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Building upon a correspondence between N = 2 SU(N) supersymmetric (SUSY) gauge

theories on C2 and AN−1-Toda conformal field theories (CFTs) known as AGT-W, we study

a conjectured correspondence for N = 2 SU(N) gauge theories on C2/Zn, which we refer to

as coset AGT. In this case, the dual CFT is a combined system whose symmetry algebra has

3 factors: A free boson, a ŝl(n)N -Wess-Zumino-Witten (WZW) model, and what is known

as an n-th WN -parafermion model. We specialize this last factor to its minimal models and

show that, in this case, both sides of the duality have interesting combinatorics defined in

terms of Young diagrams which are coloured.

For the SUSY gauge theories AGT dual to these minimal models, we show that the usual

definition of their fundamental object to this conjecture, known as Nekrasov’s instanton

partition function, is ill-defined and has non-physical poles. We remove these poles by a

redefinition of this instanton partition function, encoded by combinatorial conditions known

as the Burge conditions.

We use these combinatorial conditions to check our proposal against well-known results for

the CFT characters and conformal blocks of ŝl(n)N -WZW models. Having checked our

dictionary, we then obtain new conjectural combinatorial expressions for coset branching

functions and ŝl(N)n characters. As a corollary to these, we also obtain new combinatorial

relationships between certain pairs of what is known as coloured cylindric partitions. We

finish by checking our conjectured combinatorial expressions through explicit computations

to a given order.
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4.2 Burge Generating Functions and ŝl(n)N -WZW Characters . . . . . . . . . . . 159

4.2.1 Defining New Generating Functions . . . . . . . . . . . . . . . . . . . 160
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5.6.2 ŝl(2)3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
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els obtained from the instanton partition function for N = 2 SU(N) gauge
theories on C2/Zn under a minimal model identification when p = N . . . . . 171

4.2 The conformal block for conjecture 4.3.3.3. . . . . . . . . . . . . . . . . . . . 173

4.3 Pictorial representation of the fusion rules respected for the 4-point conformal
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Chapter 0

Introduction

0.1 Background and Approach

In 2009, Alday, Gaiotto, and Tachikawa conjectured a correspondence between certain 4D

N = 2 SU(2) class S superconformal field theories on C2, first discovered by Gaiotto [1],

and 2D Liouville conformal field theory [2], a duality commonly referred to as the AGT

conjecture. The AGT conjecture built on the pioneering work of Seiberg and Witten in

obtaining an exact solution for the prepotential in 4D N = 2 supersymmetric Yang-mills

theories [3] and Nekrasov’s subsequent computation of the instanton partition function Zinst

[4, 5], by identifying Zinst with Liouville conformal blocks.

Subsequently, this was generalised to a correspondence known as AGT-W between SU(N)

gauge theories on C2 and AN−1-Toda CFTs [6], and further again to theories on C2 with

more general gauge groups and CFTs related to more general W-algebras [7, 8, 9]. An-

other generalization was made in [10], conjecturing a correspondence between SU(N) gauge

theories on the ALE spaces C2/Zn [11] and a combined CFT of a free boson, an ŝl(n)N

Wess-Zumino-Witten model and a so-called n-th WN -parafermion [12]. In this thesis, we

consider this last generalisation which links SU(N) gauge theories on C2/Zn to CFTs with

the symmetry algebra

A(N,n; p) = ĝl(N)n

ĝl(N − p)n
, (0.1.1)

a correspondence we refer to as coset AGT.

Being a correspondence between two different theories, AGT dualities link many distinct

areas of mathematics and physics. This includes integrability [13, 14, 15] (of special note,

Hitchin systems [16]), topological strings and matrix models [17, 18], combinatorics and

symmetric functions [19] (including new special polynomials based on algebras generalizing

1



Introduction 2

A(N,n; p) [20, 21, 22]), and the geometric Langlands correspondence [23, 24], among the

other more obvious links to CFTs and N = 2 gauge theories.

When working on AGT correspondences, one will either work on providing evidence for the

conjecture, such as in [19, 25, 26], or use a conjectured correspondence to perform calculations

on one side of the duality using the objects and tools of the other, as in [27]. In this thesis,

we will take both of these approaches at certain stages.

The initial proposal of the AGT conjecture was supported by explicit term-by-term compar-

isons of the instanton partition function for the gauge theory and the conformal blocks of

Liouville CFT, under the proposed dictionary between parameters. This approach was then

extended to A2-Toda CFT and SU(3) gauge theories on C2 [25]. Alternatively, evidence was

also obtained directly for the original AGT conjecture by proving that the bifundamental

multiplet contribution to Z
SU(2)
inst (which gives all other contributions in special cases) can be

obtained in the dual CFT using a special basis of states parameterized by Jack polynomials

[19].

This approach where AGT is used to derive special bases for CFTs was generalised to AGT

involving A(2, n; p) in [28, 27]. In this setting, the special basis for A(2, n; p)-modules is de-

scribed in terms of pairs of checkerboard (2 coloured) Young diagrams. This linked the coset

AGT conjecture to quantum toroidal algebras, which can also be approached combinatorially

[29, 30, 31]. This work has not been generalized for n > 2.

Evidence for the case of AGT involving A(2, 4; p) has been obtained by comparison of the

first few terms of Zinst with conformal blocks of the S3 parafermion algebra [32]. In this

case, the conformal blocks were obtained through an algorithmic computation up to a small

level, although these CFT calculations quickly grow cumbersome for higher levels.

In this thesis, we provide first further evidence for coset AGT with a more general procedure.

We assume the existence of n-thWN -minimal models and then follow the approach of [33, 34].

We consider a subset of 4D gauge theories that are conjectured to be AGT dual to CFT

minimal models, and show that in these theories Zinst has non-physical poles and must be

redefined from a sum over N -tuples of coloured Young diagrams to a sum over coloured

cylindric (Burge) multipartitions [35]. The computation of the Burge conditions for gauge

theories on C2/Zn is found in proposition 3.4.2.1.

Then under the special choice p = N , the CFTs with symmetry algebra A(N,n;N) reduce

to a combined CFT of a ŝl(n)N -WZW model and a free boson, allowing us to check Zinst

against the KZ differential equation for ŝl(n)N -WZW conformal blocks [36]. The formalism

for this idea is found in conjectures 4.3.3.1, 4.3.3.3, and 4.3.3.4.



3 Structure

Subsequently we use this generalized correspondence to calculate character functions for

A(N,n; p)-minimal models using the combinatorics implied by the gauge theory in conjecture

5.4.0.1. We consider theories with generic parameter p and use the Burge conditions we

have derived to obtain new combinatorial identities for the branching functions of A(N,n; p)
involving coloured cylindric multipartitions. Through this, we also obtain new expressions

for ŝl(N)n string functions in the corollary to the conjecture 5.5.2.1. These expressions can

be seen to generalize those obtained from the Kyoto school [37, 38, 39] and those obtained

in [40, 41].

0.2 Structure

The thesis is organized as follows: In chapter 1 we will cover all the necessary background

material required to understand these results. This will cover basic combinatorics, highest

weight representation theory of finite and affine Lie algebras, 2D CFTs, and a generalization

of the ADHM construction for instantons on C2/Zn. This material will be mostly standard,

except when otherwise noted. Of particular note are the new concepts of Dynkin rings and

dual weights in section 1.1.

Chapter 2 will review AGT and AGT-W for SU(2) and SU(N) gauge theories on C2 re-

spectively. This will include reviewing the form of Z
SU(N)
inst obtained in [4], the original AGT

conjecture for SU(2) gauge theories and Liouville CFT [2], the generalization of this AGT

correspondence to AGT-W for SU(N) gauge theories and AN−1-Toda CFT [6], and the con-

nection of both of these to CFT minimal models in [33] and [27]. Importantly, this connection

to minimal models is the work which we generalize in subsequent chapters.

Chapter 3 describes AGT for SU(N) gauge theories on C2/Zn (formalized in 3.3.0.1). We

begin by reviewing the computation of the instanton partition function for these theories

[42]. Then using this dictionary, we find gauge theories AGT dual to minimal models which

have ill-defined partition functions. we then remove the poles of these partition function by

calculating the Burge conditions.

Chapter 4 focuses on the case of p = N , which we use to check this proposed correspondence

against known results for ŝl(n)N -WZW models. We prove that the character function of the

CFT matches the generating function of the instantons (proposition 4.2.2.2), and show that

the first few terms in the series expansions of the instanton partition function and solutions

to the KZ equation agree for some simple examples (section 4.4). The work in chapters 3

and 4 is based on [43] which the author co-authored with Omar Foda, Masahide Manabe,

and Trevor Welsh.
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Chapter 5 then considers the branching functions of CFTs with symmetry algebra A(N,n; p)
for generic p. Inspired by the arguments in [27], we conjecture expressions for the coset

branching functions as sums of products of WN -minimal model characters which we can

compute efficiently using newly introduced objects called B-matrices (5.2.39). We then

propose that these are equal to the generating functions of coloured Burge multipartition

associated to the 4D gauge theory. Finally, we provide evidence for this through explicit

calculations in sections 5.5.1 and 5.6.1. This work is based on [44], which is in collaboration

with Trevor Welsh. Chapters 4 and 5 rely heavily upon Mathematica, and code is available

upon request.

