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Abstract 1 

Cell encapsulation therapies involve the implantation of cells that secrete a 2 

therapeutic factor to provide clinical benefits. The transplanted cells are protected 3 

from immunorejection via encapsulation in a semipermeable membrane. This 4 

treatment strategy was originally investigated as a method for protecting pancreatic 5 

islets from immunorejection, thus allowing them to secrete insulin as a chronic 6 

treatment for diabetes. Since then a significant body of work has been conducted in 7 

developing cell encapsulation therapies to treat a variety of different diseases. Many 8 

of these conditions involve neurodegeneration, such as Alzheimer’s and Parkinson’s 9 

disease, as cell encapsulation therapies have proven to be particularly suitable for 10 

delivering therapeutics to the central nervous system. This is mainly because they 11 

offer chronic delivery of a therapeutic and can be implanted proximal to the affected 12 

tissue, bypassing the blood brain barrier, which is impermeable to many agents. 13 

Whilst these therapies are not yet widely available in the clinic, promising results 14 

have been obtained in several advanced clinical trials and further developmental 15 

work is currently underway. This review specifically examines the development of 16 

encapsulated cell therapies as treatments for neurological diseases and evaluates 17 

the challenges that are yet to be overcome before they can be made available for 18 

clinical use. 19 

 20 
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1.0 Introduction 24 

Cell encapsulation therapy is the delivery of a therapeutic substance using cells 25 

encapsulated in a semipermeable membrane. It was originally investigated as a 26 

method for providing chronic insulin delivery to treat diabetes without the need for 27 

immunosuppression, using  pancreatic islets encapsulated in a semipermeable 28 

membrane [1]. As a treatment for diabetes, cell encapsulation therapy represents a 29 

significant improvement over conventional treatments, such as repeated insulin 30 

injections and transplantation of unencapsulated islets. As encapsulated pancreatic 31 

islets are responsive to elevations in blood sugar levels, there is no need for 32 

repeated insulin injections. The islets are also protected from immunorejection by the 33 

encapsulation material, thus chronic immunosuppression, required following 34 

implantation of unencapsulated islets, is not necessary. The semipermeable 35 

encapsulation material is also permissive of the exchange of wastes and nutrients, 36 

thus facilitating the survival and function of the encapsulated islets over long periods 37 

post transplantation (figure 1). Thus, as a treatment for diabetes, cell encapsulation 38 

therapy represents a significant improvement over current therapies. These benefits 39 

are an example of the broader potential of cell encapsulation therapy as therapies for 40 

other chronic diseases, of which there are few or no effective treatment options. 41 

 42 

Cell encapsulation therapies have also been developed as potential treatments for a 43 

variety of neurological diseases. One of the reasons for this broad applicability is that 44 

the encapsulated cells can be genetically manipulated to secrete practically any 45 

therapeutic protein that the gene sequence is known for. These therapies are 46 

particularly useful to deliver therapeutics that cannot be delivered systemically, such 47 

as neurotrophins, which elicit significant side effects when delivered systemically and 48 

have a short half-life [2, 3]. Neurotrophins are proteins that have significant survival 49 

effects on neurons and have demonstrated potential in supporting neuronal 50 

populations that degenerate in diseases such as Alzheimer’s and Parkinson’s 51 
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disease [4, 5]. Numerous neurological studies have demonstrated that cell 52 

encapsulation therapies are safe and efficacious in pre-clinical and clinical studies 53 

and clinical trials are currently underway for a number of cell encapsulation therapies 54 

for several neurodegenerative diseases. The first Phase I clinical trials to be 55 

conducted using cell encapsulation therapies for neurological disorders were 56 

completed in the mid 1990’s in the context of amyotrophic lateral sclerosis and 57 

chronic pain but no further trials were conducted [6, 7]. However, other cell 58 

encapsulation therapies are currently in advanced clinical trials following promising 59 

results in preclinical and early clinical studies. This review deals with the application 60 

of encapsulated cell technologies to treat disorders of the peripheral and central 61 

nervous systems, as summarised in table 1. It reviews the progress made and the 62 

challenges yet to be resolved regarding the development of implants for clinical 63 

application. 64 

 65 

2.0 Neurological Diseases 66 

2.1 Parkinson’s Disease 67 

The underlying etiology of Parkinson’s disease (PD) involves the loss of neurons in 68 

different regions of the brain, with most clinical emphasis focussed on the dramatic 69 

and disease-defining loss of dopaminergic neurons in the substantia nigra pars 70 

compacta. PD is characterized by motor deficits such as a resting tremor, rigidity, 71 

bradykinesia and altered posture, symptoms which are often followed later in the 72 

disease course by dementia [8, 9]. Much of the motor dysfunction associated with PD 73 

results from the loss of nigral dopamine projections to the striatum, but the cause of 74 

dementia is not clear [8]. Age is a major risk factor for PD, the incidence of PD in the 75 

fifth decade of life is 17.4 per 100,000 people, which increases to 93.1 per 100,000 76 

people in the seventh decade of life, with a median onset of 60 years [10, 11]. 77 

Therefore, aging populations will see an increasing disease burden. Worldwide it is 78 

estimated that 4 million people are affected [12]. The total economic impact of PD is 79 
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difficult to estimate but in the USA alone the total annual figure could run as high as 80 

$US23 billion [12]. 81 

 82 

Current pharmacological treatment of PD usually involves oral administration of 83 

levodopa (L-DOPA), the precursor to dopamine, to replace what would normally be 84 

produced by lost dopaminergic neurons. The efficacy of this treatment is well 85 

established, especially in the early stages of PD [13]. However, chronic, systemic 86 

administration of L-DOPA results in undesirable side effects [14, 15] and over time 87 

the threshold L-DOPA concentration required to elicit side effects decreases, limiting 88 

the dosages that can be used safely and hence the effectiveness of the drug [16]. 89 

