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sampled-data systems based on their approximate

discrete-time models
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Abstract

A unified framework for design of stabilizing controllers for sampled-data differential inclusions via their approximate discrete-time

models is presented. Both fixed and fast sampling are considered. In each case, sufficient conditions are presented which guarantee that the

controller that stabilizes a family of approximate discrete-time plant models also stabilizes the exact discrete-time plant model for sufficiently

small integration and/or sampling periods. Previous results in the literature are extended to cover: (i) continuous-time plants modeled as

differential inclusions; (ii) general approximate discrete-time plant models; (iii) dynamical discontinuous controllers modeled as difference

inclusions; (iv) stability with respect to closed arbitrary (not necessarily compact) sets.

I. Introduction

A. Background

In the vast literature on nonlinear control design, an area that has received scant attention is sampled-data control. In

this problem, a continuous time plant is typically controlled by a discrete-time feedback algorithm. A sample and hold

device provides the interface between continuous time and discrete-time. One way to address sampled-data control is to

implement a continuous time control algorithm with a sufficiently small sampling period. However, the hardware used

to sample and hold the plant measurements or compute the feedback control action may make it impossible to reduce

the sampling period to a level that guarantees acceptable closed-loop performance. In this case, it becomes interesting

to investigate the application of sampled-data control algorithms based on a discrete-time model of the process.

One reason that the sampled-data nonlinear control problem is difficult is because exact discrete-time models of

continuous time processes are typically impossible to compute. So the typical procedure is to:

1. develop a parameterized family of approximate discrete-time models, where the family of approximate models ap-

proaches the exact model as the parameter (e.g., integration and/or sampling period) converges to zero;

2. design a corresponding family of discrete-time controllers;

3. pick the modeling parameter small enough to guarantee stability of the exact nonlinear sampled-data system.

While it is clear that the first two steps pose very interesting and challenging problems, the issues associated with the

third, seemingly innocuous, step are much more subtle and will be investigated in this paper. Our contribution will

be to provide criteria that can be used in the first two steps to guarantee that the third step is possible. In the next

section we motivate our work by providing three examples where it is not possible to accomplish the third step in the

above procedure. We also provide an example that motivates using algorithms based on discrete-time models rather

than simply implementing a continuous time algorithm by sample and hold.
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B. Motivating examples

B.1 When things go wrong

In the following three examples, we design control laws for a continuous time process based on an approximate

discrete-time model. The approximate models are “consistent” in that they approach the exact discrete-time model

in the limit as a modeling parameter tends to zero. Moreover, the control laws, which are also parameterized by

the discrete-time modeling parameter, globally exponentially or asymptotically stabilize the origin of the approximate

model. Nevertheless, the origin of the closed-loop using the exact discrete-time model is exponentially unstable, or at

least not approximately attractive, no matter how small the modeling parameter is. The problem is that the family of

discrete-time closed loop systems does not have the proper robustness to account for the mismatch between the exact

and approximate discrete-time plant models. Each example which we discuss has a different indicator of insufficient

robustness. Our main contribution will be to show that if these indicators are ruled out then robustness to the mismatch

between approximate and discrete-time models can be guaranteed.

Control with excessive force

We consider the sampled data control of the triple integrator (this example was taken from [36])

ẋ1 = x2 , ẋ2 = x3 , ẋ3 = u . (1)

While the exact discrete-time model of this system can be computed, we base our control algorithm on the family of

Euler approximate discrete-time models in order to illustrate possible pitfalls in control design based on approximate

discrete-time models. The family of Euler approximate discrete-time models is

x+1 = x1 + Tx2 , x+2 = x2 + Tx3 , x+3 = x3 + Tu . (2)

A minimum time dead beat controller for the Euler discrete-time model is given by

u = αT (x) =

(
−
x1
T 3

−
3x2
T 2

−
3x3
T

)
. (3)

The closed loop system (2)-(3) has all poles equal to zero for all T > 0 and hence this discrete-time Euler-based closed

loop system is asymptotically stable for all T > 0. On the other hand, the closed loop system consisting of the exact

discrete-time model of the triple integrator and controller (3) has a pole at ≈ −2.644 for all T > 0. Hence, the closed-loop

sampled-data control system is unstable for all T > 0 and the third step of the proposed control design procedure is

impossible to accomplish. The approximate closed-loop system contains two indicators that its robustness may not be

sufficient to account for the mismatch between the approximate and exact discrete-time plant models:

• Nonuniform bound on overshoot: The solutions of the family of approximate models with the given controller satisfy

for all T > 0 an estimate of the following type: |φT (k, x◦)| ≤ bT e
−kT |x◦|, ∀k ∈ N where bT →∞ as T → 0. Hence, the

overshoot in the stability estimate for the family of approximate models is not uniformly bounded in T .

• Nonuniform bound on control: The control is not uniformly bounded on compact sets with respect to the parameter

T and in particular we have for all x 6= 0 that |αT (x)| → ∞ as T → 0.

Control with excessive finesse
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Consider the system ẋ = x+u. Again the exact discrete-time model can be computed, but we consider control design

based on the “partial Euler” model x+ = (1 + T )x+ (eT − 1)u. The control

u = αT (x) = −
T (1 + 1

2T )x

eT − 1
(4)

stabilizes the family of approximate models (for T ∈ (0, 2)) by placing the pole of the closed-loop at 1 − 1
2T
2. On the

other hand, the pole of the exact discrete-time closed-loop is located at eT − T − 1
2T
2 > 1, ∀T > 0. Hence, the third

step of the proposed control procedure is not possible to accomplish. The approximate closed-loop system contains the

following indicator that its robustness may not be sufficient to account for the mismatch between the approximate and

exact discrete-time plant models:

• Nonuniform attraction rate: For all T > 0, the family of approximate discrete-time models satisfies |φT (k, x◦)| ≤

be−kT
2

|x◦|, ∀k ∈ N, where b > 0 is independent of T . Therefore the overshoot is uniformly bounded with T . However,
if we think of kT = t as “continuous time”, then as T → 0, the rate of convergence of solutions satisfies that for any

t > 0 we have e−tT → 1. In other words, the rate of convergence in continuous time is not uniform in the parameter T .

Control without a continuous Lyapunov function certificate

Consider the single integrator ẋ = u and a fixed sampling period T . We build a controller based on the approximate

discrete-time model x+ = x+ (T + ε)u where ε > 0. As ε→ 0 we approach the exact discrete-time model. We choose

u = αε(x) =
1

T + ε
[−x+ f(x)] (5)

where f is defined as follows f(0) = 0, f(x) = sgn(x)j(x) x 6= 0 and j(x) is the integer j satisfying j < |x| ≤ j + 1.

The approximate closed-loop system is

x+ = f(x) (6)

the origin of which is locally exponentially and globally asymptotically stable. The exact discrete-time closed-loop

system is

x+ = f(x) +
ε

T + ε
[x− f(x)] (7)

which has the set R>j := {x ∈ R : x > j}, for each positive integer j, forward invariant for all ε > 0. Thus the origin of

the exact discrete-time closed-loop system is not even approximately attractive, and so the third step of the proposed

control procedure is not possible to accomplish. The problem is that the asymptotic stability of the origin for (6) has no

robustness. While it would be easy to attribute this to the discontinuous nature of the right-hand side of (6) we would

like to develop results that permit discontinuous controllers. This is because discontinuous controllers are sometimes

necessary for stabilization. (See, for example [30].) Moreover, controllers generated using the techniques in [7] with

sample and hold (see [42] or [8]) are typically discontinuous in the state and yet produce some robustness because they

come with a continuous Lyapunov function that certifies asymptotic stability. While discontinuous Lyapunov functions

are generic (see, for example, [33]), continuous Lyapunov functions are not. It can be shown that the system (6)

admits no continuous Lyapunov function. We take this as the indicator in the approximate closed-loop system that the

robustness (it actually doesn’t have any) may not be sufficient to account for the mismatch between the approximate

and exact discrete-time plant models:

• No continuous Lyapunov function certificate: If there existed a continuous Lyapunov function for (6) then the origin

of (7) would be semiglobally practically asymptotically stable in ε. Since this is not the case, there does not exist a

continuous Lyapunov function that certifies the asymptotic stability of the origin of (6).
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Ruling out these indicators

In our work, we will rule out all of the indicators that we have seen in the above examples by assuming that the

feedback control is uniformly bounded in the modeling parameter and that there exists a parameterized family of

Lyapunov functions that are continuous, positive definite, decrescent and decreasing along trajectories with all of these

properties uniform, in an appropriate sense, in the modeling parameter(s). The example in the next section illustrates

what is sufficient.

B.2 When things go right

In our last example, which is taken from [37], we demonstrate how the procedure we have described can out-perform

sample and hold implementation of a continuous time control algorithm. Consider the continuous-time plant:

η̇ = η2 + ξ; ξ̇ = u . (8)

First, we design the continuous-time backstepping controller based on results in [24]. Note that the first subsystem can

be stabilized with the “control” φ(η) = −η2 − η with the Lyapunov function W (η) = 1
2η
2. Using this information and

applying [24, Lemma 2.8 with c = 1], we obtain:

uct(η, ξ) = −2η − η2 − ξ − (2η + 1)(ξ + η2) , (9)

which globally asymptotically stabilizes the continuous-time model (8).

Assume now that the plant (8) is between a sampler and a zero order hold and consider its Euler approximate model:

η(k + 1) = η(k) + T (η2(k) + ξ(k)); ξ(k + 1) = ξ(k) + Tu(k) . (10)

Again, the control law φ(η) = −η2 − η globally asymptotically stabilizes the η-subsystem of (10) with the Lyapunov

function W (η) = 1
2η
2. Using results in [37], we obtained the controller:

uEulerT (η, ξ) = uct(η, ξ)− T [0.5η2 + 0.5ξ − 0.5η + (ξ + η2)2] , (11)

which semi-globally practically asymptotically stabilizes the Euler model (10). This can be proved with the Lyapunov

function V (ξ, η) = 1
2η
2 + 1

2 (ξ + η + η2)2 which serves as a Lyapunov certificate of asymptotic stability that is uniform

in T in an appropriate way. Note that the term −T [0.5η2 + 0.5ξ − 0.5η + (ξ + η2)2] can be regarded as a modification

of the controller (9). Moreover, for T = 0 we have that uEuler0 (η, ξ) = uct(η, ξ). We have compared the performance of

the sampled-data systems with the two different controllers and have observed that uEulerT consistently yielded at least

4 times larger domain of attraction than uct for all tested sampling periods. Estimates of domains of attraction (DOA)

with the two controllers for the sampling period T = 0.5 sec were obtained using simulations (for more details see [37])

and are given in Figure 1 where “∗” and “4” indicate respectively the boundary of the estimates of DOA for the closed

loop with uct and uEulerT . Not all backstepping controllers that are based on Euler model will stabilize the exact model.

Indeed, the controller (3) in the first example can be obtained using a backstepping procedure similar to the one used

in this example.

C. Literature review

In this paper we concentrate on the discrete-time controller design approach and in particular on the third step of

the procedure presented in the first section. Before we outline our contributions, we overview some results from the

literature that are related to the procedure we have outlined above.



5

−15 −10 −5 0 5 10
−100

−80

−60

−40

−20

0

20

PSfrag replacements

state η
st
at
e
ξ

Fig. 1. Estimates of DOA with with T = 0.5 sec.

There is a range of different methods for approximate discretization of control-free systems which can be found in

numerical analysis textbooks, such as [43]. Most of these methods can be adapted in a straightforward manner to

controlled systems. The results in [31] illustrate this very well. We also point out recent results in [14] that can be used

to produce approximate discrete-time models for control systems with measurable disturbances. All of these results can

be used in generating families of approximate discrete-time plant models in the first step of the typical procedure.

We emphasize that a large body of nonlinear discrete-time literature that discusses controller design assumes that

the exact discrete-time model of the plant is known (see for instance [2], [4], [9], [23] and references defined therein).

However, as we have already pointed out, this is typically not true even if the continuous-time plant model is known

exactly. Our first three motivating examples illustrate that one can not blindly apply these results in the second step of

the typical procedure since the outcome may be a destabilizing controller for the sampled-data system. Hence, in order

to carry out the typical procedure successfully one needs to perform controller design carefully, making sure that the

stability of the approximate model will be robust to perturbations induced by the underlying numerical approximation.