The main novel scientific results of the thesis are contained in chapters 3-5. The author’s

contribution to these collaborative efforts was to calculate Burge conditions for gauge theories

on C2/Zn in chapter 3, and their reduction to cylindrinic plane partitions in section 4. The

author also wrote code to compute series expansions for the instanton generating function

and instanton partition functions up to a given order to both calculate and check the results

in section 4.4.

In chapter 5 the author is responsible for calculating the coset branching functions, all cal-

culations involving Dynkin rings, their duals, and their classes, the form of the coset-Burge

conjecture, the formalism of sections 5.4.2 and 5.4.3, the proof of how to obtain conjec-

ture 5.5.0.1 from the coset-Burge conjecture, all explicit computed examples in the chapter,

and the checks of the cases (N,n) = (2, 3), (3, 2) up to O(q12), (N,n) = (2, 4) to O(q10),

(N,n) = (3, 4), (4, 3) to O(q6), (N,n) = (3, 6) as described in section 5.6.1, while indepen-

dently checking selected examples of all other cases. All code used for the computations

noted was also due to the author. All results and computations throughout this chapter

were developed through collaborative effort with Welsh.



Chapter 1

Preliminaries

This chapter will cover all the background material necessary to understand the content of

chapters 2, 3, 4, and 5 for AGT on C2 and C2/Zn. We will focus on defining all notation

and results we will use, while being light on proofs. This material is not pedagogic, although

references will be provided to learn any of the material covered here.

1.0.0.1 Outline of Chapter

We will begin with the mathematical background required. In section 1.1, we introduce the

basic notion of (coloured) partitions and (coloured) Young diagrams, cylindric, Burge Par-

titions and their generating functions. In sections 1.2 and 1.3, we review the representation

theory of finite and affine Lie algebras. We discuss in detail the branching rules, and the

Littelwood-Richardson rule for tensor product decompositions. We then define a new object,

called a Dynkin ring, which gives a correspondence between the dominant integral weights

of ŝl(n) of level N and the dominant integral weights of ŝl(N) of level n. Next we review

the technology of crystal graphs for affine Lie algebras, and use them to calculate characters

for tensor products of representations. We connect these two areas in section 1.4, where we

apply the combinatorics of Young diagrams to the highest weight representation theory of

ŝl(n).

The rest of the chapter covers the physics background we will use, mostly from a mathemati-

cal viewpoint. In section 1.5, we axiomatically define the main concepts of 2D conformal field

theories (CFTs), importantly we define the 4-point conformal blocks. We then define the

specific CFT models we will work with, that being the minimal models, Liouville and Toda

CFTs, Wess-Zumino-Witten (WZW) models, and coset models. This will include the ŝl(n)-

WZW fusion rules and the Knizhnik-Zamolodichikov (KZ) differential equation. We will also

discuss the relation between WZW models and the theory of integrable affine Lie algebra

5
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representations. We will also cover the Coulomb-gas formalism which we will use for AGT

involving CFT minimal models. In section 1.6 we construct the asymptotically locally Eu-

clidean (ALE) spaces associated to C2/Zn and we review the Atiyah-Drinfeld-Hitchin-Manin

(ADHM) construction of instantons on C2 and its generalisation to these ALE spaces.

1.1 Young Diagrams and Colourings

This section will constitute a brief review of the necessary combinatorics required to un-

derstand SU(N) AGT for gauge theories on C2 or C2/Zn corresponding to CFT minimal

models. We will focus on partitions of integers and the equivalent Young diagrams. This

material will be standard and can be found in more depth in [45] and [46], and both of these

references cover some other common applications of this theory.

We will then extend this material in two ways: First, by colouring our Young diagrams,

which will be used in AGT for SU(N) gauge theories on C2/Zn in chapters 3, 4, 5. This

combinatorial material can be found in [45].

Second in section 1.4, we will discuss cylindric partitions (or Burge multipartitions depending

on the source), which first appeared in [35]. Cylindric partitions are used to define the

partition function for SU(N) gauge theories which are AGT dual to minimal model CFTs

[33, 34]. We will first encounter this in sections 2.2.4 and 2.3.3, and this will be fundamental

to all subsequent work throughout the thesis. The exposition on cylindric multipartitions is

non-standard, but is based on [34] and [47].

1.1.1 Basic Definitions and Notation

A partition I of n ∈ Z≥0, is a sequence of weakly decreasing1 positive integers I = (p1, p2, . . . )

such that
∑
pi = n. As pi ∈ Z≥0, only finitely many pi are non-zero. Due to this, we take

partitions to have an infinite tail of 0’s. A Young diagram λ = (λ1, λ2, . . . , λN , 0, 0, . . . ),

where N ∈ Z≥0 and λN > 0, is a visual representation of I using left-justified stacked rows

of boxes extending down the page, where the number of boxes in the i-th row of λ is defined

by λi = pi. When N = 0, we denote the empty partition by λ = (0, 0, . . . ) = ∅.

We refer to the numbers λi as the parts of λ so that the i-th part is equal to the number of

boxes in the i-th row. A Young diagram has only finitely many parts of non-zero size and

infinitely many empty rows stacked at the bottom of the diagram.

We define the number of non-zero parts of a Young diagram to be its length so that for

λ = (λ1, λ2, . . . , λN , 0, 0, . . . ) with λN ̸= 0, we have l(λ) = N . In the sequel, we will

1A sequence (an)n∈Z of weakly decreasing numbers, satisfy ak+1 ≤ ak.
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notate our Young diagrams using only their non-zero parts, that is λ = (λ1, λ2, . . . , λN ).

We will sometimes use the alternate notation for Young diagrams λ = (km1
1 , km2

2 , . . . ) where

k1 > k2 > . . . is a sequence of strictly positive integers, and mi ∈ Z>0 is the number of parts

λj = ki. The diagram λ = (km1
1 , km2

2 , . . . , k
mN′
N ′ ) can expressed in our original notation as

λ = (k1, k1, . . . , k1︸ ︷︷ ︸
m1

, k2, . . . , k2︸ ︷︷ ︸
m2

, . . . , kN ′ , . . . , kN ′︸ ︷︷ ︸
mN′

), (1.1.1)

note that N = l(λ) =
∑N ′

i=1mi. Under this second notation we have n =
∑

imiki, and

example 1.1.1.2 below uses both of these notations explicitly. One can always determine the

notation we are employing to describe a Young diagram by the presence of exponents on the

parts, no exponent means we are employing the original partition-like notation.

We consider a Young diagram to be placed on a semi-infinite lattice. We will label the x axis

extending from top to bottom and the y axis from left to right with positive numbers, this is

referred to as the English convention. Some texts employ the French convention where the

x axis is labelled from bottom to top and with boxes extending up the page. In figure 1.1

we have attached a visual of the axes for the English convention we employ.

y

x

0 1 2 . . .

1

2
...

Figure 1.1: The x and y axes we place Young diagrams on, and their positive directions.

We refer to a box □ ∈ λ by the (x, y) coordinates of its bottom right corner, so that the j-th

box □ in the i-th row is referred to as □ = (i, j). The transpose Young diagram2 λT is a

Young diagram whose rows are equal to the columns of λ, which is the reflection of λ across

the line x = y.

We define the size of a Young diagram |λ| to be its total number of boxes (this is equal to n,

the integer being partitioned), and define the arm length Aλ(□) and leg length Lλ(□) of a

box □ = (i, j) to be distance from □ to the end of the i-th row and j-th column respectively,

Aλ(□) = λi − j, Lλ(□) = λTj − i. (1.1.2)

2Some sources refer to this as a conjugate Young diagram.
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We will sometimes use formulas involving the quantities Aλ(□) + 1 and Lλ(□) + 1. In these

instances we will employ the notation of adding a superscript + sign to Aλ(□) or Lλ(□) to

indicate this value. Using this notation we have:

A+
λ (□) = Aλ(□) + 1 (1.1.3)

L+
λ (□) = Lλ(□) + 1. (1.1.4)

Remark 1.1.1.1. This notation is not uniform across the literature. For example in [41], they

employ the similar notation of

A+
λ (□) = Aλ(□) +

1

2
,

A++
λ (□) = Aλ(□) + 1.

We will never use this notation involving half integers within this thesis, but care must be

taken by the reader to check the convention when encountering this notation in the literature.

We allow the definition of arm and leg length to extend to boxes □ that are not in a Young

diagram λ. In this case, we have that the arm and leg length of □ are negative numbers. The

converse is also true, if the arm and leg length of a box are negative then □ /∈ λ. Formally, a

box cannot exist on its own without being in a Young diagram, and when we have a negative

arm or leg length we are treating the situation informally as a convenient tool to pick specific

negative integers.