Cell transplantation has been investigated as a method to deliver a more continuous 90 

and physiologically ‘normal’ supply of dopamine to overcome the side effects of 91 

systemic L-DOPA administration. Adrenal chromaffin cells were initially used 92 

because they naturally produce neurotrophic factors and dopamine. Initial clinical 93 

studies using autografts of unencapsulated chromaffin cells demonstrated potential, 94 

but the results of several subsequent studies were unsatisfactory, partly due to poor 95 

cell survival but also due to a variety of surgical complications resulting in high 96 

morbidity [17-20].  97 

 98 

Further experimental studies utilized chromaffin cells or PC12 cells, a 99 

pheochromocytoma cell line, encapsulated in hollow fibre poly(acrylonitrile-co-vinyl 100 

chloride) polymers or poly-l-lysine (PLL) coated alginate capsules [21-23]. In rat 101 

models of PD, these implants were effective in increasing the duration of efficacy of 102 

systemically-administered L-DOPA over a time course of weeks. However, in the 103 

context of PD this is a comparatively short time span and therefore further 104 

development is required to extend this timeframe to make these implants clinically 105 

relevant. 106 
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PD pathogenesis has also been linked to neurotrophin deficiencies in the brain and 107 

therefore the delivery of the neurotrophins such as brain-derived neurotrophic factor 108 

(BDNF) and glial cell-derived neurotrophic factor (GDNF) has been investigated as a 109 

treatment strategy. The delivery of both BDNF and GDNF to the brain via intrathecal 110 

and intracerebral injection and unencapsulated genetically modified cells has shown 111 

potential in supporting dopaminergic neurons and reducing Parkinsonian symptoms 112 

in animal models of PD [5, 24-30]. A Phase I clinical trial investigated GDNF delivery 113 

via mechanical pump intracerebroventricularly, however no improvements were 114 

observed and there was evidence of adverse side effects, such as nausea and 115 

depressive symptoms, resulting in the trial being halted in 2004 [31-33]. These 116 

negative outcomes may have been due to limited penetration of GDNF into the brain 117 

[31]. Two further Phase I trials were then conducted, which used cannulas to deliver 118 

GDNF directly to the putamen. Patients in the first of these studies demonstrated 119 

improvements in mobility and increases in tyrosine hydroxylase immunoreactivity, the 120 

rate-limiting enzyme in dopamine biosynthesis, and tyrosine hydroxylase-positive 121 

neurons were also observed in the substantia nigra of treated patients [34]. The 122 

second trial involved 34 patients, half receiving GDNF and half receiving a placebo. 123 

However, behavioural improvements were not observed in treated patients, despite 124 

increased dopamine uptake in the putamen [35]. It is possible that this increased 125 

uptake did not then lead to increased dopamine release from these neurons [35]. 126 

These trials demonstrate that the method and target of GDNF delivery is critically 127 

important in designing an effective PD treatment using neurotrophins and that 128 

delivery via cannula to the putamen or ventricles is not suitable.  129 

 130 

As cell encapsulation devices can provide targeted, chronic delivery of neurotophins, 131 

they potentially represent a clinically-applicable neurotrophin delivery method. 132 

Several preclinical studies have been conducted using GDNF-secreting cells 133 

encapsulated in a polyvinyl alcohol matrix contained in poly(ether sulfone) hollow 134 
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fibers in both rat and baboon models of PD (figure 2) [36, 37]. These implants 135 

produced neurotrophins in the nanomolar range and, in rats, preserved dopaminergic 136 

neurons in the substantia nigra and were well tolerated [38-40]. In baboons, the 137 

implants required surgical replacement every 20 days and, despite multiple 138 

surgeries, implants were well tolerated with no noticeable inflammatory reaction at 139 

the sites of surgery [38]. This methodology, though impractical in a clinical setting, 140 

was successful in eliciting transient recovery of locomotor activity and increases in 141 

DOPA uptake, but not in protecting neurons from death. This may indicate that doses 142 

higher than the nanomolar range are required for neuroprotection in larger mammals. 143 

Whilst these preclinical studies have yielded promising results, these devices are yet 144 

to be tested in a clinical trial as a treatment for PD. 145 

 146 

2.2 Stroke 147 

A stroke is a localized area of brain infarction, which often results in permanent 148 

damage and loss of function. The two main types of stroke are ischemic stroke, due 149 

to blood vessel occlusion, and haemorrhagic stroke, caused by rupture of a blood 150 

vessel in the brain. Important risk factors for stroke include hypertension, diabetes, 151 

hyperlipidemia and tobacco smoke [41]. Stroke is the third leading cause of death 152 

and the leading cause of serious, long-term disability in the United States, 153 

approximately 795,000 people suffer a stroke annually in the United States and the 154 

total projected cost of stroke in 2009 was $68.9 billion [41]. 155 

 156 

Neurotrophins such as BDNF have demonstrated neuroprotective effects post stroke 157 

in animal models and could therefore potentially be used to preserve neurons post 158 

infarction [42, 43]. Devices consisting of cells transfected to secrete GDNF and 159 

encapsulated in polysulfone hollow fiber membranes have been tested in rats by 160 

implanting them into the brain prior to an ischemic insult [44]. This was successful in 161 

reducing neuronal damage caused by the insult [44]. Choroid plexus (CP) cells, 162 
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which secrete a variety of neuroprotective substances including BDNF, nerve growth 163 

factor (NGF), neurotrophin-3 (NT-3) and fibroblast growth factor (FGF), have also 164 

been used in the context of stroke [45]. CP cells, encapsulated in alginate 165 

microcapsules and implanted into the brain, showed protective effects against 166 

ischemic insults in rats [46, 47].  167 

 168 

Glucagon-like peptide-1 (GLP-1) is another protein that exhibits neuroprotective and 169 

neurotrophic activity and has anti-apoptotic effects on neurons [48, 49]. GLP-1 has 170 

been tested successfully in animal models of traumatic brain injury, using devices 171 

consisting of stem cells transfected to secrete GLP-1 encapsulated in alginate 172 

microcapsules [49-51]. As yet this device has not been tested in clinical trials. 173 