Controller design based on approximate discrete-time plant models was pursued in several control applications [10],

[12], in the context of trajectory approximation based adaptive control in [28], [40] and in the context of backstepping in

[37]. All of these references use the Euler approximate model for controller design and they consider a particular class of

plants and control laws. Popularity of the Euler approximate model is due to the fact that it is the simplest approximate

model that preserves the structure of the continuous-time model and hence it is easy to use for controller design in the

second step of the typical procedure. All of these results require fast sampling and in general they produce semiglobally

practically stabilizing control laws. We note that fast sampling results suffer the same drawback as discretization of

continuous time controllers, since the required sampling rate may not be implementable due to hardware limitations.

A more realistic approach is to assume that the sampling period is fixed (or has positive a lower bound). The three step

procedure described above can still be carried out but in this case the modeling parameter is (typically) the integration

period of the underlying numerical integration scheme used to generate the family of approximate models. Moreover,

semiglobal stabilization is not possible in general in this case due to possible finite escape times that can occur for large

initial states. This approach was used in illustrative examples in several references (see for instance Section V in [23],

Example 1 in [2] and Section V in [9]) but none of these references presents a rigorous analysis of this approach.

Recently, a rigorous analysis of the third step of the typical procedure was carried out in [33] for a large class of plants,

approximate models and static state feedback control laws. We emphasize these results are not constructive since they do

not provide controller design methods. Indeed, we can say that the results in [33] are prescriptive since they can be used

to guide one when designing a controller based on an approximate discrete-time plant model. These results were further
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generalized in [35] and [38] to deal respectively with input-to-state stabilization and integral versions of input-to-state

stabilization for sampled-data nonlinear systems with disturbances. We have already remarked that these results require

fast sampling which means that they may not be implementable in practice in cases when the required sampling period

is too small to be realized with the available hardware. The reference [37] contains an example illustrating how these

results can be used as a guide in designing backstepping controllers based on the Euler approximate model of strict

feedback sampled-data plants. Our fourth motivating example has illustrated possible advantages of this approach.

D. Contributions

In this paper, we extend the results of [33] in several directions by considering: (i) stability with respect to arbitrary

closed, not necessarily compact, sets ([33] only considers stability of the origin); (ii) plants that are modeled as a

differential inclusion ([33] only considers plants described by differential equations) ; (iii) dynamic control laws that

may be discontinuous and modeled as a difference inclusion ([33] only considers static state feedback control laws); (iv)

both fast sampling and fixed sampling problems ([33] only considers fast sampling). Our motivation for considering the

problem in such generality is discussed next.

D.1 Why stabilization of (not necessarily compact) sets?

Many interesting nonlinear stabilization problems are difficult, if not impossible, to reduce to the problem of stabilizing

a point. For example, the problem of stabilizing a periodic orbit (see, for example, [15], [16]) is most naturally understood

as a set stabilization problem. The problem of causing an output to track the nonsmooth output of a slowly varying

exosystem and the problem of stabilizing a manifold defined implicitly through a nonsmooth equation can be naturally

viewed as a set stabilization problems while casting these problems as a point stabilization problems is fraught with

difficulties due to the nonsmoothness. This point has also been made in [44], for example. In general, the set stabilization

viewpoint is a natural way to interpret problems where certain quantities should converge to zero while other quantities

may be allowed to evolve freely and even become unbounded. This type of problem arises in the design of observers

for nonlinear systems and, with the right viewpoint, in the control of time-varying systems. See, for instance [27,

Chapter 5]. In particular, if we are given a time-varying control system ẋ = f(t, x, u) and we wish to force x(t)→ α(t),

we can consider a time-invariant system with state x̃ := (xT p)T where ẋ = f(p, x, u), ṗ = 1 and stabilize the set

A :=
{
x̃ ∈ Rn+1 : x = α(p)

}
. Related results in the numerical analysis literature on global properties of attractors

under discretization can be found in [43, Chapter 7] and [21].

D.2 Why stabilization of differential inclusions?

Differential inclusions generalize differential equations. They are the most accurate way to model differential equations

with discontinuous right-hand sides, due to effects like stiction, etc. See [11]. They also can be used to model systems

with disturbances in which case the problem of achieving input-to-state stability is transformed to the problem of

achieving asymptotic stability. Consider, for instance, the plant with disturbances ẋ = f(x, u, w), where u and w are

respectively control and disturbance inputs to the system. Suppose also that there exists a function γ ∈ K∞ such that

the auxiliary system ẋ ∈ F (x, u), where F (x, u) := co{f(x, u, γ(|x|)d) : |d| ≤ 1} can be stabilized using a sampled-data

static state feedback or, alternatively, the auxiliary system ẋ ∈ Fγ(x, u) where Fγ(x, u) := co{f(x, u, d) : |d| ≤ γ} can

be driven to a ball of radius related to the size of γ. Then, it can be shown that the same controller achieves input-

to-state stability of the original system with disturbances. An illustration of this idea can be found in Section VI-C

where an input-to-state stabilizing controller is designed for a nonholonomic integrator via its approximate discrete-time

model. These results can be regarded as an alternative to results on input-to-state stabilization proved in [35] that use
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approximate discrete-time model for systems with inputs instead of an auxiliary differential inclusion.

D.3 Why stabilization by dynamic discontinuous control laws?

Discontinuous stabilizers are generic in stabilization algorithms based on optimal control formulations. Dynamic

control algorithms arise when using observers in output feedback problems. Hybrid control algorithms, where the

continuous variables of the plant interact with the discrete-valued logic variables of a controller, are both dynamic and

discontinuous. We illustrate how our results apply to a hysteresis switching control law in Section VI-D.

D.4 Overview of main results

We now present a nontechnical overview of our main results. Section II may be used to clarify any unfamiliar notation.

We will consider nonlinear control systems of the form

ẋ ∈ F (x, u) (12)

where x ∈ Rn and the set-valued map F (·, u) is assumed to have enough regularity to guarantee existence (but not

necessarily uniqueness) of solutions. (See Assumption 1 in Section IV). We will assume, for the family of models

x+ ∈ F a
T,h(x, u) , (13)

which approximate the exact discrete-time model of (12), that a family of possibly discontinuous discrete-time controllers

z+ ∈ GT,h(z, x); u ∈ HT,h(z, x) , (14)

where z ∈ Rnc , has been designed to (approximately) asymptotically stabilize a nonempty closed set A ⊂ Rn+nc . The

parameter T represents the sampling period used when measuring the plant. The parameter h is used to enhance the

accuracy between the approximate discrete-time model (13) and the exact discrete-time model

x+ ∈ F e
T (x, u) , (15)

where F e
T (x, u) is the set of values the solutions to (12) can take at time T when starting at x and with the constant

input u applied. We will consider both the case where the sampling period T is fixed and the case where the sampling

period can be adjusted to arbitrarily small values. In the latter case, (15) represents a family of systems. In some cases

where T is adjustable, we will take h = T . The question is then:

Under which conditions does the family of controllers (14) also (approximately) asymptotically stabilizes the set A for

the (family of) exact discrete-time model(s) (15) for sufficiently small values of h and/or T?

Motivated by our previous examples, we will show that the approximate discrete-time closed loop system has enough

robustness to account for the mismatch between the approximate and exact discrete-time plant model when, over the

set of states in which we expect to operate and over the parameter values we expect to use, we have:

1. [Lyapunov certificates of asymptotic stability] a family of Lyapunov functions with upper and lower bounds

uniform in the modeling parameters and a decrease, which depends on T but is essentially uniform in small h, along tra-

jectories of the approximate discrete-time closed-loop model. That is, there exist functions α1, α2 ∈ K∞, α3 continuous,

positive definite and a family of functions VT,h : Rn+nc → R≥0 such that

α1 (|x̃|A) ≤ VT,h(x, z) ≤ α2 (|x̃|A) (16)

where x̃ := (xT zT )T and for all (w1, w2) such that w1 ∈ F
a
T,h(x,HT,h(x, z)), w2 ∈ GT,h(x, z) we have

VT,h(w1, w2)− VT,h(x, z) ≤ −T [α3 (|x̃|A)− δ1(h)] (17)
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with δ1(h)→ 0+ as h→ 0+.

2. [Continuity of Lyapunov certificates and modeling consistency] the family of Lyapunov functions has strong

enough continuity properties and the approximate discrete-time plant models are close enough to the (family of) exact

discrete-time model(s) so that the Lyapunov function still decreases along the trajectories of the exact discrete-time

closed-loop system. In other words, for all (we1, w2) such that w
e
1 ∈ F

e
T (x,HT,h(x, z)), w2 ∈ GT,h(x, z) we have

inf
wa

1∈F
a
T,h
(x,HT,h(x,z))

|VT,h(w
a
1 , w2)− VT,h(w

e
1, w2)| ≤ Tδ2(h) (18)

with δ2(h)→ 0+ as h→ 0+.

In order to provide modularity between plant modeling and control design it is useful to regroup these conditions, with

a slight loss of generality, in the following way: Over the set of states in which we expect to operate and the parameter

values we expect to use, we have

Property 1 [Continuous (or Lipschitz) Lyapunov certificates of asymptotic stability] the Lyapunov certifi-

cates of asymptotic stability described above are continuous (or Lipschitz if h = T ) in their first argument uniformly in

the states and parameters of interest;

Property 2 [Uniformly bounded controls] the control values are uniformly bounded; i.e., there exists M > 0 such

that |v| ≤M for all v ∈ HT,h(x, z) and all x, z, T and h of interest.

Property 3 [Modeling consistency] the approximate discrete-time plant models are sufficiently close to the (family

of) exact discrete-time model(s); i.e., F e
T (x, u) ⊆ F a

T,h(x, u) + T δ̃2(h)Bn, for all x, u, T and h of interest and with

δ̃2(h) → 0+ as h → 0+. (Modeling consistency, which is very natural to assume, can be checked without explicit

knowledge of the exact discrete-time model. For more details, see Section V).

With these pseudo-definitions, our main results can be paraphrased as follows:

Property 1 for approximate + Property 2 + Property 3 =⇒ Property 1 for exact

It is instructive to note that none of the three examples illustrating when things go wrong had continuous Lyapunov

certificates of asymptotic stability, in the sense specified above, for the family of approximate closed-loop systems. They

all had modeling consistency and the second and third examples had uniformly bounded controls.

The rest of our paper is organized as follows: In Section II we fix notation. In Section III we present results on the

use of Lyapunov functions to establish asymptotic stability of sets for difference inclusions. In Section IV we present

our main results, expressed in terms of modeling consistency and Lyapunov certificates. In Section V we justify the

modeling consistency assumption and in Section VI we justify the Lyapunov certificates assumption.

II. Notation

The sets of natural and real numbers are respectively denoted as N and R. A function γ : R≥0 → R≥0 is of class-K if
it is continuous, zero at zero and strictly increasing. It is of class-K∞ if it is of class-K and is unbounded. A function

γ : R≥0 → R>0 is of class-L if it is continuous and strictly decreasing to zero. A function γ : R≥0 → R>0 is of class-M

if it is continuous and nonincreasing. A continuous function β : R≥0 × R≥0 → R≥0 is of class-KL if β(·, τ) is of class-K
for each τ ≥ 0 and β(s, ·) is of class-L for each s > 0. Given an arbitrary set A ⊂ Rn and a vector x ∈ Rn, we define

|x|A := infs∈A |x−s|, where |x| denotes the Euclidean norm of the vector x. The following result is needed in the sequel:

Lemma 1: [1, Lemma 4.1] Given any continuous positive definite function α : R≥0 → R≥0, there exist functions
ρ1 ∈ K∞ and ρ2 ∈M such that α(s) ≥ ρ1(s) · ρ2(s) for all s ≥ 0. ¥

For a closed set A and non negative real numbers 0 ≤ δ ≤ ∆ we define HA(δ,∆) := {x ∈ Rn : δ ≤ |x|A ≤ ∆}.

Similarly, given two positive numbers `1, `2 with `1 ≤ `2 and a function V : Rn → R≥0 we define V(`1, `2) :=
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{x ∈ Rn : `1 ≤ V (x) ≤ `2}. Given two set valued maps F and H, we often write F (H(x)) to denote {F (w) : w ∈ H(x)}.

