experts
driled each voxel of the temporal bone. Figure 2b shows thendgeahat denotes this: the
colour ranges from dark blue to red showing voxels that wediexldby an increasing number
of surgeons from one to al. From this data we assigned teveiglteach voxel; the higher the

number of experts that driled a given voxel, the higremweight. Finally, to determine the
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simulator metric for an exposure-based MMS item, we defined respamding temporal
bone region for each item and then calculated the weighterage of the voxels driled by

expert participants in Group 1 for each region.

The expert assessor awarded marks for skeletonisation ambsomical structure if they
could see any part of that structure through a thin laf/done. To generate a corresponding
skeletonisation-based simulator metric, we first obtainddhdayer (of bone) around the
structure (using dilation, the thickness of which wasrdaited by this expert surgeon
Figure 3a). The,adequacy of exposure was then quantifidte getcentage of voxels driled

in the bone layer thus obtained.

Good temporal 'bone surgical technique identifies and exposasatomical structure, but
does not damage it. To calculate the simulator-based netrdafmage-based items, we
calculated the number of voxels belonging to an anatomioadtige that were driled
(Figure 3b).

The simulater "metrics defined above provided values overga,ravhie the MMS items
were scared dichotomously, as either O or 1. Therefore, we detérthiaethreshold values
of the metrics_where an expert’s score transitioned from 0 to 1 (or vice versa). To this end,

we fitted a sigmoid function to the data for each items Tumction is defined ag=1/(1+
e’b(—x + a)), wherey is the expert assessment (0 orxdjs the simulator metric value and
a andb are the coefficients of the sigmoid function denotingsthit and slope respectively.
Non-linear least squares fitting with trust region opttion was used for fiiting this
function (17). The slope was constrained to be in the ranfig bf and the shit was
constrained \.to be positive. The threshold value was then cmusittebe the shifta of the
function (value=of the simulator metrir)(aty = 0.5). This method ensures that the outliers
in the data"are‘ignhored and the middle of the overlapping régbere there are both 0 and 1

assessments“due to human subjectivity) are considered thse#t®ld (Figure 4a).

For damage-based items, the metric value and expert rasgesare inversely related (the

less damage the better), so we constrained the slope tohberamge [-1, O] (Figure 4b).
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As mentioned above, the scoring of some items depends onmwhatiber item has been
scored as 1 or not (e.g., if the incus has not been identifiedenihdhat checks damage to
the incus is scored as a O regardless of whether themg @aenage or not). We removed

such dissection data from the dependent items to avoid érrbes subsequent steps.

DataUsage'(Group 1)

We observed that even the novice group completed some pawsmbtedure (e.g., driling
of MacEwan's triangle) consistently well. As such, tmgeaof data available for the
development_ofthe automated assessment method was unbal@ocekure that
unsatifactory assessments (binary ratings of ‘0’) were available for all items in the
assessment scale, we generated some synthetic datepamnsnly done as a method of
data augmentation in similar situations (18,19). To th&, ene of the authors performed 31
additional procedures with varying degrees of completeneds dfifierent steps of the
procedure, to supplement the original dataset of 60 surgeriegoby &. The blinded expert

who assessed:them was not made aware of the synthatie of these procedures.

We split 'the"data’ from Group 1 randomly into sets of 80% and 20%aiing and testing
respectively. As'we used the expert procedures to caloulaitghts for exposure-based items,
to avoid ‘bias, we included all expert dissections in theirtcaiset. We constrained the
splitting of the dataset to ensure that at least one bfdass (0 and 1) was available for
each MMS ttem in the training set. We generated 20 suetona splts using repeated

random sub-sampling (20) to ensure robustness of the develogwatl met

We scored all tems as 0 or 1 for the data in each test set basedtbresholds calculated
using the corresponding training set. To account for dependeific@sindependent item
was scoredas'Q; we scored its corresponding dependent items asl@ssegs their actual

score.

