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ABSTRACT

There is ample published literature regarding the technical aspects of restoring root-filled teeth, but little concerning the
biological impacts, consequences, and criteria for the selection of direct restorative materials following endodontic treat-
ment. The provision of an effective coronal seal in addition to a sound root filling is known to be important in the pre-
vention of root canal infection. This review seeks to explore the evidence concerning the selection of dental materials in
the restoration of root-filled teeth, specifically with a close examination of the properties of commonly used materials as
orifice barriers. © 2023 Australian Dental Association.
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Abbreviations and acronyms: AP = apical periodontitis; CHX = chlorhexidine; CSC = calcium silicate-based cement; GIC = glass iono-
mer cement; GP = gutta percha; HEMA = 2-hydroxyethyl methacrylate; MTA = mineral trioxide aggregate; OB = orifice barrier; OPG
= orthopantomogram; RC = resin composite; RMGIC = resin-modified glass ionomer cement; ZOE = zinc oxide eugenol; ZPC = zinc
polycarboxylate cement.
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CLINICAL RELEVANCE

The persistence or emergence of root canal infec-
tion and the associated development of apical
periodontitis normally requires complex and
expensive specialist-managed non-surgical
retreatment and/or apical surgery for resolution.
Such poor outcomes can impose significant costs
on patients, health insurance or healthcare pro-
viders through restorative or replacement treat-
ments. The evidence-based selection of dental
materials is critical to the restoration of root-
filled teeth and should be considered in order to
achieve a sound coronal seal.

INTRODUCTION

The impact of microorganisms on pulpal and periapi-
cal disease is well-established;1, 2 despite the identifi-
cation of fungi, archaea and viruses, bacteria are
known to be the most prevalent and dominant micro-
organisms in endodontic infections.3 Apical

periodontitis (AP) is ‘inflammation, usually of the api-
cal or periradicular periodontium, that is of pulpal
origin, which may produce clinical symptoms includ-
ing a painful response to biting and/or percussion or
palpation. It may or may not be associated with a
radiographic apical radiolucent area’.4 A systematic
review and meta-analysis has reported the global prev-
alence of AP as being high, with 52% of pooled sam-
ples reporting at least one tooth with AP.5

Modern non-surgical root canal treatment can
deliver high success rates, although the measurement
of successful outcomes varies from approximately
92.6%–95% for tooth survival (teeth not radiographi-
cally healed but asymptomatic and functional) to
82%–86% with teeth demonstrating radiographic
healing.6–8

The goal of endodontic treatment is to eliminate
and prevent the return of pulpal and periradicular
pathosis. This is achieved, not only through the effec-
tive chemo-mechanical cleaning of the root canal sys-
tem and its subsequent filling, but also through
ensuring that an effective coronal restoration is placed
which creates a durable fluid-tight seal, and where

© 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association. 1
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Australian Dental Journal 2023; 0: 1–14

doi: 10.1111/adj.12970

https://orcid.org/0000-0003-2708-8834
https://orcid.org/0000-0003-2708-8834
https://orcid.org/0000-0003-2708-8834
https://orcid.org/0000-0001-7191-0560
https://orcid.org/0000-0001-7191-0560
https://orcid.org/0000-0001-7191-0560
https://orcid.org/0000-0002-5788-1676
https://orcid.org/0000-0002-5788-1676
https://orcid.org/0000-0002-5788-1676
https://orcid.org/0000-0003-1439-4509
https://orcid.org/0000-0003-1439-4509
https://orcid.org/0000-0003-1439-4509
https://orcid.org/0000-0002-1791-0903
https://orcid.org/0000-0002-1791-0903
https://orcid.org/0000-0002-1791-0903
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fadj.12970&domain=pdf&date_stamp=2023-08-21


appropriate, cuspal coverage to prevent their
fracture.9–11 The American Association of Endodon-
tists’ White Paper on Treatment Standards indicates
that placement of a definitive coronal restoration must
be considered part of the root filling process to pre-
vent ‘recontamination’.12

A recent systematic review and meta-analysis
reported that root canal treatment is a relatively com-
mon procedure throughout the world, suggesting that
the prevalence of root-filled teeth worldwide is greater
than 8% among the population on average.13

There is a plethora of literature published on the
technical aspects of restoring root-filled teeth, but lit-
tle concerning the biological impacts, consequences,
and selection criteria. This review article discusses
current considerations from a biological perspective
for the restoration of root-filled teeth.

