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Data accessibility1

All input data required to repeat this work will be made available and receive a per-2

manent DOI through FigShare upon publication. An R package containing the model3

source code is available on GitHub (kapitzas/flutes). All code for data preprocessing4

and analysis is also provided through a GitHub repository (kapitzas/frac_lumodel).5

Both repositories will be receive permanent DOI through Zenodo upon publication.6

Highlights7

• A model to predict fine-resolution fractional land use change, based on future8

land use demands.9

• Development version implemented as R package, making the model accessible to10

R-trained users.11

• Validation shows high prediction accuracy in Amazon basin, but the model can12

be fitted anywhere to predict future land use change.13

Abstract14

By mapping land use under projections of socio-economic change, ecological changes can15

be predicted to inform conservation decision-making. We present a land use model that16

enables the fine-scale mapping of land use change under future scenarios. Its predictions17

can be used as input to virtually all existing spatially-explicit ecological models. Our18

model maps the fractional cover of land use within each grid cell, providing higher19

information content than discrete classes at the same spatial resolution. The method20

accurately reproduced land use patterns observed in the Amazon, both in terms of21

the allocated fractional amounts and also the direction of predicted land use changes.22

A small case study showcases the application of our model to reproduce patterns of23

agricultural expansion and natural habitat declines. The model source code is provided24

as an open-source R package, making this new method available to bridge the gap25



between socio-economic, land use and biodiversity modelling.26

Keywords: Land use forecasting, fractional land cover, continuous fields, agricultural27

expansion, socio-economic change, biodiversity conservation.28



1 Introduction29

1.1 Accounting for land use change in biodiversity assessments30

Land use change is a key driver of global environmental change, causing global declines31

in biodiversity, species extinctions and resulting in the deterioration of ecosystem ser-32

vices (Foley, 2005; IPBES, 2019). There is mounting evidence of adverse impacts of33

land use change on biodiversity. The need for global assessments of future biodiversity34

change in response to land use change has been increasingly acknowledged (Urban et al.,35

2016; Kim et al., 2018; Powers and Jetz, 2019). However, work concerned with under-36

standing future biodiversity change tends to focus on climate change (Titeux et al., 2016;37

Struebig et al., 2015; Urban et al., 2016), or other aggregated effects of socio-economic38

change, such as forest loss (Pérez-Vega, 2012; Margono et al., 2014) and urban expan-39

sion (Seto et al., 2012). This is despite the fact that land use change is highly driven40

by dynamic bio-physical and socio-economic processes (Lambin et al., 2011). Climate41

change will likely result in global shifts and declines of land suitable for agricultural42

production, with projected depletion of land reserves in the first half of the 21st century43

(Lambin et al., 2011). Food production and international trade of goods will signifi-44

cantly increase (O’Neill et al., 2014, 2017) and even under lowest impact scenarios crop45

and livestock production are still likely to be higher and occupy a larger land area than46

they do today (O’Neill et al., 2014).47

Consequently, future predictions of biodiversity change will benefit from explicit ac-48

counting of the drivers and effects of land use change at the level of individual types49

of use. Detailed, large-scale maps of future land use under competing future scenar-50

ios provide useful insights for researchers and policy makers, particularly in terms of51

informing conservation planning and preventing future biodiversity loss.52



1.2 Overview of land use modelling approaches53

Different modelling approaches have been developed to determine the overall amount54

of future land use and allocate changes across the landscape. Artificial neural networks55

and markov chain models learn and infer total amounts and spatial patterns of land56

use change from historic time series (Tayyebi and Pijanowski, 2014; Pijanowski et al.,57

2002). Markov chain models have been frequently combined with cellular automata58

(CA-Markov models, see Hyandye and Martz, 2017; Aburas et al., 2017; van Schrojen-59

stein Lantman et al., 2011). In cellular automata the transition probability of a cell to60

another land use depends on its current state and the state of neighbouring cells, both of61

which are the result of historic changes (van Schrojenstein Lantman et al., 2011). Cellu-62

lar automata have been used successfully to simulate strongly auto-correlated changes,63

such urban sprawl (Verburg et al., 2004b; Fang et al., 2005; Shafizadeh Moghadam and64

Helbich, 2013; Sun et al., 2007).65

Many modelling approaches apply regression analysis and other techniques to identify66

associations between various environmental conditions and observed land use patterns67

(van Schrojenstein Lantman et al., 2011; Lambin et al., 2000; Verburg et al., 2004b).68

Available models applying this approach include SLEUTH (Slope, Land Use, Exclusion,69

Urban, Transportation, Hillshade, Dietzel and Clarke, 2007), Dinamica EGO (Environ-70

ment for Geoprocessing Objects, Soares-Filho et al., 2009), LCM in TerrSet (Land71

Change Modeler, Eastman and Toledano, 2018) and, perhaps most prominently, the72

CLUE model series (Conversion of Land Use and its Effects, Verburg and Overmars,73

2009) (Table 1). CLUE models have found application in the prediction of spatially-74

explicit patterns of land use at national and continental scales (Veldkamp and Fresco,75

1996; Verburg and Overmars, 2009; Verburg et al., 1999, 2002; Kapitza et al., 2021).76

Exogenously determined future changes in area demands for different land uses, often77



predicted by an economic model (Aguiar et al., 2016), may be downscaled by estab-78

lishing statistical relationships between observed land use and a set of socio-economic79

and bio-physical drivers of land use and land use change. Predicted land use suitability80

surfaces inform local competition for different land uses (Verburg et al., 2002; Meiyap-81

pan et al., 2014). Models can be further parametrized by including transition rules82

at local (cell) and landscape levels and constraints on overall turn-over through time.83

