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Summary at a Glance 

Quantitative proteomic profiling of experimental COPD, validated in human lung tissue, identifies 

protein alterations and defines potential novel clinically-relevant disease drivers, therapeutic 

targets and biomarkers. 

 

  



ABSTRACT 

Background and objective: Chronic obstructive pulmonary disease (COPD) is the third leading 

cause of illness and death worldwide. Current treatments aim to control symptoms with none able 

to reverse disease or stop its progression. We explored the major molecular changes in COPD 

pathogenesis. 

Methods: We employed quantitative label-based proteomics to map the changes in the lung tissue 

proteome of cigarette smoke-induced experimental COPD that is induced over 8-weeks and 

progresses over 12-weeks.  

Results: Quantification of 7,324 proteins enabled the tracking of changes to the proteome. 

Alterations in protein expression profiles occurred in the induction phase, with 18 and 16 protein 

changes at 4- and 6-week time-points, compared to age-matched controls, respectively. Strikingly, 

269 proteins had altered expression after 8-weeks when the hallmark pathological features of 

human COPD emerge, but this dropped to 27 changes at 12-weeks with disease progression. 

Differentially expressed proteins were validated using other mouse and human COPD bronchial 

biopsy samples. Major changes in RNA biosynthesis (HNRNPC, MSI2), and modulators of 

inflammatory responses (S100A1) were notable. Mitochondrial dysfunction and changes in 

oxidative stress proteins also occurred.  

Conclusion: We provide a detailed proteomic profile, identifying proteins associated with the 

pathogenesis and disease progression of COPD establishing a platform to develop effective new 

treatment strategies. 

 

Key words: Experimental chronic obstructive pulmonary disease, emphysema, cigarette smoke, 
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Short title: Proteomics of experimental COPD 

Abbreviations used 

CAT COPD assessment test 

COPD: Chronic obstructive pulmonary disease 

CS: Cigarette smoke 

DAMPs: Damage-associated molecular patterns 

DTT: Dithiothreitol 

FDR:  False discovery rate 

GOLD: Global initiative for obstructive lung disease 

HILIC: Hydrophilic interaction liquid chromatography  

HNRNPC: Heterogeneous nuclear ribonucleoproteins C1/C2 

IPA: Ingenuity Pathway Analysis 

iTRAQ: Isobaric tags for relative and absolute quantification 

MS: Mass spectrometry  

MSI2: RNA-binding protein Musashi homolog 2 

nLC-MS/MS: Nano liquid chromatography tandem mass spectrometry 

PCA: Principal component analysis 

PRM: Parallel reaction monitoring  

ROS Reactive oxygen species 

S100A1: Protein S100-A1 

TBX: T-Box 

  



INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally.1, 

2 It is a complex heterogeneous progressive respiratory disorder, characterized by chronic 

pulmonary inflammation, progressive airway thickening, and narrowing and destruction of alveoli 

that all contribute to impaired lung function and severe breathing difficulties.3, 4 The leading cause 

is cigarette smoke (CS) inhalation,2, 5  but air pollution, environmental smoke exposure and genetic 

factors (e.g. alpha-1 antitrypsin deficiency),6 are also important instigators in non-smoking 

patients.7, 8 The prevalence of COPD continues to rise.7 

Current treatments for COPD focus on symptomatic control, and are largely unable to halt 

the progression of disease.9-11 Despite emerging therapeutics, such as cytokine-receptor 

antagonists that reduce neutrophil chemotaxis and airway inflammation,12 there is a critical need 

to characterize the molecular drivers of COPD. This may identify new therapeutic targets and 

biomarkers. Analysis of COPD lung tissues has thus far focused on characterizing differences at a 

genomic and transcriptomic level, however there is little information on the progressive changes 

in the proteome.13-17 This limitation is mostly attributed to the large amount of fresh tissue that is 

required for accurate quantification of protein expression, the requirement for high-level expertise 

in proteomic-based mass spectrometry (MS) techniques, and accessibility to healthy control tissue. 