THE RESTORATION OF ROOT-FILLED TEETH

Cuspal coverage restorations

There is ample published evidence demonstrating the
value of cuspal coverage in the restoration of root-
filled posterior teeth in preventing catastrophic tooth
fracture, owing in part, to the structural weakening
and decreased stiffness of teeth caused by loss of one
or both marginal ridges,14 and the additional internal
weakening potentially caused by endodontic access.15

However, a pragmatic approach should be taken to
identifying the ideal restorative requirements for a
root-filled tooth. For example, a heavily restored and
root-filled lower second molar tooth with multiple
cracks present in the marginal ridges and with frac-
tured cusps in a parafunctioning patient might have a
different restorative treatment need to an otherwise
unrestored lower premolar tooth with root canal
treatment resulting from dens evaginatus, where both
marginal ridges are still present. Thus, the restoration
of every root-filled tooth should be considered with
respect to diagnostic and prognostic criteria including,
but not limited to, assessment of the periodontal con-
dition, restorability, endodontic condition, structural
integrity, and the position and strategic value of the
tooth, in addition to patient-level factors.16 This is
particularly critical when considering that root-filled
teeth might have already lost significant structure
through deep caries, fractures, or trauma if one con-
siders the work of Edelhoff and Sorensen17, 18 where
the removal of as much as 75.6% of posterior and
76% of anterior tooth structure was shown for con-
ventional metal ceramic full crown preparations. In
general, the preservation of sound coronal enamel and
dentine and the use of minimally invasive bonded
onlay restorations is advocated when cuspal coverage
is required, wherever possible.19

The work of Opdam and others20–22 has shown
that resin composite and amalgam perform well as
large posterior restorations, with relatively low annual
failure rates and are worthy of consideration where
patients do not possess the means to undergo more
expensive indirect procedures. Indeed, the provision
of a ‘one-size-fits-all’ approach to teeth with lower
restorative demands following root canal treatment
might be more conservatively managed with less
aggressive direct restorative procedures where appro-
priate. Dawson et al.23 found no difference in the rate
of AP in teeth restored with laboratory-made crowns,
amalgam or resin composite provided that the quality
of the restoration was adequate. A recent narrative
review pointed to the lack of evidence determining the
type of restorative materials required for restoring
root-filled teeth, agreeing that while indirect restora-
tions might be required for some root-filled teeth,
there is a degree of selection bias in the literature, in
that ‘dentists and patients are less likely to choose
indirect restorations for teeth with uncertain progno-
sis’, and that preserving tooth structure in conjunction
with an optimal seal and protection of the tooth
should be assessed in each individual case when decid-
ing on direct or indirect materials.24

The importance of the coronal seal

The literature is replete with evidence that endodontic
‘failure’, i.e., the return or persistence of intraradicu-
lar infection,25 might be attributed to loss of the coro-
nal seal, with some authors suggesting that the quality
of the coronal restoration is at least as important as
the technical quality of the endodontic treatment
underlying it.26 A study looking at restorative and
endodontic treatment quality between two Canadian
populations found that teeth with adequate root fill-
ings and inadequate restorations had three times the
odds risk of developing AP than those with both ade-
quate root fillings and coronal restorations.27 A meta-
analysis looking at the quality of coronal restorations
found that the odds of success were significantly
higher in teeth with satisfactory restorations than
those with unsatisfactory restorations.28 Root-filled
teeth of a high technical standard are still at risk of
failure if the integrity of the coronal seal fails through
marginal caries, deficiencies, leakage or fractures.29

Segura-Egea et al.30 reported the quality of endodon-
tic treatment to be of greater importance than the cor-
onal restoration but found that teeth with inadequate
root canal treatments and inadequate coronal restora-
tions had an increased prevalence of AP, while the
converse was true for those with adequate root canal
treatments and adequate coronal restorations. Simi-
larly, Tronstad et al.31 found the quality of root canal
treatment to be of more importance than that of

2 © 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association.
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coronal restorations but expounded that teeth with
good quality coronal restorations had success rates
improved by 10%.
However, the significance of these findings has been

disputed by the work of Ricucci and others,32, 33 who
showed that well-filled root canal systems tended to
resist bacterial leakage for some time, limiting bacte-
ria to the coronal portion of the root canal for several
months following exposure to the oral environment.
Interestingly, these studies identified bacterial invasion
through staining and histological analysis, but the
authors stated that the potential leakage of bacterial
by-products and endotoxins was not assessed and
might have played a role in causing the inflammation
observed in the studies. An earlier study showed that
both bacteria and endotoxins were able to penetrate
the root-filling materials in post-prepared canals, but
that endotoxin penetration was faster than bacterial
penetration.34 This raises the possibility that rapid
penetration of endotoxin could lead to an early peria-
pical reaction developing, with subsequent AP and the
need for retreatment or periapical surgery.
Nonetheless, other published studies have down-

played the significance of the quality of coronal resto-
rations on endodontic outcomes.35, 36 It is important
to note that there is considerable heterogeneity in the
study designs observing AP related to both root canal
treatments and coronal restorations. Some studies
were undertaken prospectively,36 but a greater num-
ber were retrospective and cross-sectional in design
based on assessment of the radiographic appearance
of both root canal treatment and coronal
restorations37 and correlating their technical standards
to the presence of AP. The retrospective nature of
these studies often revealed a paucity of diagnostic
information prior to root canal treatment having been
performed on the teeth included in the study, e.g., the
presence or absence of a periapical radiolucency prior
to treatment, whether endodontic treatment was car-
ried out by an endodontist or a general dentist, which
practitioner placed the final restoration and precise
details of the restoration, for example, the restorative
material used, type of bonding or design of the resto-
ration. Often in these studies, the technical quality of
the root canal treatments and coronal restorations
were performed radiographically, sometimes based on
orthopantomograms (OPGs) alone.37 While larger
approximal defects and caries might be relatively easy
to diagnose radiographically, the diagnosis of more
discreet lesions or defects would be compromised in
other areas of the coronal aspect of teeth, and more
easily discerned on clinical examination in combina-
tion with radiographic examination. Some studies
looked at coronal restorations both radiographically
and clinically.36, 38, 39 It is important to consider that
retrospective studies capturing radiographic

