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Abstract—This paper is on the waveform design of joint radar
and communication systems. Focusing on permutation code based
random stepped frequency waveforms, we present a new joint
radar and communication system that has improved communi-
cation error rate performance when compared to existing ap-
proaches. More specifically, we propose a subset selection pro-
cess to improve the Hamming distance between communication
waveforms. An efficient encoding scheme is proposed to map the
information symbols to selected permutations. Further, an optimal
communication receiver based on integer programming followed
by a more efficient sub-optimal receiver based on the Hungarian
algorithm is also proposed. Considering the optimum maximum
likelihood detection, the block error probability is analyzed under
both additive white Gaussian noise channels and Rician fading
channels. Finally, we discuss the radar performance under the
new system and highlight that it has negligible effect on the radar
local and global accuracy.

Index Terms—joint radar and communications, error probabil-
ity, maximum likelihood.

I. INTRODUCTION

In recent literature a considerable amount of research has
focused on the topic of joint radar and communications [1].
These works are driven not only by the spectrum scarcity
but also by the introduction of millimeter wave (mmWave)
frequencies, a band that is already being used for radar sensing,
for communications purposes.

In some works, classical communication waveforms such as
the orthogonal frequency division multiplexing (OFDM) wave-
form have been considered for joint radar and communications.
In [2], the OFDM waveform is shown to achieve high Doppler
tolerance and low sidelobe levels while maintaining the same
data transmission capacity. However, due to the high peak-
to-average-power ratio (PAPR) of the OFDM waveform the
detection range of radar sensing is limited and other approaches
such as multiple-input multiple-output (MIMO) OFDM needs
to be explored [3]. The new orthogonal time frequency space
(OTFS) waveform has also been proposed for the same purposes
and in [4], the OTFS waveform is shown to achieve similar
radar performance to the OFDM waveform while maintaining
a higher communication data rate.

Taking a different approach, in [5], the preamble of the
communication frame is exploited to propose a virtual waveform
in the mmWave band. This is conceptually similar to the
staggered pulse repetition intervals (PRIs) used in long range

This work was supported by the Australian Research Council Discovery
Project under Grant DP180101205 and Discovery Early Career Researcher
Award under Grant DE180100501.

radar waveforms. In some works, classical radar waveforms
have been considered for the same purpose. In [6], [7], a new
waveform design is proposed based on the stepped frequency
radar waveform and permutation coding. The authors consider
all permutations generated by a given set of frequency tones
and use the selection of a particular waveform to embed com-
munication data. They also propose efficient methods to encode
and decode the data while maintaining good radar performance.

The present work is based on the permutation code based
random stepped frequency waveform considered in [7]. When
the frequency sequences given by all the permutations are used
for transmission, the minimum Hamming distance between two
waveforms remains at two. However, according to permutation
coding it is possible to improve the communication error rate
by selecting a subset of permutations with a larger minimum
Hamming distance [8]. Permutation coding for information
modulation was first proposed in [9], where the amplitude of the
transmitted impulse is modulated according to the permutation
corresponding to each code word. This work was later extended
in [10] to a communication network with fading channels. In
[11], permutation arrays with a specific minimum Hamming
distance are presented as a potential coding scheme in powerline
communication. Recently, permutation coding based on the in-
version vector and the Kendall-Tau distance has been considered
for lossless compression in data storage [12].

In contrast to [7], we focus on selecting a subset of permuta-
tions such that the communication error rate is improved. This
is motivated by low rate applications such as the navigation
function in vehicle-to-everything (V2X) communications where
high reliability communication with good radar sensing is
required. However, designing an efficient encoding scheme and
a communication receiver is essential to make any selected
subset practical. Noting that the efficient mapping process and
the receiver design in [7] are only feasible when the entire set
of permutations is used, we make the following contributions.

• We propose a novel encoding process based on the sign
of permutations to map incoming data symbols to corre-
sponding waveforms.

