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Abstract. This paper describes how to estimate panel data ordered logit models
with fixed effects using the new community-contributed Stata command feologit.
Fixed effects models are increasingly popular for estimating causal effects in the
social sciences, since they control for unobserved time invariant heterogeneity in
a flexible way. The ordered logit model is the standard model for ordered depen-
dent variables and this command is the first in Stata specifically for this model
with fixed effects. The command includes a choice between two estimators, the
BUC estimator introduced in Baetschmann, Staub, and Winkelmann [2015] and
the BUC-τ estimator in Baetschmann (2012). Baetschmann et al. (2015) showed
that the BUC estimator has good properties and is almost as efficient as more
complex estimators such as generalized method-of-moments and empirical likeli-
hood estimators. The command and model interpretations are illustrated with an
analysis of the effect of parenthood on life satisfaction using data from the German
Socio-Economic Panel.

Keywords: st0001, feologit, panel data, ordered dependent variables, logistic mod-
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1 Introduction

While originating in the biometrics literature, regression models for ordered responses
are now ubiquitous in the social sciences (Boes and Winkelmann 2006). One factor
contributing to the widespread use of ordered responses is that Likert-type scales are
the default way in which individual, household and firm surveys collect information
on issues which are otherwise difficult to measure, such as attitudes and beliefs. By
far the most common cross-sectional regression models for ordered responses are the
ordered logit and ordered probit models. When analysing ordinal panel data, researchers
are frequently interested in applying extensions of these models that somehow account
for the longitudinal nature of the data. The simplest approach, and the one which
we consider in this paper, is specifying an additional unobservable individual-specific
error term. Under the assumptions that this error term is normally distributed and
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independent of the regressors, the models are known as the random effects ordered logit
or random effects ordered probit (see, e.g., Cameron and Trivedi 2005), and implemented
in Stata with the commands xtologit and xtoprobit, respectively.

Often, however, these distributional and independence assumptions on the individual-
specific error term are undesirable. Fixed effects models relax them: the distribution
of the individual-specific error term and its dependence on the regressors are left com-
pletely unrestricted (cf., e.g., Wooldridge 2002). This feature of fixed effects models is
useful for the estimation of causal effects since it accounts for any potential endogeneity
stemming from time-invariant characteristics. But because no default approach for esti-
mating fixed effects models for ordered responses exist, researchers are often faced with
the choice of either estimating linear models, which are often inappropriate for ordinal
data, or else estimating random effects ordered logit or probit models, which impose
the strong assumptions mentioned above.

Because a fixed effects estimator exists for the binary logit model, several different
estimators for fixed effects ordered logit models can be obtained using the binary logit
model as a building block: the ordinal response variable can be transformed into binary
responses, which then can be used for estimation and combined back in different ways
to provide a single set of estimates. For the ordered probit model, in contrast, a similar
approach is infeasible as no fixed effects estimator for the binary probit model exists.
Baetschmann, Staub, and Winkelmann [2015] studied several approaches available for
the fixed effects ordered logit model and showed that the so-called BUC (“blow-up
and cluster”) estimator has good properties and is almost as efficient as more complex
estimators such as generalized method-of-moments (GMM) and empirical likelihood
(EL) estimators. In this paper, we discuss the BUC estimator as well as a more restricted
version of it that makes it possible to estimate additional model parameters—the BUC-
τ estimator introduced in Baetschmann [2012]—, and show how these estimators can
be implemented in Stata using the community-contributed command feologit.

An integral part of our discussion focusses on the various potential objects of interest
in this model, such as marginal effects, odds ratios, etc., and on whether they can or
cannot be estimated, and if so, how. We further introduce a new specification test of the
more restrictive assumptions relating to the additional threshold parameters estimated
by BUC-τ . The test is simple to implement and we show in an example using Stata
syntax how BUC and BUC-τ estimates can be used to this end. Finally, we illustrate
the use of feologit and the interpretation of the estimates in an application of the
effect of motherhood on women’s life satisfaction which uses data from the German
Socio-Economic Panel (SOEP).

The paper reviews the fixed effects ordered logit model and the BUC and BUC-τ
estimators in the next section. The syntax for feologit is presented in Section 3.
Next, Section 4 gives a guide on how to interpret estimates, and Section 5 exemplifies
the use of feologit and possible interpretations of the estimates in the application to
life satisfaction, and provides a test of the BUC versus BUC-τ estimates. Section 6
offers some concluding remarks.
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2 Fixed effects ordered logit models

The fixed effects ordered logit model uses the latent variable y∗ to relate the observable
characteristics x to the observable ordered dependent variable y, which can take values
1,. . . ,K. The latent variable y∗it for individual i at time t depends linearly on xit and
the two unobservable characteristics αi and εit:

y∗it = x′itβ + αi + εit, i = 1, . . . , N t = 1, . . . , T . (1)

The vector of covariates xit does not include an intercept as the αi act as individual-
specific intercepts. We use a balanced panel for notational simplicity; but extending
the model to imbalanced panels (t = 1, . . . , Ti) is trivial, and the application in Section
5 uses such an imbalanced panel. The time-invariant, individual-specific part of the
unobservables (αi) is called the fixed effect, and can statistically depend on xit. The
following observation rule ties the latent variable y∗it to the observed ordered variable
yit through the thresholds τik:

yit = k if τik < y∗it ≤ τik+1 , k = 1, . . . ,K. (2)

In the most flexible version of the model, the thresholds can vary between individuals,
as indicated by the subscript i in τik. Beside the stipulation of the lowest and highest
thresholds as plus and minus infinity, the only assumption about the individual-specific
thresholds is that they are increasing for each person:

τi1 = −∞; −∞ < τik < τik+1 <∞, ∀k = 2, . . . ,K−1; τiK+1 =∞. (3)

Moreover, the fixed effects ordered logit model assumes that the time-varying un-
observable terms, εit, are i.i.d distributed with standard logistic cumulative density
function (cdf), hence the name of the model:

F (εit|xit, αi) = F (εit) =
1

1 + exp(−εit)
≡ Λ(εit) . (4)