Another device is also currently being trialled in a Phase I/II clinical trial sponsored by 174 

Cellmed/Biocompatibles [52]. This device consists of stem cells transfected to 175 

secrete CM1, a proprietary version of GLP-1, which is also anti-apoptotic [53]. It is 176 

designed to treat intracerebral haemorrhage, a severe form of stroke. As yet data has 177 

not been published from this trial. 178 

 179 

2.3 Epilepsy 180 

Epilepsy is one of the most common neurological disorders, affecting over 50 million 181 

people worldwide and accounting for 1% of the total global burden of disease [54]. 182 

Whilst not all causes of epilepsy are currently understood, any insult that disturbs 183 

neuronal function is an important risk factor, such as head trauma, genetic 184 

abnormalities, infection and tumours [55]. The economic impact of epilepsy is 185 

significant, estimated at $15.5 billion annually in the USA alone [56]. Up to 70% of 186 

patients with epilepsy can be successfully treated with anti-epileptic medication, 187 

however, these drugs carry with them the risk of adverse effects, including dizziness, 188 

sedation, impairment of cognitive function and potential teratogenic effects [57]. In 25 189 

to 30% of patients, seizures are drug resistant and cannot be controlled by 190 
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medication [54]. In these patients, therapeutic options are surgery to remove the area 191 

of the brain where seizures originate or attempts to supress seizure activity via vagal 192 

nerve stimulation [57, 58].  193 

 194 

Neurotrophins have been studied as potential therapies for epilepsy and whilst their 195 

therapeutic effects are clear in the context of neurodegenerative diseases such as 196 

PD, their benefits in the context of epilepsy have not been as evident. In animal 197 

models, neurotrophins have been shown to either diminish or worsen symptoms, 198 

depending on the dosage administered [59-63]. Larger doses of neurotrophins such 199 

as GDNF or BDNF have detrimental effects whilst the continual administration of 200 

smaller doses of neurotrophins is beneficial in reducing the symptoms epilepsy [60, 201 

61]. Therefore, dosage is of critical importance. The chronic delivery of relatively 202 

smaller doses of neurotrophins has been achieved in animal models using implants 203 

consisting of cells transfected to secrete BDNF or GDNF encapsulated in 204 

polyethersulfone hollow fiber membranes, which are implanted into the brain [60, 61]. 205 

Promising results have been obtained in these animal models but as yet they have 206 

not been tested in clinical trials. 207 

 208 

2.4  Huntington’s Disease 209 

Huntington’s disease (HD) is a genetic neurodegenerative disease caused by the 210 

expression of a mutant form of the protein huntingtin which has deleterious effects on 211 

certain populations of neurons [64]. It is one of a group of diseases classified as 212 

polyglutamine diseases, which are caused by an expansion of CAG repeats in gene 213 

sequences, resulting in proteins that have an expanded stretch of glutamine in their 214 

amino acid sequence. Neurons of the striatum are particularly affected, although 215 

degeneration also occurs in the cortex and hippocampus and these losses also 216 

contribute to the pathogenesis of the disease [65-67]. HD is one of the more common 217 

genetic neurodegenerative disease, with a prevalence of 5-7 per 100,000 people 218 
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[68]. Typical duration from diagnosis of HD to death is 20 years, at which point motor 219 

and cognitive deficits are severe, and there are no treatments currently available [68]. 220 

However, unlike other neurodegenerative diseases, early detection is possible via 221 

genetic testing for the mutant gene, which is expressed in cells throughout the body 222 

[69]. Therefore, the ability to detect patients who harbour the mutant huntingtin gene 223 

long before symptoms become apparent provides a treatment window that could be 224 

exploited to provide support for affected neurons.  225 

 226 

The capacity for neurotrophins to preserve populations of striatal neurons in rodent 227 

and non-human primate models of HD is well documented [70-79]. However, these 228 

studies used repeated intracranial injections, which is not a clinically viable treatment 229 

strategy. The use of cell-based therapy has been investigated as an alternative. This 230 

research has focused on two neurotrophic factors, NGF and ciliary neurotrophic 231 

factor (CNTF). The implants used in these studies consisted of calcium phosphate-232 

transfected cells mixed with collagen and encapsulated in implants consisting of 233 

hollow fibers of poly(acrylonitrile-co-vinyl chloride). In rats and non-human primates, 234 

these implants showed protective effects on multiple populations of affected striatal 235 

neurons [73, 74, 80, 81]. In rats these implants have been shown to provide a 236 

sustained release of NGF for up to one year without adverse effects [80]. A Phase I 237 

clinical trial has also been performed using capsules loaded with cells transfected to 238 

secrete CNTF in six patients [82]. This study showed that the devices themselves 239 

were well tolerated and positive electrophysiological changes were observed in three 240 

patients, indicating improved neural circuit function [82]. However, variable survival of 241 

the encapsulated cells resulted in variable CNTF secretion [82]. As such, further 242 

optimisation of the encapsulation technology is required to achieve greater clinical 243 

efficacy. No new clinical trials have been initiated using these implants since 244 

publication of the Phase I trial results in 2004 [82]. 245 



Page 12 of 50 
 

Cells from the CP are another possible treatment for HD. In rats and non-human 246 

primates with striatal lesions, CP cells encapsulated in poly-ornithine coated alginate 247 

yielded significant increases in the volume of the striatum and performance in 248 

behavioural tests [83-86]. In both animal models only minor tissue reactions were 249 

reported and the implants were well tolerated. Further work and optimisation of these 250 

implants is required to achieve maximum clinical benefit but current work 251 

demonstrates their potential to at least slow the disease course of HD. 252 

 253 

2.5 Alzheimer’s Disease 254 

Alzheimer’s disease (AD) is the most common form of dementia in people over 60 255 

and is characterised by a progressive loss of memory and cognition. The main risk 256 

factor of AD is age, incidence almost doubles every 5 years post 65 years of age [87, 257 