• Noting that the communications receiver implementation
is not straightforward when a subset of permutations are
selected, we design a new numerical method to perform
optimal decoding based on integer programming (IP).

• We also propose a novel and efficient sub-optimal receiver
based on the Hungarian algorithm which obtains close to
optimal error performance.



Further, we show that the proposed system maintains a good
radar sensing functionality.

II. JOINT RADAR AND COMMUNICATION SYSTEM

The new joint radar and communication approach proposed in
this paper is based on the random stepped frequency waveform
considered in [7]. For completeness, we introduce only the
necessary details of this waveform in the following. A random
stepped frequency waveform is generated using M pulses, each
with a duration of T seconds. A given waveform consists of
M equally spaced frequency tones f0, f1, . . . , fM−1 such that
each frequency is used only once. Therefore, there can be M !
potential waveforms which corresponds to all the permutations
generated from the M frequency tones. As such, the complex
baseband signal of the i-th waveform can be expressed as,

si(t) =

√
E

MT

M−1∑
m=0

sp(t−mT )exp
(

2πf im(t−mT )

)
, (1)

where sp(t) is the unit pulse function which is zero outside
0 ≤ t ≤ T with f im denoting the frequency relating to the m-th
index of the i-th permutation given as [f i0, f

i
1, . . . , f

i
M−1] and E

denoting the signal energy satisfying
∫MT

0
s2i (t)dt = E,∀i =

0, 1, . . . ,M !−1. It is also assumed that all M frequencies are
orthogonal with the separation between two tones being ∆f =
q/T where q is an integer. As the new waveform design is based
on the well established stepped frequency radar waveform, it
results in good radar performance.

A. Subset Selection

We note that under the universal set of permutations con-
sidered in [7], the minimum Hamming distance dm between
any two waveforms is two and the number of data bits sent
is given by log2(M ! ). According to permutation coding, the
communication error rate is inversely proportional to dm. On
the other hand, the communication data rate is proportional
to the number of selected waveforms. As such, by selecting
a subset of permutations with a larger dm, we can improve the
communication error rate at the expense of lowering the data
rate. Motivated by applications such as administrative functions
and navigation function in V2X communication that demand
for high reliability communication but with low data rate, it
is desirable to select a subset of waveforms to increase the
resulting minimum Hamming distance [1]. Thus, in this work,
we consider the selection of a subset of permutations from
the M ! universal set to improve the communication reliability.
We define the set of waveforms obtained from the selected
permutation subset as S.

In the study of permutation arrays, it is well known that
the maximum size of the permutation array with a given dm
decreases significantly with increasing dm [11]. Therefore,
while the block error rate can be reduced by increasing dm,
the loss of communication data rate can become significant.
Therefore, in this work we consider the special case of dm = 3
which is the next best dm we can achieve after dm = 2.

To introduce subset selection, first let us define some
preliminary terms used with permutations. Let χi =

[χi(1), . . . , χi(M)] denote a random permutation of integers
1, 2, . . . ,M , with χi(m) denoting the m-th integer, then,
• the number of inversions in χi is defined as,

N(χi) = {(m,n) : m < n and χi(m) > χi(n)}.
• the sign of permutation χi is positive (+1) if N(χi) is

even and negative (−1) if N(χi) is odd [13].
In [11], the authors show that the alternative group consisting of
the permutations with the same sign has dm = 3 and that the
size of this subset is given by M ! /2. Therefore, we propose
the selection of the alternative group that consists of all the
permutations with a positive sign and define the resulting set
of waveforms as S = {s0(t), s1(t), . . . , sM !/2−1(t)}. We also
note that under the permutation coding, it is possible to detect
up to two errors and correct any single error when the subset of
permutations are selected such that dm = 3. Thus, this subset
of permutations provides a coding scheme equivalent to single
parity-bit coding in communication networks.