The probability of observing outcome k for individual i at time t is therefore

Pr(yit = k|xit, αi) = Λ(τik+1 − x′itβ − αi)− Λ(τik − x′itβ − αi) . (5)

This probability depends on xit and β, the parameter of primary interest. However, it
also depends on αi, τik and τik+1. As can be seen from (5), without further assumptions
on the thresholds, only τik −αi ≡ αik is identified as we can always define τ̃ik = τik + η
and α̃i = αi − η for any η ∈ R.1

1. On a more fundamental level, the parameters β and αik are identified only by the normalizing
assumption that εit follows a standard (rather than any) logistic distribution, which fixes εit’s
variance. Without this normalisation, only β/var(εit) and αik/var(εit) are identified. Thus,
identification and consistent estimation in this paper refer to identification and consistency up to
scale, as is the case for most standard latent variable models, such as logit, probit, and their ordered
and multinomial generalizations.
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Direct estimation of αik is difficult. Generally, estimation of αik uses only informa-
tion of the T observations of individual i. Thus, if the time dimension T is fixed—as
is generally assumed in short panels—there are only a finite number of observations
to estimate αik even when the total number of observations NT grows to infinity. As
a consequence, the fixed effects αik cannot be estimated consistently and, in general,
their inconsistency spills over to inconsistency of β, the parameters common to all ob-
servations. This situation is known as the incidental parameters problem (Neyman and

Scott 1948; Lancaster 2000). In short panels, the resulting bias in β̂ can be substantial
(Abrevaya 1997; Greene 2004). A consistent estimator of β can be obtained by collaps-
ing yit into a binary variable and then applying the well-known conditional maximum
likelihood (CML) estimator (Andersen 1970; Chamberlain 1980).

2.1 CML Estimator

The conditional maximum likelihood (CML) estimator is well known. But since the
BUC estimator for the fixed effects ordered logit model is based on the CML we present
it in some detail to fix notation. In Stata, this estimator is implemented in the command
clogit and in the panel data command xtlogit with option fe, which relies on clogit.
Similarly, feologit also relies on clogit.

Let dkit denote the binary variable that results from dichotomizing the ordered vari-
able at the cutoff point k: dkit = 1(yit ≥ k). This is the dependent variable of the CML
estimator. Let

gki =

T∑
t=1

dkit

be the observed number of ones of the dependent variable for individual i. Now consider
the probability of observing dki = (dki1, . . . , d

k
iT )′ conditional on observing gki ones. It

can be shown that this probability is

Pk
i (β) ≡ Pr

(
dki

∣∣∣∣∣
T∑

t=1

dkit = gki

)
=

exp(dk′i xiβ)∑
j∈Bi

exp(j′xiβ)
, (6)

where j denotes a vector of dimension T with each element jt equal to 0 or 1 and
with

∑T
t=1 jt = gki . Further, Bi denotes the set of all possible j-vectors with gki ones

and T − gki zeros. There are
(
T
gk
i

)
= T !

gk
i !(T−gk

i )!
such combinations. Crucially, this

probability (6) does not depend on αi and the thresholds. Chamberlain (1980) showed
that maximizing the conditional log likelihood

LLk(b) =

N∑
i=1

logPk
i (b) (7)

results in a consistent estimator for β. Therefore, β of the fixed effects ordered logit
model can be estimated by first dichotomizing the ordered dependent variable into a
binary one and then applying the standard conditional maximum likelihood estimator.
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However, different cutoff points k can be used, and using only one of them leads to loss
of information and, therefore, to inefficiency. Further details of the CML estimator such
as first order conditions and asymptotic variance can be found, e.g., in Baetschmann
et al. (2015).

2.2 BUC estimator

Several ideas exist to combine the information of the CML estimators obtained from
dichotomizing samples at different cutoff points (see Baetschmann et al. 2015). The
BUC estimator presented here combines the log likelihood functions resulting from
different cutoff points, leading to a one-step estimator of β. The log likelihood function
for this estimator is

LLBUC(b) =

K∑
k=2

LLk(b) , (8)

where LLk(b) is defined as in (7), and the BUC estimator is the one which maximizes (8).
It can also be regarded as a restricted CML estimator, since it imposes the restriction
that β̂2 = . . . = β̂K . We call this the “blow-up and cluster” (BUC) estimator since
this describes how the estimator is implemented: first, every individual’s observations
in the sample are replaced with K − 1 copies or clones of itself (“blow-up” the sample
size); and, then, each clone is dichotomized at a different cutoff point. We then use the
entire inflated sample to estimate β by applying the CML estimator. Since the clones
of the same individual are not independent of each other, we have to compute standard
errors that are clustered at the individual level. Baetschmann et al. (2015) have shown
that combining the likelihoods leads to a large efficiency gain compared to using only
one cutoff. In addition, the BUC estimator has less convergence problems compared to
efficient estimators like a two-step generalized method-of-moments (GMM) estimator
and the efficiency loss in finite samples is negligible.

2.3 BUC-τ estimator assuming constant thresholds

The standard ordered logit model for cross sectional data assumes that the thresholds
are constant across individuals. The BUC estimator is conformable with a more general
class of models, since it is also consistent with models where each individual has different
thresholds. If we are willing to make the additional assumption of constant thresholds,
Baetschmann (2012) suggested a procedure based on the BUC estimator which allows
us to estimate the thresholds, too. We will call this estimator BUC-τ . The additional
assumption for the more restrictive model is that τik = τjk = τk for all individuals i
and j. Since the rest of the model is unchanged, the probability of observing outcome
k for individual i at time t is

Pr(yit = k|xit, αi) = Λ(τk+1 − x′itβ − αi)− Λ(τk − x′itβ − αi) . (9)

As in the more flexible model described above, we cannot distinguish between terms
which are constant within an individual. So if all thresholds (τ) increase by the same



6 Fixed effects ordered logit models

amount as the individual fixed effect (α) the same probability results. We deal with
this underidentification by restricting the second threshold to 0. Assumption (3) of the
model therefore changes to

τ1 = −∞; τ2 = 0; 0 < τk < τk+1 <∞, k = 3, . . . ,K−1; τK+1 =∞. (10)

Without the restriction τ2 = 0 only the differences between the thresholds are identified.