More simplistic models based on statistical analysis use an ordered allocation algorithm,84

in which competition between land uses is handled by ordering allocations in terms of85

perceived socio-economic value (Fuchs et al., 2013).86

Land use change allocation algorithms are agnostic to the type of statistical analysis87

conducted to estimate land use suitability surfaces. Nevertheless, most models apply88

binary logistic regression to model the cell-wise probabilities of occurrence for each land89

use category, independent of the probabilities of other land uses. The resulting prob-90

ability of land use occurrence at a site produced by separate models is an incomplete91

representation of the underlying structure of land use probability, because it omits that92

occurrence probabilities are dependent between land use types, and that the probabil-93

ities of all discrete classes must sum to one. For example, when a site has very high94

probability for urban land use, this implies relatively low probabilities for primary nat-95

ural habitat, which separate, independent logistic regressions do not fully capture. One96

step toward explicitly modelling competition between land uses is to apply multino-97

mial regression, thus allowing for the prediction of conditional binary probabilities of98

multiple classes (Noszczyk, 2019).99



1.3 Continuous land use fractions100

Categorical land use data sets are increasingly available at spatial resolutions of finer101

than 1km. Three prominent examples include the CORINE (Coordination of Informa-102

tion on the Environment) Land Cover inventory (Bossard et al., 2000), which contains103

several time steps between 1990 and 2018 at 100m resolution for the European con-104

tinent, global land cover maps produced for the year 2010 through Copernicus Land105

Monitoring Service (European Union, 2019) at the same resolution, as well as global106

maps of land cover in annual time steps between 1992 and 2018, produced under the Eu-107

ropean Space Agency’s (ESA) Climate Change Initiative Land Cover (CCI-LC) project108

(European Space Agency, 2019), available at 300m resolution. However, the spatial109

variables that represent drivers of land use and biodiversity change are often not avail-110

able over large spatial extents at fine resolutions better than 1km (Dendoncker et al.,111

2006). Therefore, it is necessary to resample finely resolved land use data to match112

the coarser resolution of driver covariates. Lowering the resolution has the additional113

advantage of improving computational efficiency due to the smaller number of pixels114

in the coarser map. Resampling fine-resolution maps by assigning a single category of115

land use on each coarser pixel effectively eliminates sub-pixel information on land use116

(Seo et al., 2016), so this approach is not desirable (Fig. 1). In order to maximise the117

retained information contained in the coarser map, it is preferable to calculate the frac-118

tions of land use covering each new pixel, producing continuous fields of information119

and keeping information at sub-pixel level (Seo et al., 2016) (Fig. 1).120

The higher information content retained in fractional land use representations has high121

utility in ecological modelling. For example, many species may be able to persist in122

an area if only a small proportion of the area is made up of a suitable land class, such123

as remnant vegetation (Wintle et al., 2019). Many wide-ranging species may persist in124



landscapes if a certain proportion of the landscape is comprised of old forest. It has been125

shown that continuous fields of land use allow better estimation of biomass and biomass126

change (Xian et al., 2015) and are better able to explain variation in home range sizes127

(Bevanda et al., 2014) than categorical land use data. Continental-scale biodiversity128

assessments have shown that patterns are associated with high spatial-resolution frac-129

tional land use measures such as the regional aggregation of land use types, land cover130

diversity and land use covariates including land use intensity (Mouchet et al., 2015)131

and actual evapo-transpiration (Mouchet et al., 2015; Whittaker et al., 2006). Creating132

maps of some of these covariates requires fine-scale maps of fractional land use as princi-133

pal input (Plutzar et al., 2016). The intensification of agriculture and forest harvesting134

are crucial factors shaping biodiversity (Levers et al., 2014, 2016) that require inputs135

of crop type and vegetation composition within each spatial unit. These ecological136

considerations of the utility of fractional land cover and land use representations are137

underpinned by recent advancements in algorithms to produce high resolution maps138

of fractional land cover from satellite data (Allred et al., 2021; Hill and Guerschman,139

2020).140

However, only few land use modelling approaches are capable of predicting continuous141

fractions of land use directly (see Hasegawa et al., 2017; Meiyappan et al., 2014), by142

providing fine-resolution categorical representations that can be resampled to coarser-143

resolution continuous representations (see Future Land Use Simulation Model (FLUS),144

Liu et al., 2017) or as part of integrated assessment frameworks (see CLIMSAVE Inte-145

grated Assessment Platform (CLIMSAVE IA), Harrison et al., 2013). However, some of146

these documented approaches are not available in a usable package suited to regional-147

continental scale (Hasegawa et al., 2017; Meiyappan et al., 2014), or provide user inter-148

faces that do not allow seamless, reproducible integration into programmatic workflows149

(Harrison et al., 2013; Liu et al., 2017) (Table 1).150
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Figure 1: Illustration of methods to reduce the resolution of fine-resolution land use data. The original
categorical land use grid (a) is resampled to a coarser resolution by assigning the class occupying the
largest fraction in the new cell (b), effectively eliminating sub-pixel information. c) More information
on a continuous scale is retained when resampling the data to a fractional representation at the coarseer
resolution.