We note that to make the implementation of any selected
subset feasible, an efficient encoding scheme and a receiver de-
sign is essential. Thus, while the concept of Hamming distance
based subset selection as a method to reduce the error rate is
well known, as the main contributions of this work we design
an efficient encoding scheme and a communication receiver
implementation for the selected subset.

B. Encoding of communication data

Under the universal set of permutations, the incoming data
symbols can be efficiently mapped to their corresponding wave-
forms using a combinatorial transform called the Lehmer code
[7]. Under this approach, the incoming data symbol is first
transformed to its natural number according to the factorial
number system. Then each natural number is mapped to the rank
of the corresponding unique permutation in the lexicographic
order. However, when we only select half of the permutations,
this direct mapping between the natural number and the lexico-
graphic rank fails. Thus, the mapping process proposed in [7] is
no longer feasible. Therefore, in this work we take a different
approach and exploit the special structure of the alternative
group to design an efficient mapping between the incoming
data symbols and the corresponding waveforms in the selected
subset. We first provide the following Lemma.

Lemma 1. According to the lexicographic order, the two
adjacent permutations given by 2i and (2i + 1) have different
signs.

Proof: See Appendix A.
According to Lemma 1, incoming data symbols can be

mapped into permutations as follows. If the natural number
of the incoming data symbol is given by i, according to the
factorial number system, we compute the sign of the 2i-th
permutation and the (2i+1)-th permutation in the lexicographic
order. Then, the permutation with the positive sign is selected
for transmission. This process of generating two specific per-
mutations and computing their sign can be implemented with
a linear complexity in M . At the communication receiver, we
first detect the permutation corresponding to the received signal.



If the i-th permutation is detected, then the natural number of
the received data symbol is taken as bi/2c. Therefore, even if a
subset is selected the mapping from incoming data symbols to
corresponding waveforms can be implemented very efficiently
without the use of a large look-up table.

III. COMMUNICATION BLOCK ERROR RATE ANALYSIS

In this section, we analyse the communication block error rate
(BLER) of the proposed system. We consider a communication
receiver with N receive antennas. As such, when the waveform
si(t) is transmitted, the N × 1 received signal vector at the
communication receiver can be expressed as,

r(t) = h si(t) + n(t), (2)

where h is the small-scale fading channel vector and n(t) is
an additive white Gaussian noise (AWGN) vector where each
element is complex Gaussian with zero mean and variance N0.
We consider the optimum maximum likelihood (ML) detection
at the communications receiver. Assuming that the channel
vector h is known at the receiver we can apply the ML detection
rule and write the detected symbol as,

ŝi(t) = arg max
sj(t)∈S

Re

(∫ MT

0

s∗j (t)hHr(t) dt

)
, (3)

where Re(.) denotes the real part of the argument and the
maximization is over all possible waveforms in the subset S.
Given that the transmitted data is assumed to be equally likely,
the BLER of detecting the received waveform as a different
waveform can be expressed as,

Pe =
1

|S|

|S|−1∑
i=0

[1− Pc(i)], (4)

where Pc(i) denotes the probability of a correct decision when
waveform si(t) is transmitted and |S| is the cardinality of S.
Note that the exact computation of Pe requires complex multi-
dimensional integrals over the multivariate Gaussian density [7].
Therefore, we take a more tractable approach by considering the
union bound which is given by,

Pe ≤ PUB
e =

1

|S|

|S|−1∑
i=0

|S|−1∑
j=0,j 6=i

Pij , (5)

where Pij denotes the pairwise error probability (PEP) of de-
tecting sj(t) when si(t) is transmitted. Using the ML detection
rule, the probability of detecting sj(t) when si(t) is transmitted
can be expressed as,

Pij = Pr
[
Re

(∫ MT

0

s∗i (t)hHr(t) dt

)
< Re

(∫ MT

0

s∗j (t)hHr(t) dt

)]
. (6)

In the following, we present analytical expressions for PUB
e

under two traditional channel models, namely, the AWGN
channel and the Rician channel models.