Finally, we define the outline of a Young diagram λ to be a lattice path Lλ = {(i0, j0), (i0, j0),
. . . , (ik, jk)}, where k = l(λ)+λ1+1, of south and west steps, which begins at (i1, j1) = (0, λ1)

and ends at (ik, jk) = (0, l(λ)) and traces the outline of λ. Formally, (im, jm)−(im+1, jm+1) =

(−1, 0) if (im+1, jm+1) = (i′, λi′) for some 0 ≤ i′ ≤ l(λ), and (im, jm)− (im+1, jm+1) = (0, 1)

if (im+1, jm+1) ̸= (i′, λi′) for some i′. Note that it is perfectly reasonable to extend these

outlines infinitely along the x- and y-axes, although we will not need this. We can easily

obtain the outline of the transpose diagram by reversing the i and j-coordinates and order

of steps, so that LλT = {(jk, ik), (jk−1, ik−1), . . . , (j0, i0)}.
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Example 1.1.1.2. If we consider all the possible ways of partitioning 5 and their corresponding

representations as Young diagrams we have:

(5) = (5)

(4, 1) = (4, 1)

(3, 2) = (3, 2)

(3, 1, 1) = (3, 12)

(2, 2, 1) = (22, 1)

(2, 1, 1, 1) = (2, 13)

(1, 1, 1, 1, 1) = (15)

We now focus on visualising the partition (3, 1, 1, 0, . . . ) of 5 by the following Young diagram

λ = (3, 1, 1) = (3, 12), in which we have labelled two boxes as α and β. Remember that the

positive y axis points along the first row left to right and the positive x axis along the first

column top to bottom.

β α

The box α has coordinates (1, 2) and the box β has coordinates (1, 1). We have Aλ(α) = 1,

Lλ(α) = 0, and Lλ(β) = Aλ(β) = 2. We also have A+
λ (α) = 2. Note, that we do not visually

represent the infinite empty rows in any way. Finally, the outline of λ is the lattice path

Lλ = {(0, 3), (1, 3), (1, 2), (1, 1), (2, 1), (3, 1), (3, 0)}.

1.1.2 Coloured and Cylindric Partitions

The combinatorics of the AGT correspondences considered within this thesis will involve

two generalizations of the basic Young diagrams described above. In this section, we will

describe coloured Young diagrams and cylindric partitions. In chapter 2, when considering

SU(N) gauge theories that are AGT dual to minimal model CFTs we will see that instanton

partition function is defined as a sum over cylindric partitions. While in chapters 3, 4, and

5 the partition function will be a sum over coloured cylindric partitions.

Let λ be a Young diagram. Denote by Y (λ) the set of ordered pairs (x, y) ∈ Z>0 × Z>0

corresponding to the coordinates of the boxes in λ. A coloured Young diagram with charge

σ ∈ Zn is the data of the Young diagram λ together with a colouring map3 ϕ : Y (λ) −→ Zn
which associates to a box □ = (x, y) a colour ϕ(□) ≡ σ+ y−x mod n. Under this colouring,

3This definition can be generalised to arbitrary colouring maps, although we will never consider them in
this thesis.
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the colours increase from left to right in the rows and from bottom to top in the columns,

and stay constant along the diagonals.

Denote the coloured Young diagram by λσ. We let the total number of boxes coloured

i ∈ {0, 1, . . . , n− 1} in λσ to be ki ∈ Z≥0, and we have |λσ| =
∑n−1

i=0 ki. We will alternatively

characterise the colour content of λσ by the differences δki = ki− k0 for i = 1, . . . , n− 1 and

the size |λσ|, it is clear that if we included i = 0 we would have δk0 = 0.

Define the boundary of a Young diagram λ to be all □ = (i, j) ∈ λ such that (i+1, j+1) /∈ λ.
A boundary n-strip B is a set of n contiguous boxes in the boundary of λ such that if we

remove B from λ we are left with another Young diagram.

If λ is coloured with n colours, a boundary n-strip contains exactly 1 box of each colour 0

through n − 1. To see this, we note that if we begin at the top right box in B and move

through to the bottom left box in a continuous fashion, each consecutive box in B lies either

directly to the left or below the previous one. By definition of the colouring, this means that

if a box is coloured i ∈ {0, . . . , n− 1}, the next box obtained in this process is coloured i− 1

mod n. As there are n boxes in B, it must then contain one box of each colour.

Let λ be a Young diagram coloured with n colours, with colour data specified by δk =

(δk1, . . . , δkn−1), and B be a boundary n-strip in λ. Since B contains 1 box of each colour,

the Young diagram λ′ obtained by removing B has colour data also defined by the vector δk

with |λ| − n = |λ′|.

We can then repeat this process successively until we are left with a Young diagram nλσ

that contains no boundary n-strips to remove and has the same colour difference vector as

the original Young diagram. A Young diagram that has no boundary n-strips is called an

n-core, and we say that nλσ is the n-core of λ. It is known (see for example [45]) that the

n-core of Young diagram is unique, and is independent of the choice of boundary n-strip

removed at each step. We also note that for each n and each δk there exists an unique

n-core4. Sometimes it is convenient to think of a coloured Young diagram as constructed

from the reverse of this process, where we begin with an n-core and add boundary n-strips.

Example 1.1.2.1. If we consider the Young diagram λ = (3, 1, 1) of the example 1.1.1.2 and

assign it a charge σ = 1 ∈ Z3. We obtain the coloured charged Young diagram λ(σ=1):

1 2 0

0

2

4We will not prove this, and to do so is not clear from what we have covered. The simplest proof involves
the use of James’ n-abacus.
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For λ(σ=1) we have, k0 = 2, k1 = 1 and k2 = 2. Alternatively, we have δk1 = −1, δk2 = 0, and

|λ(σ=1)| = |λ| = 5. Note that the colours are all defined modulo 3. There are no boundary

3-strips in λ so it is a 3-core.

In the sequel, we will deal with objects which are described by N -tuples of coloured Young

diagrams subject to certain inequalities between parts. We will formalise this using cylindric

partitions [35], closely following the exposition in [47]. We define a partial ordering on the

set of Young diagrams of length N or less, where µ = (µ1, . . . , µN ) and µ′ = (µ′1, . . . , µ
′
N )

(where we allow some amount of parts equal to 0) are ordered µ ≤ µ′ if

µi ≤ µ′i, 1 ≤ i ≤ N. (1.1.5)

Using this can define cylindric partitions5.

Definition 1.1.2.2. Given N ∈ Z>0, two partitions µ = (µ1, . . . , µN ) and µ′ = (µ′1, . . . , µ
′
N )

such that µ ≤ µ′, and an integer d ≥ µ1, a cylindric partition π of shape µ′/µ/d is an array

πi,j , 1 ≤ i ≤ N,µi + 1 ≤ j ≤ µ′i, of non-negative integers of the form

π1,µ1+1 . . . . . . . . . . . . . . . π1,µ′1
π2,µ2+1 . . . π2,µ1+1 . . . . . . . . . . . . π2,µ′2

...
...

. . .

πN,µN+1 . . . . . . . . . . . . . . . πN,µ′N

such that the entries are weakly decreasing across rows and down columns, that is

πi,j ≥πi+1,j , 1 ≤ i ≤ N − 1, µi + 1 ≤ j ≤ µ′i+1 (1.1.8)

πi,j ≥πi,j+1, 1 ≤ i ≤ N, µi + 1 ≤ j ≤ µ′i − 1 (1.1.9)

while also satisfying the cyclic condition

πN,j ≥ π1,j+d, max(µ1 + 1− d, µN + 1) ≤ j ≤ min(µ′1 − d, µ′N ) (1.1.10)

5This is not strictly true, and is only a subset of all cylindric paritions as described in [35]. Fully generalized
cylindric partitions allow for a weakening of the weakly decreasing conditions by a further set of positive
integral numbers α = (α1, α2, . . . ). This allows successive elements in the array to be larger by at most one
of these integers. For example when we enforce the weakly-decreasing conditions on πi,µ1+1 and πi,µ1+2 we
have

πi,µ1+1 ≥ πi,µ1+1, (1.1.6)

for cylindric partitions in full generality this condition is modified to

πi,µ1+1 + α1 ≥ πi,µ1+1. (1.1.7)

When necessary to refer to fully general cylindric partitions in this thesis we will notate them as (α, β)-cylindric
partitions.
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We define the size of a cylindric partition π to be the sum of its entries, |π| =
∑

i,j πi,j . Note

that when using a Young diagram µ = (µ1, . . . , µN ) of length l(µ) = m < N to define a

cylindric partition, one must ensure to add N −m parts of size 0 to µ, as these are relevant

to the cyclic condition. The cyclic condition can be interpreted as placing a copy of the array

below itself such that the row (π1,j)j=µ1+1,...,µ′1
is directly below the row (πN,j)j=µN+1,...,µ′N

and the entry π1,µ1+1 in the copy is d spots to the left of π1,µ1+1 in the original diagram,

and repeating this process ad infinitum. Using this point of view, the cyclic condition then

amounts to a weakly non-decreasing condition for the columns on this infinite size array,

and we can imagine that our array is wrapped around an infinite cylinder. Viewing cylindric

partitions as arrays wrapped on an infinite cylinder give the cylindric interpretation of their

data.

In subsequent sections, we will only consider cylindric partitions π whose rows can be ar-

bitrarily long. As such, we will take µ′ = (k, k, . . . , k︸ ︷︷ ︸
N

) for k >> 0, which we will denote

by µ′ = (∞N ). In practice, this means that we ignore µ′ in the definition of a cylindric

partition’s shape and consider all arrays whose rows are displaced according to µ that satisfy

the weakly-decreasing and cyclic conditions.