88]. It is a complicated, multifactorial condition whose pathogenesis is incompletely 258 

understood. In 2006 the number of people worldwide with AD was 26.6 million and 259 

this figure is expected to quadruple by 2050 [89]. Worldwide, populations are aging 260 

and this in itself is likely to contribute greatly to increasing the incidence of AD. In 261 

2009 in the USA alone, the annual cost of AD was estimated at US$172 billion and 262 

AD was cited as the seventh leading cause of death [90]. There are no completely 263 

effective treatments for AD and current clinical strategies involve treatments based 264 

on cognitive and neuropsychiatric symptoms of the disease [91]. Commonly used 265 

treatments are cholinesterase inhibitors to improve cognitive function and 266 

antipsychotic drugs to treat agitation and psychosis in AD patients with dementia 267 

[91].  268 

 269 

In the brain, AD is characterized at the cellular level by the appearance of senile 270 

plaques and neurofibrillary tangles, which are aberrant accumulations of proteins that 271 

are associated with a significant loss of neurons and synapses in the brain [92]. In 272 

addition to abnormal protein accumulation, disturbances in neurotrophins in the brain 273 
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have also been linked to AD pathology. Neurotrophin receptors are normally 274 

expressed at high levels on neurons in the basal forebrain, but expression is 275 

drastically reduced in late-stage AD [93]. BDNF levels are also depressed in the AD 276 

brain and several studies have shown that decreases in BDNF are associated with 277 

AD pathology and that neurons containing neurofibrillary tangles do not contain 278 

BDNF [94, 95]. Studies in rodents and primates have shown that exogenous BDNF in 279 

the brain positively influences learning and memory, and can reverse cognitive 280 

decline and neuronal atrophy seen in these animal models of AD [96, 97]. Therefore 281 

neurotrophins show significant promise as a possible therapeutic for AD.  282 

 283 

CNTF has been tested in a mouse model of AD using myoblasts transduced to 284 

secrete CNTF and encapsulated in alginate microcapsules [98]. When implanted 285 

intracerebroventricularly into mice expressing mutant amyloid precursor protein, or 286 

mice injected with amyloid beta, there were significant improvements in cognitive 287 

function [98]. GLP-1 has also been tested as a therapy for AD and has been shown 288 

to reduce amyloid deposition and has protective effects on neurons against toxicity 289 

induced by amyloid beta [48, 99]. To test this molecule in a cell encapsulation setting, 290 

human bone marrow-derived stem cells, transfected to secrete GLP-1, were 291 

encapsulated in alginate and implanted intracerebroventrically into a transgenic 292 

mouse model of AD [100]. In these animals, encapsulated GLP-1 secreting cells 293 

were effective in reducing amyloid deposition and suppressing the inflammatory 294 

response [100]. 295 

 296 

NGF has also shown significant therapeutic effects against AD. Studies in rodent and 297 

non-human primate models of AD have shown that NGF prevents retrograde 298 

degeneration of cholinergic neurons and can also correct spatial memory deficits 299 

[101-103]. A Phase I clinical trial in patients with mild AD was also conducted 300 

whereby autologous, unencapsulated grafts of fibroblasts transduced to secrete NGF 301 



Page 14 of 50 
 

were implanted into the basal forebrain. No adverse effects were observed during 302 

this 22 month trial and there were indications of a decrease in the rate of cognitive 303 

decline [4]. Several studies have also utilized transfected NGF secreting cells 304 

encapsulated in asymmetric hollow fibers of poly(acrylonitrile-co-vinyl chloride) 305 

microspheres [80, 81, 104, 105]. In non-human primates, these implants provided 306 

support to degenerating neurons in the basal forebrain and promoted resprouting of 307 

cholinergic fibers [105, 106]. Implants were also well tolerated and only a minimal 308 

astrocytosis proximal to the implants was observed [81]. Whilst these are promising 309 

results, the time course of these experiments were approximately one month, which 310 

is short in the context of AD [81, 105]. However, in another study these microspheres 311 

were implanted into the ventricle of rats over a 13.5 month period; no adverse effects 312 

were observed and the microspheres were still capable of secreting NGF at the 313 

completion of the study [107]. Furthermore, robust sprouting of cholinergic fibers was 314 

observed proximal to the implant, indicating the concentrations of NGF secreted by 315 

these implants were sufficient to have trophic effects on surrounding neurons [107]. 316 

 317 

A Phase Ib clinical trial was conducted in 2008-2009, sponsored by NsGene, using 318 

encapsulated NGF-secreting cells (nsG0202) in six AD patients [108]. Four nsG0202 319 

implants were implanted into the basal forebrain nuclei of each patient for a period of 320 

12 months. Data from this trial is not yet published however the devices are reported 321 

to be well tolerated and there are promising indications of efficacy [109]. Positive 322 

results from this trial would potentially lead to multicentre clinical trials, thus moving 323 

this treatment closer to clinical availability. 324 

 325 

2.6 Amyotrophic Lateral Sclerosis 326 

Amyotrophic lateral sclerosis (ALS) is a debilitating, terminal condition characterized 327 

by a progressive loss of motor neurons leading to limb paralysis and eventually 328 

respiratory failure. It is a relatively rare condition, with an incidence of 1.5-2.5 per 329 
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100,000 people, but there is no cure and mean survival post onset of symptoms is 330 

three to five years [110]. Whilst the cause(s) of ALS remain unknown, approximately 331 