Given these challenges, sophisticated animal models have been developed and widely used 

to provide insights into COPD disease pathogenesis with results validated in human tissues.18-28 

These powerful tools provide lung tissues during the development and progression of the hallmark 

features of COPD that can be investigated in multi-organ systems in reasonable timeframes.3, 29 

We have developed and widely used a mouse model of CS-induced experimental COPD that 

recapitulates the human clinical features of chronic pulmonary inflammation, airway remodelling 



and mucus hypersecretion, emphysema, and impaired lung function in 8-weeks.26 There, we 

interrogate this unique model with high resolution quantitative proteomics to characterize the 

pulmonary proteome during the development and progression of CS-induced COPD. We reveal a 

critical juncture in the instigation of COPD, where alterations in the machinery responsible for 

RNA biogenesis and damage-associated molecular patterns (DAMPs) may play important roles in 

pathogenesis. 

 

METHODS 

The ethics statements, mouse model of CS-induced experimental COPD2, 3, 18, 23, 24, 26, 29-33 

and assessment of clinical features (Fig. 1, A-E), collection of human bronchial biopsies23, 32 

detailed proteomic sample preparation of human endobronchial biopsies, and analysis by parallel 

reaction monitoring (PRM), bioinformatics, statistical, Ingenuity Pathway Analysis (IPA), and 

validation by immunohistochemistry are described in detail in Appendix S1 in the Supporting 

Information .21, 26, 29, 30, 32-49 

Human subjects 

For this study COPD patients were stratified into mild and severe based on the Global Initiative 

for Obstructive Lung Disease (GOLD) criteria,2 number of frequent acute exacerbations, and 

COPD assessment test (CAT) score. Clinical characteristics are summarized in Table 1. The study 

cohort was comprised of 24 subjects, split into four well-characterized cohorts (n=6 each); healthy 

controls, healthy smokers, mild (GOLD stage I-II), and severe (GOLD stage III-IV) COPD. 

 

 

 



Mouse lung tissue preparation 

For each time point (4-, 6-, 8-, 12-week)26 the hallmark features of COPD were assessed (Fig. 

1, A-E). The lungs of four mice in each group, normal air- or CS-exposed (Fig. 2, A), were perfused 

with tris-buffered saline supplemented with protease (Sigma) and phosphatase inhibitors (Roche, 

Complete EDTA free), and stored at -80°C until required. Thawed lung tissues were homogenized 

(100µL ice-cold 0.1M Na2CO3 containing protease and phosphatase inhibitors), using the 

FastPrep-24TM 5G homogenizer (MP Biomedicals, Santa Ana, CA, USA) with the Cool Prep 

Adaptor. Samples were sonicated (3x10s) and fractionated into membrane-enriched and soluble 

proteins by ultra-centrifugation (Fig. 2, B).41 Fractions were brought to a concentration of 6M urea, 

2M thiourea, reduced with dithiothreitol (10mM DTT), alkylated (20mM iodoacetamide) and 

digested with 1:30 Lys-C/Trypsin Mix (Promega).34, 50 Lipids were precipitated from membrane-

enriched peptides with formic acid. Peptide populations were purified using desalting columns 

(Oasis, Waters). Following quantification, peptides (200µg) were labelled using isobaric tags for 

relative and absolute quantification (iTRAQ) (Fig. 2, C),42 and mixed in a 1:1 ratio. Proteomes 

were enriched using multi-dimensional strategies,34, 36, 37, 43, 50 and desalted using modified 

StageTip microcolumns.44 Peptides were subjected to offline hydrophilic interaction liquid 

chromatography (HILIC), and then analysed using high resolution nano liquid chromatography 

tandem MS (nLC-MS/MS) (Fig. 2, D). 

 

Human biopsy preparation 

Human endobronchial biopsies were subjected to the same sample preparation methods as 

mouse samples. However, the protocol was performed without ultra-centrifugation, but with a 

trichloroacetic acid precipitation step.51 Following quantification, peptides (30µg) were taken from 



each sample and heavy-labeled peptide standards (Table S1 in the Supporting Information) were 

evenly spiked-in.  