Example 1.1.2.3. Consider the following cylindric partition shape (∞3)/(1, 1, 0)/4. The

Young diagram µ = (1, 1, 0) is visualized as

and we note that for the purposes of cylindric partitions we consider µ to have one zero

length row. The following array π satisfies the weakly-decreasing and cyclic conditions as

described above and is an example of a cylindric partition of shape (∞3)/(1, 1, 0)/4:

5 4 4 2 2 1 1 0 . . .

3 2 2 2 1 0 0 . . .

4 2 2 1 0 0 . . .

The reader should note that we can see the Young diagram for µ = (1, 1, 0) in the relative

shifts in the first element of each row. We can visualise the cyclic condition, using the
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following infinite size array

5 4 4 2 2 1 1 0 . . .

3 2 2 2 1 0 0 . . .

4 2 2 1 0 0 . . .

5 4 4 2 2 1 1 0 . . .

3 2 2 2 1 0 0 . . .

4 2 2 1 0 0 . . .

5 4 4 2 2 1 1 0 . . .

3 2 2 2 1 0 0 . . .

4 2 2 1 0 0 . . .

5 4 4 2 2 1 1 0 . . .

3 2 2 2 1 0 0 . . .

4 2 2 1 0 0 . . .
...

...
...

...
...

...

where it is understood that the array repeats infinitely above and below the top and bottom

rows in the same pattern. Note that the weakly-decreasing condition is satisfied along the

rows and down the columns of this infinite array.

We can also think about cylindric partitions from the perspective of their composite rows,

which leads us to an equivalent formulation. Given a cylindric partition (∞N )/µ/d, define

N separate vectors of integers (λ(0), . . . , λ(N−1)), where the i-th vector is defined by λ(i) =

(πi+1,µi+1, πi+1,µi+2, . . . ). The condition (1.1.9) for each row of non-negative integers to be

weakly decreasing implies λ(i) is a Young diagram. Using this perspective, we stack the

Young diagrams adjacent to each other in a newly introduced z-axis, such that the i-th

diagram has z-coordinate i and the difference in y-coordinate of the top left boxes (that

is □ = (1, 1) when considering each diagram individually on its own x and y axes) of the

(i− 1)-th and i-th diagrams is defined by the difference µi − µi+1 for 1 ≤ i < N , and d− µ1
for the (N − 1)-th and 0th diagrams.

The condition (1.1.8) corresponds to demanding there is a weakly decreasing condition across

adjacent rows of these Young diagrams along the z-axis. If we define all superscript labels

modulo N , this is formalised by the following cylindric inequalities

λ
(i)
j ≥ λ

(i+1)
j+ζi

, (1.1.11)

where ζi = µi+1 − µi+2 for 0 ≤ i ≤ N − 2 and ζN−1 = d − µ1 + µN . We can then

capture the numbers in this array as one N -tuple of Young diagrams, which we denote by

λ = (λ(0), . . . , λ(N−1)), and a vector of positive integers ζ = (ζ0, . . . , ζN−1). This allows us
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to think about cylindric partitions as tuples of regular Young diagrams subject to certain

relations. This is how we will approach cylindric partitions in the sequel.

Remark 1.1.2.4. By introducing a z-axis to stack Young diagrams which live in the xy-plane,

we have introduced a notion that cylindric partitions live in 3 dimensional space. Some

authors have referred to cylindric partitions as cylindric plane partitions (CPPs) in this

sense, as an analogy to plane partitions which are 3D generalizations of Young diagrams.

Example 1.1.2.5. We consider the cylindric partition π of shape (∞3)/(1, 1, 0)/4 from the

example 1.1.2.3 above. It corresponds to the triple of Young diagrams λ = (λ(0), λ(1), λ(2))

where

λ(0) =(5, 4, 4, 2, 2, 1, 1)

λ(1) =(3, 2, 2, 2, 1)

λ(2) =(4, 2, 2, 1)

and ζ0 = 0, ζ1 = 1, and ζ2 = 3, giving the 3 inequalities

λ
(0)
j ≥ λ

(1)
j (1.1.12)

λ
(1)
j ≥ λ

(2)
j+1 (1.1.13)

λ
(2)
j ≥ λ

(0)
j+3 (1.1.14)

When discussing cylindric partitions in the sequel, we will refer to the formal finite array

as the fundamental domain, and we will refer to the data of µ and d (and equivalently the

cylindric inequalities) as the fundamental domain shape. Note that the cylindric inequalities,

and hence fundamental domain shapes, are determined by one vector of positive integers

ζ = (ζ0, . . . , ζN−1), as this tells us both the number of Young diagrams and their relative

heights.

When visualising the fundamental domain of a cylindric partition in terms of N Young

diagrams in 3D space, one should view the array π as a projection along the y axis onto the

xz plane. This means that the Young diagram y-axis extends into and out of the page and

we choose to view the boxes of the component Young diagrams as coming out perpendicular

to the page. The entries πij then tell one the number of boxes extending out of the page

along the y axis.
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1.2 Review of Finite Semi-Simple Lie Algebras and Their

Representations

In this section, we review the basic notion of finite dimensional Lie algebras and their rep-

resentation theory. We will assume familiarity with the content and only fix notation. The

content and notation here is drawn from [48, 49] and [50]. A standard reference such as [51]

or [52] will be useful.

1.2.1 Basic Definitions and Notation

Let g be a complex simple Lie algebra and h its corresponding Cartan subalgebra. The rank

of g is equal to dim(h) and we will often denote it by r ∈ Z>0. Denote by ∆ ⊂ h∗ the set of

roots of g and ∆+ the set of positive roots (see [50, §13] for a definition). Let {α1, · · · , αr}
be a set of simple roots, and let ( , ) be the Killing form of g. Let [X,−] ∈ End(g) be the

element Y 7→ [X,Y ]. We can define the Killing form explicitly as

(X,Y ) := tr([X, [Y,−]])), X, Y ∈ g, (1.2.1)

note that this is a trace over the endomorphism

Remark 1.2.1.1. The map Y 7→ [X,Y ] above defines a representation of g which we call

the adjoint representation ad : g → End(g). This adjoint action is sometimes notated as

ad(X)(Y ) = [X,Y ].

We can identify h with its dual h∗ via ( , ) and this induces a positive-definite scalar product

on h∗, which we also denote by ( , ). We use this scalar product as a normalisation to define

the coroot α∨ ∈ h associated to α ∈ ∆ by

α∨ = 2
α

(α, α)
. (1.2.2)

The Cartan matrix Ā = (Aij)1≤i,j≤r of g is defined to be

Aij = 2
(αi, αj)

(αj , αj)
. (1.2.3)

One can classify the allowed configurations of simple roots by Dynkin diagrams, which are

directed graphs with vertices labelled 1, . . . , r and where the number of arrows from vertex

i to vertex j is equal to the entry Aij of the Cartan matrix. There is a highest root θ ∈ ∆

defined by the property that αi + θ /∈ ∆+ for each αi.
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Let Q(g) = Zspan{α1, . . . , αr} ⊂ h∗ be the root lattice of g and Q∨(g) = Zspan{α∨
1 , . . . , α

∨
r } ⊂

h the coroot lattice. Denote by P (g) ⊂ h∗ the weight lattice which is dual to the coroot

lattice. Let {Λ̄1, . . . , Λ̄r} be the set of fundamental weights which is the dual basis of the

simple coroots {α∨
1 , . . . , α

∨
r }, so that we have

P (g) = ZΛ̄1 ⊕ · · · ⊕ ZΛ̄r. (1.2.4)

A Weyl reflection sα : h∗ −→ h∗ is defined to be

sαΛ̄ = Λ̄− (α∨, Λ̄)α, (1.2.5)

and the Weyl group W of g is the group generated by the simple Weyl reflections sα, α ∈ ∆.

To finish this brief review, here we show a presentation of g using the Cartan-Weyl basis

with the generators H i, i = 1, . . . , r (which generate h), Eα and E−α for α ∈ ∆+. We also

define the additional notation

α ·H =
r∑
i=1

(α,Hi)Hi. (1.2.6)

In this presentation, the defining Lie brackets are

[H i, Hj ] = 0 (1.2.7)

[H i, Eα] = (α,Hi)E
α (1.2.8)

[Eα, Eβ] =


Nα,βE

α+β, α+ β ∈ ∆

(Eα, E−α)α ·H, α = −β

0, else

(1.2.9)

together the Serre relations

ad(Eαi)1−Aij (Eαi) = ad(E−αi)1−Aij (E−αi) = 0, i ̸= j, (1.2.10)

where Nα,β is a constant.

1.2.2 Highest Weight Representations of Semi-Simple Lie Algebras

A representation of g is a complex vector space V together with a Lie algebra homomorphism

ρ : g −→ End(V ). We define a weight Λ̄ of V to be a linear functional on h such that the

following weight space VΛ̄ has nonzero dimension

VΛ̄ = {v ∈ V |∀h ∈ h, h · v = Λ̄(h)v}, (1.2.11)
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and we define the space of weights ΩV to be all Λ̄ satisfying the above. In the sequel, we will

say a vector v ∈ V is a weight vector of weight Λ̄, if h · v = Λ̄(h)v.