The idea of the BUC-τ estimator is to dichotomize the observations within a person
at different cutoff points and then to apply the standard CML estimator. This allows us
to estimate the thresholds, too. Let di denote the resulting vector of the dichotomized
dependent variable for individual i and gi the number of ones in di. In addition, define
τ cuti as the vector of thresholds used as cutoff points for person i. The conditional
probability of observing di conditional on gi, when di results from dichotomizing at
different cutoff points is

Pr

(
di

∣∣∣∣∣
T∑

t=1

dit = gi

)
=

exp(d′i(xiβ − τ cuti ))∑
j∈Bi

exp(j′(xiβ − τ cuti ))
, (11)

where j denotes again a vector with zeros and ones with
∑T

t=1 dit = gi, and Bi the set
of all possible j-vectors with gi ones and T − gi zeros.

As an example, consider a person who is observed for two time periods. For the BUC
estimator, we would produce K − 1 copies of this person’s observations—that is, K − 1
clones of the person—and dichotomize each clone at a different cutoff point. Thus, one
of these clones, say i, would for instance be dichotomized at the cutoff point 3, resulting
in di = (1(yi1 ≥ 3), 1(yi2 ≥ 3))′ with corresponding τ cuti = (τ3 , τ3)′. The next clone,
j, dichotomized at 4, would result in dj = (1(yj1 ≥ 4), 1(yj2 ≥ 4))′ with corresponding
τ cutj = (τ4 , τ4)′.

In contrast, for the BUC-τ estimator, the first observation of clone i might be di-
chotomized at the cutoff point 3 and the second observation at the cutoff point 4,
resulting in the vectors di = (1(yit ≥ 3), 1(yit ≥ 4))′ and τ cuti = (τ3 , τ4)′. Thanks to
this heterogeneity in the cutoff point within a conditional likelihood contribution (i.e.,
within a clone), the expression depends also on the thresholds, as can be seen in (11).

In the case of the BUC estimator, we combine the (K − 1) possible clones of each
person to estimate β. However, if different cutoff points within a clone are allowed as
for BUC-τ , the number of possible clones of each person is (K − 1)T and the sample
size of the inflated data set would be N(K − 1)T . In standard applications, this would
result in more observations than most of today’s computers can handle. Therefore, not
all possible clones can be included in the inflated estimation sample and a selection
has to be made. We propose to include all clones with no variation in the cutoff point
(i.e., the clones corresponding to the sample used by the BUC estimator), and use a
limited number of clones with random variation in the cutoff points. The program
feologit, threshold is implemented accordingly, where the default is to include 10
clones of each individual with randomly chosen cutoffs. The user can change the number
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of additional clones by using the option clones(#). The process of randomly selecting
cutoff points can be influenced by the option seed(#). With replicability of results in
mind, the feologit command has been programmed in such a way that running the
BUC-τ estimator twice leads to the same results. This should not deflect from the fact
that cutoff points are selected randomly.

3 The feologit estimation command

3.1 Syntax

The command feologit is called with the following syntax:

feologit depvar indepvars
[
if
] [

in
] [

weight
]
,
[

group(varname) thresholds

cluster(clustvar) keepsample or otheropts
]

where depvar is an ordered categorical variable. Time series operators are not allowed.
Unless a panel identifier has been set with xtset, the user must specify group(varname).
If a panel identifier has been set with xtset, the option group(varname) may be omit-
ted; in this case, feologit will use the panel identifier and provide a warning.

3.2 Description

feologit fits fixed effects ordered logit models using the BUC estimator of Baetschmann
et al. (2015). It does so by replacing each observation in the the dataset by K−1 copies
of the observation (where K is the number of categories of the ordered dependent
variable) and then applying the conditional maximum likelihood estimator clogit,
clustering the standard errors at the level of the original panel unit. After estimation,
the dataset is returned to its original form (unless option keepsample is specified).
With option threshold, feologit applies the BUC-τ estimator of Baetschmann (2012),
which assumes that thresholds are constant across panel units.

3.3 Options

• group(varname) specifies an identifier variable (numeric or string) for the panel
units.

• cluster(clustvar) sets the identifier variable for clustering standard errors. Stan-
dard errors are always clustered; specifying this option overrides the default clus-
tering variable, which is the group identifier.

• thresholds calls the BUC-τ estimator, which includes estimates of the thresholds.

• clones() specifies the number of clones used in the estimation when thresholds

has been specified; default is clones(10). A clone is a copy of all observations of
a panel unit.
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• seed() specifies the pseudo-random-number seed used in the estimation when
thresholds has been specified; default is seed(79846512).

• or reports the estimated coefficients transformed to odds ratios, that is, exp(b)
rather than b. Standard errors and confidence intervals are similarly transformed.

• keepsample specifies that the estimation sample is kept. The estimation sample
includes the original data as well as additional observations consisting of copies of
the original data. The option keepsample generates the following new variables:

– dkdepvar, the dichotimized dependent variable used in the clogit estimation
step;

– dkthreshold, a variable which indicates at which cutoff point each obser-
vation of the ordered dependent variable was dichotomised (to result in
dkdepvar);

– bucsample, a binary variable which indicates if the observation forms part of
the estimation sample of the BUC estimator—this variable exhibits variation
only if the option thresholds has been specified;

– clonegroup, an integer-valued variable which identifies observations corre-
sponding to each panel unit and clone in the estimation sample;

– and clone, a binary variable which indicates if an observation is part of the
original sample (clone=0) or a copy (clone=1).

For instance, after BUC-τ estimation of feologit with option keepsample, the
corresponding BUC estimates can be obtained by issuing the following command:

clogit dkdepvar indepvars if bucsample==1, group(clonegroup) cluster(clustvar),

where indepvars and clustvar are the variables which were used in the BUC-τ
estimation.