A. AWGN Channel

Without loss of generality we assume a unit channel gain so
that hHh = N . Whilst not included due to page limitations,

exploiting the symmetric structure in PEPs in the alternative
group, the union bound given in (5) can be simplified to,

PUB
e =

M∑
l=3

AlQ
(√

NEl

N0M

)
, (7)

where Al represents the number of permutations within the
alternative group with Hamming distance l from a given per-
mutation and Q(.) is the Gaussian Q-function.

Note that the union bound considers the summation over a
large number of PEPs and can lead to a loose bound especially
when M is large. Therefore we also derive another approxi-
mation based on the nearest neighbours. A special property of
the alternative group is that for any permutation with a positive
sign, all of its neighbors with Hamming distance 3 also have
a positive sign and vice versa. As such, we can derive the
nearest neighbor (NN) approximation [14] by only considering
the PEPs corresponding to the nearest neighbors which have a
Hamming distance of 3 and obtain

PNN
e =

M(M − 1)(M − 2)

3
Q
(√

3NE

N0M

)
, (8)

as a more accurate approximation to the BLER under the
AWGN channel.

B. Rician Fading Channel
To gain further insights into the effect of fading, next we fo-

cus on the independent Rician fading model where the strength
of the line-of-sight (LoS) path is governed by the Rician factor
denoted by K. As such, the N × 1 small scale fading channel
vector can be written as h =

√
K

K+1∆ +
√

1
K+1u, where ∆

denotes the complex LoS phase vector with the i-th element
having the property |∆i|2= 1, u denotes the scattered compo-
nent vector with the i-th element ui ∼ CN (0, 1). Thus, hHh
follows a non-central chi-squared distribution with 2N degrees
of freedom and non-centrality parameter 2NK. Whilst not show
here due to page limitations, we can use this distribution and
obtain the union bound and the NN approximation under Rician
fading model as [7],

PUB
e =

M∑
l=3

∞∑
m=0

Al

(
(NK)me−NK

m!

)[
1

2
+

N+m∑
n=1

(−1)n(
N +m

n

)
Vn

(
2N0M(K + 1)

El

)]
, (9)

PNN
e =

M(M − 1)(M − 2)

3

∞∑
m=0

(
(NK)me−NK

m!

)[
1

2
+

N+m∑
n=1

(−1)n
(
N +m

n

)
Vn

(
2N0M(K + 1)

3E

)]
, (10)

where Vn(x) =
1

2(1 + x)n−1/2
∑n−1

q=0

(
n−1
q

)(
2q
q

)
(x/4)q . Com-

munication performance of the proposed subset in terms of
BLER and the tightness of the computed bounds in (7)-(10)
are further discussed under the numerical results.

IV. COMMUNICATION RECEIVER IMPLEMENTATION

In this section, we focus on the communication receiver
implementation of the proposed system. When the universal per-
mutation set is considered, the optimal receiver implementation



simplifies to an assignment problem. As such, the Hungarian
algorithm always results in the optimal solution [7]. However,
when only a subset of permutations is selected for transmission,
the Hungarian algorithm may result in a permutation which
does not belong to the selected set. Therefore, the receiver
implementation proposed in [7] is no longer feasible. As such,
we focus on designing a communication receiver that can be
used under any permutation subset.

Under the ML decision rule, the obvious implementation
of the optimal receiver involves computing the correlation be-
tween every potential transmit waveform and the corresponding
received waveform to obtain the waveform that produces the
highest correlation. However, such an implementation has a
complexity of O(M ! /2), which could be quite significant for
large M . Therefore, we reformulate the optimal receiver in (3)
as an IP optimization problem.