Remark 1.2.2.1. The weights of the adjoint representation are the roots of g.

We say a weight Λ̄ of a representation is integral, if

Λ̄α = (Λ̄, α∨) ∈ Z, (1.2.12)

for any root α, and we say it is dominant if Λ̄α ≥ 0.

By acting on a vector v of weight Λ̄ in a g representation with Eα, and using the relation

(1.2.8), we have H i(Eαv) = (EαH i +αiEα)v = (αi + Λ̄)(Eαv). From this we can see that if

the action of Eα (resp E−α) on a state with weight Λ̄ is non-zero, it produces a state with

weight Λ̄ + α (resp Λ̄− α).

Thus for a finite dimensional, irreducible, representation of a simple Lie algebra g, there

must be a vector v of dominant integral weight Λ̄ such that Eαv = 0 for all α ∈ ∆+ (as the

dimension of the representation is at least equal to the number of distinct weights, and if there

were no weight satisfying this property the representation would have infinite dimension).

We call this special weight Λ̄ the highest weight and the representation a highest weight

representation. We will also often use the physics notation of representing a highest weight

vector of weight Λ̄ by a ket |Λ̄⟩.

Alternatively, we will consider such a representation as generated by the highest weight vector

vΛ̄, by the action of the operators corresponding to the negative roots E−α in the Cartan-

Weyl basis for α ∈ ∆+. These basis elements are sometimes referred to as lowering ladder

operators, which is an alternative terminology borrowed from physics (the generators Eα are

similarly referred to as the raising ladder operators). We will henceforth drop the ”ladder”,

and refer to E±αi as the raising and lowering operators.

The converse is true, we can generate a finite-dimensional, irreducible g representation start-

ing from a dominant integral weight as we now describe: A Verma module VΛ̄ of highest

weight Λ̄ is constructed by taking a highest weight state |Λ̄⟩, and then constructing an

infinite dimensional vector space by taking the span of elements

E−αi1E−αi2 . . . E−αik |Λ̄⟩ , k ∈ Z≥0, (1.2.13)

and imposing the defining Lie bracket relations of g. This space VΛ̄ is obviously a g-

representation.

We can construct a finite-dimensional, irreducible, highest weight module LΛ̄ of highest

weight Λ̄ by taking a suitable quotient of VΛ̄ by a maximal submodule M (see [51, §VI] for
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the details of this construction, and a proof of the irreducibility and finite-dimensionality of

LΛ̄). Thus states in LΛ̄ are of the form (E−α1)n1 . . . (E−αr)nr |Λ̄⟩.

Importantly, there is an algorithm to calculate all possible ni ∈ Z≥0, given a specific Λ̄. The

algorithm is phrased in terms of Dynkin labels, which we now define. Let Λ̄ be a highest

weight, and write Λ̄ =
∑r

i=1 liΛ̄i, where Λ̄i are the fundamental weights of g. The coefficients

li for 1 ≤ i ≤ r are the Dynkin labels of a representation. We will also denote (by an abuse

of notation) the weight Λ̄ by its Dynkin labels as Λ̄ = [l1, . . . , lr].

We are now ready to describe the algorithm to construct the states in LΛ̄. Beginning from

Λ̄ we form sequences of weights for each i such that li > 0 that are of the form Λ̄− nαi for
n = 1, . . . , li. Then we repeat this process for each weight Λ̄−nαi in these sequences that we

have generated, and iterate until we have no more states that have at least 1 positive Dynkin

label. This algorithm always terminates as dim(LΛ̄) < ∞, although we will not prove this

fact, and LΛ̄ is the span of all states we have generated in all of these sequences.

Using these definitions Élie Cartan classified the finite dimensional irreducible representations

of simple Lie algebras to be in correspondence with dominant integral weights in 1914 (see

[53] for a modern distillation of his proof).

Theorem 1.2.2.2. ([54]) There is a one-to-one correspondence between the set of dominant

integral weights and the isomorphism classes of finite dimensional irreducible g-modules,

where the pairing is Λ̄←→ LΛ̄.

We define the multiplicity of a weight µ̄ in a highest weight representation of weight Λ̄ to be

the dimension of the weight space (LΛ̄)µ̄ of µ̄ in LΛ̄. We denote this by mult(µ̄) = dim((LΛ̄)µ̄).

The multipliticty of a weight will be equal to the number of unique sequences in the algorithm

described above that end at the weight µ̄. For w ∈ W we have mult(wµ̄) = mult(µ̄). We

can summarise the information about all µ̄ ∈ ΩLΛ̄
(the space of weights for LΛ̄) and their

multiplicities into a formal sum χg
Λ̄
, called a character, which is defined as

χg
Λ̄
=
∑
µ̄

mult(µ̄)eµ̄ ∈ Z[P (g)], (1.2.14)

where we treat eµ̄ to be a formal exponential.

1.2.3 Embeddings and the Littlewood-Richardson Rule

Let g be a Lie algebra and p ⊂ g be a Lie subalgebra. In general, an irreducible represen-

tation LΛ̄ of g breaks down into a direct sum of irreducible representations of p with some
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multiplicities bΛ̄µ̄ ∈ Z≥0. We represent this by

LΛ̄|p =
⊕
µ̄

bΛ̄µ̄Lµ̄, bΛ̄µ̄ ∈ Z, (1.2.15)

where Lµ̄ are representations of p. The multiplicities bΛ̄µ̄ are the branching coefficients and

the whole system (1.2.15) is called the branching rules.

When discussing how to calculate the ŝl(n)k fusion rules for Wess-Zumino-Witten models,

we will need to understand how to combinatorially calculate the branching rules for g =

sl(n) ⊗ sl(n) and p = sl(n) ⊂ sl(n) ⊗ sl(n). That is, determine the coefficients in the

decomposition

LΛ̄ ⊗ LΛ̄′ =
⊕
µ̄

bΛ̄⊗Λ̄′,µ̄Lµ̄. (1.2.16)

To do this we use an algorithm that is called the Littelwood-Richardson rule. This algorithm

is defined in terms of Young diagrams associated to highest weights of Lie algebra representa-

tions. To a sl(n) dominant integral weight Λ̄ = [l1, . . . , ln−1], we associate a Young diagram

par(Λ̄), with parts

par(Λ̄)i =
n−1∑
j=i

lj . (1.2.17)

To calculate the tensor product multiplicities (branching coefficients) for the tensor product

LΛ̄ ⊗LΛ̄′ , we form the two Young diagrams par(Λ̄) and par(Λ̄′) and then fill the first row of

boxes in par(Λ̄′) with 1s, the second with 2s etc. Then for each i = 1, 2, . . . , n− 1 in order,

we add all boxes with an i in them (that is the i-th row of par(Λ̄′)) to par(Λ̄) in all possible

ways subject to the following conditions:

1. We must form standard Young diagrams (parts must be weakly decreasing down the

rows).

2. Each column can only contain 1 box with an i in it.

3. When counting from right to left and top to bottom (in this order), the number of

boxes with an i in it must be less than or equal to the number of boxes with an i− 1

in them.

When performing step 3 as described above, we count the numbers as they appear in one

row from right to left, then move onto the next row and repeat the procedure. Once we have

formed all possible Young diagrams subject to these conditions we then delete any columns

of length n.

We can then reconstruct the dominant integral weights associated to each of the Young

diagrams. Let λ = (λ1, . . . , λk) be a Young diagram produced by this process. We define the
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Dynkin labels [l1, . . . , ln−1] of the associated weight through the equations li = λi − λi+1 for

each i = 1, . . . , n− 1, note that if j > k, we substitute λj = 0.

The weights we obtain from this are the highest weights that appear in the tensor product

decomposition. The multiplicities are obtained by counting how many times the same Young

diagram is formed.

Example 1.2.3.1. Here we recall the example from [50, §13.5.3], for the tensor product of

irreducible sl(3)-modules. Let Λ̄ = [2, 0] and Λ̄′ = [1, 1] so that we have par(Λ̄) = (2) and

par(Λ̄′) = (2, 1). After filling the boxes of par(Λ̄′) we can then represent the tensor product

LΛ̄ ⊗ LΛ̄′ using the two associated Young diagrams as

⊗ 1 1

2
. (1.2.18)

We now add both boxes labelled 1 to par(Λ̄) to obtain

1 1
,

1

1
,
1 1

. (1.2.19)

We then add the box labelled 2 in all possible ways to these diagrams, subject to 3 rules

above, to obtain

1 1

2
, 1

1 2
, 1

1

2

,
1 1

2

, (1.2.20)

note that rule 3 means that we cannot place the box labelled 2 at the end of the first row.

We now delete all columns of length 3, which gives us the diagrams

, , , . (1.2.21)

We read off the weights that appear in the branching rules from this as

L[2,0] ⊗ L[1,1]

∣∣
sl(3)

= L[3,1] ⊕ L[1,2] ⊕ L[2,0] ⊕ L[0,1] (1.2.22)

Remark 1.2.3.2. Note that in this example, all the branching coefficients are equal to 1. This

is not true in general, where it is possible to have multiply copies of the same highest-weight

module in a tensor product decomposition.
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1.3 Affine Lie Algebras

This section constitutes a review of affine Lie algebras and their representations, similarly to

the one above for finite Lie algebras. As they are more complicated objects than their finite

cousins, and play a central role in this thesis, this review will be longer and more in depth

than the previous one for the finite case. Much of the first part of this review will cover

standard material, where, as we will mostly encounter affine Lie algebras in connection to

conformal field theory, much of the presentation is again based on that in [50]. Discussion

of characters and explicit formula for them will follow standard results from the canonical

reference [55]. The author also found [48] to be very useful when learning the material

presented.