 

LC-MS/MS Analysis 

Reverse phase nLC-MS/MS was performed on 9-11 HILIC enriched fractions (Figure S1 in the 

Supporting Information) for each 8plex, using a Q-Exactive Plus hybrid quadrupole-Orbitrap MS 

coupled to a Dionex Ultimate 3000RSLC nanoflow high-performance liquid chromatography 

system (Thermo Fisher Scientific). Samples were loaded onto an Acclaim PepMap100 C18 75 

μmx20 mm trap column (Thermo Fisher Scientific) for pre-concentration and online de-salting. 

Separation was then achieved using an EASY-Spray PepMap C18 75 μmx500 mm column 

(Thermo Fisher Scientific), employing a linear gradient of acetonitrile (2-25%, 300 nl/min, 125 

min). A Q-Exactive Plus MS System was operated in full MS/data dependent acquisition MS/MS 

mode (data-dependent acquisition). The Orbitrap mass analyser was used at a resolution of 70,000, 

to acquire full MS with an m/z range of 370–1750, incorporating a target automatic gain control 

value of 3x106 and maximum fill times of 100ms. The 20 most intense multiply charged precursors 

were selected for higher-energy collision dissociation fragmentation with a normalized collisional 

energy of 32. MS/MS fragments were measured at an Orbitrap resolution of 35,000 using an 

automatic gain control target of 5x105 and maximum fill times of 120ms. 

 

  



RESULTS 

 

Protein expression patterns underpinning CS-induced experimental COPD 

Mice were exposed to CS for 4-12-weeks and progressively developed the hallmark features of 

COPD including: reduced weight, airway inflammation, emphysema-like alveolar enlargement 

and impaired lung function (increased total lung capacity, TLC) compared to normal air-exposed 

mice (Fig. 1, A-E). Proteomic profiling of lung tissue from mice exposed to CS or air during the 

induction (4- and 6-weeks) and progression (8- and 12-weeks) phases of experimental COPD,26 

identified 7,324 proteins (FDR≤0.01) across all samples, with an average of 6,034 proteins 

identified at each time point (see Table 2 and Table S2 in the Supporting Information). Lung tissue 

was fractionated into membrane-enriched and soluble protein populations to gain insights into 

spatial and membrane dynamics during different disease phases.52-54 

Principal component analysis (PCA) revealed a high level of concordance for each lung tissue 

proteome at each time point (i.e. four mice per treatment, CS- and air-exposed, membrane and 

soluble enriched for four time points, 4-, 6-, 8- and 12-weeks, Fig. 3, A). The distribution of 

proteins that were identified at each time point are represented in Venn diagrams (Fig. 3, B). 

Notably, ~50% of protein identifications were shared across all time points, while over 16% of 

proteins were identified exclusively at a single time point. Volcano plots highlight the balance of 

upregulated and downregulated proteins and their spatial occurrence (Fig. 3, C). These data 

revealed that the most significant changes in the lung proteome induced by CS, occurred at the 8-

week time point, where 269 proteins showed significantly altered expression compared to controls 

(Table S3 in the Supporting Information). This time point is where the chronic clinical features of 



COPD first emerge (Fig. 1, A-E).26 Additional PCAs show a clear separation in the proteomic 

profiles generated from fractionation of lung tissues (Fig. 3, D). 

 

Novel proteins linked to pathogenesis 

Further assessment of the impact of chronic CS exposure on the lung proteome across the 

experimental time course identified 2,828 membrane-enriched and 1,176 soluble proteins that had 

significantly altered expression compared to normal air-exposed controls (ANOVA; FDR<0.05). 

Unsupervised hierarchical clustering of significantly altered expression profiles identified unique 

temporal clusters (Table S4 in the Supporting Information), which were assigned biological 

functions and signalling pathways using Ingenuity Pathway Analysis (Fig. 4, A and B membrane-

enriched and soluble). These analyses implicate mitochondrial dysfunction and oxidative stress 

(Nrf2, oxidative phosphorylation, AMPK, NADH repair). The membrane-enriched cluster 4 

revealed 675 overlapping proteins with increased expression in COPD development (8-week) and 

progression (12-week) phases. This cluster included eukaryotic initiation factor 2 (EIF2) (p-

=1.30E-08) and caveolar-mediated endocytosis (p=1.49E-08).  