1.4 Objectives of this paper151

Our new land use model FLUTES (Fractional Land Use Transitions in Ecological Sys-152

tems) provides a readily available means to incorporate fractional land use change153

into ecological modelling. An advantage of FLUTES compared to existing fractional154

land use modelling approaches is its implementation in R (R Development Core Team,155

2008), making use of a development environment for which high expertise already ex-156

ists among ecological modellers. FLUTES can be fitted at different scales with minimal157

parametrization requirements and performs efficiently at various resolutions and extents.158

The source code for our method is freely available as a small open source R package159

hosted on GitHub (kapitzas/flutes). As such, our approach contributes a new open160

method toward bridging the gap between socio-economic, land use and biodiversity161

modelling.162

We provide a mathematical description of the developed fractional land use model163

and evaluate FLUTES according to its ability to correctly estimate the direction and164



intensity of observed land use changes using a case study in the Brazilian Amazon.165

Table 1: Comparison of land-use modelling approaches. Compared models were chosen based on their
perceived feasibility in ecological research conducted by researchers with limited expertise in land-use
modelling.

model resolution response interface source license reference
FLUS flexible categorical GUI C++ freeware,

open source
Liu et al.
(2017)

Dyna-CLUE flexible categorical GUI, R C++ freeware,
open source

Verburg and
Overmars
(2009)

Dinamica EGO flexible categorical GUI C++, Java freeware,
closed source

Soares-Filho
et al. (2009)

CLUMondo flexible categorical GUI C++ freeware,
open source

Van Asselen
and Verburg
(2013)

SLEUTH flexible categorical GUI C freeware,
open source

Dietzel and
Clarke (2007)

LCM in TerrSet flexible categorical GUI n/a limited Eastman and
Toledano
(2018)

CLIMSAVE IA flexible continuous GUI various (DLL) freeware,
closed source

Harrison
et al. (2013)

FLUTES flexible continuous R R freeware,
open source

2 Materials and methods166

2.1 Model description167

The model consists of two main components (Fig. 2). First, statistical analysis is used168

to determine how the suitability of the landscape for different land uses relates to a set169

of environmental drivers of land use change, producing a suitability surface for each170

land use class (Fig. 2a). Second, fractional changes in additional land use demands171

are allocated iteratively in the landscape, scaling with the land use suitability surfaces172

(Fig. 2b). We utilize a cellular automaton to introduce cell-level allocation decisions173

that constrain the location and direction of land use changes according to three rules.174
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Figure 2: ”Conceptual diagram of land use modelling approach. a) Land use suitability model. Ob-
served fractions of land use are first converted to integer counts through multinomial draws and their
relationship with environmental drivers and neighbourhood covariates (derived from previous time
step’s land-use distribution) is quantified. b) Allocation algorithm. First, it is estimated by how much
each cell has to change to achieve the modelled ideal distribution of land uses. Change factors are then
converted to relative suitabilities that serve to distribute land use supply required to satisfy the addi-
tional demand in the landscape. Multinomial draws ensure that each cell’s land use class probabilities
sum to 1. The resulting difference of the current supply and the total additional demand is recalculated
to support allocation in the next iteration. The cycle repeats until the difference between the current
supply and total additional demand is very close to zero, meaning that all additional demand has
been allocated. At this point, the integer counts representing the land use fractions on each cell are
converted back to fractional representation. The new fractions are used to calculate neighbourhood
covariates in the next time step.”

First, future land use supply must meet additional demand. Projections of land use175

demands may be provided through external models, such as Computational General176

Equilibrium (CGE) models (i.e. GTAP, Aguiar et al. (2016)), or through the analysis177

and extrapolation of historic patterns (Moulds et al., 2015). The model allocates addi-178

tional demand by adding cell-level supply of that time step 𝑑𝑖,𝑘,𝑡+1 in cell 𝑖, land use 𝑘179

and time step 𝑡 + 1 to the fractions of the current time step 𝑞𝑖,𝑘,𝑡 (Fig. 2b). The first180

model objective can be formulated:181



𝑁
∑
𝑖=1

𝑞𝑖,𝑘,𝑡+1 =
𝑁

∑
𝑖=1

(𝑞𝑖,𝑘,𝑡 + 𝑑𝑖,𝑘,𝑡+1)

𝑁
∑
𝑖=1

𝑑𝑖,𝑘,𝑡+1 = 𝐷𝑘,𝑡+1

𝐷𝑘,𝑡+1 is the additional landscape-wide supply and is at equilibrium with additional182

demand after the algorithm converges.183

Second, supply of all land-use types in a cell 𝑑𝑖,𝑘,𝑡+1 is allocated across cells so it adds184

up to one (∑𝐾
𝑘=1 𝑞𝑖,𝑘,𝑡+1 = 1) (Fig. 2b).185

Third, cell-level supply 𝑑𝑖,𝑘,𝑡+1 has to be distributed in such a way that the allo-186

cated amounts in each cell scale with a predicted probability surface 𝑠, by modelling187

𝑞𝑖,𝑘,𝑡=0 ≈ 𝑠𝑖,𝑘 = 𝑓𝑘(Xi), where 𝑋𝑖 is a set of demographic and bio-physical drivers re-188

lated to land use. 𝑓𝑘 is a multinomial, multi-response model (Fig. 2a). The parameter189

estimation of this model is based on the first time step and predicted to the conditions190

of subsequent time steps. Accordingly, while the model assumes stationarity of the191

modelled statistical relationships, it implements temporal dynamics based on changing192

demand and changing environmental conditions. Changing environmental conditions193

are represented as changes to independent model variables.194

The land use status in a cell’s neighbourhood has been shown to play an important195

role in determining a cell’s land use (Dendoncker et al., 2007; Mustafa et al., 2018; van196