1.3.1 Basic Definitions and Notation

Untwisted affine Kac-Moody Lie algebras (or just affine Lie algebras), are infinite-dimensional

Lie algebras constructed from finite Lie algebras. In our case, we will only construct affine

Lie algebras from finite semi-simple Lie algebras. We construct the affine Lie algebra ĝ

from the finite semi-simple Lie algebra g in two steps: First we form the algebra of Laurent

polynomials g⊗C C[t, t−1] (commonly referred to as the loop algebra for g). Then we adjoin

a central element k̂ and a derivation d̂ = t ddt . We say that an element Xtn ∈ g⊗C C[t, t−1],

for X ∈ g, is of grade n ∈ Z. The construction (and form) of the algebra ĝ is summarized as

g 7→ ĝ = g⊗C C[t, t−1]⊕ Ck̂ ⊕ Cd̂. (1.3.1)

On this algebra we define the following Lie bracket

[X ⊗ tn, Y ⊗ tm] = [X,Y ]g ⊗ tn+m + k̂n(X,Y )gδn+m,0, (1.3.2)

[k̂, ĝ] = 0, (1.3.3)

[d̂, X ⊗ tn] = nX ⊗ tn. (1.3.4)

Here [ , ]g and ( , )g are the Lie bracket and Killing form on the finite Lie algebra g. We will

denote the elements of the affine algebra ĝ by Xtn = Xn. From this construction we can see

that ĝ has infinite dimension due to the presence of the loop algebra g⊗C C[t, t−1].

We define a Killing form on ĝ on such that

(Xn, Ym) =

(X,Y )g, n = −m

0, else.
(1.3.5)
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We have that (Xn, k) = (k̂, d̂) = (Xn, d̂) = 0 and (d̂, k̂) = 1, and supplement (d̂, d̂) = 0.

As before the Killing form is non-degenerate and identifies ĥ with its dual ĥ∗, and therefore

defines a scalar product on ĥ∗.

We define the affine roots α̂ to be the vector of eigenvalues for the adjoint action of H i
0 for

i = 1, . . . , r, the central element k̂, and the derivation d̂ on ĝ.

α̂ = (α̂(H1
0 ), . . . , α̂(H

r
0); α̂(k̂); α̂(d̂)). (1.3.6)

Since k̂ commutes with ĝ, and the eigenvalues of d̂ (here we are denoting the eigenvalue of d̂

by n) are integers, we can rewrite this as

α̂ = (α; 0;n), (1.3.7)

for a finite root α ∈ ∆g and n ∈ Z. We refer to the eigenvalue n of d̂ as the grade of a vector.

It is convenient to write the affine roots in a nice basis for use in applications. Since the

first r components are defined using the finite roots, it is natural to use finite simple roots to

describe them. The eigenvalue of d̂, is an integer so the natural basis element is δ = (0; 0; 1),

which is called the imaginary root. Using this basis, we can write an element α̂ of the space

of affine roots ∆̂ as α̂ = α+ nδ for α ∈ ∆g ∪ {0} and n ∈ Z.

The scalar product induced on the space of affine roots by the Killing form is

(Λ̂, µ̂) = (Λ, µ) + Λ̂(k̂)µ̂(d̂) + µ̂(k̂)Λ̂(d̂). (1.3.8)

This informs the name imaginary root for δ, as since (δ, δ) = 0 its length vanishes.

Our next step is to define the set of simple roots of ĝ, which we take to be the set of finite

simple roots αi for i = 1, . . . , r supplemented with the affine root α0 = (−θ; 0; 1) = −θ + δ

(the finite root θ is the highest root as defined in section 1.2.1). Where there is no confusion

we will denote the affine simple roots by {αi}i=0,1,...,r. The affine simple coroots are defined

to be α̂i
∨ = 2

(α̂i,α̂i)
α̂i for i = 0, . . . , r. Associated to an affine Lie algebra we have an affine

Cartan matrix Āij = (αi, α
∨
j ), i, j = 0, 1, . . . , r, and we have (Āij)1≤i,j≤r = A, where A is

the Cartan matrix associated to g.

It will always be clear from context whether roots in this thesis are affine or finite, as such we

shall henceforth remove the hat notation for affine roots. We define the fundamental weights

Λi to be dual to the simple affine coroots and of grade zero, and we define the affine root

and weight lattices Q(ĝ) and P (ĝ) respectively as

Q(ĝ) = Zα0 ⊕ · · · ⊕ Zαr (1.3.9)

P (ĝ) = ZΛ0 ⊕ · · · ⊕ ZΛr (1.3.10)
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For any 0 ≤ i, j ≤ r, we have (Λi, α̂
∨
j ) = δij . We take the 0-th fundamental weight to be

Λ0 = (0; 1; 0), and using this we can write the affine fundamental weights as Λi = Λ̄i−a∨i Λ0,

where a∨i are the r coefficients of θ =
∑r

i=1 a
∨
i α

∨
i expanded in the basis of coroots, which are

referred to as the comarks.

The Cartan-Weyl presentation for g together with the affine Lie brackets (1.3.2), (1.3.3), and

(1.3.4) implies the following affine Cartan-Weyl presentation for ĝ. We use the generators

Eαn , H
i
n for i = 1, . . . , r, α ∈ ∆ and n ∈ Z, with the derivation d̂, and central element k̂. The

presentation has the following defining relations

[H i
n, H

j
m] = k̂nδijδn+m,0 (1.3.11)

[H i
n, E

α
m] = αiEαn+m (1.3.12)

[Eαn , E
β
m] =


Nα,β
n,mE

α+β
n+m, α+ β ∈ ∆

2
|α|2

(
α ·Hn+m + k̂nδn+m,0

)
, α = −β

0, else

(1.3.13)

[k, ĝ] = 0 (1.3.14)

[d̂, H i
n] = nH i

n (1.3.15)

[d̂, Ein] = nEin (1.3.16)

together with the Serre relations

ad(Eαi
n )1−Aij (Eαi

n ) = ad(E−αi
m )1−Aij (E−αi

m ) = 0, i ̸= j (1.3.17)

Note that in these relations ∆ is the set of roots for the finite Lie algebra g, and α, β ∈ ∆.

The affine Cartan subalgebra ĥ is generated by k̂, d̂, and H i
0 for i = 1, . . . , r. We will also

let J im = J i ⊗ tm for i = 1, . . . ,dim(g) and m ∈ Z denote a generic basis for ĝ, where the set

{J i}m denotes a generic basis for the loop algebra of g.

1.3.2 Dynkin Labels of Affine Weights and Highest Weight Representa-

tions

Analogously to finite Lie algebras, we define a representation of ĝ to be a vector space V

together with a Lie algebra homomorphism ρ̂ : ĝ −→ End(V ). We define an affine weight Λ̂

of a vector v in V , to be the vector of eigenvalues

Λ̂ = (Λ̂(H1
0 ), . . . , Λ̂(H

r
0); Λ̂(k̂); Λ̂(d̂)), (1.3.18)
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of v. The first r components of Λ̂ comprise a finite weight Λ for g, and we call the last

two the level and the grade respectively. We also define weight spaces VΛ and the space of

weights, as for finite Lie algebras but with the finite Cartan algebra h replaced by the affine

Cartan algebra ĥ. Writing an affine weight Λ̂ in terms of the fundamental weights and the

imaginary root as Λ̂ =
∑r

i=0 liΛi + lδ (note that Λ̄ = [l1, . . . , lr] defines the Dynkin labels

of a finite g weight) allows us to define the level k of a weight by its action on the central

element k̂ of ĝ as

k := Λ̂(k̂) =

r∑
i=0

a∨i li. (1.3.19)

Due to the above relation, if we specify a level k and a finite g weight Λ, we have specified

an affine weight Λ̂ by solving for l0 = k −
∑r

i=1 a
∨
i li. Finally, the affine roots are seen to be

of level zero. We will write ĝk to represent a ĝ representation of level k.

We call the coefficients li for i = 0, . . . , r the affine Dynkin labels, and we will often write

affine weights using their Dynkin labels, for example Λ = [l0, l1, . . . , lr] (note we begin our

indexing with zero), but this notation does not keep track of the grade of weights.

We will say an affine weight Λ is dominant if li ≥ 0 and integral if li ∈ Z, and we will denote

the set of dominant integral weights of level k for ŝl(r) by P+
r,k. We will sometimes denote

the subset of these whose Dynkin labels satisfy li > 0 for all i = 0, . . . , r, by P++
r,k . We will

also use P+
r and P++

r to denote the set of all dominant integral and strictly positive integral

ŝl(r) weights respectively. Associated to a dominant integral weight Λ = [l0, . . . , lr], we will

define a Young diagram par(Λ) = (par(Λ)1, par(Λ)2, . . . ), whose parts are

par(Λ)i =


∑r

j=i lj 1 ≤ i ≤ n− 1,

0 i ≥ n,
(1.3.20)

which is the partition associated to Λ̄ the finite part of the weight we defined when describing

the Littelwood-Richardson rules.