1) IP based optimal receiver: First let us define the correla-
tion matrix for the received signal as,

R = (ruv) ∈ RM×M , (11)

where the uv-th element of R, ruv , denotes the correlation
between hHr(t) and the basis function ψv(t− (u− 1)T ) with
ψv(t) =

√
2E/Tsp(t) cos (2πfv(t)). We can express ruv as,

ruv = Re

(∫ uT

(u−1)T
hHr(t)ψv(t− (u− 1)T ) dt

)
. (12)

Let Xuv denotes the indicator function for ŝi(t) such that
Xuv = 1 if the frequency of ŝi(t) in the u-th pulse is fv
and Xuv = 0 otherwise. Next, we formulate the optimization
problem of the ML receiver as follows.

max
Xuv

M∑
u=1

M∑
v=1

ruvXuv

s.t

M∑
u=1

Xuv =

M∑
v=1

Xuv = 1,

M∑
u=1

M∑
v=1

XuvY
(k)
uv ≥ 1, ∀k /∈ S, (13)

where Y (k)
uv = 0 if the v-th element of the k-th permutation is u

and Y (k)
uv = 1 otherwise. We note that this integer optimization

can be solved using any existing IP solver. While the average
complexity of this IP based optimal receiver can be better than
the basic optimal receiver, the worst case complexity of any
IP solver remains exponential in M . Therefore, in the next
subsection we propose a low complexity sub-optimal receiver
based on the Hungarian algorithm.

2) Proposed sub-optimal receiver: Note that the last con-
straint in (13) restricts the optimization to the set of permitted
permutations. If we remove this constraint, the resultant receiver
simplifies to selecting M elements such that only one element is
selected from each row and each column of R such that the sum
is maximized. This optimization can be solved as an assignment
problem using the well known Hungarian algorithm [15]. There-
fore, to propose a sub-optimal receiver we first remove the last
constraint in (13) and proceed to solve the resultant optimization
using the Hungarian algorithm. Next, we check whether the

detected permutation is within the selected subset S. If so, the
detection process is complete. If not, that means the detected
permutation has a negative sign. As a result, all M(M − 1)/2
neighbors of that permutation with the Hamming distance d = 2
have a positive sign and thus belong to S . We note that there
is a high probability that one of these nearest neighbors is
the highest correlated waveform within S, because the most
common errors result in receiving one or two tones erroneously.
As such, we generate the neighboring permutations with d = 2
from the detected permutation and compute the correlation of
the received signal with each waveform corresponding to these
neighboring permutations. For each detected permutation which
does not belong to S, the correlation of the received signal
with another M(M − 1)/2 waveforms needs to be computed.
Finally, the waveform with the highest correlation is selected as
the detected waveform. In Algorithm 1, we summarize the main
steps of our proposed sub-optimal receiver implementation.

We also note that the worst case complexity of a simple
binary search to check if a given permutation belongs to S
is O(log|S|). As a result, while performing very close to the
optimal receiver, the overall complexity of our proposed sub-
optimal algorithm remains O(M3), which is similar to the
Hungarian algorithm.

Algorithm 1: Proposed Sub-Optimal Receiver

1 Negate the correlation matrix R to produce (-R)
2 ŝi(t)← waveform corresponding to the output of the

Hungarian algorithm for (-R)
3 if ŝi(t) /∈ S then
4 construct Si, the set of waveforms corresponding to

d = 2 neighboring permutations of ŝi(t)
5 for sj(t) ∈ Si do
6 Compute the correlation of sj(t) with r(t)
7 end
8 ŝi(t) ← s∗j (t), which is the waveform that results in

the highest correlation with r(t)
9 end

V. DISCUSSION ON RADAR PERFORMANCE

In radar sensing, the local accuracy of the radar waveform -
which can be measured in terms of the range resolution, Doppler
resolution and the efficiency of spectral usage, depends on the
properties of the mainlobe in the ambiguity function (AF). The
AF represents the matched filter output when the transmitted
radar signal is received with a certain time delay and a Doppler
shift [16]. In [17], it is proven that the auto-correlation function,
which determines the properties of the mainlobe in the AF, does
not depend on the frequency order. As such, the local accuracy
remains the same for all the permutations and it will not be
impacted by selecting a subset of permutations.