Given a ∈ R≥0 we denote bac := maxb∈N,b≤a b.

III. Lyapunov’s method for difference inclusions

We now present results, which are of independent interest, on the use of Lyapunov functions to establish regional,

practical asymptotic stability of sets for difference inclusions

x+ ∈ F (x) , (19)

where F : Rn → subsets of Rn. We assume that for any x ∈ Rn the set valued map F (·) is well defined and its value

F (x) is a nonempty subset of Rn. Hence, for any initial condition x◦ ∈ Rn, the solutions φ(k, x◦) of the system (19)

exist for all k ≥ 0.

For differential inclusions, the Lyapunov results are straightforward, modulo the possibility of finite escape times.

Indeed, equipped with a continuously differentiable Lyapunov function V : Rn → R≥0 and a continuous, positive
definite function α : R≥0 → R≥0 such that

〈∇V (x), w〉 ≤ −α(V (x)) ∀x ∈ V(`1, `2) , w ∈ F (x) (20)

where 0 ≤ `1 ≤ `2, it is easy to deduce from classical comparison theorems (see also [41] or [20, Lemma 2.5]) that, for

all x◦ ∈ V(0, `2) and all t where a given solution φ(·, x◦) of ẋ ∈ F (x) is defined, we have

V (φ(t, x◦)) ≤ max {β(V (x◦), t), `1} (21)

where β ∈ KL is such that β(s, ·) is the (maximal) solution of the differential equation ẏ = −α(y), y(0) = s. When the

bound in (21) is combined with extra information about V like: there exist α1, α2 ∈ K∞ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) (22)

then asymptotic stability of the set A can be deduced, modulo finite escape times, which are ruled out by (21) if escapes

to infinity in finite time require the distance to A to grow without bound, e.g., A is compact.

For difference inclusions, the condition that appears to be analogous to (20) is

V (x+)− V (x) ≤ −α(V (x)) ∀x ∈ V(`1, `2) , x+ ∈ F (x) . (23)

However, this condition is not even enough to guarantee that the function V (φ(·, x◦)), where φ(·, x◦) is a solution of

(19) with x◦ ∈ V(`1, `2), remains bounded for all k ≥ 0. This is illustrated by the system x+ = f(x) where f(·) is any

continuous function satisfying

f(x) =





2`2 |x| ≤ `1/2

2|x| |x| ≥ 2`2

0 `1 ≤ |x| ≤ `2 .

(24)

With, for example, V (x) = |x|, we have

V (f(x))− V (x) = −V (x) ∀x ∈ V(`1, `2) (25)

yet V (φ(·, x◦)) is unbounded for all x◦ since every trajectory grows without bound. This example shows that some

information about V (f(x)) is required even for values x ∈ V(0, `1) in order to assert a bound on V (φ(·, x◦)). We can

state the following result which is proved in the Appendix.



10

Proposition 1: Let V : Rn → R≥0, let F : Rn → nonempty subsets of Rn and let α : R≥0 → R≥0 be a continuous
positive definite function. Suppose `1, `2, `3 ∈ R≥0 and T > 0 satisfy

`1 + T`3 ≤ `2 (26)

V (x+)− V (x) ≤ −Tα(V (x)) ∀x ∈ V(`1, `2), x+ ∈ F (x)
⋂
V(`1, `2 + T`3) , (27)

V (x+)− V (x) ≤ T`3 ∀x ∈ V(0, `2) , x+ ∈ F (x) . (28)

Then for all x◦ ∈ V(0, `2), the solutions φ(·, x◦) of the difference inclusion (19) satisfy

V (φ(k, x◦)) ≤ max {β(V (x◦), kT ), `1 + T`3} ∀k ∈ {0, 1, 2, . . . } (29)

where β ∈ KL is defined as β(s, t) := β̃(s, ρ2(s)t) with β̃(s, ·) the maximal solution of the differential equation ẏ = −ρ1(y),

y(0) = s ≥ 0 and ρ1 ∈ K∞, ρ2 ∈M such that α(s) ≥ ρ1(s) · ρ2(s) for all s ≥ 0 (see Lemma 1). ¥

An alternative set of Lyapunov conditions, which guarantee those of the previous proposition, is given next:

Proposition 2: Let V : Rn → R≥0, let F : Rn → nonempty subsets of Rn and let α : R≥0 → R≥0 be a continuous,
positive definite function. Suppose `1, `2, `3 ∈ R≥0 and T > 0 satisfy

`3 ≤ min
s∈[`1,`2]

α(s); `1 + T`3 ≤ `2 (30)

V (x+)− V (x) ≤ −T [2α(V (x))− `3] ∀x ∈ V(0, `2) , x+ ∈ F (x) . (31)

Then the assumptions of Proposition 1, i.e., (26)-(28), hold. ¥

Proof. The second condition in (30) is the same as (26). The condition (28) follows immediately from (31). The

condition (27) follows from the combination of (31) and the first condition in (30). ¥

The following proposition guarantees the conditions of Proposition 1 when the conditions of Proposition 2 hold for a

nearby difference inclusion.

Proposition 3: Let V : Rn → R≥0, let F a : Rn → nonempty subsets of Rn, F : Rn → nonempty subsets of Rn and let

α : R≥0 → R≥0 be a continuous positive definite function. Suppose `1, `2, `3, ˜̀1, ˜̀2 ∈ R≥0 and T > 0 satisfy

˜̀
1 + ˜̀2 ≤ min

s∈[`1,`2]
α(s); max

{
`1, T

(
˜̀
1 + ˜̀2

)}
≤ T`3; `1 + T`3 ≤ `2 (32)

V (x+a )− V (x) ≤ −T
[
2α(V (x))− ˜̀1

]
∀x ∈ V(0, `2) , x+a ∈ F

a(x) (33)

and for all x ∈ V(0, `2) and any x
+ ∈ F (x) with V (x+) ≥ `1 there exists x

+
a ∈ F

a(x) such that

V (x+) ≤ V (x+a ) + T ˜̀2 . (34)

Then the assumptions of Proposition 1, i.e., (26)-(28), hold. ¥

Proof of Proposition 3: The first condition in (32) and (33) imply

V (x+a )− V (x) ≤ −T
[
α(V (x)) + ˜̀2

]
∀x ∈ V(`1, `2) , x+a ∈ F

a(x) (35)

V (x+a )− V (x) ≤ T ˜̀1 ∀x ∈ V(0, `2) , x+a ∈ F
a(x) . (36)
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It follows from (36), (34), second condition in (32) and V (x) ≥ 0 that

V (x+)− V (x) ≤ max
{
`1, T

(
˜̀
1 + ˜̀2

)}
≤ T`3 ∀x ∈ V(0, `2) , x+ ∈ F (x) , (37)

i.e., (28) holds. To see that (27) holds, we consider x ∈ V(`1, `2) and x
+ ∈ F (x)

⋂
V(`1, `2 + T`3). For such values, it

follows from (35) and (34) that V (x+)− V (x) ≤ −Tα(V (x)), i.e., (27) holds. ¥

The connection between these propositions and uniform asymptotic stability of sets is made in the following:

Corollary 1: Let A be a nonempty closed set, let V : Rn → R≥0, let F : Rn → nonempty subsets of Rn and let

α : R≥0 → R≥0 be a continuous positive definite function. Suppose `1, `2, `3 ∈ R≥0 and T > 0 satisfy the conditions

(26)-(28) of Proposition 1. Also suppose that there exist α1, α2 ∈ K∞ such that (22) holds. Then, for all x◦ ∈ V(0, `2),

the solutions φ(·, x◦) of the difference inclusion (19) satisfy:

|φ(k, x◦)|A ≤ max{α
−1
1 (β(α2(|x◦|A), kT )), α

−1
1 (`1 + T`3)}, ∀k ∈ N

where β ∈ KL was defined in Proposition 1. ¥

IV. Main results

In this section we present sufficient conditions for stabilization of sampled-data nonlinear inclusions via their approx-

imate discrete-time models. Our main results specify checkable conditions on the continuous-time plant model, the

approximate discrete-time plant model and the controller that guarantee that we can pick the modeling parameter small

enough so that the controllers that stabilize approximate model would also approximately stabilize the exact model (i.e.,

the third step of the typical procedure presented in the introduction can be successfully carried out). These conditions

can be used as guidelines for controller design based on approximate models. In particular, these conditions can be

used to discard “bad” controllers such as the ones used in the first three motivating examples of the introduction. In

Subsection IV-A we consider the case when T = h and T can either be fixed or varying.

A starting point in our investigation are sampled-data differential inclusions (12) with the following assumption for

the set-valued map F (·, u):

Assumption 1: For each u ∈ Rm, the set-valued map F (·, u) satisfies the following basic conditions: 1) it is upper

semi-continuous, i.e., for each x ∈ Rn and each ε > 0 there exists δ > 0 such that, for all ξ ∈ Rn satisfying |ξ − x| ≤ δ

we have F (ξ, u) ⊆ F (x, u) + εBn, where Bn denotes the closed unit ball in Rn, 2) for each x ∈ Rn the set F (x, u) is

nonempty, compact and convex. ¥

This assumption guarantees that for each fixed u there exists at least one solution to (12) (see [3]). We will use S(x, u)

to denote the set of solutions to (12) starting at x with constant input u. For a given t > 0 and (x, u) ∈ Rn × Rm we

use the following notation F e
t (x, u) := {ξ ∈ Rn : ξ = φ(t, x, u), φ ∈ S(x, u)}.

We consider plants (12) for which we assume that the control u is held constant between the sampling instants kT ,

where T > 0 is the sampling period, and the exact discrete-time model (when it exists) can be written in the form:

x+ ∈ F e
T (x, u) . (38)

Note that (38) is in general well defined only for a subset of Rn × Rm and it is in general unknown on the set where it

is defined. Hence, we introduce a family of approximate discrete-time models that can be written in the form:

x+ ∈ F a
T,h(x, u) , (39)

where h > 0 is the modeling parameter that can be arbitrarily adjusted.
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Remark 1: The modeling parameter can have various sources. A common situation is when h represents the integration

period of a numerical integration routine (Euler, Runge-Kutta, etc.) used to approximate F e
T . In this case, and with

x+ ∈ fh(x, u) (40)

representing one step of the numerical integration routine (for forward Euler we have fh(x, u) := x+ hF (x, u)) we can

generate a family of numerically integrated approximate models F a
T,h(·, ·) by defining

f1h(x, u) := fh(x, u)

f i+1h (x, u) := fh(f
i
h(x, u), u) , i = 1, 2, . . . , (41)

F a
T,h(x, u) := fNh (x, u) , (42)

where N = N(T, h) := bT/hc. More details on numerical methods for differential inclusions that can be used to generate

different approximate models F a
T,h can be found in [45].

Another, or additional, source for the modeling parameter h is when the control is constructed from a numerical

optimization procedure where the state and input space are quantized. In this case, h may specify the size of the

quantization levels used in the numerical computation of the optimal controller. This idea was used, for example, in

[23], and it is also relevant in the application of discrete-time based receding horizon control (see, for example, the survey

paper [29]) for continuous-time plants.

When both of these sources are presented, it is natural to treat h as a modeling parameter vector. The reader should

be able to easily see how the main results stated below can also be stated for a modeling parameter vector. ¥

Remark 2: There are problems where it is reasonable to consider that the exact discrete-time model depends on a

modeling parameter. For example, in order to treat the case of large sampling period T in the framework of fixed

sampling periods, we can define a new time scale τ = t/T =: ht and perhaps also consider an input transformation

u = hũ so that the exact discrete-time model with sampling period Tτ in the τ time scale becomes

x+ ∈ F e
Tτ ,h(x, ũ) = {ξ ∈ Rn : ξ = φ(Tτ/h, x, hũ), φ ∈ S(x, hũ)} . (43)

We will do this for the nonholonomic integrator example in Section VI-C. For this reason, we will state the results in

this section allowing modeling parameter dependence in the exact discrete-time model. ¥

Next, we assume that a family of discrete-time controllers

z+ ∈ GT,h(z, x)

u ∈ HT,h(z, x) (44)

has been designed based on (39), where z ∈ Rnc is the controller state variable and GT,h, HT,h are set values maps. We

denote (x, z) := (xT zT )T . In the sequel we investigate stability of the system (39), (44) or (38), (44) with respect to a

nonempty closed set A ⊂ Rn+nc . We also make use of the following “projection” set:

P (A) := {x ∈ Rn : ∃z ∈ Rnc such that (x, z) ∈ A} . (45)

In particular, we use the following definitions.