3.4 Stored Results

Many of the results stored in e() are similar to clogit or ologit. Stored results spe-
cific to feologit are:
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Scalars:
e(N) number of observations including observations of clones
e(N true) number of authentic observations (without observations of clones)
e(N group) number of panel units specified by group()

e(cut1) rescaling factor used for predict and margins postestimation com-
mand. This is only stored if the option thresholds has been spec-
ified. For use with predict and margins, e(cut1) is added to all
thresholds. See Postestimation below and Section 4.4 for details.

e(clones) number of clones (additional to dichotomised sample)
e(seed) seed for random-number generator

Macros:
e(estopt) estimation type option (basic or thresholds)
e(group) name of group() variable

3.5 Postestimation

The following postestimation commands are available after feologit:

• logitmarg calculates statistics of marginal effects from sample averages. logitmarg uses
a routine provided with the feologit installation. It uses sample averages to calculate
marginal effects (see Section 4.3 for details). It provides standard errors using the Delta
method. The following options allow users to modify the reported results.

– outcome(outcome) displays estimated marginal effects only for the category selected
by outcome, which should be either one value of the dependent variable, or an
indicator of the ordered category (#1, #2, etc.).

– dydx(varlist) displays estimated marginal effects only for the variables listed by
varlist.

– eretstore store estimates in e() instead of r(). Existing e() results will be lost.

• predict creates a new variable containing linear predictions (option xb) or predictions of
probabilities (called using the same syntax as after ologit). Predictions of probabilities
are only available after estimation with option thresholds. Estimates of probabilities
are calculated assuming all fixed effects are equal to e(cut1) (see Section 4.4 for details).

• margins estimates margins of response for probabilities and linear predictions. Margins
for probabilities are only available after estimation with option thresholds. Margins of
response for probabilities are calculated assuming a value of e(cut1) for all fixed effects
(see Section 4.4 for details).

• test & testnl conduct Wald tests of simple and composite linear hypotheses & tests
of nonlinear hypotheses. These commands cannot be used on estimates of the second
threshold, which is constrained (τ2 = 0). The second threshold τ2 is the first finite
threshold and is called /cut1 in the estimation output.

4 Interpretation

In empirical applications, the interest usually lies in the effect of the covariates x on the
dependent variable and the interpretation of β is of primary interest. However, since the
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ordered logit model is a nonlinear model, this parameter does not reflect marginal effects of
x on the ordered dependent variable y. There exist different possibilities of interpreting the
regression results, some of which are discussed below.

4.1 Direction and compensating variation

The sign of β indicates the direction in which an increase of x influences the cumulative
distribution of the dependent variable. If βl > 0, an increase of the regressor xl will lead to
an unambiguous decrease in the probability of the lowest category Pr(yit ≥ 1|xit, αi) and an
increase in the probability of the highest category Pr(yit ≥ K|xit, αi). Moreover, the single
crossing property of the ordered logit model implies that there will be exactly one change from
the probabilities of lower categories, which decrease, to probabilities of higher categories, which
increase (see Winkelmann and Boes 2006). Without knowing the thresholds, it is impossible
to determine at which category this switch from decrease to increase will take place.

The β can be interpreted as marginal effects of x on the latent variable y∗. Since the interest
often lies on the ordered dependent variable y rather than the latent y∗, this interpretation
is rarely used. Another simple interpretation of β with wider application is to compute the
compensating variation between variables, e.g. the change in two regressors such that the latent
variable, and therefore the ordered dependent variable, remains unchanged. The compensating
variation of two variables is given by the ratio of the corresponding β: an increase of xl by 1
has the same effect as an increase of xr by βl/βr.

4.2 Odds ratio

The effect size in logit models is often interpreted using odds, which refers to the ratio between
the probability of a certain event and the complementary probability. In the case of ordered
logit, the odds of individual i in period t having a yit above category k relative to below or
equal to k is

Odds(k, xit) ≡
Pr(yit > k|xit)
Pr(yit ≤ k|xit)

= exp(x′itβ − τik) . (12)

The odds are independent of the fixed effects but still depend on the thresholds. However, the
change in the odds if the lth regressor is modified, solely depends on β and the shift of the
regressor:

Odds ratio(k,∆xitl)
Odds(k, xit + ∆xitl)

Odds(k, xit)
= exp(∆x′itlβ) . (13)

Therefore an increase of xl by 1 increases the odds ratio by exp(βl) for all categories except
the first one, ceteris paribus. Or in other words, a unit increase in xl changes the odds by
about βl × 100 per cent (for small βl) or by exactly (exp(βl)− 1)× 100 per cent. The option
or displays the results as exp(β) as in the standard commands for logit models.
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4.3 Marginal effects

In empirical applications, the interest often lies in the marginal probability effects, that is, the
change in the probabilities of observing yit = k if a covariate l is changed by a small amount:

MEitkl ≡
∂ Pr(yit = k|xit, αi)

∂xitl
=
∂ Pr(yit ≤ k|xit, αi)

∂xitl
− ∂ Pr(yit ≤ k − 1|xit, αi)

∂xitl
. (14)

Since the probabilities depend on the thresholds and the individual fixed effects, any marginal
probability effects will also depend on theses parameters, in general. And since they are not
estimated, estimates for marginal effects cannot be obtained, in general, either. For the ordered
logit model, the marginal effect has the specific form

MEitkl = {Λ(τik+1−xit−αi) [1− Λ(τik+1−xit−αi)]

−Λ(τik−xit−αi) [1− Λ(τik−xit−αi)]}βl
= {Pr(yit ≤ k|xit, αi) [1− Pr(yit ≤ k|xit, αi)]

−Pr(yit ≤ k − 1|xit, αi) [1− Pr(yit ≤ k − 1|xit, αi)]}βl. (15)

Thus, we see immediately that the relative size of the marginal effects of two covariates l and
r is equal to the relative size of their β coefficients,

MEitkl/MEitkr = βl/βr, (16)

a quantity which can readily be estimated from β̂l/β̂r.