 

Novel proteins linked to different phases of disease 

We assigned biological processes and upstream regulators to the progressive phases of disease 

(Fig. 4, C and D membrane-enriched and soluble).  Analysis of the initial 4-week induction phase 

in the membrane-enriched fraction, showed altered expression of 434 and 64 proteins linked to 

apoptosis and necrosis, respectively (Fig. 4, C). At this point there were also changes in proteins 

associated with inhibition of movement of connective tissue (61) and endothelial cells (32), 



cytoskeleton formation (72), and microtubule dynamics (209), as well as, adhesion of mast cells 

(8), necroptosis (30) and morphology (38) and mitochondrial respiration (11). 

The expression of these proteins altered as the model transitioned to the 6-week time point. This 

time point was characterized by activation of immune-related functions including cellular 

infiltration (105), movement of leukocytes (192) and immune responses of cells (94). Interestingly, 

the induction phase (4-6-weeks) also featured the enrichment of proteins linked to cellular stress 

including cell death (121), inflammation (133) and arrested cell movement (388).  

In contrast, during disease progression (8-12-weeks) increases were noted in proteins involved 

in activated functions including apoptosis of endothelial, fibroblast (49) and lung cells (4), 

generation of reactive oxygen species (ROS) (29), and dysregulated growth (103) and movement 

of cells (56). 

 

Identification of upstream disease drivers 

We next explored upstream regulators and networks using IPA to identify drivers of disease 

pathogenesis. This analysis demonstrated that lethal-7 (let-7) was predicted to be an activated 

upstream regulator based on alterations observed during the induction phase (4- and 6-weeks) in 

our proteomic dataset (Fig. 4, D). This is of interest as let-7 is a family of microRNAs, the 

overexpression of which is linked to delayed tissue repair and reduced movement and proliferation 

of lung fibroblasts.55, 56 

Heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) and RNA-binding protein 

Musashi homolog 2 (MSI2) were amongst the most over-expressed proteins upon disease 

development (8-weeks, fold change of 12.1 and 3.5, respectively). The damage-associated 

molecular pattern (DAMP) protein, S100-A1 (S100A1) was also highly overexpressed at this 



timepoint (fold change of 5.8). Given these unique changes associated with disease development, 

the HNRNPC, MSI2, and S100A1 candidates were selected for validation.  

 

Validation of HNRNPC, MSI2, S100A1 as markers of COPD development 

To validate the dysregulated protein levels of HNRNPC, MSI2 and S100A1, 

immunohistochemical analysis was performed using lung sections from the same mice after 8-

weeks of CS-exposure compared to air-exposed controls (Fig. 5, A). The levels of each of these 

proteins was significantly increased in the lung sections of CS-exposed mice (Fig. 5, B); fold 

changes of HNRNPC, MSI2 and S100A1 were 2.3 (t-test p=0.047), 1.58 (t-test p=0.027) and 1.84 

(t-test p=0.002), respectively. MSI2 and S100A1 were expressed ubiquitously in lung parenchyma 

but with highest expression noted around the small airways.  

 

HNRNPC, MSI2, S100A1 are overexpressed in patients with COPD 

To validate and translate our experimental data to human COPD, we performed targeted 

proteomics using PRM34 in human samples (Table S5 in the Supporting Information). 

Endobronchial biopsies were collected from 24 patients (6 per group) from healthy controls (HC), 

healthy smokers (HS), mild (MC) and severe COPD (SC) patients (Table 1). PRM analysis of 

HNRNPC showed a 2.81 (ANOVA p=0.0552) and 3.65 (ANOVA p=0.0067) fold change 

upregulation in MC and SC patients, respectively, compared to HC (Fig. 5, C). Expression of 

HNRNPC significantly increases in human COPD patients, in line with the 8-week time point in 

our CS-induce mouse model of COPD (Fig. 5, D) showing that our model is valuable as a 

predictive tool. Interestingly, HNRNPC expression in HS showed no change (fold change -0.13; 

ANOVA p=0.999) suggesting its expression is not driven by CS-exposure alone. In both HC and 



HS, MSI2 and S100A1 were also undetectable. However, MSI2 was detected in both MC and SC, 

with S100A1 only detected in SC, suggesting potential as targets or biomarkers of both mild and 

severe stages of human COPD (Fig. 5, E). 