information on teeth at a single point in time might
be unable to determine accurately the healing or dis-
ease progressions of periapical lesions, and might not
be able to show ‘causation’ over ‘association’ with
respect to the quality of endodontic treatment or cor-
onal restorations.40

A systematic review aimed to discern whether ade-
quate root canal treatments combined with inade-
quate coronal restorations performed better than
inadequate root canal treatments combined with ade-
quate coronal restorations.41 The authors found that
the quality of coronal restorations was not more
important than the quality of root canal treatments
and that perhaps the clinical significance of coronal
leakage might be less than that indicated by in vitro
studies. However, there was limited investigation into
the substance of the papers reviewed. The authors
reported in fact, that they were unable to identify sig-
nificant and relevant information and acknowledged
that the wide variability of criteria resulted in consid-
erable heterogeneity between studies. They also
acknowledged that data from the majority of the stud-
ies were based on subjective radiographic examination
and that information on preoperative periapical status
was lacking, as was that of the duration between root
canal treatment completion and placement of the cor-
onal restoration. The authors concluded, logically,
that the combination of both adequate root canal
treatments and adequate coronal restorations pro-
duced better treatment outcomes in preventing bacte-
rial ingress.
In a recent review article, Gulabivala and Ng42

identified some of the problems with many of the
studies classifying restorations as either satisfactory or
unsatisfactory, in that criteria were not standardised,
and pointed to the lack of reference to the presence or
absence of an inner core restorative material. In addi-
tion, there is no clear consensus on choice of core
material. The European Society of Endodontology’s
2021 position statement on ‘The restoration of root
filled teeth’ states ‘Clinicians have a number of
choices for core placement prior to cuspal coverage
restoration. Unfortunately, there are currently no ran-
domized controlled clinical trials comparing amalgam,
composite, or other materials, such as glass ionomer
cements, as core materials for root filled teeth restored
with crowns’19

Indeed, many retrospective studies assessing the sur-
vival and success of root canal treatment are unable
to quantify a multitude of pre- and post-operative fac-
tors. A recent narrative review highlighted a wide
variety of potential factors that might affect the suc-
cess or survival of root-filled teeth, including, but not
limited to, patient factors such as age, systemic health,
tooth type, timing of the restoration, amount of
remaining tooth structure, the expected function of

© 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association. 3
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the tooth, and the presence of cracks, among others
which could affect treatment outcomes.24 The authors
also alluded to the concept of ‘functional retention’,
reporting a prevalence of approximately 40% of root-
filled teeth having AP in cross-sectional studies.24 A
study investigating endodontic and periapical status in
an Australian population with similar findings sug-
gested that this might ‘imply stability in a closed
microbiological system’,43 further reinforcing the need
for both establishing and maintaining both an end-
odontic and coronal restorative seal.

Limitations of root filling materials

Whilst contemporary endodontic treatment employs
chemo-mechanical root canal preparation, it has been
shown that microorganisms can penetrate up to
150 lm into dentinal tubules,44 and that the root
canal system cannot be rendered fully free of microbes
via mechanical preparation45, 46 or chemical irriga-
tion.47, 48 In practice, the goal is to gain access to the
site of infection to reduce the microbial load suffi-
ciently, so that the number of any residual microor-
ganisms is minimised, if not completely eliminated.49

This requires adequate compaction of the root filling
and minimisation of gap formation, particularly
between the root filling and the root canal walls.
Furthermore, the ability of gutta percha (GP) and

endodontic sealers to fill all voids within a root canal
system is imperfect.50, 51 Notwithstanding the chal-
lenges created by naturally occurring voids and aber-
rations within the root canal anatomy that are
difficult or impossible to gain access to, endodontic
sealer materials should ideally have excellent flowabil-
ity, wettability and adaptability, and excellent resis-
tance to shrinkage and erosion/dissolution after
placement. It is known that some sealers might experi-
ence shrinkage after placement, while others might
expand.52–54 The mode of use of GP has changed over
time55 with heated materials being in common use,
and these too might also experience significant dimen-
sional change after initial placement, potentially
reducing the sealing ability at the dentine-gutta percha
interface.56,57 Some sealers show antimicrobial activ-
ity, but many do so for a relatively short period of
time.58–61 Degradation of polymer-based root filling
and sealer materials has been observed.62