Consider the level k = l0 +
∑r

i=1 a
∨
i li of a weight Λ, the comarks satisfy a∨i ≥ 0 by the

definition of θ so that for dominant, integral weights k ∈ Z≥0. As in the finite case, highest

weight representations of dominant integral weights are of particular interest. We again

denote the irreducible highest weight module (produced by a quotient of an affine Verma

module analogous to the finite case) by LΛ for dominant, integral Λ. This module LΛ is not

in general finite-dimensional (and as such our algorithm described above for the finite case

will not in general terminate), instead it is integrable which we define below.

Definition 1.3.2.1. (4.2 and 4.8 in [56]) A representation ρ : ĝ −→ End(V ) is said to be

integrable if
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• V is ĥ-diagonalizable, that is it decomposes into weight spaces VΛ of ĥ as

V =
⊕
Λ∈ĥ

VΛ. (1.3.21)

• For Λ ∈ ĥ, dim(VΛ) <∞.

• Recall ΩV denotes the weight space of V (defined in 1.2.1). For all Λ ∈ ΩV , there exists

M ≥ 0 such that for any m ≥M , Λ+mαi /∈ ΩV and Λ−mαi /∈ ΩV , for all i = 0, . . . , r.

In chapter 5, we will need to find sequences of raising and lowering operators that when

applied on a vector of weight Λ in a representation, gives us a vector of weight Λ. Stated

another way, we wish to find sequences of affine roots, that when added together, form the

difference between two dominant integral affine weights. Here we describe how we will do

this, by mapping Dynkin labels of level 0 weights into sets of affine roots.

Since k̂ is central in ĝ, we see that the level is constant across all vectors in a highest weight

module. The Dynkin labels of the simple root αi are equal to the i-th row of the affine

Cartan matrix

αi = [Ai0, Ai1, . . . , Air], (1.3.22)

and this gives us an easy way to calculate the weight of the state E±αi |[l0, . . . , lr]⟩ by Λ±αi =
[l0 ± Āi0, . . . , lr ± Āir], and we can extrapolate this to (Eα0)n0 . . . (Eαr)nr |Λ⟩ by linearity.

This is just the matrix multiplication A · (n0, . . . , nr)T .

We can invert this process using the finite Cartan matrix A for the finite Lie algebra g

associated to ĝ. In the irreducible module LΛ, consider the two weights Λ′ = [l′0, . . . , l
′
r] and

Λ′′ = [l′′0 , . . . , l
′′
r ] such that Λ′,Λ′′ ∈ ΩLΛ

and Λ′′ is a descendant state of Λ′, where we then

have

Λ′′ = Λ′ −
r∑
i=0

niαi. (1.3.23)

Note that since Λ′′ is a descendant of Λ′, we wish to find an expansion in terms of roots such

that ni ≥ 0 for i = 0, . . . , r. We define the finite weights Λ̄′ = [l′1, . . . , l
′
r] and Λ̄′′ = [l′′1 , . . . , l

′′
r ]

associated to Λ′ and Λ′′. First we calculate

Ā−1 · (l′1 − l′′1 , . . . , l′r − l′′r )T , (1.3.24)

which gives us an r-dimensional vector R = (R1, . . . , Rr), whose entries give a root expansion

between Λ̄′ and Λ̄′′. If we have that Ri ≥ 0 for i = 1, . . . , r, then the weights Λ′ and Λ′′ first

appear at the same grade and

Λ′′ = Λ′ −
r∑
i=1

Riαi. (1.3.25)
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In this case, we have n0 = 0 and ni = Ri for i = 1, . . . , r. If one or more Ri < 0, then we

define mini=1,...,r{Ri} = m and R′ = (R1 +m,R2 +m, . . . , Rr +m), for which Ri +m ≥ 0

for i = 1, . . . , r. Then m is the difference of grades for which Λ′ and Λ′′ first appear at. We

then have that if Λ′ first appears at grade g ∈ Z≥0, there exists a vector vg+mΛ′ of weight Λ′

at grade (g + m) for which we have a vector vmΛ′′ of weight Λ′′ at grade (g + m) which is

obtainable by some sequence of lowering operators where we use exactly Ri applications of

E−αi for each i = 1, . . . , r.

Thus to obtain the positive integers ni for i = 0, . . . , r defining the weight Λ′′ as a descendant

of Λ′ through a sequence of of ni applications of E
−αi for i = 0, . . . , r, we need to first move

from Λ′ at grade g to Λ′ at grade (m+ g) and then follow the sequence defined by R. Since

the affine root α0 takes us one grade higher we can then use α0 =
∑r

i=1 αi to see that

Λ′′ = Λ′ −mα0 −
r∑
i=1

(Ri +m)αi, (1.3.26)

and in this situation we have n0 = m and ni = Ri +m for i = 1, . . . , r. This approach to

moving from roots to Dynkin labels and vice versa using the A and Ā−1 will be crucial to

our conjecture in chapter 5.

Remark 1.3.2.2. These computations rely on the fact that for a fixed level k, we can fully

specify ĝk weights by defining their finite parts. In this case, since roots are of level 0 and

we are considering two descendant states, we know the level of their difference will also be 0.

Abstractly, we say that two level k weights Λ1, Λ2 are in the same congruence class, if

Λ1 = Λ2 +
∑r

i=0miαi for mi ∈ Z, and this means that all weights in a highest weight

representation are in the same congruence class. To determine the congruence class of a

weight Λ = [l0, . . . , lr] we define

cls(Λ) =
r∑
i=1

bili mod (det(A)), ĝ ̸= ŝo(4n), 6 (1.3.27)

and if cls(Λ1) = cls(Λ2), they are in the same congruence class. The numbers bi are specific

to ĝ, and they can be found for all simple affine Lie algebras in [48, Fig 6.7]. We define

an affine Weyl reflection wα with respect to an affine root α ̸= nδ on a weight Λ (it should

always be clear from context if sα is a finite or affine Weyl reflection) as

sα(Λ) = Λ− (Λ, α∨)α, (1.3.28)

6We will never consider ĝ = ŝo(4n) in this thesis. The interested reader can find the formula for congruence
classes in this case in [48].
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and for α = (α′; 0;m) and Λ = (Λ′; k;n) we can make this explicit as

sα = (sα′(Λ′ + kmα′); k;n− [(Λ, α) + km] 2m
(α′,α′)). (1.3.29)

We define the affine Weyl group Ŵ to be generated by the set {sα}α∈∆\{nδ}n∈Z . Ŵ divides

the space of affine weights into affine Weyl chambers defined by

Cw = {Λ|(wΛ, αi) ≥ 0, i = 0, 1, . . . , r}, (1.3.30)

for each w ∈ Ŵ . We define the fundamental chamber Ce to be the chamber corresponding

to the identity e in Ŵ , and for Λ ∈ Ce we can see that Λ is a dominant weight. Orbits of

the Weyl group have infinitely many weights and have a unique dominant weight within the

fundamental chamber.

1.3.3 Characters

We define the character χĝ
Λ of the affine highest weight module LΛ similarly to the finite case,

although character functions for affine Lie algebras are more involved to calculate. A central

problem being the computation of infinite multiplicities, and as such affine characters will

therefore involve infinite series. Recall for a representation V that ΩV is the set of weights

of V . We say a weight µ ∈ ΩV is maximal if (µ+ δ) /∈ ΩV , and denote the set of all maximal

weights by ΩmaxV . Note that if µ ∈ ΩLΛ
, cls(µ) = cls(Λ). We collect the information of states

with weight µ, µ − δ, µ − 2δ, . . . into a generating function σΛµ (q) of multiplicities which we

call the string function of µ in LΛ, defined by

σΛµ (q) =
∞∑
n=0

mult(µ− nδ)qn. (1.3.31)

It is clear that knowing all of the string functions for a highest weight representation is

equivalent to knowing the character, because if µ′ ∈ ΩLΛ
we have that µ′ is either maximal

or of the form µ′ = µ − nδ for µ ∈ ΩmaxLΛ
, and some n ∈ Z>0. However, we can calculate

the affine character without explicitly calculating each string function σΛµ (q) associated to

each µ ∈ ΩmaxΛ . To see this we use the following lemma which is a generalisation of a similar

result for finite Lie algebras

Lemma 1.3.3.1. ([50]) Let w ∈ Ŵ and µ ∈ ΩLΛ
, then mult(µ) = mult(w(µ)).