10% of cases are dominantly inherited and 20% of these cases are due to mutations 332 

in the superoxide dismutase-1 gene [111]. 333 

 334 

Neurotrophins have been shown to provide neuroprotective effects against motor 335 

neuron degeneration and therefore represent a possible treatment [2, 112]. The 336 

majority of research has been performed using CNTF and promising results in 337 

animals led to a Phase I clinical trial involving systemic administration of CNTF [113]. 338 

However, as CNTF is rapidly cleared from the body, relatively large doses were 339 

required, which in turn resulted in unacceptable, often severe, side effects [2].  340 

 341 

To overcome these adverse side effects, cell-based therapies were subsequently 342 

studied. In rats, implants consisting of a porous polypropylene filter containing cells 343 

transfected to secrete CNTF were capable of slowing axotomy-induced cell death of 344 

the facial nerve [114]. These implants were well tolerated and elicited only a small 345 

amount of fibrotic tissue growth around the capsules with no penetration of host cells 346 

[114]. In a murine model of motor neuronopathy, these implants were effective in 347 

increasing survival time by 40% and significantly decreasing motor neuron loss [115]. 348 

A similar implant using a hollow fiber membrane constructed from poly(ether sulfone) 349 

and containing myoblasts transfected to secrete CNTF was tested in vivo by 350 

implantation intrathecally in rats for 3 months [116]. These implants were capable of 351 

secreting CNTF for the 3 month implantation period and provided some rescue effect 352 

on axotomy-induced neuronal death [116]. A Phase I clinical trial then followed in 353 

which six patients were implanted intrathecally for three months, during which time 354 

the implants significantly increased CNTF levels in the cerebrospinal fluid (CSF) 355 

without the side effects associated with systemic delivery [6, 7]. These implants were 356 

also very well tolerated as there was no evidence of cells adherent on the implants 357 
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following their removal at the conclusion of the study [6]. However, it was unclear as 358 

to whether disease progression was slowed by the implants, thus necessitating 359 

further optimization of this strategy to yield clinical benefit and as yet no new clinical 360 

trials have been undertaken since the publication of these results in 1996 [6].  361 

 362 

In addition to CNTF, GDNF and vascular endothelial growth factor (VEGF) have also 363 

demonstrated therapeutic potential in superoxide dismutase-1 (SOD-1) mutant rats 364 

and mice, which are models of ALS. Autologous myoblasts or bone marrow-derived 365 

mesenchymal stem cells were transduced to secrete GDNF and implanted 366 

intramuscularly into SOD-1 mutant rats and mice prior to disease onset [117, 118]. 367 

This therapy increased motor neuron survival, delayed disease progression and 368 

increased lifespan [117, 118]. VEGF has also been shown to prevent motor neuron 369 

degeneration and prolong survival of SOD-1 mutant rodents when delivered 370 

intraperitoneally or intracerebroventricularly [119-121]. Two Phase I/II clinical trials 371 

sponsored by NeuroNova are currently underway to test the efficacy of VEGF 372 

administration via a pump and catheter system intracerebroventricularly [122, 123]. 373 

Promising results from this clinical trial could potentially lead to the development of 374 

cell encapsulation therapies to deliver VEGF, bypassing issues inherent with a pump-375 

based catheter system. 376 

 377 

2.7 Chronic Pain 378 

Chronic pain is a serious medical problem for a significant number of patients who 379 

cannot achieve adequate relief. Whilst an accurate definition is somewhat 380 

controversial, it can be defined as pain that extends beyond the expected time frame 381 

of healing. Chronic pain affects at least 116 million adults in the USA alone at a cost 382 

of $560-635 billion annually [124]. Treatment of chronic pain commonly involves 383 

systemic delivery of opioids but there are significant issues associated with these 384 

drugs, especially when used over long periods of time. Insensitivity to their actions 385 
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can result, necessitating increased dosages that results in further desensitisation and 386 

increased likelihood of adverse reactions and side effects, such as cognitive 387 

impairment, chronic constipation and respiratory depression. With increasing dosage, 388 

side effects can eventually reach a stage where they become unmanageable or 389 

unacceptable to the patient, negating any beneficial effects of the drug. The 390 

production and use of opioids also places a significant strain on health care systems 391 

[125, 126]. 392 

 393 

A more ‘natural’ treatment for chronic pain involves utilizing adrenal chromaffin cells, 394 

which secrete a number of anti-nociceptive substances, such as catecholamines, 395 

adrenaline, nor-adrenaline, opioid peptides, met-enkephalin and leu-enkephalin [127, 396 

128]. As these substances are naturally secreted by chromaffin cells, they are not 397 

foreign to the body and therefore pose less risk of side effects and adverse reactions 398 

than opioids [127]. Chromaffin cells also express nicotinic receptors, which stimulate 399 

secretion of these substances when activated by nicotine, which is a feature that 400 

could be utilized in vivo to achieve a level of control over release [129].  401 

 402 

There are numerous studies investigating the potential of encapsulated chromaffin 403 

cell implants to treat chronic pain, mainly in rat models of pain. Early studies using 404 

suspensions of bovine chromaffin cells injected intrathecally demonstrated promising 405 

results in alleviating chronic pain [130-132]. Subsequent studies used bovine 406 

chromaffin cells and PC12 cells, a pheochromocytoma cell line, encapsulated in PLL 407 

coated alginate capsules. In these studies, encapsulated cells were implanted 408 

intrathecally in rats and, in treated animals, levels of norepinephrine and met 409 

enkephalin were significantly increased in the CSF in response to pain, indicating an 410 

antinociceptive effect [133-136].411 
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A Phase I clinical trial was conducted with a cohort of patients that were experiencing 412 

inadequately managed chronic pain. Patients received implants consisting of bovine 413 

chromaffin cells in alginate contained in poly(acrylonitrile-co-vinyl chloride) 414 