Thus, instead of viewing the root filling and final
coronal restoration as being distinct from one
another, the concept of a restorative continuum
should be applied, using whichever materials function
best in a given area of the tooth, and applying a selec-
tion of materials capable of adequately adapting to
and sealing the root canal system from root apex to
crown, whilst providing the required aesthetic and
mechanical properties coronally. The properties

required of a material as an indirect restoration placed
coronally to resist fracture of the tooth under occlusal
loading are clearly distinct from those required from
root filling materials intended to seal a complex three-
dimensional root canal system, as would be a core
material or a post system. In bridging the junction
between root filling and coronal restoration, it is criti-
cal that the material selected can adequately penetrate
and adapt to the coronal-most aspect of the root
canal system, whilst also functioning as a foundation
for the final coronal restoration. It is also recom-
mended that a ‘leak-proof’ restoration be placed as
soon as possible after endodontic treatment.63

ORIFICE BARRIERS

In considering the coronal restoration of root-filled
teeth, it is imperative that the dental materials selected
are capable not only of rendering a seal that prevents
microbial ingress and a nutritional source for any
remaining microorganisms but also possess physical
properties capable or resisting dislodgement, wear
and/or fracture. In practice, this might indicate the
use of multiple materials to achieve such goals in the
final coronal restoration. Saunders and Saunders64

showed in vitro that extensive leakage through root
fillings with Indian ink was prevented by the presence
on the pulp chamber floor of either copal ether var-
nish and amalgam, Ketac Bond (GIC) or Ketac Silver
(Cermet), recommending that excess GP and sealer
should be cleared from the pulp chamber floor prior
to the restoration being placed.
An orifice barrier (OB), also reported as ‘intra-

orifice barrier’, ‘coronal plug’ or ‘orifice plug’, is a
restorative material placed into the root canal orifices
and as a base covering the pulp chamber floor, fol-
lowing completion of root canal treatment.65 A varia-
tion includes limiting the material to a level at or just
below orifice level. It is normally placed as a separate
material to the core/foundational/final restorative
material. This is distinct from an amalgam style
‘Nayyar Core’, where the final (core) restorative mate-
rial is placed into the root canal orifices.66 Figure 1
shows a schematic representation of an OB, while Fig-
ures 2 and 3 show zinc polycarboxylate cement and
glass ionomer cement OBs respectively,
radiographically.
The concept of a discrete OB to reduce the risk of

coronal leakage is not new,65, 67 and it is generally
accepted that the presence of an additional coronal
restorative barrier is valuable in at least slowing the
leakage of fluids or microorganisms into the underly-
ing endodontic treatment.68 An advantage of this pro-
cedure is that the operator can place a restorative
material immediately after the endodontic treatment is
completed while the tooth is still under isolation, in

4 © 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association.
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order to prevent leakage through a potentially defec-
tive interim or temporary restoration prior to place-
ment of a final restoration.69, 70 Additionally, the
complexity involved in placing an appropriate direct
or indirect restoration requiring properties suitable for
aesthetics and function under load, for example, is
not married to the seal at the coronal aspect of the
endodontic treatment, and a more effective and per-
haps technically simplistic technique or material can
be applied. Figures 4–6 show the immediate place-
ment of a zinc polycarboxylate OB after root filling
completion, overlaid with a glass ionomer cement
prior to restoration with a resin composite overlay.
An OB material should be both easily identifiable

and easily removed in the event of orthograde retreat-
ment being required in order that iatrogenic damage
is minimised. Wolcott et al.71 investigated pigmenta-
tion of OB materials to establish the sealing ability of
three materials in addition to their visibility and ease
of removal. They reported that, among three glass
ionomer-based materials, a blue-pigmented Vitrebond
(Resin-modified glass ionomer cement) OB was signifi-
cantly better (P < 0.05) at preventing leakage than
those without OBs, where the pink glass ionomer
material was easily identified but did not significantly
reduce leakage.
Many studies have investigated the efficacy of OBs,

testing a variety of materials including amalgam, con-
ventional glass-ionomer cements, resin-modified glass-

ionomer cements, resin composites, zinc polycarboxy-
late cements (ZPC), mineral trioxide aggregate (MTA)
and calcium silicate-based cements (CSC).72–80 A
recent systematic review and meta-analysis concluded
that various materials placed as OBs are effective in
the prevention of microleakage in vitro.81 However,
insufficient data prevented statistical comparisons

Fig. 1 Schematic of an orifice barrier in a root filled molar tooth. (a)
intracoronal restoration; (b) orifice barrier; (c) root filling.

Fig. 2 (a) Gutta percha; (b) zinc polycarboxylate cement orifice barrier;
(c) resin composite intracoronal restoration (Courtesy Professor Peter

Parashos).

Fig. 3 (a) Gutta percha; (b) glass ionomer cement orifice barrier; (c)
resin composite intracoronal restoration (Courtesy Dr Monique Cheung).