Definition 1: [Uniformly bounded controls] Let strictly positive real numbers (T,∆1,∆2) and a nonempty closed

set A ∈ Rn+nc be given. If

sup
{(x,z)∈HA(0,∆1) , w∈HT,h(z,x) , h∈(0,h∗]}

|w| ≤ ∆2 , (46)
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for some h∗ > 0, then we say that the family of controllers (44) is (T,∆1,∆2,A)-uniformly bounded. ¥

The following “consistency” property is central in our developments and it is an appropriate adaptation and generaliza-

tion of consistency property used in the numerical analysis literature (see [43]):

Definition 2: [Modeling consistency] Let a nonempty closed set A ⊂ Rn and a triple of strictly positive numbers

(T,∆1,∆2) be given and suppose that for any ε > 0 there exists h
∗ > 0 such that for all (x, u) ∈ HA(0,∆1) ×∆2Bm

and all h ∈ (0, h∗] we have F e
T,h(x, u) ⊆ F a

T,h(x, u) + TεBn. Then we say that the family F
a
T,h is (T,∆1,∆2,A)-upper

semi-consistent with F e
T,h. ¥

Sufficient checkable conditions for (T,∆1,∆2,A)-upper semi-consistency are presented in Section V.

Definition 3: [Partially quasi-continuous Lyapunov certificates of asymptotic stability] Let a nonempty

closed set A ⊂ Rn+nc , a pair of strictly positive real numbers (T,D), a family of functions VT,h : Rn+nc → R≥0,
functions α1, α2 ∈ K∞ a positive definite function α3 : R≥0 → R≥0, and a nonnegative real number δ0 be given.
Suppose for any pair of strictly positive real numbers (δ1, δ2) with δ2 < D there exist h∗ > 0 and c > 0 such that for all

(x, z) ∈ HA(0, D), h ∈ (0, h
∗], we have

α1(|(x, z)|A) ≤ VT,h(x, z) ≤ α2(|(x, z)|A) (47)

sup

w1 ∈ F
a
T,h(x,HT,h(x, z)),

w2 ∈ GT,h(x, z)

VT,h(w1, w2)− VT,h(x, z) ≤ −Tα3(|(x, z)|A) + T (δ0 + δ1) , (48)

and, for all (x1, z), (x2, z) ∈ HA(δ2, D), with |x1 − x2| ≤ c we have

|VT,h(x1, z)− VT,h(x2, z)| ≤ δ1 . (49)

Then we say that (VT,h, α1, α2, α3, δ0) provides a (T,D,A)-partially quasi-continuous family of Lyapunov certificates for

the family (39), (44). ¥

The notion of partially quasi-continuous Lyapunov function will be further clarified and illustrated in Section VI.

A. Case 1: T is independent of h

In this section we consider the case when the sampling period T is not equal to the modeling parameter h. Our

results apply to situations when T is either fixed or it can be arbitrarily assigned whereas h is always possible to

arbitrarily assign. When the sampling period is fixed, finite escape times may occur between sampling instants and

hence the achievable region of attraction is usually bounded. When T is varying then we can state semiglobal practical

stabilization results. To shorten notation, we introduce x̃ = (x, z) and

Fa
T,h(x̃) :=


 F a

T,h(x,HT,h(z, x))

GT,h(z, x)


 , Fe

T,h(x̃) :=


 F e

T,h(x,HT,h(z, x))

GT,h(z, x)


 .

The main result of this section is presented next.

Theorem 1: Let a nonempty closed set A ⊂ Rn+nc , strictly positive real numbers (T,D,M), the family of functions

VT,h : Rn+nc → R≥0, α1, α2 ∈ K∞, a positive definite function α3 : R≥0 → R≥0, and a nonnegative real number δ0 be
such that the following conditions hold:

1. (VT,h, α1, α2, α3, δ0) provides a (T,D,A)-partially quasi-continuous family of Lyapunov certificates for the family

(39), (44);

2. The family of controllers (44) is (T,D,M,A)-uniformly bounded;
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3. The family F a
T,h is (T,D,M,P (A))-upper semi-consistent with F e

T ;

Let ρ1 ∈ K∞ and ρ2 ∈ M be generated by α3 via Lemma 1. Let α(s) :=
1
2ρ1 ◦ α

−1
2 (s) · ρ2 ◦ α

−1
1 (s). Then, for any

strictly positive `1, `2, ˜̀1, ˜̀2 where ˜̀1 > δ0 and

α2(2α
−1
1 (4Tδ0)) < `1 < `2 ≤ α1(D) , (50)

there exists h∗ > 0 such that for all h ∈ (0, h∗] we have that

1. for all x̃ ∈ VT,h(0, `2) and x̃
+
a ∈ F

a
T,h(x̃) we have

VT,h(x̃
+
a )− VT,h(x̃) ≤ −T

(
2α(VT,h(x̃))− ˜̀1

)

2. for all x̃ ∈ VT,h(0, `2) and all x̃
+
e ∈ F

e
T,h(x̃) with VT,h(x̃

+
e ) ≥ `1 there exists x̃

+
a ∈ F

a
T,h(x̃) such that

VT,h(x̃
+
e ) ≤ VT,h(x̃

+
a ) + T ˜̀2 .

¥

Proof of Theorem 1: Let the functions α, ρ1, ρ2, α1, α2, α3, the nonnegative number δ0, the set A and numbers

T,D,M come from the theorem. Let `1, `2, ̂̀1, ˜̀2 be arbitrary positive real numbers satisfying conditions (50) and define
˜̀
1 := ̂̀1 + δ0. Let δ1, δ2 be strictly positive real numbers such that:

δ1 ≤ min

{
1

2
α1

(
1

2
α−12 (`1)

)
, ̂̀1, T ˜̀2

}
(51)

δ2 ≤ min

{
α−12

(
1

4
α1

(
1

2
α−12 (`1)

))
, D

}
(52)

Let the pair (δ1, δ2) generate, using item 1 of the theorem, the numbers h
∗
1 > 0 and c > 0. Let T,D,M generate h∗2 > 0

from item 2 of the theorem. Let ε1 > 0 be such that

Tε1 ≤
1

4
α−12 (`1) . (53)

Take ε = min{ε1, δ1, c/T}. Let ε, T,D,M generate h∗3 > 0 using item 3 of the theorem. Define h
∗ := min{h∗1, h

∗
2, h

∗
3}.

Let h ∈ (0, h∗] be arbitrary but fixed. With our choice of `2 to satisfy (50), we have that:

VT,h(0, `2) ⊂ HA(0, D) . (54)

Using (47) and definition of α it follows from (54), conditions of the theorem and our choice of h∗ and δ1 (in particular

(51)) that for all x̃ ∈ VT,h(0, `2) and x̃
+
a ∈ F

a
T,h(x̃):

VT,h(x̃
+
a )− VT,h(x̃) ≤ −Tα3(|x̃|A) + T (δ0 + δ1) ≤ −Tρ1 ◦ α

−1
2 (VT,h(x̃)) · ρ2 ◦ α

−1
1 (VT,h(x̃)) + T (δ0 + ̂̀1)

= −T
[
2α(VT,h(x̃))− ˜̀1

]
, (55)

which proves the first part of the theorem. Consider now an arbitrary x̃ ∈ VT,h(0, `2) and any x̃
+
e ∈ Fe

T,h(x̃) with

VT,h(x̃
+
e ) ≥ `1. That implies |x̃

+
e |A ≥ α−12 (`1) >

1
2α
−1
2 (`1). Using this and consistency it follows that there exists an

x̃+a ∈ F
a
T,h(x̃) such that (using the definition of ε and (53) ):

∣∣x̃+a
∣∣
A

≥ −
∣∣x̃+e − x̃+a

∣∣+
∣∣x̃+e

∣∣
A
≥ −Tε+ α−12 (`1) ≥ −

1

4
α−12 (`1) + α−12 (`1) >

1

2
α−12 (`1) . (56)

Moreover, using the definition of δ1, (56), (47), (48) and (50) we have:

1

2
α1

(
1

2
α−12 (`1)

)
= α1

(
1

2
α−12 (`1)

)
−
1

2
α1

(
1

2
α−12 (`1)

)
≤ α1

(
1

2
α−12 (`1)

)
− Tδ1

< α1(
∣∣x̃+a

∣∣
A
)− Tδ1 ≤ VT,h(x̃) + Tδ0 ≤ α2(|x̃|A) + Tδ0 , (57)
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which implies from (52) that

|x̃|A ≥ α−12

(
1

2
α1

(
1

2
α−12 (`1)

)
− Tδ0

)
≥ α−12

(
1

4
α1

(
1

2
α−12 (`1)

))
≥ δ2 . (58)

Hence, using (54) and (58) we have that x̃ ∈ VT,h(0, `2), x̃
+
e ∈ F

e
T,h(x̃) and VT,h(x̃

+
e ) ≥ `1 imply x̃ ∈ HA(δ2, D) and

from (49) and definition of ε (in particular our choice of ε ≤ min{δ1, c/T}) we can write that for any x̃ ∈ VT,h(0, `2) and

(x+e , z) ∈ F
e
T,h(x̃) with VT,h(x

+
e , z) ≥ `1 there exists (x

+
a , z) ∈ F

a
T,h(x̃) such that |x

+
a − x+e | ≤ c and :

VT,h(x
+
e , z) ≤ VT,h(x

+
a , z) + δ1 ≤ VT,h(x

+
a , z) + T ˜̀2 , (59)

which completes the proof of theorem. ¥

By combining Theorem 1 with Propositions 1 and 3 we obtain the following corollary:

Corollary 2: Suppose that all conditions of Theorem 1 hold. Let `1, `2, `3, ˜̀1, ˜̀2 be arbitrary positive numbers satisfying
the conditions (32), ˜̀1 > δ0, and `2 + T`3 ≤ α1(D). Then, there exists h

∗ > 0 such that for all h ∈ (0, h∗] we have:

1.

VT,h(x̃
+
e )− VT,h(x̃) ≤ −Tα(VT,h(x̃)) ∀x̃ ∈ VT,h(`1, `2), x̃

+
e ∈ F

e
T,h(x̃)

⋂
VT,h(`1, `2 + T`3) (60)

VT,h(x
+
e )− VT,h(x̃) ≤ T`3 ∀x̃ ∈ VT,h(0, `2) , x̃

+
e ∈ F

e
T,h(x) . (61)

2. with α3 generating α using Theorem 1 and α generating β ∈ KL using Proposition 1, for all x◦ ∈ VT,h(0, `2), the

solutions φ(·, x◦) of the family (38), (44) satisfy

|φ(k, x̃◦)|A ≤ max
{
α−11 (β(α2(|x̃◦|A), kT )), α

−1
1 (`1 + T`3)

}
∀k ∈ {0, 1, 2, . . . } . (62)

¥

Remark 3: Note that since α is positive definite and α1, α2 ∈ K∞, given any D > 0 there always exist `1, `2, `3, ˜̀1, ˜̀2
satisfying (32) and (50). Moreover, `1 and `3 in Corollary 2 can be taken arbitrarily small. Consequently, if δ0 = 0

then the residual set to which trajectories of the exact model converge can be made arbitrarily small (i.e., we achieve

“practical” stabilization). ¥

Remark 4: We emphasize that no regularity assumptions on HT,h and GT,h are needed in Theorem 1. In particular,

HT,h and GT,h may be discontinuous in x and z. This allows us to consider hysteresis switching control laws in Section

VI-D. Moreover, we do not need continuity of VT,h in z. This is because we are using the same control law for exact

and approximate models. If we wanted to consider situations where we apply different control laws (that are “close” in

some sense) to exact and approximate models, then we would in general need stronger continuity assumptions of the

Lyapunov function VT,h in (x, z) and not only in x in order to prove similar results. Similar observations hold for results

presented in the next section. ¥

Remark 5: Theorem 1 provides a general framework for controller design for sampled-data differential inclusions based

on their approximate discrete-time plant models. The theorem indicates that besides stabilization of the approximate

discrete-time model (item 1), the controller should also posses extra properties (items 2 and 3) in order to be stabilizing

for the exact discrete-time plant model (see the first motivating example where item 1 holds whereas items 2 and 3

do not hold). Note that item 2 of Theorem 1 is relatively easy to check since we know the control law. Subsection V

is dedicated to presenting checkable sufficient conditions for consistency property that is used in item 3 of Theorem 1.