Moreover, from the second equality in (15) it is clear that for given probabilities of the
dependent variable yit, the marginal effect is just a function of βl, and straightforward to
calculate with an estimate β̂l. One can therefore calculate marginal effects for any interesting
probabilities of the dependent variable. An obvious choice for such probabilities are the sample
proportions. We called this the marginal effect at the average and it can be computed by the
feologit postestimation command logitmarg for each regressor and each possible outcome
category. Then an estimate of the marginal effect of regressor l for category k is

MEkl = {d̄k+1(1− d̄k+1)− d̄k(1− d̄k)}β̂l, (17)

where d̄k is the sample average of dkit. Standard errors for MEkl can be obtained via the Delta
method. Depending on whether one is interested on MEkl as an estimate of the marginal effect
at the sample average or as an estimate of the marginal effect at the population mean, standard
errors need to account for sampling variation from estimation of only β or, in addition, from
estimation in d̄k+1 and d̄k. The command logitmarg provides standard errors for the marginal
effect at the sample average.

This is a simple and arguably useful object of interest. It is, however, different from the
average marginal effect, E(MEitkl), which is infeasible. It is also different from the marginal
effect at the average of the regressors, defined as (15) evaluated at x̄ =

∑
i

∑
t xit/(NT ), which

is also infeasible. Both these more widely used objects of interest depend on the unavailable
individual thresholds and fixed effects (see expression after the first equality of (15)), while
the marginal effect at the average of the dependent variable that we propose circumvents this
problem by focussing instead on the expression after the second equality of (15).

Finally, another potentially useful quantity which is identified and easily estimable is the
average semi-elasticity of the continuation probability at category k with respect to regressor
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l. The identification and estimation of the average semi-elasticity in binary fixed effects logit
models was demonstrated by Kitazawa (2012) (see also Santos Silva and Kemp 2016), and here
we generalize it to the ordered case:

E

[
∂ lnP (yit ≥ k|xit, αi)

∂xitl

]
= βl(1− d̄k).

4.4 Thresholds

The assumption of constant thresholds for all individuals used by the BUC-τ estimator al-
lows for additional interpretations. A model with constant thresholds can be estimated with
feologit by using the option threshold. For the interpretations that follow, we change our
conceptual perspective: up to this point, all interpretations were cast in terms of probabilities.
The εit was treated as a random variable. Now we keep εit fixed, and a change of a regressor
leads to a deterministic effect of either pushing the ordered variable to a different category or
staying in the same category.

If the spaces between adjacent thresholds is almost equal, a change of the regressors has
similar effects independently of the specific category. This does, however, not apply for the
tails of the distribution, i.e., the lowest and the highest category. If the spaces are unequal, a
change of a regressor has a smaller effect for categories where the thresholds are far apart.

Regarding the effects of covariates, even a marginal change can lead to a switch of category
since we do not know the exact value of the latent variable. However, since an estimate of the
differences between the thresholds is available, we can also compute the change in the regressors
which surely leads to a switch of category. For example, a person in the third category will
surely rise up to the next higher category if xitl increases by (τ3− τ4)/βl, everything else being
equal.

When both the thresholds and β are known, the only unknown parameter in the formula
for the marginal effect (15) is αi. For such situations in fixed effects models, Stata’s margins

postestimation command assumes αi = 0 for all i. This is the case, for instance, when using
margins after xtlogit with option fe (the binary fixed effects logit).

If αi 6= 0 for all i, the object estimated assuming αi = 0 for all i will, in general, not be con-
sistent for the average marginal effect. Nevertheless, we have equipped feologit with a similar
postestimation capability. When margins is called after feologit with option thresholds, an
average marginal effect is computed assuming that αi is constant across individuals. Because
of the underidentification of τik and αi, and the normalisation τ2 = 0, calculating probabilities
at αi = 0 for all i is often a particularly poor choice. Therefore, we use αi = α̃ for all i
instead, which is defined as the estimate of the constant in a binary (cross-sectional) logit of
the dichotomised dependent variable at the first cutoff (d2it) with a single regressor zit ≡ xitβ̂
whose coefficient is restricted to 1:

α̃ = max
a

∑
i

∑
t

d2it log Λ(a+ zit) + (1− d2it)(1− Λ(a+ zit)), (18)

with first order condition
d̄2 = (NT )−1

∑
i

∑
t

Λ(α̃+ zit). (19)

The estimate α̃ is stored in e(cut1) after feologit with option thresholds. A potentially
better estimate for α̃ could be obtained by using all dk instead of basing it only on d2. However,



G. Baetschmann, A. Ballantyne, K.E. Staub, R. Winkelmann 13

our intention here is only to provide such an estimate as a suggestive result and we caution
against relying on these marginal effects (see also, e.g., Santos Silva and Kemp 2016, who argue
persuasively against using marginal effects based on αi =0).

5 Application: Effect of motherhood on life satisfaction

To illustrate the empirical application of the feologit command, we analyze the effect of the
birth of the first child on his or her mother’s life satisfaction using the German Socioeconomic
Panel, a large representative household survey (Wagner et al. 2007). The data were collected
yearly between 1984 and 2009 and it is therefore possible to follow a person up to 26 years.
The sample includes women between the ages of 20 and 60 who either were mothers or became
mothers during the observation period. The application is based on data from Baetschmann,
Staub, and Studer [2016] where additional information about data and estimation of causal
effects can be found. The dependent variable is life satisfaction, an ordinal variable that ranges
from 0 (completely dissatisfied) to 10 (completely satisfied). Below we tabulate its distribution.

. tab lifesat

life satisfaction Freq. Percent Cum.

0. Completely dissatisfied 0 650 0.52 0.52
1 498 0.40 0.92
2 1,485 1.19 2.11
3 3,332 2.67 4.79
4 4,657 3.74 8.53
5 16,464 13.22 21.74
6 13,979 11.22 32.97
7 26,793 21.51 54.48
8 36,127 29.00 83.48
9 13,669 10.97 94.45

10. Completely satisfied 10 6,908 5.55 100.00

Total 124,562 100.00

About two third of the responses lie in the upper part of the distribution (seven or higher).
The modal answer is category eight with a proportion of around 29%. We want to analyze
the effect of the first child on mother’s life satisfaction and are especially interested in the
evolution of a women’s general life satisfaction in the first years after the birth of her first
child. Our specification also includes a small set of additional regressors: age, logarithm of
household income and a dummy indicating if the respondent is working. While controlling for
potentially endogenous factors such as income and labor force participation can lead to biases
in the estimates of the effects of interest, we include these variables here only with the intention
of illustrating the regression output of the feologit command.