(PAN/PVC) semipermeable membranes. The implants were well tolerated and there 415 

was no evidence of tissue or cellular growth on the surface of the capsules. This 416 

study described improvements in the pain ratings reported by implant recipients but 417 

did not control for placebo effects [7]. Results from this trial were published in 1996 418 

and as yet no new trials have been initiated [7]. A Phase II clinical trial was also 419 

conducted, which was a longitudinal study of 15 patients with intractable cancer pain 420 

that were implanted with unencapsulated human adrenal medullary tissue 421 

intrathecally. This treatment strategy was safe and effective but one of the main 422 

disadvantages of the procedure was the requirement for immunosuppression, which 423 

could be overcome by encapsulating the adrenal tissue [137]. Whilst further work is 424 

required, these treatment strategies are potentially clinically viable and would solve 425 

many of the issues surrounding chronic opioid use, especially those related to 426 

desensitisation and side effects.  427 

 428 

3.0 Sensory Diseases 429 

3.1 Hearing Loss 430 

Hearing loss reduces the capacity for communication, which can have a major impact 431 

on the ability to obtain employment, participate in education and gain skills, and 432 

engage in social relationships. Hearing loss also has a significant impact on the 433 

health care system. In developed countries, rates of hearing loss are approximately 434 

17% of the adult population (36 million people in the USA). However this figure is 435 

very dependent on age and is as high as 47% in adults 75 years old and over in the 436 

USA. The economic impact of hearing loss in the USA is in excess of $100 billion 437 

annually [138]. 438 
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The most common form of hearing loss is sensorineural hearing loss (SNHL), which 439 

typically occurs following damage to, or loss of, cochlear hair cells - the receptors 440 

responsible for converting the mechanical vibrations of sound into nerve impulses in 441 

auditory neurons (ANs). Widespread hair cell loss results in severe to profound 442 

SNHL and the only effective therapeutic intervention for these patients is the use of a 443 

cochlear implant, a neural prosthesis designed to electrically stimulate the auditory 444 

nerve in order to provide the pitch and temporal cues necessary for speech 445 

perception. However, ANs undergo progressive degeneration in the absence of hair 446 

cells, ultimately resulting in significant neuronal loss after long periods of deafness 447 

[139, 140]. Experimental studies from our laboratory indicate that ongoing AN 448 

degeneration can compromise the efficacy of the cochlear implant, therefore, there 449 

are likely to be important clinical benefits in rescuing ANs from degeneration [139, 450 

141-143]. The loss of endogenous neurotrophic factors, such as BDNF and NT-3, 451 

normally expressed by hair- and support-cells within the organ of Corti, initiates AN 452 

degeneration [144-147]. Numerous studies have demonstrated that intracochlear 453 

administration of these neurotrophins via a mini-osmotic pump and cannula-based 454 

system can support AN survival in animal models of deafness [148-151]. When 455 

combined with chronic electrical stimulation via a cochlear implant, exogenous 456 

neurotrophin treatment results in significantly enhanced AN survival compared to 457 

neurotrophin treatment alone [150, 152]. 458 

 459 

Whilst these studies have shown the benefits of using neurotrophin delivery 460 

combined with electrical stimulation, the delivery of neurotrophins via a mini-osmotic 461 

pump/cannulae assembly is not acceptable as a therapy for preserving hearing in a 462 

clinical setting. This is due to the finite capacity of the pumps, which necessitate 463 

refilling for long-term use, and concerns about infection with multiple use of a cannula 464 

or manipulation of an osmotic pump. Therefore, cell encapsulation technology 465 

presents an attractive alternative technique as they can be implanted along with the 466 
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cochlear implant as part of a once-off surgical procedure and provide the potential for 467 

long-term delivery of neurotrophins. Experiments in our laboratory have shown that 468 

Schwann cells genetically modified to secrete BDNF or NT-3 are able to enhance the 469 

survival of ANs in vitro [153]. The AN survival-promoting effects of BDNF-secreting 470 

Schwann cells were subsequently tested in vivo by encapsulating them in PLL 471 

coated alginate capsules prior to implantation into deafened guinea pig cochleae 472 

(figure 3) [154]. The implants were generally well tolerated and did not cause an 473 

adverse reaction. Importantly, in comparison to control (empty) capsules, the 474 

implantation of encapsulated BDNF-Schwann cells enhanced AN survival [154]. 475 

Similar results were also obtained in cats using CP cells encapsulated in PLL coated 476 

alginate [155]. In combination with electrical stimulation from a cochlear implant, this 477 

therapy was effective in supporting AN survival in neonatally deafened cats for 478 

periods of at least 8 months [155]. 479 

 480 

Another cell encapsulation technique that has undergone preclinical evaluation 481 

consists of a cochlear implant incorporating an electrode array coated in an agarose 482 

gel containing BDNF secreting cells [156]. Over a 48 day trial in vivo, the implant was 483 

effective in supporting ANs and elicited only a minimal tissue reaction. However, the 484 

exchange of wastes and nutrients was not sufficient to support the cells for any 485 

significant length of time, suggesting that an alternative material would be more 486 

suitable for this application [156]. Moreover, there is the potential to extend this 487 

technology to target the rescue of cochlear hair cells. 488 

 489 

Studies to date have shown that the implantation of encapsulated cells into the 490 

cochlea along with a cochlear electrode array is achievable and therefore potentially 491 

clinically viable. However, further data is needed, particularly regarding the long-term 492 

safety and performance of implants in preclinical studies and clinical trials. However, 493 