Vliet et al., 2013; Verburg et al., 2004a). Our suitability model applies neighbourhood197

interactions by calculating autocovariates (Verburg et al., 2004a) and including these198

in the multinomial regression of the land use suitability model. Following Verburg199

et al. (2004a), our autocovariates measure the amount of clustering of land uses in a200

user-defined cell neighbourhood when compared to the entire landscape. We calculate201

autocovariates as enrichment factors 𝐹𝑑,𝑖,𝑘,𝑡 = ∑𝑖∈𝑑(𝑞𝑖,𝑘,𝑡)/𝑁𝑑
∑𝑁

𝑖=1(𝑞𝑖,𝑘,𝑡)/𝑁 . The numerator is the202



average fraction of land use 𝑘 in the neighbourhood 𝑑 of each central cell 𝑖 and the203

denominator is the average fraction of land use 𝑘 in the entire landscape 𝑁 . Here,204

we only included neighbourhood characteristics in the 3𝑥3 neighbourhood around each205

central cell, but other neighbourhoods are possible (Verburg et al., 2004a). When206

predicting suitability at each time step, the autocovariates are recalculated based on207

the assigned fractions from the previous timestep.208

Our response variable is a fractional land use value, not discrete classes normally re-209

quired in multinomial regression. Therefore, we assume that underlying the land use210

fractions for each cell is a vector of counts 𝑐𝑖,𝑘,𝑡 that sums to a total number of counts 𝐶211

in each cell (e.g. 𝐶 = 1𝑒6). We derive these counts through 𝑐𝑖,𝑘,𝑡 ≈ 𝑞𝑖,𝑘,𝑡 ∗𝐶. In integer212

representation, the data are approximately proportional to the original fractions. When213

fitting the suitability model, parameter uncertainty depends on the assumption of 𝐶.214

𝐶 should be chosen to be small enough for fast model convergence and large enough to215

represent the degree of numerical precision in the observed fractions. For example, if216

there are only 2 decimal places, setting 𝐶 = 100 results in counts that represent all of217

the information contained in the original fractions. Accordingly, the multinomial logit218

model takes the form219

𝑠𝑖,𝑘,𝑡 = 𝑃(𝑌𝑖 = 𝑘) = 𝑒𝛽𝑘∗𝑋𝑖,𝑡+𝛾𝑑,𝑘∗𝐹𝑑,𝑖,𝑘,𝑡

∑𝑘
𝑘=1 𝑒𝛽𝑘∗𝑋𝑖,𝑡+𝛾𝑑,𝑘∗𝐹𝑑,𝑖,𝑘,𝑡

where 𝑘 is the reference land use class, 𝛽𝑘 the estimated parameters in each class220

for covariates 𝑋𝑖,𝑡 and 𝛾𝑑,𝑘 the estimated parameters for autocovariates 𝐹𝑑,𝑖,𝑘,𝑡. We221

estimated parameters using R’s ‘nnet’ package (Venables and Ripley, 2002). Predicted222

fractions satisfy ∑𝐾
𝑘=1 𝑠𝑖,𝑘,𝑡 = 1.223

All software development and model validation was conducted in R (version 4.0.1) (R224



Development Core Team, 2008).225

2.2 Data226

We developed and tested FLUTES using land use and environmental data from the227

Amazon basin. We downloaded 7 time steps (1992, 1997, 2003, 2008, 2013, 2015 and228

2018) of the global land cover map provided through the European Space Agency’s Cli-229

mate Change Initiative Land Cover (CCI-LC) project (European Space Agency, 2019).230

These data are available at a grid resolution of 300m. We combined the recorded 31231

land cover classes to 9 new classes of land use we deemed crucial to identify processes232

leading to agricultural expansion and declines in habitat (Table 2). We aggregated the233

resolution 10km2 squares, calculating fractions of land use from the cell counts of each234

land use class on the original map present in each new cell. Fractional land use in 𝐾235

classes is mapped over 𝑁 raster cells, with fractions 𝑞𝑖,𝑘,𝑡 in cell 𝑖 in each land use class236

𝑘 always satisfying 0 ⩽ 𝑞𝑖,𝑘,𝑡 ⩽ 1 and ∑𝐾
𝑘=1 𝑞𝑖,𝑘,𝑡 = 1.237

Table 2: Mapping of original land use classes to new classes applied in this study

New class Abbr. CCI-LC class Description
1 Cropland Cro 10, 11, 12, 20, 30 Rainfed and irrigated cropland, mosaic cropland with

>50% cropland and natural vegetation (tree, shrub,
grass)

2 Cropland
mosaic

CrM 40 Mosaic cropland with <50% cropland and natural vege-
tation (tree, shrub, grass)

3 Forest For 50, 60-62, 70, 80, 90,
100, 160, 170

Forest, closed to open, with >15% canopy cover, Mosaic
tree/shrub (>50%) / herbacious cover, Flooded tree
cover

4 Grassland Gra 110, 130 Grassland and mosaic herbacious cover (>50%) /
tree/shrub

5 Shrubland Shr 180 Closed to open and open shrubland
6 Wetland Wet 190 Flooded shrub or herbacious cover
7 Urban Urb 120 Settlement, Urban land uses
8 Other Oth 140, 150, 151-153,

200-202, 220
Lichen/mosses, sparse trees/shrubs/herbaceous vegeta-
tion, bare areas, snow/ice

9 Inland wa-
ter

Wat 210 Natural and artificial inland water bodies

We downloaded a set of spatially explicit climate, topographic soil and human covariates238