These conditions are important since they do not require the knowledge of F e
T to check the consistency. Indeed, these

conditions use only the information about the continuous-time plant, the control law and the approximate model to

check the consistency property. ¥
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Remark 6: We emphasize that the conditions of Theorem 1 may hold in a semiglobal sense (in the parameter T ). In

this case, we may be able to achieve semiglobal practical stabilization by appropriately choosing T and h. We did not

state these results for space reasons. In this case h∗ depends on T and in particular smaller T will normally require

smaller h∗. Roughly speaking we first achieve “semiglobal” stabilization by choosing T sufficiently small and then with

the fixed T we achieve “practical” stabilization by choosing h sufficiently small. ¥

B. Case 2: T is equal to h

All the references that we are aware of [10], [12], [28], [37], [40] that deal with controller design via approximate

discrete-time models exploit the Euler approximate model in controller design. The Euler approximate model can be

regarded as a special case of (39) where T = h and F a
T,h(x, u) = x + Tf(x, u). This case is of particular importance

since it is best suited for the design of explicit control laws (see, for instance, [37]). Hence, we discuss in this section the

special case when T = h. We consider families (39), (44) and (38), (44) with T = h and we use the notation:

F a
T (x, u) := F a

T,T (x, u), GT (z, x) := GT,T (z, x), HT (z, x) := HT,T (z, x) .

Since in this case we need to achieve both semiglobal and practical stabilization by reducing T , the conditions that

we use are slightly different from the ones used in the previous sections. For instance, we use a different notion of

consistency from the one used in Theorem 1. Also, we will need stronger continuity of the Lyapunov function than the

partial quasi-continuity property which was used in Theorem 1. Next we define the properties used in this section:

Definition 4: [Uniformly bounded controls] Let a nonempty closed set A ⊂ Rn+nc be given. If for any strictly

positive real numbers (∆1,∆2) there exists T
∗ > 0 such that for any T ∈ (0, T ∗) we have

sup
{x̃∈HA(0,∆1) , w∈HT (z,x)}

|w| ≤ ∆2 , (63)

then we say that the family of controllers (44) is A-uniformly bounded. ¥

Definition 5: [ Modeling consistency] Let a nonempty closed set A ⊂ Rn be given. If for any pair of strictly positive

numbers (∆1,∆2) there exist ρ ∈ K∞ and T
∗ > 0 such that for any (x, u) ∈ HA(0,∆1)×∆2Bm and all T ∈ (0, T

∗) we

have F e
T (x, u) ⊆ F a

T (x, u) + Tρ(T )Bn, then we say that the family F
a
T is A-one-step upper semi-consistent with F

e
T . ¥

Sufficient checkable conditions for one step upper semi-consistency are presented in Section V.

Definition 6: [Partially Lipschitz Lyapunov certificates of asymptotic stability] Let a nonempty closed set

A ⊂ Rn×nc , α1, α2 ∈ K∞, a positive definite function α3 : R≥0 → R≥0 and a nonnegative real number δ0 be given.
Suppose for any triple of strictly positive real numbers (D, δ1, δ2) with δ2 < D there exist T ∗ > 0 and L > 0 and for all

T ∈ (0, T ∗) there exists VT : Rn+nc → R≥0 such that for all (x, z) ∈ HA(0, D) T ∈ (0, T ∗), we have

α1(|(x, z)|A) ≤ VT (x, z) ≤ α2(|(x, z)|A) (64)

sup

w1 ∈ F
a
T (x,HT (x, z)),

w2 ∈ GT (x, z)

VT (w1, w2)− VT (x, z) ≤ −Tα3(|(x, z)|A) + Tδ1 + δ0 , (65)

and, for all (x1, z), (x2, z) ∈ HA(δ2, D) we have

|VT (x1, z)− VT (x2, z)| ≤ L |x1 − x2| . (66)

Then, we say that (VT , α1, α2, α3, δ0) provides an A-partially Lipschitz family of Lyapunov certificates for the family

(39), (44). ¥
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Proofs of results in this section are very similar to proofs of results for fixed sampling periods and are omitted (complete

proofs for the case δ0 = 0 can be found in the conference paper [34]).

Theorem 2: Let a nonempty closed set A ⊂ Rn+nc , the family of functions VT : Rn+nc → R≥0, α1, α2 ∈ K∞, a
positive definite function α3 : R≥0 → R≥0 and a nonnegative real number δ0 be such that the following conditions hold:
1. (VT , α1, α2, α3, δ0) provides an A-partially Lipschitz family of Lyapunov certificates for the family (39), (44);

2. The family of controllers (44) is A-uniformly bounded;

3. The family F a
T is P (A)-one-step upper semi-consistent with F

e
T .

Let α1, α2, α3 come from the definition of VT in item 1. Let ρ1,∈ K∞ and ρ2 ∈ M be generated by α3 via Lemma 1.

Let α(s) := 1
2ρ1 ◦ α

−1
2 (s) · ρ2 ◦ α

−1
1 (s). Then, for any strictly positive `1, `2,

˜̀
1, ˜̀2, where ˜̀1 > δ0, there exists T

∗ > 0

such that for any T ∈ (0, T ∗) we have that

1. For all x̃ ∈ VT (0, `2) and x̃
+
1 ∈ F

a
T (x̃) we have VT (x̃

+
1 )− VT (x̃) ≤ −T

(
2α(VT (x̃))− ˜̀1

)
.

2. For all x̃ ∈ VT (0, `2) and all x̃
+
2 ∈ F

e
T (x̃) with VT (x̃

+
2 ) ≥ `1 there exists x̃

+
2 ∈ F

a
T (x̃) such that VT (x̃

+
2 ) ≤ VT (x̃

+
1 )+T

˜̀
2.

¥

Corollary 3: Suppose that all conditions of Theorem 2 hold. Let `1, `2, `3, ˜̀1, ˜̀2 be arbitrary positive numbers satisfying
conditions (32), ˜̀1 > δ0. Then, there exists T

∗ > 0 such that for all T ∈ (0, T ∗) we have:

1.

VT (x̃
+
2 )− VT (x̃) ≤ −Tα(VT (x̃)) ∀x̃ ∈ VT (`1, `2), x̃

+
2 ∈ F

e
T (x̃)

⋂
VT (`1, `2 + T`3) (67)

VT (x
+
2 )− VT (x̃) ≤ T`3 ∀x̃ ∈ VT (0, `2) , x̃

+
2 ∈ F

e
T (x) . (68)

2. with α3 generating α using Theorem 1 and α generating β ∈ KL using Proposition 1, for all x◦ ∈ VT (0, `2), the

solutions φ(·, x◦) of the family (38), (44) satisfy

|φ(k, x̃◦)|A ≤ max
{
α−11 (β(α2(|x̃◦|A), kT )), α

−1
1 (`1 + T`3)

}
∀k ∈ {0, 1, 2, . . . } . (69)

¥

Remark 7: Results of this section cover the case when the approximate model is the Euler approximation. The Euler

approximate model is best suited for controller design since it has the same structure as the continuous-time model.

In Section VI we show several non-trivial situations where the Lyapunov conditions of Theorem 2 can be verified.

Systematic methods for design of controllers based on approximate models so that the closed loop approximate model

satisfies Lyapunov conditions of Theorem 2 were addressed in [37] for strict feedback systems via backstepping and in

[25] using the ideas of changing supply rates of input-output to state stable systems. Finding systematic controller

design procedures for other classes of systems and approximate models so that the conditions of Theorems 1 or 2 are

satisfied is an important area for further research. ¥

Remark 8: We emphasize that besides stability of the family of approximate models we also need consistency and

boundedness of the control law in order to guarantee that the family of exact models would be stabilized. In particular,

consistency conditions help us discard bad controllers like the ones presented in the first three motivating examples. ¥

Remark 9: We emphasize that in Theorem 2 and Corollary 3 the number `2 can be arbitrarily large and `1 and `3 can

be arbitrarily small. Hence, we have conditions for semiglobal practical stabilization of the family of exact models. ¥

Remark 10: Similar results to Theorem 2 have been proved for systems with disturbances for input-to-state stability

in [35] and integral versions of input-to-state stability property in [38]. It is not hard to see that appropriate versions of

Theorem 1 can also be proved for the input-to-state stability properties considered in [35], [38]. ¥
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V. Consistency

The purpose of this section is to present checkable sufficient conditions for the consistency property of Definition 2.

We do this by introducing two new consistency properties between the numerical integration scheme (40), defined by fh,

and the exact discrete-time model defined by F e
h . Motivation for introducing new consistency properties (Definitions 7

and 8) is twofold. First, they can be used to prove sufficient conditions for consistency property defined in Definition 2

(see Corollary 4) that is used in Theorem 1. Second, new consistency properties are of interest in their own right and

one of them is used in statement of Theorem 2.

In this section we use respectively notation Sah(x, u) and S
e(x, u) to denote sets of solutions of the difference inclusion

(40) and differential inclusion (12). The solutions of the difference inclusion (40) and differential inclusion (12) are

respectively denoted as φah(k, x, u) and φ
e(t, x, u), that is φah ∈ S

a
h(x, u) and φ

e ∈ Se(x, u).

Definition 7: Let A ⊂ Rn be a nonempty closed set. The family fh is said to be A-one-step upper semi-consistent

with F e
h if for each pair of positive real numbers (∆,M) there exist ρ ∈ K∞ and h∗ > 0 such that, for all (x, u) ∈

HA(0,∆)×MBm and all h ∈ (0, h
∗), we have

F e
h(x, u) ⊆ fh (x, u) + hρ(h)Bn (70)

¥

A sufficient condition for one-step upper semi-consistency is stated below and proved in the appendix.

Proposition 4: If the following conditions hold:

1. for each ∆̃ ≥ 0 there exists M > 0 such that

sup
{(x,u)∈HA(0,∆̃)×∆̃Bm , w∈F (x,u)}

|w| ≤M , (71)

2. there exists a set-valued map F̃ (·, ·) such that

(a) for each u ∈ Rm, the set-valued map F̃ (·, u) satisfies the basic conditions of Assumption 1,

(b) fh is A-one-step upper semi-consistent with f̃
Euler
h (x, u) := x+ hF̃ (x, u),

(c) for each ∆̃ ≥ 0 there exists ρ̃ ∈ K∞ such that

(x, ξ, u) ∈ HA(0, ∆̃)×HA(0, ∆̃)× ∆̃Bm =⇒ F (ξ, u) ⊆ F̃ (x, u) + ρ̃(|ξ − x|)Bn (72)

then fh is A-one-step upper semi-consistent with F
e
h . ¥

Remark 11: A candidate choice for F̃ is F̃ (x, u) = F (x, u). In this case, item 2c becomes a uniform continuity

condition on F (·, u). If F (·, u) has this uniform continuity property and item 1 of the lemma holds then the Euler

approximation fh(x, u) = x+ hF (x, u) is one-step upper semi-consistent with F e
h . Unfortunately, it is not sufficient to

take F̃ (x, u) = F (x, u) and assume that F (x, u) is only upper semi-continuous, as the following example shows.