neurotrophin delivery to ANs using encapsulated cells in combination with chronic 494 
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electrical stimulation from the cochlear implant shows significant potential as a 495 

treatment to provide functional benefits for cochlear implant patients. 496 

 497 

3.2 Vision Loss 498 

Diseases that result in the degeneration of the retina, producing progressive loss of 499 

peripheral vision and eventually central vision loss and blindness, are a significant 500 

public health problem. In the USA alone the estimated cost of vision impairment has 501 

been estimated at $35.4 billion [157]. The two most common conditions involving 502 

retinal degeneration are retinitis pigmentosa (RP) and age-related macular 503 

degeneration (AMD) [158]. RP is characterized by the death of photoreceptors in the 504 

periphery of the retina and has complicated and diverse genetic origins that are 505 

increasingly being understood [159]. The cause of AMD is even less clear but has 506 

origins in the accumulation of waste products in the macula (dry AMD) or the 507 

formation of abnormal blood vessels in the retina that allow the leakage of blood and 508 

fluid, resulting in swelling and vision impairment (wet AMD) [160, 161]. Like RP, AMD 509 

is characterised by a loss of photoreceptors, which particularly affects central vision, 510 

that then sets in place additional degenerative changes in the retina [162]. 511 

 512 

Treatments for these conditions are limited and currently there are no specific 513 

treatments for RP or dry AMD [163, 164]. However, a relatively new treatment for wet 514 

AMD is available, which involves intraviteal injections of an anti- VEGF antibody or 515 

the antigen binding fragment of the same antibody [165]. VEGF is a major factor 516 

associated with the formation of new blood vessels in wet AMD and therefore this 517 

treatment acts to inhibit their formation. Whilst anti-VEGF treatments are effective in 518 

improving visual acuity, repeated intraocular injections carry the risk of bacterial 519 

infection which represents a significant risk to vision. However, this has been 520 

documented in only 1% of cases in a clinical trial [166-168]. 521 



Page 22 of 50 
 

Studies into potential treatments for dry AMD and RP have shown that injection of 522 

neurotrophins such as FGF and CNTF into the eye provide protection against retinal 523 

photoreceptor degeneration [169-171]. In addition, several neurotrophins exert 524 

protective effects on neurons in inner retinal layers, CNTF being one of the most 525 

effective in this setting [172]. This is important because retinal ganglion cell (RGC) 526 

loss can follow degeneration of photoreceptors in the outer retina [162, 173, 174], 527 

presumably associated with a loss of trophic support in a manner similar to the loss 528 

of ANs following the degeneration of hair cells in the cochlea.  529 

 530 

Whilst intraviteal injections of neurotrophins support the survival of cell populations in 531 

the eye, this strategy is not practical for long-term clinical applications [175, 176]. To 532 

overcome the need for repeated injections, strategies to achieve chronic delivery 533 

have been developed using encapsulated neurotrophin secreting cells, which have 534 

been tested in various animal models of RP. The anatomy of the eye makes it 535 

particularly suited to such treatment as it is a relatively contained environment and 536 

therefore secreted neurotrophins will be somewhat concentrated where they are 537 

most needed. These implants consist of CNTF secreting cells in a hollow fiber 538 

membrane consisting of poly(ethersulfone) containing an internal scaffold of 539 

poly(ethylene terephthalate) yarn, which promotes cell attachment [177, 178]. These 540 

implants were tested in rats, dogs and rabbits and were effective in protecting 541 

photoreceptors from degeneration and were well tolerated [178, 179]. A study in 542 

rabbits showed that this implant is capable of continuous delivery of CNTF at 543 

concentrations above therapeutic thresholds for up to one year [179]. 544 

  545 

Following these successful trials in animals, a Phase I clinical trial of six months 546 

duration was conducted to assess the safety and efficacy of these implants. This 547 

study demonstrated that implants recovered from patients still secreted CNTF at 548 

concentrations above those deemed to be therapeutic [180]. The implants were also 549 
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well tolerated, with no systemic or ocular complications observed, with the exception 550 

of a single choroidal detachment, which was deemed likely due to mechanical insults 551 

sustained during surgery [180]. There were also indications that visual acuity was 552 

improved in some patients, but interpretation of these results was hampered by 553 

variability, a small sample size of ten patients and lack of adequate controls. Longer 554 

term Phase II and a Phase II/III clinical trial are currently underway. A Phase II study, 555 

sponsored by Neurotech Pharmaceuticals, was designed to assess the safety and 556 

efficacy of their CNTF-producing NT-501 implant in patients with dry AMD over an 18 557 

month follow-up period [181]. The NT-501 implant was also tested in a Phase II/III 558 

trial in patients with RP, which aimed to assess the performance of these implants in 559 

patients out to 2.5 years post implantation [182]. As yet no data has been published 560 

from these studies [177]. 561 

 562 

4.0 Future Directions and Conclusions 563 

Significant progress has been made in the development of cell encapsulation 564 

therapies as treatments for neurological conditions. However, further challenges still 565 

exist before these therapies can be accepted into the clinic. Importantly, more data is 566 

needed regarding the longevity of cell encapsulation therapies, as these are 567 

designed to be chronic delivery methods. Of primary concern is that the implants are 568 

safe, i.e., they can remain in the host for long periods of time without causing 569 

adverse reactions. This necessitates that the encapsulation material must be stable 570 

in vivo for extended periods, thus remaining biocompatible and protecting the 571 

encapsulated tissue from immunorejection. Another important consideration is the 572 

consistency of the encapsulation material produced using scaled-up manufacturing 573 

techniques, which are required to produce sufficient numbers of devices for large 574 

scale clinical trials or for clinical use. Consistency is very important in gaining 575 

regulatory approval for use in clinical trials or in the clinic, as variations in the 576 