© 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association. 5
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from being made. In fact, the heterogeneity and weak
design of this type of study have led several prominent
journals to refuse publication of studies based on

assessment of microleakage82, 83 due to inconsistency
of study design and the lack of clinical relevance.84, 85

Nonetheless, there is some in vitro evidence linking
the penetration of bacteria along marginal gaps asso-
ciated with cyclic loading. Khvostenko et al.86 shown
that with marginal gaps between tooth and resin com-
posite materials of 15–30lm, cyclic loading promoted
bacterial leakage. Hollanders et al.87 have suggested
that occlusal loading might cause greater gap defor-
mation and might increase hydrodynamic flow and
the rate of secondary caries at restorative margins.
There are, however, challenges in relating in vitro
findings of leakage to clinical outcomes.88

There is also limited in vivo evidence to support the
use of OBs. This is, in part, due to study design. The
studies by Ng et al.89, 90 and Kumar et al.91 were
unable to show the effect of OBs as the primary seal
was not compromised during the study period. Several
clinical animal studies have shown limited evidence
for the use of OBs or the maintenance of a coronal
seal over root-filled teeth in split-mouth designs com-
paring various root-filling materials either sealed or
left exposed to the oral environment.92–95 However,
such studies are time-limited by ethical and cost con-
straints, so the long-term effect of exposed root fill-
ings versus those sealed by OBs clinically is
challenging to show.
The provision of an OB should be best regarded as

the creation of a ‘sub-seal’42 to protect a root filling
in the event of future coronal restoration loss or leak-
age. Such a seal might prevent the perceived need by
clinicians to undertake endodontic retreatment in the
event of the primary coronal restoration becoming
compromised,96 where the OB remains unimpacted.

ORIFICE BARRIER MATERIALS

In decoupling the properties required of a root-filling
material, or a coronal restorative material, the best-fit
properties of an OB material can be idealised and are
presented in Table 1. A summary of the relevant
properties of various material groups is presented in
Table 2 and is discussed in more detail below.

Resin composite

For resin composite materials, it is well-established
that enamel bonding is preferable to dentine bonding
from the point of view of technical complexity and
expected durability of restorations.97 Despite signifi-
cant improvements to dentine bonding systems over
recent decades,98 the bonding interface remains a
clinical problem. This is in part due to the challenges
encountered in bonding a hydrophobic material in
resin composite to a hydrophilic substrate in dentine.
In order to promote the formation of the hybrid

Fig. 4 Zinc polycarboxylate cement (ZPC) orifice barrier placed immedi-
ately after root filling completion, prior to placement of glass ionomer

cement (GIC) interim restoration.

Fig. 5 Restorative appointment 1 week later following cutback of glass
ionomer cement (GIC) to create space for overlay restoration. Note GIC

is still covering zinc polycarboxylate cement (ZPC).

Fig. 6 A direct resin composite (RC) overlay restoration was placed
with sectional matrices, finished and polished.

6 © 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association.
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layer,99 removal or penetration of the smear layer
and demineralisation of the superficial dentine layer
must occur to allow infiltration of monomers. In ‘etch
and rinse’ adhesive systems, following acid-etching to

remove the smear layer, HEMA (2-hydroxyethyl
methacrylate) present within a solute is commonly
used as an amphiphilic bridge to improve wettability
and to infiltrate the collagen network, thus allowing

Table 1. Desirable properties of an ideal orifice barrier material

Property Description/Reasoning

Aesthetics Placed cervically, materials might create discolouration or shadowing in anterior or visible posterior teeth
Adaptation Able to adapt intimately to root canal/cavity walls without porosities or marginal defects
Adhesion Improve integrity of material in root canal space and avoid dislodgement if primary coronal restoration is lost
Sealing ability Able to resist leakage of fluids, microorganisms and their nutrients and by-products
Fast setting Photocuring/command set or rapid self-setting to allow placement of coronal restorative material
Ease of placement Simplified technique for placement in prepared root canal space if at sub-orifice level
Ease of removal Material should be easily removed to minimise iatrogenic damage if root filling requires retreatment later
Antimicrobial activity Able to resist aggregation or penetration of microorganisms
Resistance to
degradation

Able to resist fluid or chemical degradation, or resist physical or fluid/chemical wear if primary coronal seal is
compromised

Remineralising/repair Able to remineralise adjacent dentine or aid repair of collagen in dentine
Physical properties Mechanical and thermal properties similar to dentine

Table 2. Comparison of properties of orifice barrier materials

Material Notes Subtype Adhesive Antimicrobial Aesthetics Handling Setting
time

Increment depth Ease of
removal

RC Polymerisation
shrinkage

Inhibition by
eugenol-based
sealers and
peroxide-based
bleach

Degradation of
dentine bond
over time

Paste Yes No Very
good

Incremental
placement
required
(max 2mm)

Command
Set

Maximum
2 mm

Poor

Flowable Yes No Very
good

Simple (max
2mm DOC)

Command
Set

Maximum 2mm Poor

Bulk fill Yes No Very
good

Simple (4–
5 mm
DOC)