On the other hand, the global accuracy of the radar waveform
can be measured by the sidelobe behavior of the AF. Some
permutations have better radar performance compared to others
due to their low peak-to-sidelobe ratio (PSLR) [17]. We note
that due to the symmetric structure of the universal permutation
set, for any given permutation there exists a reverse permutation



whose AF is the exact mirror image of the AF of the original
permutation. As such, the PSLR of these two permutations
remains the same. We also note that the reverse permutation
can be obtained by interchanging bM/2c disjoint positions
in the original permutation. However, any interchange in two
positions changes the sign of a permutation [13]. Therefore,
when bM/2c is even the reverse permutation has the same
sign as the original permutation but when bM/2c is odd the
sign is reversed. When bM/2c is odd, we select half of the
permutations in the alternative group. They are selected such
that the number of permutations with the same PSLR is halved.
As a result, the radar performance of this subset is equivalent
to the universal set. On the other hand, when bM/2c is even,
we cannot guarantee that the permutations are selected such
that the number of permutations with the same PSLR is halved.
However, from numerical examples we observe that even in
this case, the change in the mean PSLR is negligible, i.e.,
the proposed subset selection improves the communication
performance while not changing the radar performance when
bM/2c is odd and having a negligible effect on the radar
performance when bM/2c is even.

VI. NUMERICAL RESULTS

In this section, we provide numerical examples illustrating
the performance of the proposed joint radar and communication
system. We note that due to limited work in the area of the
random stepped frequency radar waveform, only the universal
set considered in [7] is compared against our system.

Fig. 1 plots the simulated BLER and the analytical bounds
versus the received signal-to-noise-ratio (SNR) for a commu-
nication receiver with N = 4 antennas. We set M = 6 and
plot the BLER performance for both the AWGN channel and
a fading channel with Rician factor K = 3. The energy of
the waveform E = 1 and the frequency separation ∆f = 1/T
with T = 1, to maintain the orthogonality between frequen-
cies. Adopting the proposed system, we select M ! /2 = 360
waveforms such that each selected permutation has a positive
sign. We consider the optimal and the sub-optimal receiver
implementations using (13) and Algorithm 1, respectively. The
analytical approximations are generated using the union bounds
in (7), (9) and the NN approximations in (8), (10). From the
plot we can observe that under the AWGN channel, the union
bound accurately follows the simulation results in the high SNR
regime, while in the low SNR regime, the NN approximation
is more accurate. However, under the Rician fading channel,
the NN approximation is more accurate compared to the union
bound even in the high SNR regime. Further, we can observe
that the low complex sub-optimal receiver in Algorithm 1
provides a similar BLER compared to the optimal receiver.

Fig. 2 plots the simulated BLER versus the received SNR
for an AWGN channel under the universal set considered in [7]
and the proposed dm = 3 subset. We set N = 2 and M = 4, 6.
Under the universal set, we consider all M ! waveforms, whereas
under the dm = 3 subset, we select M ! /2 waveforms. Given
that the communication data rate is proportional to the num-
ber of selected waveforms, the maximum data rate drops by
1/log2(M ! ) which is around 22% and 10% when M = 4

0 2 4 6 8 10 12 14 16
10

-4

10
-3

10
-2

10
-1

10
0

B
lo

ck
 E

rr
o

r 
R

at
e

Union Bound

NN Approximation

Simulation - Optimal Receiver

Simulation - Suboptimal Receiver

AWGN Channel

Rician Fading Channel

Fig. 1: The BLER versus received SNR under the dm = 3
subset with N = 4, K = 3 and M = 6.
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Fig. 2: The BLER versus received SNR under the universal
set and the dm = 3 subset with N = 2 and M = 4, 6.

and M = 6, respectively. As expected BLER reduces with
increasing minimum Hamming distance. More specifically, we
observe that at 10 dB dm = 3 subset achieves a 10-fold and
4-fold reduction in the BLER with M = 4 and M = 6,
respectively compared to [7]. As such, there is a clear trade-off
between the achievable data rate and the BLER. This confirms
that the proposed dm = 3 subset is suitable for low rate
applications that require high reliability communication with
good radar sensing. Further, as the block size increases with M ,
the SNR per block decreases under constant waveform energy.
As such, BLER increases with M .