. describe lifesat kidage01 age lhinc work

storage display value
variable name type format label variable label

lifesat byte %31.0g p1110109 life satisfaction
kidage01 byte %9.0g age of first child
age byte %9.0g age
lhinc float %9.0g log of monthly houshold income
work byte %8.0g worked last week
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To estimate the effect of having the first child on life satisfaction and the following dynamics,
we include five dummy variables, representing the age of the first child in years. For example,
the variable kidage01 2 is equal to 1 when the first child’s age is two and 0 otherwise. Such
a flexible form approach is common in the literature on adaptation to life events (e.g. Clark
et al. 2008). Women who are happier might be more likely to get married and have children
(Stutzer and Frey 2006). To control for this selection into motherhood, we want to control
for time-invariant characteristics like genetic happiness disposition. And since the dependent
variable is ordered we use a fixed effects ordered logit model estimated with the BUC estimator.
First, we declare the panel variable with the xtset command

. xtset idpers
panel variable: idpers (unbalanced)

and then estimate the model with the BUC estimator using feologit. We issued the
following command

. feologit lifesat kidage01_0-kidage01_4 age lhinc work

which resulted in the following output

note: group() not specified; assuming group(idpers) from panel identifier

note: multiple positive outcomes within groups encountered.

Iteration 0: log conditional likelihood = -172931.52
Iteration 1: log conditional likelihood = -170560.88
Iteration 2: log conditional likelihood = -170558.47
Iteration 3: log conditional likelihood = -170558.47

Fixed-effects ordered logistic regression

N. of obs. (inc. copies) = 469318
N. of observations = 115257
N. of panel units = 11247
Wald chi2(8) = 1356.60
Prob > chi2 = 0.0000

Log conditional likelihood = -170558.47 Pseudo R2 = 0.0222
(Std. Err. adjusted for 11,247 clusters in idpers)

Robust
lifesat Coef. Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 .7795942 .0526895 14.80 0.000 .6763246 .8828637
kidage01_1 .6458431 .0514869 12.54 0.000 .5449306 .7467555
kidage01_2 .2123843 .0488413 4.35 0.000 .1166571 .3081115
kidage01_3 .1570779 .0457228 3.44 0.001 .0674628 .246693
kidage01_4 .0118047 .0426905 0.28 0.782 -.0718671 .0954765

age -.059859 .0022636 -26.44 0.000 -.0642956 -.0554224
lhinc .5426902 .0262043 20.71 0.000 .4913307 .5940497
work .2002279 .0212617 9.42 0.000 .1585558 .2419

The output shows that the algorithm for maximizing the log conditional likelihood con-
verged after three steps. For estimating the model parameters, only individuals (panel units),
who have variation in their dependent variable, are informative. Individuals who are observed
only once or have always the same life satisfaction score over time are excluded by the program
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(as their log-likelihood contribution is zero). This condition is met by 11,247 individuals which
results in 115,257 observations. On average, people in the estimation sample are therefore
observed about 10 times. The ordered dependent variable has 11 categories, so ten different
dichotomizations are possible. However, since not all dichotomizations lead to copies with vari-
ation in the binary dependent variable, we end up with 469,318 copies which contribute to the
estimation procedure. Since the copies are not independent of each other, feologit calculates
cluster-adjusted standard errors at the individual level (11,247 individuals).

The Wald test indicates that all eight included variables are jointly statistically significant.
Regarding the effect of having the first child, the effect is highest in the year of birth (coefficient
on kidage01 0). Thereafter, the effect decreases and reaches a nonsignificant level after four
years. Age has a negative effect after controlling for time invariant characteristics and the other
variables in the model. As expected, household income and working have a positive effect on
life satisfaction. The compensating variation between work and log household income is about
0.37, meaning that log household income has to increase by 0.37 to compensate for not working.
This is equivalent to saying that household income has to increase by 45% (exp(0.37) − 1) to
offset a nonworking status.

Odds ratios for interpreting the effect sizes can be obtained by using the option or. Below
the code and an excerpt of the output:

. feologit, or

...

Robust
lifesat Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 2.180587 .1148941 14.80 0.000 1.966636 2.417814
kidage01_1 1.907595 .0982161 12.54 0.000 1.724489 2.110143
kidage01_2 1.236623 .0603983 4.35 0.000 1.123734 1.360853
kidage01_3 1.170087 .0534997 3.44 0.001 1.06979 1.279786
kidage01_4 1.011875 .0431974 0.28 0.782 .9306546 1.100183

age .9418973 .0021321 -26.44 0.000 .9377277 .9460854
lhinc 1.720629 .0450879 20.71 0.000 1.63449 1.811309
work 1.221681 .025975 9.42 0.000 1.171817 1.273667

Having the first child increases the odds ratio by about 118% in the year of birth, about
91% in the first, about 24% in the second, and about 17% in the third year thereafter. In the
fourth year, the effect is essentially no longer present.

Marginal effects at the average can be obtained by using the postestimation command
logitmarg after estimating the model. To compute them, the relative frequencies of the cor-
responding categories in the estimation sample are used. Below the code and the output. We
specified the option dydx(kidage01 0) to limit the output to the marginal effects of the year
of birth.

. logitmarg, dydx(kidage01_0)

Marginal effects at the average N. of observations= 115257
N. of panel units = 11247

Margin Std. Err. z P>|z| [95% Conf. Interval]
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1 -.0039435 .0002665 -14.80 0.000 -.0044659 -.0034211
2 -.0031271 .0002113 -14.80 0.000 -.0035414 -.0027129
3 -.0090451 .0006113 -14.80 0.000 -.0102433 -.007847
4 -.0196532 .0013283 -14.80 0.000 -.0222566 -.0170498
5 -.0253752 .001715 -14.80 0.000 -.0287365 -.0220139
6 -.0718074 .0048532 -14.80 0.000 -.0813194 -.0622954
7 -.0401357 .0027126 -14.80 0.000 -.0454523 -.0348191
8 -.0197687 .0013361 -14.80 0.000 -.0223874 -.0171501
9 .0881895 .0059604 14.80 0.000 .0765074 .0998716

10 .0661833 .0044731 14.80 0.000 .0574163 .0749503
11 .0384832 .0026009 14.80 0.000 .0333855 .0435809

Note that logitmarg enumerates categories starting at 1 and ignores the actual (arbitrary)
labels of the dependent variable, which in our case starts at 0. Since having a child has a positive
effect on life satisfaction in the first year, the marginal probability effects at the average are
negative for the lower categories and positive for the ninth and higher categories. For example,
in the first year having a child decreases the probability of falling into the sixth category by
7.2%-points and increases the probability of having the highest rating by 3.8%-points for this
average person, ceteris paribus. The effects for the lowest categories are very small since only
few people have such a low life satisfaction status.