 

 

DISCUSSION 

 

Here, we employed a multi-dimensional enrichment strategy to achieve the first in-depth 

analysis of the pulmonary tissue proteome during the induction and progression phases of CS-

induced experimental COPD, characterizing the profile of 7,324 unique proteins. We focused on 

the progression phase of COPD, which has not been comprehensively studied. Using ultra-

centrifugation with fractionation we performed the first cell compartment enrichment analysis of 

lung tissue that delineated the contributions of proteins in the membrane versus the cytosol, 

shedding light on the dynamic interplay between protein abundance and localization in COPD 

onset.  

Two major risk factors driving the pathogenesis of COPD are chronic exposure to CS and 

age. CS induces cell death through apoptosis, necrosis57, mitochondrial dysfunction and oxidative 

stress by inducing the generation of ROS,58 which all promote persistent lung inflammation.59 

COPD is considered to represent accelerated lung aging60 involving altered cellular, metabolic and 

transcriptional changes including, but not limited to, cellular senescence, epigenetic alterations, 

genomic instability, and telomere attrition.61-63 Strikingly, after 8-weeks of chronic CS exposure 

in experimental COPD, the proteomic profiles of lung tissue revealed 269 unique dysregulated 

proteins, of which 264 were significantly upregulated. All of the chronic pathological features of 



human COPD develop at this timepoint including chronic pulmonary inflammation, airway 

remodeling with mucus hypersecretion, emphysema and impaired lung function.2-4, 18, 23, 24, 26, 27, 29-

33, 58 This timepoint is representative of early GOLD stages 1/2 of COPD,64 allowing changes to 

be validated in clinically relevant samples. It is for these reasons that we focused on the progression 

phase (after 8-weeks) where amongst the 264 upregulated proteins, we identified mitochondrial 

dysfunction and oxidative stress implicated in pathogenesis, and several novel candidate proteins 

that potentially play key roles in disease progression; HNRNPC, MSI2 and S100A1.  

Proteomic profiling of progressive experimental COPD identified increased expression of 

proteins involved in RNA biogenesis at 8-weeks. HNRNPC belongs to a family of 20 

heterogeneous nuclear ribonucleoproteins with known roles in numerous aspects of RNA 

biogenesis: regulation of mRNA metabolism, nucleo-cytoplasmic transport, transcription, 

translation and splicing.65 Interestingly, HNRNPC is involved in telomerase biogenesis with over-

expression inducing telomere shortening.66 Telomeres are protective DNA caps that reside at the 

end of chromosomes, limiting DNA degradation and maintaining genomic stability.67 Longitudinal 

studies have correlated telomere shortening in lung resident alveolar, endothelial and smooth 

muscle cells as well as circulating lymphocytes directly with disease severity, impaired lung 

function and mortality in COPD patients.67, 68 The correlation with lung function decline was 

further supported by a meta-analysis of 14 studies.69 HNRNPC in lung epithelial cells regulates 

the mRNA stability of urokinase plasminogen activator receptor (uPAR),70 an emerging biomarker 

of immune activation and inflammation in COPD.71, 72 uPAR is strongly linked with pathogenesis, 

and is upregulated in alveolar wall cells, pulmonary macrophages and small airway epithelia in 

COPD patients compared to healthy smokers and controls. The upregulation of uPAR significantly 

correlated with forced expiratory volume in 1 second (FEV1).73 It is also implicated in the 



destruction of small airways and alveolar cells through the regulation of extracellular matrix 

degrading enzymes known as the matrix metalloproteinases.73 Taken together, these observations 

suggest that the marked upregulation of HNRNPC may promote accelerated ageing of lung tissue 

known to occur in COPD, and drive the expression of uPAR, which contributes to inflammation 

and degradation of small airways, thus making it an interesting target for novel therapeutics. 