Example 1: Consider

F (x, u) =





1 if x < 0

10 if x > 0

[1, 10] if x = 0

(73)

which satisfies Assumption 1 and let fh(x, u) = x+ hF (x, u). Let A = {1}, let ∆ = 2 and suppose there exist ρ ∈ K∞

and h∗ > 0 such that (70) holds for all (x, u) ∈ HA(0,∆)×∆Bm. Let h > 0 be such that h < min
{
h∗, 1, ρ−1

(
1
2

)}
. Let

x = −h
2 , so that x ∈ HA(0,∆), and u = 0. Then fh (x, u) +

1
2hB1 = [0, h]. On the other hand F

e
h(x, u) = 5h. It follows

from the fact that ρ(h) ≤ 1
2 that F

e
h(x, u) 6⊆ fh (x, u) + hρ(h)B1. This contradicts (70).
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We note that it is still possible to find a one-step upper semi-consistent approximate model for this system (see Remark

12 below). ¥

Remark 12: In the absence of the uniform continuity condition, one option is to search for an inclusion F̃ satisfying

basic conditions such that: (i) F (x, u) ⊆ F̃ (x, u); (ii) F̃ (·, u) is uniformly continuous, or uniformly locally Lipschitz; (iii)

the Euler approximation of ẋ ∈ F̃ (x, u) can be stabilized in the appropriate sense. In this case, x + hF̃ (x, u) will be

A-one-step upper semi-consistent with F e
h and we will be in a position to apply our results. ¥

Definition 8: The family fh is said to be multi-step upper semi-consistent with F e
h if, for each 4-tuple of strictly

positive real numbers (T, η,∆1,∆2) there exist a function α : R≥0 × R≥0 → R≥0 ∪ {∞} and h∗ > 0 such that, for all
h ∈ (0, h∗) we have

{
(x, u), (y, u) ∈ HA(0,∆1)×∆2Bm , |x− y| ≤ δ

}
=⇒ F e

h(x, u) ⊆ fh(y, u) + α(δ, h)Bn (74)

i ≤ T/h =⇒ αi(0, h) :=

i︷ ︸︸ ︷
α (· · ·α (α (0, h) , h) · · · , h) ≤ η . (75)

¥

A sufficient condition for multi-step upper semi-consistency is given in the following:

Proposition 5: If, for each pair of strictly positive real numbers (∆1,∆2), there exist K > 0, ρ ∈ K∞ and h
∗ > 0 such

that for all h ∈ (0, h∗) and all (x, u), (y, u) ∈ HA(0,∆1)×∆2Bm we have

F e
h(x, u) ⊆ fh(y, u) + [(1 +Kh) |x− y|+ hρ(h)]Bn (76)

then fh is multi-step consistent with F
e
h . ¥

Proof. Let (T, η,∆1,∆2) be given. From the assumption of the lemma, let these numbers generate K > 0, ρ ∈ K∞ and

h∗1 > 0. Define

α(δ, h) := (1 +Kh)δ + hρ(h); h∗ := min

{
h∗1, ρ

−1

(
ηK

exp(KT )− 1

)}
. (77)

With these definitions, the condition (74) is satisfied. Also note that

αi(0, h) = hρ(h)

i−1∑

j=0

(1 +Kh)j =
ρ(h)

K

[
(1 +Kh)i − 1

]
≤
ρ(h)

K
[exp(KT )− 1] (78)

and so (75) is satisfied. ¥

Remark 13: Relative to the one-step consistency condition, the condition of Lemma 5 is guaranteed by one-step

consistency plus the following type of Lipschitz condition on either the family F e
h or the family fh: for each (∆1,∆2)

there exist K > 0 and h∗ > 0 such that for all (x, u), (y, u) ∈ HA(0,∆1)×∆2Bm and all h ∈ (0, h
∗],

fh(x, u) ⊆ fh(y, u) + (1 +Kh)|x− y|Bn . (79)

This condition is guaranteed for F e
h when F (x, u) is locally Lipschitz. The condition given in Lemma 5 for multi-

step consistency is similar to conditions used in the numerical analysis literature (e.g., see conditions (i) and (iii) of

Assumption 6.1.2 in [43, pg.429]). ¥

In terms of trajectory error over “continuous-time” intervals with length of order one, multi-step consistency gives

the following:
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Proposition 6: If fh is multi-step consistent with F
e
h then for each 4-tuple of strictly positive real numbers (T, η,∆1,∆2)

there exists h∗ > 0 such that, if h, u and ξ satisfy

h ∈ (0, h∗) , |u| ≤ ∆2, φah(i, ξ, u) ∈ HA(0,∆1) ∩ S
a
h(x, u) ∀i : ih ∈ [0, T ], (80)

then for any φah(i, ξ, u) ∈ S
a
h(ξ, u) and φ

e(ih, ξ, u) ∈ Se(ξ, u) we have

|φe(ih, ξ, u)− φah(i, ξ, u)| ≤ η ∀i : ih ∈ [0, T ] . (81)

¥

Proof of Proposition 6: Define ∆1 = ∆1 + η. Since fh is multi-step consistent with F
e
h , there exist a function α(·, ·)

and a strictly positive real number h∗ such that (74) and (75) are satisfied for the 4-tuple (T, η,∆1,∆2). We now prove

the result by induction. For any given i ≥ 0 we consider arbitrary φah(i, ξ, u) ∈ S
a
h(ξ, u) and φ

e(ih, ξ, u) ∈ Se(ξ, u).

First we have |φe(0, ξ, u) − φah(0, ξ, u)| = 0 ≤ α1(0, h) ≤ η. Next, suppose |φe(ih, ξ, u) − φah(i, ξ, u)| ≤ αi(0, i) ≤ η and

(i+ 1)h ∈ [0, T ]. Since (i+ 1)h ∈ [0, T ], it follows from the definition of ∆1 that φ
a
h(i, ξ, u), φ

e(ih, ξ, u) ∈ HA(0,∆1). It

then follows from (74) that |φe((i + 1)h, ξ, u) − φah(i + 1, ξ, u)| ≤ αi+1(0, h). Since (i + 1)h ∈ [0, T ] it follows from (75)

that αi+1(0, h) ≤ η. ¥

A simple consequence of the above lemma is a sufficient condition for consistency presented in Definition 2.

Corollary 4: Let fh be multiple-step upper semi-consistent with F
e
h , let the family F

a
T,h be defined using (41) and (42).

Given any (T, ε,∆1,∆2) there exists h
∗ > 0 such that if the condition (80) holds then for all (x, u) ∈ HA(0,∆1)×∆2Bm

and all h ∈ (0, h∗], we have F e
T (x, u) ⊆ F a

T,h (x, u) + εTBn ¥

Remark 14: We note that in order to verify that consistency in Definition 2 holds, one needs to show that the

condition (80) holds. This may be hard to do in general with a given triple (T,∆1,∆2). However, if the family fh

satisfies a Lipschitz condition, uniform in h, then given any (T,∆1,∆2) there exist (∆̃1, ∆̃2) and h
∗ > 0 such that if

(ξ, u) ∈ HA(0, ∆̃1)× ∆̃2Bm and h ∈ (0, h
∗), then φah(k, ξ, u) ∈ HA(0,∆1) for all k such that kh ∈ [0, T ]. ¥

VI. Lyapunov certificates of asymptotic stability

We have shown through our main results that having a family of Lyapunov certificates, in addition to bounded controls

and modeling consistency, is sufficient to guarantee robustness to the mismatch between an approximate discrete-time

model and the exact discrete-time model. We have also shown by example that the lack of Lyapunov certificates can

suggest a lack of the appropriate robustness. In this way, we have emphasized the importance of a Lyapunov proof of

asymptotic stability for discrete-time systems, especially those with discontinuous right-hand side. In this section we

will further clarify and illustrate the notion of Lyapunov certificates.

A. Some general observations

Since checking the right continuity properties of Lyapunov certificates is hard in general, it is useful to explore

situations when this procedure can be simplified. The right continuity is needed for our results to hold (see item 1 in

Theorems 1 and 2). Several such situations are presented next.

In several common situations a family of Lyapunov certificates VT,h will exist and limh→0+ VT,h(x) will exist for each

x. The next two propositions, which are simple consequences of continuity, can be useful for relating the continuity of

the limiting function (which is simpler to verify) to the continuity of the family of functions.

Proposition 7: Let T > 0 be fixed. Suppose the following conditions hold: (i) For each pair of strictly positive real

numbers ε and b there exist h∗ > 0 and δ > 0 such that h ∈ (0, h∗], |x− y| ≤ δ, max{|x| , |y|} ≤ b implies that
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|VT,h(x)− VT,h(y)| ≤ ε. (ii) For each x ∈ Rn we have that VT (x) := limh→0 VT,h(x) is well defined. Then VT is

continuous. ¥

Proposition 8: Let T > 0 be fixed. Suppose that the following conditions hold: (i) For each x ∈ Rn the limit

VT (x) := limh→0 VT,h(x) is well defined. (ii) VT is continuous. (iii) For each ε > 0 and b > 0 there exists h
∗ > 0 such

that h ∈ (0, h∗], |x| ≤ b implies that |VT,h(x)− VT (x)| ≤ ε. Then, for each ε̃ > 0 and b > 0 there exist h∗ > 0 and δ > 0

such that h ∈ (0, h∗], |x− y| ≤ δ, max{|x| , |y|} ≤ b implies that |VT,h(x)− VT,h(y)| ≤ ε̃. ¥

Since we are dealing with families of systems parameterized by h, it may seem more natural to use Lyapunov certificates

for asymptotic stability with respect to a family of nonempty closed sets Ah that are parameterized with h. However,

under reasonable general conditions we can show that verifying stability with respect to a family of sets Ah can be done

by considering stability with respect to a fixed set A. The following proposition which is proved in the appendix makes

this statement precise:

Proposition 9: Suppose

α1(|x|Ah
) ≤ Vh(x) ≤ α2(|x|Ah

) . (82)

Let A be a nonempty closed set and suppose there exists δ1 ∈ K∞ such that

|x|A − δ1(h) ≤ |x|Ah
≤ |x|A + δ1(h) . (83)

Under these conditions, there exists δ ∈ K∞ and a family of functions x→ Ṽh(x) such that

min

{
|x|A, α1

(
1

2
|x|A

)}
≤ Ṽh(x) ≤ |x|A + α2(2|x|A) (84)

Ṽh(x) = Vh(x) ∀|x|A ≥ δ(h) (85)

Ṽh(x
+)− Ṽh(x) ≤ Vh(x

+)− Vh(x) + δ(h) . (86)

B. Illustrations

In the rest of this section we present two new nontrivial examples that further illustrate how Lyapunov certificates

can be found and used in controller design based on approximate discrete-time plant models. The examples illustrate

generality and rigor of our approach. In particular, since results of the present paper are much more general than the

results of [33], we are able to rigorously tackle completely new situations which are illustrated below.

The first example addresses stabilization and input-to-state stabilization of a nonholonomic integrator. This example

illustrates generality of our approach by: (i) using a non-standard approximate discrete-time model for the controller

design; (ii) using a non-standard modeling parameter defined as h = 1
kT where T is the sampling period and k > 0 is a

constant. As a result, we can achieve semiglobal practical stabilization with arbitrarily large sampling period; (iii) using

appropriate differential inclusions we show that we can tackle the problem of input-to-state stabilization of a system with

exogenous disturbances. This is an alternative approach to the approach for input-to-state stabilization taken in [35];

(iv) using a discontinuous control law. In the second example we combine local and global control laws using hysteresis

switching.

C. Nonholonomic integrator

Consider the control system

θ̇ = k(satπ/4(u1)− θ); ẋ = cos(θ) [u2 + d] ; ẏ = sin(θ) [u2 + d] , (87)
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where k > 0, which represents a vehicle steering model where, with the function satπ/4(·) defined as satπ/4(u1) :=

sgn(u1)min
{
π
4 , |u1|

}
, the steering angle is limited to the range ±π/4. The linearization of this system at the origin is

uncontrollable through (u1, u2). The quantity d is a disturbance input.

We will develop a family of control algorithms, based on an approximate discrete-time model, that are appropriate

for controlling the exact discrete-time model when the sampling period is large. In order to apply our fixed sampling

period results to this case, we reparameterize time as τ = t/T where T is the sampling period in the original time scale.

In the new time scale, τ , the sampling period is fixed to be one. We also define ũ2 = Tu2, d̃ = Td, and a modeling

parameter h = 1/kT . In this case, the new differential equation we consider is

hθ
′

= (satπ/4(u1)− θ); x
′

= cos(θ)
[
ũ2 + d̃

]
; y

′

= sin(θ)
[
ũ2 + d̃

]
(88)

where x
′

= dx
dτ . In order to apply our main results, we will consider control of the differential inclusion

hθ
′

= (satπ/4(u1)− θ); x
′

∈ cos(θ)
[
ũ2 + γB1

]
; y

′

∈ sin(θ)
[
ũ2 + γB1

]
. (89)

The approximate discrete-time model we consider is

θ+ = satπ/4(u1); x+ ∈ x+ cos(satπ/4(u1))ũ2 + γB1; y+ ∈ y + sin(satπ/4(u1))ũ2 + γB1 . (90)

Using that sin(·), cos(·) and satπ/4(·) are Lipschitz with constant equal to one, the exact discrete-time satisfies

θ+ = exp(−1/h)θ + (1− exp(−1/h))satπ/4(u1)

x+ ∈ x+ cos(satπ/4(u1))ũ2 +
(
h
[
1− e−1/h

]
|θ − u1||ũ2|+ γ

)
B1

y+ ∈ y + sin(satπ/4(u1))ũ2 +
(
h
[
1− e−1/h

]
|θ − u1||ũ2|+ γ

)
B1 .