(Table 3 for a full list of covariates), derived neighbourhood covariates from observed239

land use in the first time step and estimated observed demand change by calculating240

the landscape-wide mean fraction for each land use class in each observed time step.241

All explanatory covariates were standardized to have mean 0 and standard deviation 1.242

We removed covariates from correlated pairs (Spearman’s rank correlation coefficient243

> 0.7), always retaining the covariate with the smaller average correlation with all244

other covariates in order to maximise the amount of independent information in the245

final data set used for fitting.246

2.3 Model constraints247

Analysing time series data, we determined that only very small percentages of cells248

change from being devoid of a particular land use to containing that land use within249

one time step (Table 4). To control unrealistic dispersal of land uses into areas where250

they have not previously existed, we added a user-defined constraint that land use251

increases are more likely to be applied to cells where the land use is already present.252

The constraint parameter was the percentage of cells in which a non-existent land use253

was newly established between time steps. For example, setting the constraint to 100%254

would allow increases of a land use in all cells that did not contain that land use in the255

previous time step.256

We parametrized the constraint by determining on how many cells (expressed as a257

percentage) we could observe the new establishment of a land use from one time step258

to the next (Table 4). To account for annual variation, we calculated the mean of these259

percentages for each land use throughout the entire observed time series. For example,260

throughout the simulation, we allowed Cro increases in 1.35% of the cells in which Cro261

was not present in the preceding time step (Table 4). We selected those cells for new262



Table 3: List of covariates that were included in land use suitability model

Type Covariate name Source
climate Annual mean temperature Fick and Hijmans (2017)

Mean diurnal range
Isothermality
Temperature seasonality
Max. temperature of warmest month
Min. temperature of coldest month
Temperature annual range
Mean temperature of wettest quarter
Mean temperature of driest quarter
Mean temperature of warmest quarter
Mean temperature of coldest quarter
Annual precipitation
Precipitation of wettest week
Precipitation of driest week
Precipitation of driest month
Precipitation of wettest quarter
Precipitation of driest quarter
Precipitation of warmest quarter
Precipitation of coldest quarter

topographic Roughness Hijmans et al. (2005)
Slope
Elevation
Distance to coast Wessel and Smith (1996)
Distance to lake

soil Nitrogen Content Global Soil Data Task Group (2000)
Available Water Content
Carbon Density
Bulk Density

human Distance to built-up areas FAO (1997)
Distance to highways CIESIN (2013)
Distance to private roads
Distance to trails
Protected areas IUCN and UNEP-WCMC (2014)



establishment of a land use that had the highest predicted suitability for that land use263

(see Appendix B for more information on this constraint).264

We masked category I and II protected areas established up until 1992 from land use265

changes as has been shown previously (see Fig. 3 for a map of protected areas) (Verburg266

et al., 2002; IUCN and UNEP-WCMC, 2014; Kapitza et al., 2021). To reflect the high267

initial investment of urban infrastructure, we did not allow reductions in urban land268

(Verburg and Overmars, 2009).269

Table 4: Share of cells (%) containing a land use
that were completely devoid of that land use in the
preceding time step. Values derived from observed
time series.

Land use 1996 2001 2006 2011 2016 2018 mean
Cro 1.75 1.66 4.49 0.08 0.06 0.07 1.35
CrM 2.39 2.37 7.24 0.05 0.03 0.05 2.02
For 0 0 0 0 0 0 0
Gra 0.40 0.62 0.94 0.15 0.04 0.04 0.37
Shr 0.62 0.90 1.44 0.15 0.07 0.06 0.54
Wet 0.62 0.68 2.60 0.26 0.13 0.11 0.73
Urb 0.36 0.61 1.12 0.16 0.28 0.02 0.43
Oth 0.02 0.06 0.12 0.05 0.02 0.01 0.05
Wat 0.81 0.35 1.19 0.02 0.01 0.01 0.40

2.4 Validating the intensity and direction of predicted changes270

First, we examined the accuracy of the multinomial suitability model and how it is271

affected by spatial resolution and the included covariates. To account for spatial au-272

tocorrelation in the environmental covariates and land use time series, we conducted273

spatial-blocks cross-validation (Valavi et al., 2019) by separating the landscape into 9274

equal-sized spatial blocks. We fitted models using data from 8 of the 9 blocks and275

predicted the model to the withheld block, until predictions were made for the en-276

tire study area. We cross-validated suitability models at 1km and 10km, including277

1) only environmental covariates, 2) only neighbourhood covariates and 3) both co-278



variate types combined. For each of the three models we measured predictive perfor-279

mance by estimating cell-level suitability Root Mean Squared Error (RMSEsuit) between280

the predicted suitability surfaces 𝑠𝑚,𝑖,𝑘,𝑡 and the observed fractions 𝑜𝑖,𝑘,𝑡, following281

𝑅𝑀𝑆𝐸𝑠𝑢𝑖𝑡,𝑚,𝑖,𝑡 = √ 1
𝐾 ∑𝐾

𝑘=1(𝑜𝑖,𝑘,𝑡 − 𝑠𝑚,𝑖,𝑘,𝑡)2 for each suitability model 𝑚.282

Second, to validate the intensity of changes predicted by the allocation algorithm, we283

assessed the accuracy of predictions of cell-level fractions under competing models pre-284

dicted throughout the observed time series. 1) Under the null model, we assumed no285

change of land use through time. The null model served as reference to measure the im-286

provements provided by each additional model component. 2) Under the naive model287

we only allocated additional demands, but scaled cell-level allocations with the average288

supply observed across the entire landscape. This model assumes that suitability is not289

informative about where a change will happen and that allocations are equally likely to290

be anywhere in the landscape. 3) Under the semi-naive model, cell-level allocations291

were additionally scaled with the predicted suitability surfaces 𝑠𝑖,𝑘,𝑡 (as illustrated in292