MSI2 is one of two members of the Musashi family of RNA binding proteins, containing 

two RNA recognition motifs, with regulatory roles in cellular proliferation, determining cell fate, 

and mRNA translation.74 There is strong evidence supporting the role of increased cellular 

senescence in COPD lungs.60, 63 Senescence is characterized by cells undergoing irreversible 

replicative arrest,75 and these processes increase as the lung ages and in COPD.60 Healthy tissue 

homeostasis is perturbed by the accumulation of senescent cells, which secrete pro-inflammatory 

mediators including DAMPs, increasing the generation of ROS, and arresting tissue repair.60, 75 

Using intricate computational algorithms, transcriptional networks were built from publically 

available gene microarray datasets of diverse human lung epithelial cells.76 These gene expression 

profiles revealed the marked suppression of anti-senescence T-Box (TBX) transcription factors 

coupled with increases in TBX-regulated markers of cellular senescence, suggesting important 

roles in COPD. These findings were validated in lung tissues from COPD GOLD stage 2-3 patients 

and healthy smoking subjects (RNA and protein). Amongst the TBX transcription factors 

identified was TBX-1, which is translationally repressed by over-expression of MSI2 at both 

genomic and proteomic levels.77 We observed a 1.8-fold upregulation in the soluble profile of 

MSI2. This protein was recently shown to be upregulated in non-small cell lung cancer, and to 

support metastasis by promoting epithelial–mesenchymal transition (EMT) through transforming 

growth factor beta (TGF-β) signalling and tight junction proteins.78 Activation of EMT has been 



suggested to be a driver of progressive fibrosis and remodelling in the airway epithelium in 

smokers, but further research is needed to elucidate this relationship.79, 80 A transcriptome-wide 

study identified 7,378 distinct gene targets regulated by MSI2 post-transcriptionally, with roles in 

cell death or survival, DNA repair and replication.74 Small interfering RNA knockdown of MSI2 

demonstrated its regulation of several signalling pathways including epidermal growth factor 

(EGF), EIF2, hepatocyte growth factor (HGF) and interleukin-6. Both EGF and HGF are 

regulators of ERK/MAPK, JAK/STAT and P13K/AKT pathways, all orchestrators of 

inflammation.81-83 We propose that the marked upregulation of MSI2 at 8-weeks is indicative of 

its role in inducing clinical features of COPD through the repression of TBX-1 that drives cellular 

senescence, the modulation of EMT via TGF-β signalling and the regulation of inflammatory 

pathways via EGF and HGF signalling. Further mechanistic investigations focused on MSI2 are 

warranted to elucidate its role in COPD pathogenesis. 

In response to injury of resident lung cells DAMPs are released that mediate inflammatory and 

immune responses to damaged tissue.84-86 DAMPs are of emerging interest in understanding 

COPD pathogenesis,86 since they are potential drivers of innate and adaptive immune responses,87 

but are also strongly implicated in promoting features of ageing.88 S100 family members have been 

extensively characterized as DAMPs, with regulatory roles in cell cycle and pro-inflammatory 

activity.88 S100A8, S100A9 and S100A12 activate pattern recognition receptors such as Toll-like 

receptor (TLR)4 and receptor for advanced glycation end-products (RAGE), both driving the 

activation of nuclear factor-kappaB (NF-ĸB) signalling,87 which correlate with airflow limitation 

and COPD.31, 89 Upregulation of these factors have been reported in the airways of serve asthma 

patients,90 shown to induce mucin-5AC production91, and in bronchoalveolar fluid of COPD 

patients.92 Extracellular S100A1 is internalized via caveolin‐ and clathrin‐independent fluid 



endocytosis, where it can bind to intracellular TLR4, initiating the formation of a signalling 

complex of S100A1-TLR4 with the TLR adaptor myeloid differentiation primary response gene-