Generalisability.of the Automated Assessment (Group 2)

To test how our method of automated assessment, which we drashe assessments of
one human expert compared to that of a different expert, newvdatanalysed (Group 2).

The automated assessment method was trained using dhtdnfrom Group 1 (as opposed to
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the previous analysis where data was separated intce diffsets for training and testing).
Then, we calculated the automatic scores for the 35 addisamgéries performed by the 14
participants in Group 2 using this model. We then asked a seacwmmbimdent expert, who
was not involved in the assessments used in the develostaa®, to assess these surgeries

and comparedsthe“expert’s assessments with the corresponding automatic scores.

Main OutcomeMeasures

We compared the automatic scores for each surgery witbaiiesponding expert assigned
scores using \Pearson’s correlation coefficient. We used the root-mean-squared (RMS)
difference to compare the total scores per participant edsigy the expert and calculated by
the automatic’ assessment. We used a significance le0ddénd used MATLAB R2020a
(Mathworks, Natick, USA) for all implementations.

Results

The automated, binary score when compared to the expertedssigare per item for the 20
repetitions “of random sub-sampling of Group 1 are shown in as@mfumatrix in Figure 5a.
The accuracygssensitivity, and specificity of the method w8450, 0.9547, and 0.9343
respectively. There was a strong and significant cdaeldtetween the total scores per
participant assigned by the expert and calculated by tbenatic assessment for Group 1, r
=0. 9144, p <0.0001, 95% confidence interval =[0.8957, 0.9299]; Figure 5b shows the
correlation (results; the RMS (root-mean-squared) diffierelmetween the scores was 1.5581

points (out of 20).

A strong .significant correlation between the independeperéxand automatic scores was
also observed*from the analysis of mastoidectomies performé&idup 2, r = 0.7224, p <
0.0001, 95%-confidence interval = [0.6849, 0.7560]. Accuracy, sensitivity, andcsyecifi
were 0.861470.8579, and 0.8654 respectively; the RMS difference was 2.7098.

Discussion

We outlined a VR-based method of automated assessment of caypeteortical

mastoidectomy, which proved comparable to the assessment gréyidevo human experts.
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In contrast to previous VR-based automated surgical assessmthods (11,12,21), this
method is the firsto fully align its scoring system with a validated swbi@ssessment scale.
The oneto-one mapping of the automatic assessment to the scade ntekes it possible to
provide detailed feedback to the trainees on their performaree total score, in conjunction
with a suitablewcut-off value, can be used in competenogebésining, where the next level
of training i§ Intraduced only after a certain level of colpee is reached. This enables this
method to be easly integrated into existing surgicaliccler which will reduce the

workload of human experts in surgical training and suppdrdisetted surgical training.

A limitation®.of this method is that the model developed liemnly valid for the specimen it
was developed on. To extend it to other specimens, the relegomsr on those specimens
wil have to be identified first. We wil explore how our pms work on anatomical
registration of temporal bone regions (22) can be extendetiidopurpose. Second, the
model developed here wil have to be adapted to suit other specieen, the threshold
values determined for the original specimen may not li fal a new specimen). To this
end, we wilsinvestigate the use of transfer learniaghniques (23), to avoid the need to
collect data,on.each new specimen. Additionally, the numbearti€ipants in this study was

relatively=small:

Furthermore, as this method was specifically designed facalomastoidectomy, it cannot
be used in ,other surgeries. However, the concepts developedrdezasily transferable to
other surgical procedures and domains. It should also be vest¢dhe benefits of this form

of assessment are to the learning process in practice.

Conclusion

This study 'outlines a VR-based method of automated assesshemtical mastoidectomy,
which provedscomparable to assessment by human expertss Asdtiod maps simulator
metrics direetly to the items of a valdated assessmexi, Sccan provide detailed
performance“feedback to trainees. Automated assessmenedumitter the workload of experts
in surgical training and support self-directed practice.
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Tables

Table 1. The Melbourne Mastoidectomy Scale. Region-based itenaer@oted by * (2).