Fig. 2). 4) Under the full model, allocations were scaled with suitability surfaces 𝑠𝑖,𝑘,𝑡293

and all constraints (constraining most increases to cells where land use type already294

exists and masking protected areas from changes) were applied.295

We calculated RMSEalloc under each allocation model 𝑤 to estimate how well296

the different model components simulated each cell-level vector of land use297

fractions 𝑞𝑚,𝑖,𝑘,𝑡 compared to the respective observed vectors 𝑜𝑖,𝑘,𝑡, following298

𝑅𝑀𝑆𝐸𝑎𝑙𝑙𝑜𝑐,𝑤,𝑖,𝑡 = √ 1
𝐾 ∑𝐾

𝑘=1(𝑜𝑖,𝑘,𝑡 − 𝑞𝑤,𝑖,𝑘,𝑡)2.299

Due to the squared term, RMSE cannot inform on whether the models correctly iden-300

tified the direction of change. Therefore, we estimated and validated the direction of301

cell-level changes (decreases, no change, increases) separately. We mapped these tran-302

sitions for each class between the time steps of the observed time series and the time303



steps of the time series simulated under each model. We calculated overall difference304

of each pair of corresponding maps to obtain an interpretable measure of similarity of305

predicted and observed direction of changes (Pontius and Millones, 2011; Pontius and306

Santacruz, 2014). Achieving high accuracy in these first two model goals would suggest307

that simulated patterns of land use change closely resemble observed patterns.308

2.5 Case study: agricultural expansion in the Amazon Basin309

The Amazon catchment is largest river basin in the world and occupies over one third310

of the South American land mass (Fig. 3a). As the world’s most diverse tropical forest311

area, the basin hosts at least 10% of the world’s known species (Da Silva et al., 2005).312
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Figure 3: Overview of the study area. a) Location of the amazon catchment in South America (grey-
shaded area), including IUCN protected areas (categories I and II) which were used to constrain land
use changes (black shaded areas). b) Changes in selected land uses, derived from observed land use
maps. Pasture includes Gra and Shr, Cropping includes Cro and CrM and forest includes For. Beside
the bars are percentage cover in 1992 (top) and percentage cover in 2018 (bottom). Land use classes
are specified in Table 2.

The Amazon biome is threatened by a multitude of interacting factors. Ecosystem313

services, such as water supply, carbon storage and provision of species habitat are314



directly threatened by the effects of climate change and the increasing pressure on land,315

with projected severe reductions in water yields, carbon content and species habitat,316

which is particularly affected by changes in natural vegetation cover (Prüssmann et al.,317

2016). The primary uses for cleared forest land are pasture for cattle farming and318

industrial soy cropping (Nepstad et al., 2014; FAO, 2015). Between 1992 and 2018, the319

biome has seen significant increases in land required for cropping and pasture, as well320

as significant decreases in forest cover (Fig. 3b).321

Using a broad reclassification of the predicted and observed land use classes into crop-322

land, pasture and habitat, we were able to specifically validate FLUTES’s ability to323

predict agricultural expansion and habitat declines as aggregated threats to ecosystems324

and biodiversity. First, we determined areas of agricultural (pasture or cropland) ex-325

pansion with simultaneous declines in classes containing natural habitats (For, Wet and326

Oth). We categorized the observed and predicted maps into 1) areas with no cropland327

increase, 2) areas where cropland increase led to mostly forest declines (net replace-328

ment of forest), and 3) areas where cropland increase led to mostly declines in other329

natural habitat classes (net replacement of other habitat). Similarly, we categorized330

the landscape into 1) areas with no pasture increase, 2) areas where pasture increase331

led to mostly forest declines, and 3) areas where pasture increase led to mostly declines332

in other natural habitat classes. From the resulting reclassified time series we assessed333

the difference between the respective observed and predicted maps by overlaying them334

and identifying where no agricultural increase was observed and predicted (persistence335

predicted as persistence), where agricultural increase was correctly predicted and led336

to decreases in the correct habitat class, where agricultural increase was correctly pre-337

dicted but resulted in decreases in the incorrect habitat class, where no agricultural338

increase was observed, but agricultural increase was predicted, and where agricultural339

increase was observed, but not predicted (Pontius et al., 2011).340



3 Results341

3.1 Predicting land use change intensity342

Results of the cross-validation of the suitability model component show that including343

neighbourhood covariates resulted in substantial predictive performance improvements344

across spatial blocks at both resolutions (Fig. 4c, Fig. S1 for predicted suitability maps345

of all 9 land use classes); models using neighbourhood covariates alone were approxi-346

mately as good as the model using the full covariate set. Including only environmental347

variables resulted in less accurate predictions at both resolutions, with predictions under348