(91)

It is immediate that for any compact set of initial conditions, the approximate discrete-time model is upper semi-

consistent with the exact discrete-time model, i.e., the third condition of Theorem 1 is satisfied.

To control the approximate model (90) we first consider stabilizing the (x, y) subsystem with γ = 0 by choosing

ũ2 =
v2

cos(satπ/4(u1))
; satπ/4(u1) = arctan(sat1(v1)) , (92)

so that

x+ = x+ v2; y+ = y + sat1(v1)v2 , (93)

and then picking

v1 =





−
y

v2
v2 6= 0

0 otherwise

; v2 =





−x |x|2 ≥ |y|

√
|y| otherwise

. (94)

Observe that |v1| ≤
√
|y| and v2 = 0 =⇒ (x, y) = (0, 0). Moreover, the control law is uniformly bounded and hence the

second condition of Theorem 1 holds.

Using the (partial) Lyapunov function V◦(x, y) =
1
4 |x|sat1(|x|) + |y|, we show that the (x, y) subsystem with γ = 0 is

stabilized with the above given control law:
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Case 1: |x|2 ≥ |y|, v2 6= 0:
1

V◦(x
+, y+)− V◦(x, y) = |y − sat1 (y/v2) v2| −

1
4 |x|sat1(|x|)− |y|

= − 14 |x|sat1(|x|)− |y|
sat1 (|v1|)

|v1|

≤ − 14 |x|sat1(|x|)−
√
|y|sat1

(√
|y|
)
.

(95)

Case 2: |x|2 < |y|, v2 6= 0:
2

V◦(x
+, y+)− V◦(x, y) ≤ 1

2 |x|sat1(|x|) +
1
2

√
|y|sat1(

√
|y|)− 1

4 |x|sat1(|x|)−
√
|y|sat1

(√
|y|
)

= 1
4 |x|sat1(|x|)−

1
2

√
|y|sat1

(√
|y|
)

≤ 1
4

√
|y|sat1(

√
|y|)− 1

2

√
|y|sat1

(√
|y|
)

= − 14
√
|y|sat1(

√
|y|)

≤ − 15

(
1
4 |x|sat1(|x|) +

√
|y|sat1(

√
|y|)
)
.

(96)

Now we consider as a complete Lyapunov function for the approximate closed-loop system V (θ, x, y) := 1
10 |θ|sat1(|θ|) +

V◦(x, y). We have

V (θ+, x+, y+)− V (θ, x, y) = 1
10

√
|y|sat1(

√
|y|)− 1

10 |θ|sat1(|θ|)−
1
20 |x|sat1(|x|)−

1
5

√
|y|sat1(

√
|y|)

= − 1
10

(
|θ|sat1(|θ|) +

1
2 |x|sat1(|x|) +

√
|y|sat1(

√
|y|)
)
.

(97)

Finally, we allow γ 6= 0. Using that the function V is globally Lipschitz with Lipschitz constant equal to two, since

s→ |s|sat1(|s|) is globally Lipschitz with Lipschitz constant equal to two, we then have

V (θ+, x+, y+)− V (θ, x, y) ≤ −
1

10

(
|θ|sat1(|θ|) +

1

2
|x|sat1(|x|) +

√
|y|sat1(

√
|y|)

)
+ 2γ . (98)

It follows that the first condition of Theorem 1 holds with δ0 = 2γ for sufficiently large set of initial conditions. Hence, we

can conclude using Corollary 2 and Remark 2 that for sufficiently large compact set of initial conditions and arbitrarily

small `3, the trajectories of the exact system corresponding to (88) satisfy the stability bound (62) with T = 1 for

sufficiently small values of h. Note that because of (50) we have that trajectories converge to a ball whose radius

depends on the size of disturbance (i.e. γ).

D. A partially quasi-continuous Lyapunov certificate for hysteresis switching

In this section, we show how to construct a partially quasi-continuous Lyapunov certificate for a control algorithm

that combines local and global controllers through hysteresis switching. We consider two approximate models:

x+ ∈ F a,glob
T,h (x, u) (99)

x+ ∈ F a,loc
T,h (x, u) , (100)

and we assume that each model is upper semi-consistent with the corresponding exact discrete-time model. A con-

sequence of this is that the map defined at x by arbitrarily picking either F a,glob
T,h (x, u) or F a,loc

T,h (x, u) is also upper

semi-consistent with the exact discrete-time model. To simplify notation in what follows, we will use F glob and F loc for

F a,glob
T,h and F a,loc

T,h respectively, and similarly for the functions given below.

1The final inequality in (95) uses the fact that 0 ≤ a ≤ b implies asat1(a) ≥ bsat1(b).
2The first inequality in (96) uses Fact 1 given in the appendix.
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Assumption 2: There exist a closed set A, functions uglob, uloc : Rn → Rm, functions Vglob, Vloc : Rn → R≥0, class-K∞
functions αglob, αloc, αglob, αloc, continuous, positive definite functions γglob, γloc : R≥0 → R≥0 and positive real numbers
cglob, cloc such that:

1. for all x ∈ Rn we have

αglob(|x|A) ≤ Vglob(x) ≤ αglob(|x|A) (101)

αloc(|x|A) ≤ Vloc(x) ≤ αloc(|x|A) ; (102)

2. for all x such that Vloc(x) ≤ cloc,

Vloc(F
loc(x, uloc(x)))− Vloc(x) ≤ −γloc(|x|A) ; (103)

3. for all x such that Vglob(x) ≥ cglob,

Vglob(F
glob(x, uglob(x)))− Vglob(x) ≤ −γglob(|x|A) ; (104)

4. there exists ε > 0 such that

Vglob(x) ≤ cglob =⇒ Vloc(x) ≤ cloc − ε . (105)

The composite control strategy will use a switching variable s ∈ {glob, loc} (these two states can be arbitrarily associated

with numbers). We let η be an arbitrary mapping to the set {glob, loc} satisfying η(glob) = glob and η(loc) = loc, let

the controller be defined as

s+ =





glob if Vloc(x) ≥ cloc

η(s) if Vglob(x) ≥ cglob ∧ Vloc(x) < cloc

loc if Vglob(x) < cglob




=: G(x, s) (106)

u(x, s) = uG(x,s)(x) (107)

and let the approximate discrete-time model be defined as

x+ ∈ F (x, s, u) = FG(x,s)(x, u) . (108)

We then can state the following result:

Proposition 10: Under Assumption 2, there exists a continuously differentiable function ρ ∈ K∞ such that, defining

Ṽglob := Vglob and Ṽloc := ρ ◦ Vloc, the function

(x, s) 7→ Ṽη(s)(x) =:W (x, s) (109)

is a Lyapunov certificate for (106)-(108), (with x 7→ W (x, s) inheriting sufficient regularity from x 7→ Vglob(x) and

x 7→ Vloc(x).)

Proof. The proof of this proposition hinges of the following Lemma:

Lemma 2: Given strictly positive real numbers ε and cloc satisfying ε < cloc and class-K∞ functions κ, κ, there exists

a continuously differentiable function ρ ∈ K∞, with ρ
′

nondecreasing, such that

ρ(s) ≤ κ(s) ∀s ∈ [0, cloc − ε] (110)

κ(s) ≤ ρ(s) ∀s ∈ [cloc,∞) . (111)
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Proof. See the Appendix. ¥

Continuing with the proof of the proposition, we define

κ :=
2

3
· αglob ◦ α

−1
loc; κ := 2 · αglob ◦ α

−1
loc (112)

and we apply Lemma 2 to get ρ ∈ K∞. Now we consider the difference in the Lyapunov function W along trajectories.

We first consider the two cases:

1. Vloc(x) ≥ cloc, η(s) 6= G(x, s) = glob. (It follows from (105) that Vglob(x) ≥ cglob and from the properties of η(·) that

η(s) = loc.) Using (106)-(109), the bounds in Assumption 2, the definition of κ in (112), and (111), we have

W (F (x, s, u(x, s)), G(x, s))−W (x, s) = Vglob(F
glob(x, uglob(x))− ρ(Vloc(x))

≤ Vglob(x)− ρ(Vloc(x))

≤
1

2
κ(Vloc(x))− ρ(Vloc(x))

≤ −
1

2
ρ(Vloc(x)) ≤ −

1

2
ρ ◦ αloc(|x|A) .

(113)

2. Vglob(x) < cglob, η(s) 6= G(x, s) = loc. (It follows that η(s) = glob and Vloc(x) ≤ cloc − ε.) Using (106)-(109), the

bounds in Assumption 2, the definition of κ in (112), and (110), we have

W (F (x, s, u(x, s)), G(x, s))−W (x, s) = ρ ◦ Vloc(F
loc(x, uloc(x)))− Vglob(x)

≤ ρ(Vloc(x))−
3

2
κ(Vloc(x))

≤ −
1

2
ρ(Vloc(x)) ≤ −

1

2
ρ ◦ αloc(|x|A) .

(114)

In all of the other cases to be considered, we have that η(s) = G(x, s). For these cases, it follows from (106), the fact

that ρ
′

is nondecreasing, and the bounds in Assumption 2 that there exists a continuous, positive definite function γ

such that

W (F (x, s, u(x, s), G(x, s))−W (x, s) ≤ −γ(|x|A) . (115)

This completes the proof of the Proposition. ¥

VII. Conclusions

A general framework for stabilization of sampled-data nonlinear differential inclusions via their approximate discrete-

time models was presented. The generality of our approach is reflected in the following: (i) plants and (dynamic)

controllers that are considered are modeled, respectively, by general differential and difference inclusions; (ii) no regularity

assumptions are needed for the controller dynamics; (iii) stability with respect arbitrary (not necessarily compact) sets

is considered; (iv) arbitrary approximate plant models are considered; (v) both fixed and varying sampling periods are

considered. All conditions that are presented are checkable (although they may be hard to check) since they use the

properties of the continuous-time plant model, the controller and the approximate model, all of which are known to

the designer. The results are prescriptive in nature and they can be used as a guide when designing controllers for

sampled-data systems based on their approximate discrete-time models. Finding systematic procedures for controller

design for classes of systems and their specific approximate models using the framework of this paper is an important

area of further research.
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[32] D. Nešić, A. R. Teel and E.D.Sontag, Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems,

Syst. Contr. Lett., vol. 38 (1999), pp. 49-60.
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VIII. Appendix

A. Proof of Proposition 1:

Our first claim is that x ∈ V(0, `2) and x
+ ∈ F (x) imply

V (x+) ≤ max {V (x), `1 + T`3} . (116)

For the case where V (x) ≤ `1, (116) follows from (28). The only case left to consider is when V (x
+) ≥ `1 (otherwise

(116) holds) and `2 ≥ V (x) ≥ `1, which by (28) implies V (x
+) ≤ `2 + T`3. But under these conditions (27) applies and

so it follows that V (x+) ≤ V (x), i.e., (116) holds.

The relation (116) guarantees that the set V(0, `1 + T`3) is forward invariant. Moreover, using (116) together with

the fact that `1 + T`3 ≤ `2, we obtain that the set V(0, `2) is also forward invariant.

Now, suppose there exist x◦ ∈ V(0, `2), φ(·, x◦) (a solution to (19)) and a nonnegative integer k such that (29) is

violated, i.e.,

V (φ(k, x◦)) > max {β(V (x◦), kT ), `1 + T`3} . (117)

Since β(s, 0) ≥ s,∀s ≥ 0, it must be the case that k ≥ 1 and V (φ(j, x◦)) ≥ `1 + T`3 for all j ∈ {0, . . . , k}. It follows

from (27) that

V (φ(j + 1, x◦))− V (φ(j, x◦)) ≤ −Tα(V (φ(j, x◦))) ∀j ∈ {0, . . . , k − 1} . (118)

Define tj := jTρ2(V (x◦)), j ∈ {0, 1, . . . , k} and the function y : [0, tk]→ R≥0 by

y(t) := V (φ(j, x◦)) +

(
t

Tρ2(V (x◦))
− j

)
[V (φ(j + 1, x◦))− V (φ(j, x◦))] (119)

∀t ∈ [tj , tj+1] ∀j ∈ {0, . . . , k − 1} .