composition or purity of the materials could potentially lead to devices that fail in vivo. 577 
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This is particularly pertinent for alginate, as it is derived from algae, a natural product 578 

that can contain high levels of contaminating proteins. If adequate purification is not 579 

achieved, biocompatibility could be compromised, resulting in a foreign body reaction 580 

post implantation and possible capsule destruction [183, 184]. However, using 581 

current purification methods, millions of alginate capsules can be produced 582 

consistently under good manufacturing practise standards. Additionally, newer 583 

manufacturing technologies being developed could see the number of capsules able 584 

to be produced increase tenfold. Therefore, alginate is considered a viable material 585 

for large scale cell encapsulation therapy. Batch to batch variability is less of an issue 586 

for other materials, such as cellulose sulphate, which has been used successfully as 587 

part of a cell encapsulation therapy for pancreatic cancer in a Phase I/II clinical trial 588 

[185, 186]. Cellulose sulphate can now be produced in large quantities under good 589 

manufacturing practice, which is compatible with clinical use [187, 188]. 590 

 591 

Longevity data is also important in the context of the encapsulated tissue. 592 

Encapsulated cells must not proliferate within the encapsulation device to such a 593 

degree that they compromise the integrity of the device, which could potentially 594 

expose them to the immune system. The encapsulated cells must also be capable of 595 

secreting therapeutics for an acceptable period of time, depending on the therapy in 596 

question. Whilst there are still issues to resolve and more data to obtain, cell 597 

encapsulation represents a promising treatment strategy against a number of chronic 598 

diseases with limited or no treatment options currently available. Considering the 599 

social and economic impact of these diseases, the scope of potential benefits to be 600 

obtained from cell encapsulation therapies is large.601 
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Figure captions 1222 

Figure 1. General structure of a cell encapsulation device. Therapeutic-secreting 1223 

cells are encapsulated in a biocompatible, semipermeable membrane that allows the 1224 

release of therapeutics, such as neurotrophins, whilst excluding the immune system, 1225 

preventing immunorejection. The membrane is also permeable to oxygen, nutrients 1226 

and waste products, thus supporting the survival of encapsulated cells. 1227 

 1228 

Figure 2. Polyethersulfone hollow fibers containing a polyvinyl alcohol matrix used to 1229 

encapsulate GDNF-secreting human fibroblasts for implantation into the striatum. 1230 

(a)–(d) Scanning electron micrograph images of the implant, (a); the glued-end (b); 1231 

the hollow-fibre membrane pores (c,d); a high power cross-section, (e) a 1232 

photomicrograph of encapsulated cells implanted for one month in the rat striatum. 1233 

Devices of similar configurations have also been used the development of treatments 1234 

for Huntington’s and Alzheimer’s disease [189].  1235 

 1236 

Figure 3. Alginate microcapsules containing BDNF-secreting Schwann cells. 1237 

Schwann cell clumps are visible within the capsule walls. Scale bar = 500μM.1238 
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Table 1 

Table 1. Summary of cell encapsulation devices used to treat various conditions described in this review and the most advanced stage of 

development each device is at currently. GDNF - glial cell-derived neurotrophic factor, CNTF - ciliary neurotrophic factor, NGF - nerve growth 

factor. 

Disease Device Therapeutic Stage of development References 

Parkinson’s disease 
 

Transfected mouse myoblasts in a polyvinyl 
alcohol matrix encapsulated in 
polyethersulfone hollow fibers 

Neurotrophins 
(GDNF) 

Preclinical (completed –published 
2004) 
 

[36-40] 

Stroke Stem cells transfected to secrete a modified 
GLP-1 protein encapsulated in alginate 
microcapsules 

Neurotrophins 
(GDNF) 

Phase I/II (ongoing) [52] 

Epilepsy Human cell line transfected to secrete BDNF or 
GDNF encapsulated in polyethersulfone hollow 
fiber membranes 

Neurotrophins 
(GDNF) 

Preclinical (completed – published 
2009 and 2011) 

[60, 61] 

Huntington’s 
disease 
 

Transfected baby hamster kidney cells in a 
collagen matrix encapsulated in hollow fibers 
of poly(acrylonitrile-co-vinyl chloride) 

Neurotrophins (CNTF) 
 
 

Phase I clinical trial (completed – 
published 2004) 
 

[82] 

Alzheimer’s disease 
 

Transfected baby hamster kidney cells in 
hollow fibers of poly(acrylonitrile/vinyl chloride) 
and poly(D,L-lactide-co-glycolide) 
biodegradable microspheres 

Neurotrophins (NGF) 
 

Phase Ib clinical trial (completed 
2009 - not yet published) 
 

[108] 

Amyotrophic lateral 
sclerosis 

Transfected baby hamster kidney cells in a 
porous polypropylene filter 

Neurotrophins (CNTF) Phase I clinical trial (completed –
published 1996) 

[6] 

Chronic pain 
 

Bovine chromaffin cells in an alginate matrix 
encased in a semipermeable membrane 

Neuroactive, 
antinociceptive 
substances 

Phase I clinical trial (completed – 
published 1996) 

[7] 

Hearing loss 
 

Transfected schwann cells in poly-ornithine-
coated alginate microcapsules 

Neurotrophins and 
growth factors  

Preclinical (completed – published 
2011) 

[154, 155] 

Vision loss 
(age-related 
macular 
degeneration & 
retinitis pigmentosa) 

Human retinal pigment epithelium cells in a 
poly(ethylene terephthalate) yarn scaffold 
encased in a semipermeable polysulfone 
hollow-fiber membrane 

Neurotrophins (CNTF) Phase II clinical trial (retinitis 
pigmentosa. Completed – not yet 
published). Phase II/III clinical trial 
(age-related macular degeneration.  
Completed – not yet published) 

[181, 182] 