the fine resolution comparatively worse than under the coarse resolution.349
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Figure 4: Validation of predicted land use change intensity and direction of change and cross-validation
of suitability model. a) The difference between RMSE for each model (naive, semi-naive, full) and
RMSE of the null model. The null model assumes that land use is static through time, the naive model
assumes completely random allocations, the semi-naive model assumes that allocations are scaled with
land use suitability and the full model assumes that allocations are both scaled with land use suitability
and subject to model constraints (no changes in areas under high protection status and no land use
increases in areas completely devoid of that land use). All RMSE were calculated at cell-level, using
the predicted and observed vectors of land use fractions in each cell. Plotted are means across cells.
Positive values indicate better fits under the null model, negative values indicate better fit under more
highly parametrised models. Data on validation outcomes are grouped by the magnitude of the largest
observed proportional change in any land use within a cell. In general, the larger the observed change in
land use, the better the parameterized models did compared with the null model. b) The proportional
disagreement between predictions of the cell-level direction of change (no change, decrease, increase)
for each land use and the observed direction of change at each time step. Smaller values indicate
lower overall difference and higher similarity between corresponding maps. c) Difference between
cross-validated RMSE estimated for suitability models containing only environmental covariates and
only neighbourhood covariates and models containing both covariate types combined. Positive values
indicate a poorer fit than the model containing both covariate types.

Under all tested models (naive, semi-naive, full), the accuracy of cell-level allocations350

improved with the intensity of observed changes (Fig. 4a). This implies that FLUTES351



makes good predictions under scenarios with high expected overall changes.352

Where observed changes were large (Fig. 4a, bottom two panels), including land use353

suitability and constraints (full model) resulted in substantial increases of predictive354

performance. In these areas, the null model’s assumption of no spatial variation in355

reallocation of land use introduced very high bias, which our constraints were able to356

reduce.357

When observed changes were small (Fig. 4a, top two panels), the null model made358

near perfect predictions. Given how close the null model already was to the truth, im-359

provements by allocating demand (naive model) and accounting for land use suitability360

(semi-naive model) were difficult to achieve; in the smallest change category (Fig. 4a,361

top left panel), the naive and semi-naive predictions were in fact slightly worse than362

the null. In these areas the largest observed changes were below 0.5%, making the363

assumption of no change under the null model highly plausible. Under the full model,364

the applied constraint limited the areas that could be flagged for increases. Accord-365

ingly, where observed changes were small, this model made better predictions than the366

semi-naive and naive models, in which this constraint was not applied.367

3.2 Predicting the direction of land use changes368

The worst predictions of cell-level direction of change were made by the naive and369

semi-naive models and the best predictions under the full model (Fig. 4b), with overall370

difference consistently less than 25%. Predictions became more accurate the more model371

components were applied. Under the full model we achieved the highest prediction372

accuracy. Overall, the semi-naive model performed slightly better than the naive model,373

demonstrating the utility of scaling allocations with land use suitability surfaces.374



3.3 Predicting agricultural expansion and habitat declines375

FLUTES achieved high accuracy when predicting agricultural (cropland and pasture)376

expansion on forest and other land use types containing natural habitats (Fig. 5).377

In more than 80 % of cells FLUTES predicted correctly whether agricultural land378

(cropland or pasture) increased, or persisted at current levels or decreased, and which379

habitat type decreased due to increases in agricultural classes (Fig. 5b, d).380
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Figure 5: Validation of modelling agricultural expansion in cropland and pasture on forest and other
natural habitat types in the Amazon basin. (a, b) Spatial configuration of correct and erroneous
predictions of cropland in the last time step of the validation time series (2018) (a) and the relative size
of the landscape where predictions matched observations (correct) and where predictions deviated from
observations (error) in cropland (b). (c, d) Spatial configuration of correct and erroneous predictions of
pasture in the last time step of the validation time series (2018) (c) and the relative size of the landscape
where predictions matched observations (correct) and where predictions deviated from observations
(error) in pasture (d).

The percentage of the landscape in which we correctly predicted cropland increase at the381

expense of the correct habitat class increased through the time series, suggesting that382



FLUTES was good at identifying not only where cropland did not change or decreased383

(persistence), but also where it increased and on which habitat type that increase took384

place (Fig. 5b). FLUTES made some incorrect predictions of cropland increase in areas385

where no increase was observed in the southern tip and the central north of the study386

area, although these areas were very small compared to surrounding areas in which387

increases were correctly predicted and occurred on the appropriate habitat classes (Fig.388

5a). Perhaps the most severe type of error in terms of ecological considerations was the389

prediction of no cropland increase (persistence) in areas where increase was observed.390

However, these areas were small (increasing from 2.3% of the landscape at the beginning391

to 9.6% at the end of the time series).392

Pasture expansion (Fig. 5c, d) was much smaller than cropland expansion overall,393

with much larger areas of the basin correctly predicted as not increasing in pasture394

land (persistence) through time (Fig. 5d). Some small areas in the southern tip, the395

central north and along the western boundary of the basin were correctly predicted396

to increase in pasture land, with decreases in the appropriate natural habitat class.397

Pasture expansion was underpredicted in very small areas in the south, north and398

along the eastern boundary of the basin (Fig. 5c).399

4 Discussion and conclusions400

We have presented a new fractional land use change allocation model to predict land use401

fractions, thus retaining information at sub-pixel level. The model is able to accurately402

allocate fractions of land use through time, especially under scenarios of more extreme403

land use change. We explicitly accounted for competition between land use types and404

land use suitability in response to environmental drivers by means of a multinomial405

logistic model and could show that this aspect brings substantial improvements to406



predictions, when compared to the assumption that land use does not change at all407