The function y(·) is well defined since ρ2(V (x◦)) > 0 for all x◦. Moreover, it is continuous, piece-wise linear, and satisfies

y(tj) = V (φ(j, x◦)) ∀j ∈ {0, . . . , k} . (120)
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Using (119) and (118), for almost all t ∈ [0, tk] and j ∈ {0, . . . , k − 1} such that t ∈ [tj , tj+1], we have

ẏ = 1
Tρ2(V (x◦))

[V (φ(j + 1, x◦))− V (φ(j, x◦))] ≤ −α(V (φ(j,x◦)))
ρ2(V (x◦))

≤ −ρ1(V (φ(j,x◦)))·ρ2(V (φ(j,x◦)))
ρ2(V (x◦))

≤ −ρ1(V (φ(j, x◦))) ,

(121)

where the last inequality follows from the facts that ρ2 ∈M and V (φ(j, x◦)) ≤ V (x◦), which imply

ρ2(V (φ(j, x◦)))

ρ2(V (x◦))
≥ 1,∀j ∈ {0, . . . , k} .

It follows from this relation that y(·) is non increasing and thus, using (120), we have

y(t) ≤ V (φ(j, x◦)) ∀t ∈ [tj , tj+1] ,∀j ∈ {0, . . . , k − 1} . (122)

Using that ρ1 ∈ K∞, it follows from (121) and (122) that, for almost all t ∈ [0, tk],

ẏ ≤ −ρ1(y(t)) . (123)

It follows from standard comparison theorems (see Lemma 4.4 in [41]) and the definition of β̃ ∈ KL that

y(t) ≤ β̃(y(0), t) = β̃(V (x◦), t) . (124)

Letting t = tj and using (120) with j = k we get

V (φ(j, x◦)) ≤ β̃(V (x◦), tj) = β̃(V (x◦), ρ2(V (x◦))kT ) =: β(V (x◦), kT ) ,

which is a contradiction to (117). Finally, β(s, t) = β̃(s, ρ2(s)t) is class-KL since β̃ ∈ KL and ρ2 ∈M. ¥

B. Proof of Proposition 4:

Let (∆,M) be given. Define ∆1 := max{∆,M}. Let item 2b of the proposition generate h
∗
1 > 0 and ρ1 ∈ K∞. Define

∆̃ = ∆1 + 1 and let items 1 and 2c of the proposition generate M1 > 0 and ρ̃ ∈ K∞. Define h
∗ := min

{
h∗1,M

−1
1

}
and

ρ(s) := ρ1(s) + ρ̃(M1s). It follows from item 1 of the proposition that, for all (x, u) ∈ HA(0,∆)×∆Bm,

{φ ∈ S(x, u) , t ∈ [0, h∗]} =⇒
{
φ(t, x, u) ∈ HA(0, ∆̃) , |φ(t, x, u)− x| ≤M1t

}
. (125)

For each v ∈ Rn and (x, u) ∈ Rn × Rm, define g(x,u)(v) to be the unique (since F̃ (x, u) is closed and convex) closest

point in F̃ (x, u) to v. Since F̃ (x, u) is closed and convex, the function g(x,u)(·) is continuous. Let w : R≥0 → Rn be a

measurable function such that w(t) ∈ F (φ(t, x, u), u), ∀t ≥ 0 and, for almost all t ≥ 0, w(t) =
˙︷ ︷

φ(t, x, u) ∈ F (φ(t, x, u), u).

Then the function g(x,u)(w(·)) enjoys the following properties:

1. g(x,u)(w(·)) is measurable (since w(·) is measurable and g(x,u)(·) is continuous);

2. for all t ∈ [0, h∗], |w(t)− g(x,u)(w(t))| ≤ ρ̃(|φ(t, x, u)− x|) ≤ ρ̃(M1t);

3. from convexity of F̃ (x, u) and the fact that g(x,u)(w(t)) ∈ F̃ (x, u) for all t,
∫ h
0
g(x,u)(w(t))dt ∈ hF̃ (x, u).

It follows that, for all h ∈ (0, h∗)

φ(h, x, u) = x+

∫ h

0

w(t)dt = x+

∫ h

0

g(x,u)(w(t))dt+

∫ h

0

[
w(t)− g(x,u)(w(t))

]
dt

∈ x+ hF̃ (x, u) + hρ̃(M1h)Bn ⊆ fh(x, u) + h (ρ1(h) + ρ̃(M1h))Bn = fh(x, u) + hρ(h)Bn .

(126)

It follows that, for all (x, u) ∈ HA(0,∆)×MBm and all h ∈ (0, h
∗), F e

h(x, u) ⊆ fh(x, u)+hρ(h)Bn, i.e., fh is A-one-step

upper semi-consistent with F e
h . ¥
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C. Proof of Proposition 9.

Let δ ∈ K∞ satisfy 2δ1(s) + max {3δ1(s), α2 ◦ 3δ1(s)} ≤ δ(s). Consider the function

Ṽh(x) = sat2δ1(h)(|x|A)[1− `δ1(h)(|x|A − δ1(h))] + `δ1(h)(|x|A)Vh(x) (127)

where sat2δ1(h) : R≥0 → R≥0 is defined as sat2δ1(h)(s) = min {2δ1(h), s} and `δ1(h) : R → [0, 1] is defined as `δ1(h)(s) = 0

for s ≤ δ1(h), `δ1(h)(s) = 1 for s ≥ 2δ1(h) and `δ1(h)(s) =
s−δ1(h)
δ1(h)

for s ∈ [δ1(h), 2δ1(h)]. From these definitions and the

fact that 3δ1(h) ≤ δ(h), it immediately follows that (85) holds. To see that (86) holds, we use (82) and (83) to deduce

that

Ṽh(x
+)− Ṽh(x) ≤ 2δ1(h) + Vh(x

+)− Vh(x) + [1− `δ1(h) (|x|A)]Vh(x)

≤ Vh(x
+)− Vh(x) + 2δ1(h) + α2(3δ1(h))

≤ Vh(x
+)− Vh(x) + δ(h) .

(128)

Finally, we establish (84). We have

Ṽh(x) ≤ |x|A + `δ1(h)(|x|A)α2(|x|A + δ1(h)) ≤ |x|A + α2(2|x|A) (129)

and, for all |x|A ≤ 2δ1(h), Ṽh(x) ≥ |x|A, while for all |x|A ≥ 2δ1(h) Ṽh(x) ≥ α1(|x|A − δ1(h)) ≥ α1
(
1
2 |x|A

)
. ¥

D. Proof of fact used to derive the first inequality in (96)

Fact 1: The following is true for all a, b ∈ R:

(|a|+ |b|)sat1(|a|+ |b|) ≤ 2|a|sat1(|a|) + 2|b|sat1(|b|) . (130)

¥

Proof: The proof follows from considering the following cases:

1. If sat1(|a|+ |b|) = sat1(|a|) = sat1(|b|), then it is straightforward to show that (130) holds.

2. If sat1(|a|) < 1, sat1(|b|) < 1, then

(|a|+ |b|)sat1(|a|+ |b|) ≤ (|a|+ |b|)2 ≤ 2|a|2 + 2|b|2 = 2|a|sat1(|a|) + 2|b|sat1(|b|) .

3. If sat1(|a|) < 1, sat1(|b|) = 1, then

(|a|+ |b|)sat1(|a|+ |b|) = |a|+ |b| ≤ 2|b| = 2|b|sat1(|b|) ≤ 2|a|sat1(|a|) + 2|b|sat1(|b|) .

4. If sat1(|a|) = 1, sat1(|b|) < 1, then using the same calculations as in Case 2 by replacing roles of a and b we obtain:

(|a|+ |b|)sat1(|a|+ |b|) ≤ 2|a|sat1(|a|) + 2|b|sat1(|b|) ,

which completes the proof. ¥

E. Proof of Lemma 2

To prove Lemma 2, we use the following result:

Lemma 3: [18] Let χ1 ∈ K and χ2 ∈ K∞ satisfy χ1(s) < χ2(s) for all s > 0. Then, there exists a function χ ∈ K∞

such that: (i) χ1(s) < χ(s) < χ2(s) for all s > 0; (ii) χ is C
1 on (0,∞) and dχ

ds > 0 for all s > 0. ¥

Let the functions κ, κ ∈ K∞ and numbers cloc, ε come from the conditions of Lemma 2. Using Lemma 3, let the

continuously differentiable functions σ1, σ2 ∈ K∞ be such that for all s > 0 we have

1

2
κ(s) ≤ σ1(s) ≤ κ(s), κ(s) ≤ σ2(s) ≤ 2κ(s),

dσ1
ds
(s) > 0,

dσ2
ds
(s) > 0 . (131)
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Introduce

q1(s) := inf
t∈(s,cloc]

dσ1
ds
(t) ∀s ∈ [0, cloc)

q2(s) := max

{
2

ε
σ2(cloc), q1(cloc − ε), sup

t∈[cloc−ε,s)

dσ2
ds
(t)

}
∀s ∈ (cloc − ε,∞)

and define

q(s) :=





q1(s), s ∈ [0, cloc − ε]
q2(cloc)−q1(cloc−ε)

ε (s− cloc + ε) + q1(cloc − ε), s ∈ [cloc − ε, cloc]

q2(s), s ∈ [cloc,∞) .

Note, that since σ1 and σ2 are continuously differentiable, bounded and strictly positive for all s > 0, then q1(·) and

q2(·) are continuous, nonnegative and nondecreasing on their domains of definition and q1(s) > 0 for all s ∈ (0, cloc).

Moreover, since q1(cloc − ε) ≤ q2(cloc), it follows that q(·) is continuous, nondecreasing and positive definite. Define

ρ(s) :=

∫ s

0

q(t)dt .

The function ρ is obviously K∞ and continuously differentiable with
dρ
ds (s) = q(s) for all s. Finally, using the definitions

of q and q1 and the first inequality in (131) we can write for all s ∈ [0, cloc − ε] that

ρ(s) =

∫ s

0

q1(t)dt ≤

∫ s

0

dσ1
dt

dt = σ1(s) ≤ κ(s) .

Moreover, using the definitions of q and q2 and the second inequality in (131) we can write for all s ≥ cloc that

ρ(s) =

∫ cloc−ε

0

q1(t)dt+

∫ cloc

cloc−ε

q(t)dt+

∫ s

cloc

q2(t)dt

≥

∫ cloc

cloc−ε

q(t)dt+

∫ s

cloc

dσ2
dt

dt (132)

=

∫ cloc

cloc−ε

q(t)dt+ σ2(s)− σ2(cloc) .

Integration and the definition of q2(·) yield the following:

∫ cloc

cloc−ε

q(t)dt =

∫ cloc

cloc−ε

[
q2(cloc)− q1(cloc − ε)

ε
(t− (cloc − ε)) + q1(cloc − ε)

]
dt

=

[
q2(cloc)− q1(cloc − ε)

ε

(
t2

2
− (cloc − ε)t

)
+ q1(cloc − ε)t

]∣∣∣∣
cloc

cloc−ε

=

[
q2(cloc)− q1(cloc − ε)

ε

(
2clocε− ε2

2
− (cloc − ε)ε

)
+ q1(cloc − ε)ε

]
(133)

=

[
[q2(cloc)− q1(cloc − ε)] · ε

2
+ q1(cloc − ε)ε

]

=
[q2(cloc) + q1(cloc − ε)] · ε

2

≥
q2(cloc)ε

2

≥ σ2(cloc) .

Combining (131), (132) and (133) yields:

ρ(s) ≥

∫ cloc

cloc−ε

q(t)dt+ σ2(s)− σ2(cloc) ≥ σ2(cloc) + σ2(s)− σ2(cloc) = σ2(s) ≥ κ(s) ,

which completes the proof of the lemma. ¥