Estimating the thresholds is possible by using the option thresholds, which calls the BUC-
τ estimator. This requires the assumption that the spacing between the thresholds is the same
for all individuals. Below the output:

. feologit lifesat kidage01_0-kidage01_4 age lhinc work, group(idpers) threshold

note: multiple positive outcomes within groups encountered.

Iteration 0: log conditional likelihood = -335358.34
Iteration 1: log conditional likelihood = -317080.65
Iteration 2: log conditional likelihood = -316611.97
Iteration 3: log conditional likelihood = -316611.28
Iteration 4: log conditional likelihood = -316611.28

Fixed-effects ordered logistic regression

N. of obs. (inc. copies) = 1544471
N. of observations = 116665
N. of panel units = 11725
Wald chi2(17) = 33921.94
Prob > chi2 = 0.0000

Log conditional likelihood = -316611.28 Pseudo R2 = 0.5250
(Std. Err. adjusted for 11,725 clusters in idpers)

Robust
lifesat Coef. Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 .7835162 .0537423 14.58 0.000 .6781832 .8888491
kidage01_1 .6396636 .052942 12.08 0.000 .5358992 .743428
kidage01_2 .2046826 .0501304 4.08 0.000 .1064288 .3029365
kidage01_3 .1624746 .047537 3.42 0.001 .0693037 .2556455
kidage01_4 .0107345 .0432988 0.25 0.804 -.0741297 .0955986

age -.0578395 .002264 -25.55 0.000 -.0622769 -.0534021
lhinc .5471535 .0269294 20.32 0.000 .4943729 .5999342
work .200715 .021935 9.15 0.000 .1577232 .2437068

/cut1 0 (constrained)
/cut2 .7284609 .0615201 .6078836 .8490381
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/cut3 1.637104 .0677637 1.504289 1.769918
/cut4 2.666144 .0709232 2.527137 2.805151
/cut5 3.424063 .0726216 3.281727 3.566399
/cut6 4.872104 .0734364 4.728172 5.016037
/cut7 5.696417 .0749376 5.549542 5.843292
/cut8 7.036473 .0766951 6.886153 7.186792
/cut9 9.097256 .0807096 8.939068 9.255444
/cut10 10.65767 .0872651 10.48663 10.8287

In contrast to the procedure without thresholds, the cutoff point within a likelihood contri-
bution (clone) can change. Therefore, even when the ordered dependent variable is constant,
the resulting dichotomized dependent variable with different cutoff points can vary. This in-
creases the number of individuals in the estimation sample slightly to 11,725 and the number
of observations to 116,665. The estimator includes all contributions of the BUC estimator plus
ten copies of each individual with random variation in the cutoff point. Therefore, the number
of included copies increases noticeably to over 1.5 million.

The regression coefficient β has the same interpretation as before. It is also possible to
display the odds ratios. From the output, we see that the exact estimates changed only
slightly. Since life satisfaction can take eleven different values and the first finite threshold
/cut1 (corresponding to τ2) is normalized to zero, the output shows estimates for the second
to the tenth threshold. Careful inspection of the spaces show that there is a moderate tendency
that differences increase towards the top. Where the difference between the first and second,
and second and third, is 0.728 and 0.909, respectively, the two spaces at the upper end are 2.06
and 1.56. This implies that changes of regressors have a larger effect on the observed ordered
dependent variable for unhappy individuals compared to happy individuals.

The spaces range from 0.73 to 2.06 where the second smallest difference is 0.76. The size
of the marginal effects of the different regressors are rather small compared to theses spaces.
Except for the unhappiest people (lowest category), having a child can never increase life
satisfaction by more than one point, everything else being equal. The same is true for doubling
the income (exp(0.547) = 1.73). Regarding age, for a person with a life satisfaction score
of nine, 26 years need to pass for her to surely change to the next lower category ((10.35-
8.91)/0.057).

The BUC and BUC-τ estimator are both consistent under the additional assumption of
constant thresholds. Therefore, we can test this assumption in the form of a generalized
Hausman specification test by comparing the two estimates. If they are statistically different,
we can reject the null hypothesis of constant thresholds.2 There are different possibilities to
implement such a test in Stata. The most obvious way would be to use the command suest.
Using this command requires estimating the model without clustered standard errors and, in
a second step, computing a joint covariance matrix of both estimators adjusting for clusters.
However, since computing the BUC estimator without clusters can be misleading and adjusting
them after using clogit can lead to error messages if the group variable is not properly nested
within the cluster variable, we decided to work with interaction terms. In a first step, the
command feologit, threshold with the additional option keepsample is used:

.qui: feologit lifesat kidage01_0-kidage01_4 age lhinc work, group(idpers) threshold keep

The option keepsample, here shortened to keep, keeps the inflated dataset of clones which

2. The precision of the test might be improved by increasing the number of clones used in estimation.
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is used to compute the BUC-τ estimator after the estimation. In addition, the dichotomized
dependent variable is stored under “dkdepvar”, the corresponding cutoff-point under “dkthresh-
old” and the variable “bucsample” indicates if the cutoff varies within the clone (bucsample=0)
or not (bucsample=1). Observations with bucsample=1 constitute the sample of the BUC
estimator. The rest of the observations are primarily used to estimate the thresholds, but
contribute to the estimates of β, too. Under the null hypothesis of constant thresholds, both
samples (bucsample=0 and bucsample=1) can be used to estimate β. Statistical differences
between the two estimates indicate that the thresholds are not constant. Thus, after having
used feologit with the options thresholds and keepsample, we can implement this test by
interacting the variable “bucsample” with all regressors and estimating the model with clogit

while grouping on the clone variable and clustering on the individual level. Finally, we test if
the differences of the interactions terms are jointly equal to zero.