(null model).408

FLUTES made accurate predictions in areas in which only small land use changes were409

observable, but also in areas where land use changes were observed to be high. This410

suggests that FLUTES provides a suitable method to produce future land use maps411

under contrasting scenario settings. In scenarios where demand changes are expected412

to be high, FLUTES allocates supply to match aggregated demand, changing the total413

area allocated to different land uses and also allowing land uses to be established in new414

areas. In scenarios with small expected demand changes, land use changes, including415

the establishment of land uses in new areas, remain small.416

We assumed that the initial land use distribution we used to calibrate FLUTES resulted417

from long time periods of optimizing behaviour and we have not yet implemented a418

parameter allowing to specify land use elasticity (the propensity of land uses to shift419

across the landscape without net changes to their total areas at the study area level),420

as is implemented, for example, in Dyna-CLUE (Verburg and Overmars, 2009). For421

this reason, in FLUTES land use cannot change to match predicted land use suitability422

alone. For example, if the modelled cropland suitability in an area is 0.8, but the423

observed cropland fraction is 0.2, FLUTES would only allow a local increase in cropland424

if the aggregated demand for cropland at the study area level increased. While the425

discrepancy between an area’s potential for a certain land use measured by the predicted426

suitability and the realized fraction of that land use implicitly captures processes that427

cannot be captured by the suitability model, in this first version of FLUTES this only428

occurs when triggered by changes in external demand for that land use.429

Similar to CLUE, our constraint on turn-over allowed us to account for conversion430

effort. Here, data from the observed validation time series allowed us to extract a raw431



estimate of the constraint parameter to tune FLUTES. We estimated the parameter432

using long-term observed means. We assume this to be similarly informative as informal433

expert knowledge, which has been suggested as a primary means to parametrize land434

use conversion effort in previous land use models (Van Asselen and Verburg, 2013;435

Overmars et al., 2007).436

We could show that FLUTES is very easily adaptable to specific ecological study con-437

texts. When validating our model’s performance in the context of agricultural expan-438

sion on natural habitat, we mapped the model’s ability to reproduce where agricultural439

expansion occurs in both pasture and cropland and which natural habitat classes de-440

creased in their place. Consistently more than 80% of the landscape where correctly441

classified as no change or a decrease (persistence) or increase of agricultural land with442

decreases in the correct habitat types. Crucially, underprediction of agricultural expan-443

sion with possible negative implications for conservation management remained very444

small throughout. This demonstrates that FLUTES is a useful tool to predict the spa-445

tial configuration of land use change impacts that are driven by agricultural expansion446

into different habitat types.447

Validating the suitability model component of our model approach, we found that448

neighbourhood covariates explained much of the suitability patterns across the land-449

scape. This is a common effect of including flexible spatial correlation terms in models450

with other spatially-varying covariates (spatial confounding) (Hodges and Reich, 2010).451

The models describe the spatial pattern with the spatial correlation term, but this effect452

does not imply causation and other drivers included in the model may still drive changes453

in the response, particularly over long time periods. Here, similar to what was shown by454

Dendoncker et al. (2007), including neighbourhood covariates lead to the most highly455

fitted models. Allowing spatial autocorrelation to drive patterns seems a sensible choice456



for predictions in this case study because the model only predicts three decades. How-457

ever, for longer time spans, spatial autocorrelation probably becomes less important458

and continental-scale environmental driving factors acting homogeneously across the459

whole landscape may dominate patterns in reality. When making such longer-term pre-460

dictions, this could be captured by fitting the suitability model with several time steps461

of data, thus ensuring that land use suitability is less reliant on the present land use462

state, but more weight is given to long-term and large-scale environmental processes.463

The results of our validation also strongly indicate that in the case of FLUTES, adding464

constraints (decision rules) in terms of where and how land use changes are allowed to465

occur, are responsible for the majority of increases in predictive performance. While466

we provide initial steps in parametrising these constraints, more specific knowledge of467

bottom-up processes that drive land use stasis and change across the landscape could468

further consolidate the accuracy of FLUTES. For example, this could be achieved by469

including data on the expected behaviour of economic agents who seek to maximise470

returns on their productive land. One example includes the Land Use Trade-offs471

(LUTO) model (Bryan et al., 2014; Connor et al., 2015), which includes pixel-wise472

optimisation of cost and return of alternative land uses. However, such models are473

difficult to parametrise in data-scarce regions and require significant computational474

power. Bottom-up processes, such as price feedbacks, also tend to act at very fine spa-475

tial resolutions, but have little effect when seen at a continental scale, where scenario476

uncertainty and global processes dominate predictions (Connor et al., 2015). Depend-477

ing on scale, including very fine-scale dynamics of agent behaviour may simply not pay478

off, or it might be more appropriate to merely downscale them to the study area extent479

(Van Asselen and Verburg, 2013; Connor et al., 2015).480

In order to allow scaling FLUTES to global applications, we only used drivers that481



were available at global scales. However, improvements to the land use suitability482

model can be achieved by including more proximate drivers of land use change, such483

as market accessibility (Meiyappan et al., 2014; Verburg et al., 2011), by fitting the484

land use suitability model for individual subsets of the study area to improve local485

fit, or by creating more land use classes for which particular biophysical constraints486

are known. Including location-dependent drivers and models and raising the resolution487

may substantially improve the accuracy of land use suitability maps, increasing the488

contribution of this model component to overall prediction accuracy.489

Developments of FLUTES and expanding application could include the estimation of490

use intensity of different land use types, which has been shown to be an important491

driver of biodiversity change (Newbold et al., 2015, 2016). Such developments could492

enhance efforts to tailor macroeconomic and land use modelling to assess the fate of493

future biodiversity (Kapitza et al., 2021).494
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