Command
Set

4-5mm Poor

Self
cured

Yes No Very
good

Simple Variable No limit Poor

Dual
cured

Yes No Very
good

Simple Command
Set

Ideal
polymerisation
might be
depth-limited

Poor

GIC Potential for
bubble
entrapment with
encapsulated
systems

CGIC Yes Some Good Simple 2-6mins No limit Moderate
RMGIC
(Light
cured)

Yes Some Good Simple Command
Set

Resin DOC
limited

Moderate

RMGIC
(Self
cured)

Yes Some Good Simple 4 min No limit Moderate

ZPC Solubility Yes Minimal Fair Complex 2–6 min No limit Good
Amalgam Poor aesthetics No Yes Poor Simple 24 h;

initial set
<10 mins

Minimum 2 mm Moderate

Cavit Hygroscopic
Poor physical
properties

No No Fair Simple 15–30 min Preferably
>3.5 mm

Good

ZOE-based
cements

Eugenol inhibits
RC systems

No Yes Fair Simple 2–6 min No limit Good

Zinc
Phosphate

Solubility No Minimal Fair Simple 2.5 min–
8 min

No limit Good

MTA Very long setting
time

Can cause
discolouration

No Yes Poor Complex 2 h
45 min

No limit Poor

CSC Complex handling
Long setting time

No Yes Fair Complex 12 min No limit Moderate

CGIC, conventional glass ionomer cement; CSC, calcium silicate-based cement; DOC, depth of cure; GIC, glass ionomer cement; MTA, mineral
trioxide aggregate; RC, resin composite; RMGIC, resin-modified glass ionomer cement; ZOE, zinc oxide eugenol; ZPC, zinc polycarboxylate
cement.

© 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association. 7
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subsequent addition and polymerisation with
methacrylate-based resin composite materials. In the
‘self-etch’ adhesive systems, acidic functional mono-
mers such as the commonly used 10-MDP (10-
methacryloyloxydecyl dihydrogen phosphate) mono-
mer are capable of penetrating the smear layer and
etching mineralised structure, in addition to infiltrat-
ing collagen and chemically bonding to hydroxyapa-
tite. However, both HEMA and 10-MDP are
susceptible to problems such as water sorption and
hydrolytic degradation, and hydrolysis is a key reason
for resin degradation within the hybrid layer, leading
to water penetration and resin elution, and reducing
bond strength over time.100 It is also postulated that
breakdown of collagen fibrils occurs as a result of
proteolytic degradation caused by the release and
activation of endogenous enzymes such as MMPs
(matrix metalloproteinases) and cysteine cathepsins,
and it has been demonstrated in vitro that agents
including chlorohexidine (CHX) might inhibit such
enzymes, promoting longer preservation of the hybrid
layer.101

Additional problems arise in the adhesion to den-
tine and polymerisation of resin composite materials
at or apical to the coronal root canal orifice,10,102 due
to alteration of dentine or contamination of the smear
layer with endodontic materials, chlorine103 or hydro-
gen peroxide-based104 bleaching agents, depth of
photocuring105 or higher configuration factor (C-
Factor) and associated polymerisation shrinkage
stress.106

The use of indirect bonded glass-ceramic restora-
tions usually indicates bonding with resin-based
cements. Placing such restorations on teeth with
extensive coronal enamel loss and without the pres-
ence of an OB or base material essentially leaves the
resin composite-dentine bond as the ‘weakest link’ if
the coronal seal becomes compromised.
With respect to the use of resin composite materials

as OBs, with such a wide range of product choices, it
is critical that the clinician is aware of the limitations
of the materials for a given purpose. For example,
some of the newer variants include ‘bulk fill’ mate-
rials, advertised to cure up to 4-5 mm depth, but such
claims should be regarded with scepticism as inferior
depth of photocuring and degrees of polymerisation
have been demonstrated.107 Injectable or flowable
materials still generally have a 2 mm maximum depth
of photocuring, and this varies depending on the
opacity and filler content of the material and the radi-
ant power, irradiance, tip distance and angulation
associated with the light curing unit being used. Resin
composite materials capable of dual curing often con-
tain tertiary amines which are known to discolour
over time and are perhaps best avoided in anterior
teeth where aesthetics are critical.108

Glass-ionomer cements

Glass-ionomer cements (GIC) are ion-releasing mate-
rials formulated for various uses, based on an acid-base
setting reaction in which a fluoroaluminosilicate glass
reacts with a polyalkenoic acid to form a composite
material made up of unreacted glass particles embedded
in a polyalkenoate salt matrix.109 The resulting mate-
rial adheres chemically to hydroxyapatite through an
ion exchange layer and releases fluoride. Although the
majority of fluoride release occurs as an early burst,
there is a low level of sustained release, which increases
when under acid attack.110 The effectiveness of
fluoride-releasing materials in caries control, however,
is still uncertain.111 In vitro testing found the impact of
various endodontic materials on the bond strength of
GIC to dentine not to be significant.112

Resin-modified glass-ionomer cements (RMGIC)
undergo a similar acid-base reaction, but with the addi-
tion of resins such as 2-hydroxyethyl methacrylate
(HEMA) and bisphenol A-glycidyl methacrylate (Bis-
GMA), permit a command set and higher earlier strength
than GICs.113 The use of RMGICs in deeper cavity con-
figurations created by the removal of coronal root filling
materials, however, creates the risk of leaving unpoly-
merized HEMA beyond the reach of photocuring.114 The
more recent self-curing RMGICs might offset this risk.
As GIC and RMGIC systems are often encapsulated

for predictable mixing and ease of delivery via injec-
tion, great care must be taken to avoid air entrapment
during placement into root canals, which could lead
to void formation if used as OBs.