88 (MyD88).93 This in turn leads to the activation of MAPK and NF‐κB pathways, known drivers 

of inflammation. Previous research from our group has revealed a phenotype of attenuated airway 

fibrosis and demonstrated a marked reduction in apoptosis, emphysema-like alveolar enlargement, 

and impaired lung function in Tlr4-deficient mice.31 In the present study we show 2.5 and 0.84 

fold increased expression of S100A1 in soluble and membrane-enriched lung profiles, 

respectively, after 8-weeks of CS exposure. This is coupled with significant enrichment in the IPA 

analysis of ANOVA significant proteins of canonical pathways involved in caveolar- and clathrin-

mediated endocytosis at the same timepoint. TLR signalling is also listed amongst the canonical 

pathway enrichment, and MyD88 was detected in our membrane-enriched profile. Further, our 

data indicate that the activation of NF-ĸB is likely due to abundance changes in 35 known targets 

(z-score: 1.86) at the 8-week timepoint. In accordance with these findings, previous lung 

transcriptomic investigation looking five different mouse strains of CS-induced experimental 

COPD support the active role TLR4 and NF-ĸB signalling.94 Moreover, of the 39 transcripts 

identified in these signalling pathways,94 12 are present transiently in our proteomic inventory (see 

Table S6 in the Supporting Information). Additionally, IPA identified elevated ERK/MAPK 

signalling with increases in 61 proteins linked to this growth and proliferative signalling pathway 

detected.  

More generally, IPA analysis revealed a significant enrichment in necrosis at every timepoint 

(Fig. 4, B and D). S100A1 is also known to interact with RAGE leading to the activation of NF-

ĸB and MAPK signalling pathways.95 Interestingly, RAGE-deficient mice are protected from CS-

induced airway inflammation.96 Given these data, we propose that S100A1 is an important DAMP 



in CS-induced experimental COPD, leading to the activation of NF-ĸB and MAPK pathways, 

which in turn contribute to pulmonary inflammation. We have additionally shown S100A1 is 

expressed in severe COPD patients (Fig. 5, E). These data point to S100A1 as a potential 

therapeutic target upstream of TLR4 and RAGE, which may be targeted to inhibit the progressive 

features of severe COPD. 

The correlation and validation of HRNRPC, MSI2 and S100A1 in clinical human COPD 

samples highlights their potential roles in the pathogenesis of COPD, and reinforces the clinical 

relevance of the proteomic profiles detected in our mouse model. Future studies will strengthen 

our observations by assessing the levels of these factors in the lung tissues of COPD patients with 

different levels of severity using immunohistochemistry. Importantly, our laboratory has 

consistently demonstrated that the inhalational exposure of mice to 8-weeks of CS recapitulates 

the hallmark features of human COPD.2, 4, 26-28, 30-32, 86, 97 To our knowledge this study represents 

the most comprehensive CS-induced COPD pulmonary proteome to date. It will serve as an 

important resource that can be further mined to explore the progressive alterations in the proteome 

of whole lung tissue. Our mouse model provides unique opportunities to further investigate these 

candidates mechanistically for the improved understanding of the pathogenesis and therapeutically 

validate these mediators to develop new treatments and biomarkers for COPD. Future functional 

studies investigating HRNRPC, MSI2 and S100A1, are needed to elucidate their functional roles 

in COPD. They may also be relevant to COPD-associated lung cancer.98 
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TABLE 1. Clinical characteristics of study subjects   
 Targeted Proteomic Analysis 

 
Healthy Controls 

(n=6) 
Healthy Smokers 

(n=6) 
Mild COPD 

(n=6) 
Severe COPD 

(n=6) 
Age (years), mean (SD) 55.5 (9.6) 64.2 (10.1) 69.0 (8.4) 76.7 (8.5) 
Male (n) : Female (n) 2 : 4 4 : 2 4 : 2 5 : 1 
FEV1 (%), mean (SD) 97.3 (11.6) 98.2 (13.7) 66.7 (9.0) 40.5 (11.1) 
Frequent acute exacerbations N/A N/A < 2 ≥ 2 
CAT Score, mean (SD) N/A N/A 9.6 (4.3) 16.5 (5.6) 
GOLD Stage N/A N/A 1-2 3-4 
CAT, COPD assessment test; FEV1, Forced expiratory volume in one second; GOLD, Global initiative for 
obstructive lung disease 
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TABLE 2. Proteomic profiling summary    