Definition Disagree | Agree

M acEwansrTriangle defined as

1. Temporal line * Cortex removed along the temporal line, 0 1
delineating the superior limit of dissection

2. Posterior external Cortex removed behind the posterior wal 0 1
auditory canal wall * of the external auditory canal, defining th

anterior limit of dissection.
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3. Sigmoid sinus *

Cortex removed over the suspected cour
of the sigmoid sinus, from the temporal i
towards the mastoid tip, defining the

posterior limit of dissection.

Middle fossaplate

4. ldentfied *

Partial exposure/clear identification of the

middle fossa plate.

5. Adeguately exposed**

Skeletonised middle fossa plate from
sinodural angle to tegmen tympani withoy

overhanging cortex.

6. Identified ‘without minor

damage*

No small holes in the middle fossa plate.

7. Identified without major

damage*

No large holes in the middle fossa plate (

driling of the underlying dura.

Sigmoid sinus

8. Identified™*

Partial exposure/ clear identification of thy

sigmoid sinus.

9. Adequately exposed®*

Skeletonised sigmoid sinus from sinodure
angle towards mastoid tip, without

overhanging cortex.

10. Identified without

damage®

No holes in the overlying bone or direct

driling of the sigmoid sinus.

11.Sinodural/ angle defined
*8

Sharp angle between the exposed sigmo|

sinus and middle fossa plate.

External -auditory: canal

12.Canal'wal preserved

Grossly skeletonised external canal wall.

13. Posterior ‘canal wall
adequately thinned 12

Precisely skeletonised external canal wal
on at least 130 degrees.

14.Canal wall thinned with

no holest3

No holes in the external canal wall.

M astoid antrum

15. Antrum opened *

Driling to open the mastoid antrum with

exposure of lateral semi-circular canal.
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16. Antrum opened with no | All the semicircular canals remain intact, 0
damage of the with no holes.

semicircular canald®+f

17.Incus identified * The entire superior edge of short procesy 0

the incus is visible.

18.Incus identified without | No driling or disruption of the ossicular 0
damage!” chain.
Facial nerve
19. Vertieal section The vertical section of the facial nerve is 0
identifieds* visible.
20. Identffied ‘with no No exposure of facial nerve sheath. 0
damage!®
TOTAL SCORE /120

t These itemsrepresent major complications of the procedure and damage anfkiée m

structures can class the dissection as unacceptable regardless lbEouvesa

1 Superscripted numbers (*-2%) represent the dependency of that item on a previous item on

the scale.denoted by the number.

Figure Legends

Figure 1. A'surgeon performing an operation on the virtuakyréemporal bone surgery
simulator. Awirttal temporal bone is displayed on the compsteeen, which is viewed in
3D using=NVIDIA 3D vision technology. A haptic device (shoasa dril on the screen)
enables driling and provides tactie feedback. A MIDI controfigovides a convenient

interface for changing settings such as the burr sidenagnification level.

Figure 2¢@) Regions defined by an expert surgeon for some eeguesed items. Different
shades of green“denote different temporal bone regions/Mdi% i{dark green was the
temporal bone region driled for exposure of the external aeal;clight-green for exposure

of the dura; and blue-green for the sigmoid sinus). b) Hgmiilastrating the number of
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expert surgeons that driled a given voxel of the temporad.bdime colours vary from dark

red, voxels driled by all surgeons; to dark blue, those diigane surgeon.

Figure 3. a) Regions around anatomical structures deterrtiinedgh dilation of the
structure vdefined for some skeletonisation-based temsdiffdélent shades of blue denote
the different regions. b) An example of damage caused to tomda structure (circled in

red), used in the assessment of damage-based items.

Figure 4. Calculation of thresholds for a) an exposure-basedaind b) a damage-based

item.

Figure 5. Valdation results across the test sets d@heandom sub-samplings: a) confusion
matrix showing the per-item thresholding performance ambimparison of the total expert
and automatic_scores. The red line denotes the ideakyesultl mapping between expert

and automatic scores.
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