As an auxiliary step, we fist use a small loop to create the interaction variables (prefixed
“tau ”) and store them in the local macro interact:

. local interact=""

. foreach i of var kidage01_0-kidage01_4 age lhinc work {
2. qui: gen tau_`i´ =`i´*(bucsample==0)
3. local interact="`interact´ tau_`i´"
4. }

We then estimate the model with interactions using the clogit command, grouping on the
clone variable and clustering on the individual level:

. clogit dkdepvar kidage01_0-kidage01_4 age lhinc work `interact´ i.dkthreshold, group(clo
> negroup) cluster(idpers)
note: multiple positive outcomes within groups encountered.
note: 132,242 groups (827,909 obs) dropped because of all positive or

all negative outcomes.

Iteration 0: log pseudolikelihood = -335337.34
Iteration 1: log pseudolikelihood = -317228.3
Iteration 2: log pseudolikelihood = -316599
Iteration 3: log pseudolikelihood = -316594.58
Iteration 4: log pseudolikelihood = -316594.58

Conditional (fixed-effects) logistic regression

Number of obs = 1,544,470
Wald chi2(25) = 34242.88
Prob > chi2 = 0.0000

Log pseudolikelihood = -316594.58 Pseudo R2 = 0.5251

(Std. Err. adjusted for 11,725 clusters in idpers)

Robust
dkdepvar Coef. Std. Err. z P>|z| [95% Conf. Interval]

kidage01_0 .7795942 .0526894 14.80 0.000 .6763248 .8828635
kidage01_1 .6458431 .0514868 12.54 0.000 .5449308 .7467553
kidage01_2 .2123843 .0488412 4.35 0.000 .1166573 .3081113
kidage01_3 .1570779 .0457228 3.44 0.001 .0674629 .2466928
kidage01_4 .0118047 .0426904 0.28 0.782 -.0718669 .0954764

age -.059859 .0022636 -26.44 0.000 -.0642956 -.0554225
lhinc .5426902 .0262043 20.71 0.000 .4913307 .5940496
work .2002279 .0212616 9.42 0.000 .1585559 .2418999

tau_kidage01_0 .008167 .0306995 0.27 0.790 -.052003 .068337
tau_kidage01_1 -.013622 .029474 -0.46 0.644 -.07139 .0441459
tau_kidage01_2 -.0168844 .0268302 -0.63 0.529 -.0694707 .0357018
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tau_kidage01_3 .0119503 .0251759 0.47 0.635 -.0373935 .0612941
tau_kidage01_4 -.0023741 .024214 -0.10 0.922 -.0498327 .0450844

tau_age .0040727 .0008054 5.06 0.000 .0024942 .0056513
tau_lhinc .0093463 .0121449 0.77 0.442 -.0144573 .0331498
tau_work .0009298 .0102628 0.09 0.928 -.0191849 .0210444

dkthreshold
2 -.7305085 .061547 -11.87 0.000 -.8511384 -.6098786
3 -1.638868 .0678167 -24.17 0.000 -1.771786 -1.505949
4 -2.667425 .0709832 -37.58 0.000 -2.80655 -2.5283
5 -3.424848 .072681 -47.12 0.000 -3.567301 -3.282396
6 -4.871923 .0734845 -66.30 0.000 -5.01595 -4.727896
7 -5.695513 .0749785 -75.96 0.000 -5.842468 -5.548557
8 -7.034464 .0767388 -91.67 0.000 -7.184869 -6.884058
9 -9.093563 .0807186 -112.66 0.000 -9.251769 -8.935358
10 -10.65302 .0873042 -122.02 0.000 -10.82414 -10.48191

As can be seen, the estimates of the non-interacted regressors are numerically equivalent
to the previous BUC estimates. The estimates of the interaction terms mirror the differences
between the BUC and the BUC-τ estimates, but are not identical since the thresholds adjust
to the additional regressors. The differences are small in size and most of them are not individ-
ually significant. To formally test whether they are jointly different, we can use Stata’s test

command:

. test `interact´

( 1) [dkdepvar]tau_kidage01_0 = 0
( 2) [dkdepvar]tau_kidage01_1 = 0
( 3) [dkdepvar]tau_kidage01_2 = 0
( 4) [dkdepvar]tau_kidage01_3 = 0
( 5) [dkdepvar]tau_kidage01_4 = 0
( 6) [dkdepvar]tau_age = 0
( 7) [dkdepvar]tau_lhinc = 0
( 8) [dkdepvar]tau_work = 0

chi2( 8) = 39.13
Prob > chi2 = 0.0000

Despite the differences being small in size, the joint hypothesis that all these terms are equal
to zero can be rejected at the 0.1% level (χ2(8) = 39.13) due to the large sample. Therefore,
formally we reject the null hypothesis of constant thresholds and should use the BUC instead of
the BUC-τ estimator to interpret the results. However, given that differences in the estimates
in this case are so small, the thresholds might still shed some light on the data generating
process, but should not be over-interpreted.

6 Conclusion

This paper presented and discussed the BUC and BUC-τ estimators of the fixed effects ordered
logit model and introduced a new community-contributed Stata command that implements
these estimators in Stata, feologit.

BUC and BUC-τ both offer consistent estimates of the slope parameters β. In addition,
BUC-τ obtains consistent estimates of the thresholds τ , under the slightly more restrictive as-
sumption that they do not vary between individuals. While the calculation of average marginal
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effects is not possible with these estimators, useful identified objects of interest include odds ra-
tios, compensating variation and other quantities. Of particular interest is a particular marginal
effect at the average, which we proposed in this paper and for which a dedicated postestimation
command is available with feologit. Finally, we also presented a new specification test that
can be used to evaluate the assumption of constant thresholds by comparing BUC and BUC-τ
estimates, and which can be easily implemented with a few lines of code in Stata.
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