Zinc polycarboxylate cements

Zinc polycarboxylate cements (ZPC), although a pre-
cursor to GICs, are based on the reaction of oxides of
zinc, magnesium, tin, bismuth and/or alumina and
polyacrylic acid, and have a history as liners due to
good biocompatibility.115 ZPC can bond chemically
to dentine via a similar ionic mechanism to GIC.116

ZPCs have been shown to be an appropriate base
material, in vitro.117 More recently, ZPCs have been
reported to increase mineral density in artificially
induced carious dentine, and have outperformed GICs
in doing so.118 As ZPCs are generally hand-mixed
chairside, handling can be perceived by clinicians as
challenging. To permit optimal material adaptation to
canal walls and minimise of void formation, ZPC can
be applied to the prepared canal orifices using a Flat
Paste Filler instrument, without attempting compac-
tion per se due to the risk of creating voids.

MTA and calcium silicate-based cements

Mineral trioxide aggregate (MTA), composed primar-
ily of tricalcium and dicalcium silicate, was first

8 © 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association.
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introduced as a root-end filling material in the
1990s,119 and it has been used widely in endodontics
for applications including vital pulp therapy, apexifi-
cation, and perforation repair,120 but its prolonged
setting time of 2 hours and 45 minutes121 deems it
unsuitable for use as a coronal restorative
material.122 Furthermore, MTA is known for post-
operative discolouration of tooth structure,123 making
it less than ideal for use as an OBs in anterior or
premolar teeth. Owing to the success of MTA, there
has been considerable interest in the development of
related calcium silicate cement-based materials for a
variety of endodontic applications including indirect
pulp capping material in the treatment of deep cari-
ous lesions.124 One such material is Biodentine (Sep-
todont, Saint Maur des Fosses, France), with a much
shorter total handling time of 12 min, including mix-
ing and setting.125 Some of the advantageous proper-
ties of the related bioceramic materials include good
biocompatibility, a prolonged high pH, favourable
responses from host tissues including the ability to
stimulate hard tissue repair and antimicrobial proper-
ties. Canoglu et al.,126 showed MTA to be signifi-
cantly superior in dye leakage testing to resin
composite and GIC. However, disadvantages of these
materials include an imperfect dentine sealing ability,
complex handling, a prolonged setting time, inferior
physical properties and increased expense, making
these materials currently unsuitable for several restor-
ative procedures.122

Other materials

Various ‘temporary’ restorative materials including
Cavit (3M, St. Paul, MN) and Intermediate Restor-
ative Material (IRM) (Dentsply, Tulsa Dental, Tulsa,
OK, USA) have been evaluated as OBs and coronal
sealing materials.68, 76, 127 Cavit, being relatively inex-
pensive and easy to use is commonly used in dentistry
and is marketed in differing formulations affecting
hardness of set, but is a proprietary combination
based on zinc oxide, calcium sulphate hemihydrate,
zinc sulphate, triethylene glycol diacetate, polyvinyl
acetate among other components including barium
sulphate and pigments.128 It is a hygroscopic material
that undergoes linear expansion through water
absorption on setting, thus providing a restorative
seal.129 However, it has relatively poor physical prop-
erties and in vitro studies have suggested that 3.5–
4 mm thickness is required to effect a seal.129, 130 Pro-
vided Cavit is effectively reinforced by an appropriate
overlaying material, its sealing ability and ease of
removal with ultrasonic instruments, avoiding iatro-
genic damage in the event of retreatment, make it
worthy of consideration as an OB material.65, 68, 127

IRM is a reinforced zinc oxide-eugenol (ZOE) mate-
rial, with bactericidal properties due to the presence of
eugenol, derived from oil of cloves.115 As a ‘tempo-
rary’ material, its physical properties outweigh those
of Cavit, although in vitro studies have suggested
that Cavit promotes superior sealing.68, 127, 131, 132

Additionally, eugenol is known to inhibit the polymer-
isation of resin-based materials and has been shown to
interfere with dentine bonding systems,133 and ZOE-
based restorative materials are perhaps best avoided
beneath resin composite-based restorations.