 #Proteins 

Timepoint  
Total IDs 

Unique peptides ≥ 2 
≥ 1.5 Fold change 

t-test p ≤0.05 
≤0.667 Fold change 

t-test p ≤0.05 
Unique Protein 

IDs Overlap 
Unique Protein IDs 

Time course 

4-week Membrane 4,628 2 3 5,503 

6,220 

4-week Soluble 4,715 7 6 
6-week Membrane 4,391 8 1 4,781 6-week Soluble 3,387 6 1 
8-week Membrane 4,877 162 2 5,235 8-week Soluble 3,600 102 3 
12-week Membrane 3,379 3 11 4,913 12-week Soluble 4,543 11 2 
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FIG 1. Cigarette smoke (CS)-induced experimental COPD. Mice were exposed to CS for 4-, 6-, 

8-, and 12-weeks inducing hallmark features of human COPD; A, reduced weight gain; B, reduced 

total lung capacity, C, increased macrophages (M), neutrophils (N) and lymphocytes (L) in 

broncho-alveolar lavage fluid; D-E, emphysema-like alveolar enlargement (scale bar=100 μm). 

Data are means±standard error the mean of 4-6 mice/group, **P≤0.01, ***P≤0.001, 

****P≤0.0001 compared to other groups indicated. 

 

FIG 2. Quantitative proteomic profiling of cigarette smoke (CS)-induced experimental COPD. A, 

Mice were exposed to CS for 4-, 6-, 8-, and 12-weeks to induce the hallmark features of human 

COPD; B, Extracted lung tissue was homogenized and fractionated into membrane and soluble 

proteins. C, iTRAQ 8plex labelled samples were mixed 1:1, and D, proteomes were enriched and 

analysed on a liquid chromatography-tandem mass spectrometer. E, Bioinformatics analysis tools, 

Proteome Discoverer, Perseus and Ingenuity Pathway Analysis were used to characterize the 

pulmonary proteome. Partially created with Biorender.com  

 

FIG 3. Quantitative proteomic profiling of cigarette smoke (CS)-induced experimental COPD. A, 

Principal component analysis (PCA) of separated protein populations according to timepoint; 4- 

(blue circles), 6- (turquoise squares), 8- (orange diamonds), and 12- (red triangles) weeks of 

cigarette smoke-exposure. B, Venn diagrams depict the intersects of membrane-enriched and 
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soluble datasets at different timepoints. C, Volcano plots of each timepoint and fractionation. 

Dotted lines denote cut-offs of fold change ± 1.5 (x-axis) and student t-test significance ≤0.05 (y-

axis) D, PCA separates protein populations based on fractionation, membrane-enriched (gold 

squares) and soluble (green circles) fractions at each timepoint.  

 

FIG 4. Protein pathways, networks and functions influenced by cigarette smoke (CS). Hierarchical 

clustering analysis of ANOVA significant (FDR<0.05) protein expression levels (CS/Control; 

log2) of A, membrane enriched and B, soluble populations. Clustering identifies unique clusters 

with the top five significant canonical pathways and molecular functions listed. C and D, 

Hierarchical clustering of activity scores of upstream regulators and downstream biological 

functions.  

 

FIG 5. Validation and translation of comparative and quantitative proteomics in experimental and 

human COPD tissue. A, Immunohistochemical sections of HNRNPC, MSI2 and S100A1 in mouse 

lung tissue slices (n=6) and B, quantified fold changes (cigarette smoke (CS)/Control; log2) after 

8-weeks of chronic CS-exposure; t-test with post-hoc Welch’s test *P≤0.05, **P≤0.01. C, 

Targeted parallel reaction monitoring (PRM) validation in clinical COPD samples of hnRNP 

C1/C2 D, Proteomic iTRAQ fold changes of targets after 8-weeks of chronic CS-exposure in 

experimental COPD. E, PRM validation MSI2 and S100A1 in clinical COPD samples; One-way 

ANOVA **P≤0.01 
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