Next, we proceed to compare the impact of using dm = 3
subset on the radar performance. As discussed in Section V,
the selection of a subset does not impact the local accuracy.
However, lower PSLR results in higher global accuracy for radar
sensing. Therefore, in Fig. 3, we compare the PSLR distribution
of the proposed approach with the universal set in [7]. We note
that PSLR relies on the concept of the difference triangle which
consists of a discrete set of values [17]. As a result, the PSLR
distribution in Fig. 3 is limited to a discrete set of values. For



Fig. 3: Normalized PSLR distribution under the universal set
and the dm = 3 subset with M = 5.

the universal set consisting of all 120 waveforms, the mean
PSLR value is 0.4010. Since bM/2c is even, under the dm = 3
subset, the selection of half of the waveforms does not guarantee
that the number of permutations with the same PSLR is halved.
However, we can observe that the mean PSLR value under the
dm = 3 subset is 0.4008 which is very similar to that of the
universal set. Therefore, there is no substantial change in the
radar performance by using dm = 3 subset.

VII. CONCLUSION

We proposed a new set of waveforms for the joint radar
and communication problem. The proposed approach selects a
subset of permutation based random stepped frequency wave-
forms in such a way that the communication error performance
is improved while maintain good radar performance. This is
motivated by low rate applications in V2X communications. An
efficient encoding process is introduced for the communication
transmitter. For the communications receiver, we presented an
IP based optimal receiver implementation as well as a low
complexity sub-optimal receiver implementation based on the
Hungarian algorithm. Based on the ML detectors, we analyzed
the BLER performance and derived closed form expressions for
the union bound and the nearest neighbor approximation under
both the AWGN channel and the Rician channel. Finally, we
discussed the impact of our proposed subset selection on the
radar performance. We showed that the proposed approach to
subset selection can improves communication error rate while
having a negligible affect on radar performance.

APPENDIX A
PROOF OF LEMMA 1

Let us consider the r-th permutation in the lexicographic
order where r ∈ {0, 1, ...,M !−1}. We note that the number
of inversions in the r-th permutation can be computed as the
sum of the Lehmer code using the factorial number system and
can be expressed as [18],

N(χr) =

M∑
j=1

mod

(
rj , j

)
, (14)

where rj = brj−1/(j − 1)c with r1 = r. Using the method of
induction, it can be shown that rj = br/(j − 1)! c. Therefore,
the number of inversions given in (14) can be written as,

N(χr) = mod (r, 2)+2 br/2c+
n∑

j=2

(1−j) br/j! c , (15)

when n is selected such that n!≤ r < (n+ 1)!. Next, we write
the sign of the permutation χr as [13],

sign(χr) = (−1)mod(r,2) ×
n∏

j=2

(−1)(1−j)br/j!c. (16)

Let us now consider the two adjacent permutations given by the
(2i)-th permutation and the (2i+ 1)-th permutation. Given that
n! is even for n ≥ 2, we have n!≤ 2i, 2i + 1 < (n + 1)! , ∀i.
Therefore, the signs of these two permutations can be computed
using (16) as

sign(χ2i) =

n∏
j=2

(−1)kj , sign(χ2i+1) = (−1)

n∏
j=2

(−1)kj ,

where kj = (1−j) b(2i)/j! c = (1−j) b(2i+ 1)/j! c , ∀j ≤ n.
Thus, sign(χ2i+1) = (−1)×sign(χ2i). This completes the proof
of Lemma 1.
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