Smart materials and antimicrobial materials

Research activity is growing around the development
of ‘smart’ dental materials which have been
described based on their degree of interaction with
the environment, ranging from ‘inert’ (no interac-
tion), to ‘active’ (one-way, uncontrolled release of
therapeutics), to ‘responsive’ (releasing therapeutics
in response to specific signals) to ‘autonomous’
(respond holistically to the microenvironment com-
plexity, adapting to changing conditions).134 Active
or responsive materials might leach antimicrobial
agents, e.g., chlorhexidine (CHX), antibiotics,
enzymes or other compounds, leading to the deple-
tion of such agents, or impacting the physical prop-
erties of the materials.135

There has been recent interest in materials with
biofilm-inhibiting properties.136, 137 Two studies
observed the effect of zinc-containing materials on the
inhibition of Streptococcus mutans biofilm growth
with encouraging results.138, 139 There has also been
work on resin materials based on quaternary ammo-
nium methacrylates in the hope that they might yield
lasting antimicrobial effects.140 Two studies have
investigated novel endodontic sealers incorporating
dimethylaminohexadecyl methacrylate and amorphous
calcium phosphate with antibiofilm and remineraliza-
tion properties, one of which investigated the addition
of silver nanoparticles.141, 142 Another study looked
at the antibacterial effect on E. faecalis of Biodentine,
a calcium silicate-based material, after incorporation
of titanium tetrafluoride.143

In attempting to avoid leaching of antimicrobial
components from GICs leading to inferior mechanical
properties demonstrated in earlier studies,144, 145

recent in vitro studies have investigated the modifica-
tion of GICs with silver nanoparticles146 and silver
nanowires147 and demonstrated reduced biofilm
aggregation without significant degradation of the
materials. Materials capable of resisting microbial
leakage without suffering degradation through leach-
ing could potentially prove beneficial if used as
an OB.

© 2023 The Authors. Australian Dental Journal published by John Wiley & Sons Australia, Ltd on behalf of Australian Dental Association. 9
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OTHER INDICATIONS FOR ORIFICE BARRIERS

Cracked root-filled teeth

A cracked tooth with (one or more) cracks extending
onto the root surface148 is often considered to have a
guarded prognosis, and extraction might be recom-
mended instead of endodontic treatment by the treat-
ing clinician due to a perceived increased risk of
failure. The prevalence of cracks in teeth has been
reported as high, with a practice-based study report-
ing 70% of patients presenting with visible cracks in
at least one posterior tooth.149 A recent survey has
highlighted a reluctance among dentists in Australia
practising outside of metropolitan areas to restore
cracked teeth requiring root canal treatment with
probing depths of more than 5 mm, favouring extrac-
tion over root canal treatment.150 A survey of Ameri-
can Endodontists revealed a preference to extract
teeth with singular 6mm probing depths.151

However, a recent prospective study looked at sur-
vival of endodontically treated teeth with radicular
cracks over 2-4 years, in which teeth were endodonti-
cally treated and then obturation materials removed
2-3 mm apical to the deepest extent of the radicular
crack, prior to placement of an ‘extended orifice bar-
rier’. The authors showed a promising survival rate of
96.6% (improving upon a range of 85.5%-96.8%
with 2+ years follow-up in the literature) and sug-
gested that OBs might have particular importance in
teeth with radicular cracks, in being able to seal areas
of the root internally where extended crown margins
might not be feasible.152

Sim et al. reported an overall survival for cracked
root-filled teeth with radicular extension at 81.8%153

whereas a more recent systematic review and meta-
analysis of four articles reported overall five-year sur-
vival at 84.1%.154 The prospects for success with
cracked teeth should perhaps trigger conversations
with patients about the potential for retaining com-
promised teeth in preference to implant-supported res-
torations, where the prevalence of peri-implantitis
remains a longer-term concern.155

Periodontally involved root filled teeth

Periodontitis is known to be associated with lower
survival of endodontically treated teeth,156, 157

although a cause-effect relationship between periodon-
titis and AP is unclear.158 Stassen et al.159 suggested
that in root-filled teeth with marginal bone loss result-
ing from periodontitis, there was an association
between the coronal level of the root filling and the
risk of AP. The authors recommended reducing the
coronal level of the root filling below, or at least at
the level of the surrounding marginal bone.

CONCLUSIONS

In order to consider a root-filled tooth well-restored
from a biological perspective, the final restorative out-
come must be more than the sum of its parts. The
underlying root filling must, of course, having been
effectively chemomechanically cleaned, be well com-
pacted and as free of voids as possible. However, the
potentially permeable nature of root-filling materials
obligates provision of a coronal restoration capable not
only of resisting fracture, wear and marginal caries, but
also providing a lasting secondary seal in the event that
the primary seal is compromised. Thus, the provision of
an orifice barrier can be regarded as a simple, but essen-
tial third seal (i.e., apical to any core and cuspal cover-
age restorative materials indicated) in the restorative
continuum following completion of the root filling,
selecting a material that is both easily placed and capa-
ble of delivering a durable seal while utilising materials
for the coronal restoration with characteristics better
suited for fracture and wear resistance. The literature
also implies that the location of the orifice barrier ought
to be placed in such a fashion that it lies apical to any
coronal or radicular cracks, and perhaps also apical to
exposed dentine on root surfaces resulting from peri-
odontitis and associated bone loss and/or recession.
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