Thus, the complete information needed for an affine character of LΛ is contained in the string

functions of all the dominant maximal weights in LΛ, and the full information is obtained
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by Weyl reflections. We write the affine character for LΛ with Λ a level k weight as

χĝ
Λ =

∑
µ∈ΩLΛ

mult(µ)eµ =
∑

µ∈Ωmax
LΛ

σΛµ (e
−δ) · eµ. (1.3.32)

In section 1.5.9, and subsequently chapter 4, we will use the Weyl-Kac character formula

[57, eq (10.4.5)]

χĝ
Λ =

∑
w∈Ŵ

ϵ(w)ew(Λ+ρ)

ϵ(w)ew(Λ)
. (1.3.33)

We now specialise to the case of ŝl(r) and define vectors ei ∈ Cr by embedding the roots

of ŝl(r) into Cr in the fundamental representation. We then have that αi = ei − ei+1 for

i = 1, . . . , r − 1. with α0 = er − e1 + δ. We then write the character function using the

convenient notation e−δ = q, eei = xi for i = 1, . . . , r − 1, and define x = (x1, . . . , xr−1) so

that

χ
ŝl(r)
Λ (q;x) = eΛχ

ŝl(r)
Λ

∣∣∣
e−δ 7→q,ee1 7→x1,...,e

er−1 7→xr−1

. (1.3.34)

We will also need a different form for the ŝl(r) characters, using a set of variables t̂ =

(̂t1, . . . , t̂r−1). The t̂ parameters will be associated to the fundamental weights instead of the

simple roots. The relation αi = −Λi−1 + 2Λi − Λi+1 then gives us the change of variables

xi
xi+1

=
t̂i−1t̂i+1

t̂2i
⇐⇒ xi =

t̂i−1t̂r

t̂it̂r−1

xr, (1.3.35)

where 1 ≤ i < r and we set t̂r = t̂0 = 1. This gives us an explicit form of the ŝl(r) character

as [41]

χ
ŝl(r)R
Λ (q, t̂) = q hΛ

NΛ(q, t̂)

(q; q)r−1
∞
∏

1≤i<j≤r (̂ti−1t̂j /̂tit̂j−1; q)∞(q t̂it̂j−1/̂ti−1t̂j ; q)∞

r−1∏
i=1

t̂ dii , (1.3.36)

where, with λ = par(Λ),

NΛ(q, t̂) =
∑

k1,...,kr∈Z
k1+···+kr=0

det
1≤i,j≤r

((̂
ti/̂ti−1

)(r+R)ki+λj−j−λi+i q (λj−j)ki+
1
2
(r+R)k2i

)
. (1.3.37)

We also define the principal character PrχΛ(q) as

Prχ
ŝl(r)
Λ (q) = e−Λχ

ŝl(r)
Λ (q;x)

∣∣
q7→qr

xi 7→q, i=1,...,r
. (1.3.38)

We will refer to the principal character as the ŝl(r) q-character in the sequel, and when it is

clear to do so we will write the principally specialised character as a character χ
ŝl(r)
Λ (q) which

is a function of only q. In principle, the multiplicity of weight µ ∈ ΩLΛ
can be calculated
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using Freudenthal’s recursion formula (see [51, §22.3])

(|Λ + ρ|2 − |µ+ ρ|2)mult(µ) = 2
∑
α∈∆̂+

∞∑
j=1

(µ+ jα, α)mult(µ+ jα), (1.3.39)

where ρ = [1, . . . , 1] is the affine Weyl vector, and ∆̂+ are the positive affine roots which we

count with their multiplicities (that is 1 for real roots and r for imaginary roots). In practice

this calculation is too involved for most highest weight representations, and when we need

the coefficients of string functions for computations we will use the tables in [49] (themselves

based on the formulas found in [55]).

1.3.4 Integrable ŝl(n) Highest Weight Representations

Central to this thesis is the structure of integrable ŝl(n) highest weight representations, which

we will explore in more depth here. The finite Lie algebra g = sl(n) is of rank (n− 1) with

highest root θ = α1 + · · · + αn−1 [58], so that ŝl(n) has n simple roots {αi}i=0,...,n−1 and

Cartan matrix (Aij)i,j=0,...,n−1 defined by7

Aij =


2 i = j,

−1 i ≡ j ± 1 mod n,

0 else.

(1.3.40)

We let Λ = [l0, . . . , ln−1] ∈ P+
n,k be a dominant integral weight of level k and consider the

integrable highest weight representation LΛ with highest weight vector |Λ⟩. When computing

congruence classes in ŝl(n) representations (see equation (1.3.27)) we have bi = i so that for

µ = [l′0, . . . , l
′
n−1] ∈ ΩLΛ

cls(µ) ≡
n−1∑
i=1

il′i ≡
n−1∑
i=1

ili ≡ cls(Λ) mod n (1.3.41)

From this we can see that there are n congruence classes of weights for ŝl(n).

Example 1.3.4.1. Consider the possible highest weight ŝl(2)2 representations. We have 3

dominant integral weights [2, 0], [1, 1], and [0, 2] which are of class 0, 1, and 0 respectively.

Thus, for L[2,0] and L[0,2] we need the two string functions σΛ[2,0] and σ
Λ
[0,2] for weights in class

0, that is Λ = [2, 0], [0, 2], to calculate the character function χΛ, where [2, 0] is the highest

weight of L[2,0], and [0, 2] is obtained by [2, 0] − α0 = [2, 0] − [2,−2]. Similarly, [0, 2] is the

highest weight of L[0,2], and [2, 0] is obtained by [0, 2]−α1 = [0, 2]− [−2, 2]. Notice that two

7It is easy to check that this has the sl(n) Cartan matrix as a submatrix for i, j = 1, . . . , n − 1, one can
then calculate the zeroth row and column using (α0, αj) = (−θ, αj) and (αi, α0) = (αi,−θ).
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weights [2, 0] and [0, 2] are not in the same Ŵ -orbit. For L[1,1], there is only one weight of

class 1 so that we only need the one string function σ
[1,1]
[1,1].

For Λ = [l0, . . . , ln−1] ∈ P+
n,k we define a dual weight Λ† = [l′0, . . . , l

′
k−1] ∈ P

+
k,n as follows. We

first define the set σ = (σ1, . . . , σn) where σj =
∑j−1

i=0 li (note that (k−σ1, k−σ2, . . . , k−σn) =
par(Λ)), and define

Λ† =

n∑
j=1

Λσj , (1.3.42)

where we define the subscripts modulo k. Note that this ensures that the zeroth label l′0 ≥ 1

as σn =
∑n−1

j=0 l0 = k ≡ 0 mod k. We can visually represent a dominant integral weight

Λ ∈ P+
n,k and its dual weight Λ† ∈ P+

k,n using a closed ring with beads placed on it, which

we call a Dynkin ring. We consider (n + k) equidistant slots for beads which we label

1, 2, . . . , n+ k, and then fill the slots corresponding to the set

ω(Λ) = {j +
j−1∑
i=0

li|j = 1, 2, . . . , n}. (1.3.43)

The dual weight Λ† is then obtained by interchanging beads and spaces and then calculating

the li’s, although cyclic permutations of labels are equivalent in this process due to the

rotational symmetry of the ring. We fix a convention of labelling the beads in a clockwise

manner, beginning below the 3 o’clock position. It should be clear to the reader that the

double dual (Λ†)† is some cyclic permutation of Λ.

Example 1.3.4.2. Consider ŝl(2)3. Let Λ = [2, 1] ∈ P+
2,3, so that σ = (2, 3). We obtain the

dual weight Λ† = [1, 0, 1] ∈ P+
3,2 of ŝl(3)2 (note that l′0 = 1) and we see that ω(Λ) = {3, 5}

and ω(Λ†) = {2, 3, 5}. We see that Λ and Λ† are obtained from each other by interchanging

beads and empty slots and a cyclic relabelling of slots.

1

2

3

4

5

1

2

3

4

5

Figure 1.2: The Dynkin rings of Λ = [2, 1] and Λ† = [1, 0, 1], the labelling convention
employed in this thesis is shown in this example.

Later, when discussing minimal model coset characters arising from the AGT conjecture for

gauge theories on C2/Zn, we will use this process of computing dual weights when translating

from gauge theoretic to CFT objects and vice versa.
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Analogously to the finite case, if we have an affine Lie algebra ĝ with p̂ ⊂ ĝ an affine

subalgebra, the highest weight representation LΛ has branching rules as follows where k ∈
Z≥0

LΛ|p̂ =
⊕
µ,k

bΛ,(µ−kδ)Lµ−kδ, bΛ,(µ−kδ) ∈ Z≥0, (1.3.44)

for µ a p̂ dominant integral weight. We call the integers bΛ,(µ−kδ) the affine branching

coefficients. More care must be taken in affine branching, as the imaginary root does not

change the Dynkin labels of an affine weight, we must consider every possible variation of

applying δ when calculating branchings. We collect the information of an affine branching

into the q-series branching function using the branching coefficients as

bΛµ (q) =
∞∑
k=0

bΛ,(µ−kδ)q
k. (1.3.45)

Branching will be important when discussing coset characters, as these character functions

are extremely similar to branching functions. We will exploit this in chapter 5.

1.3.5 Crystal Bases and Paths for ŝl(n)

We wish to introduce canonical bases for our integrable ŝl(n) modules that will allow a

systematic study of certain module tensor products. As such we will use the crystal (or

canonical) bases of the Kyoto school which were introduced independently in [37] and [59].

There is an alternative approach to these structures using paths as a basis for ŝl(n) which

originated in [60]. The path model was subsequently further developed by Littelmann (see

[61, 62]), and we will tend to refer to the paths in this approach as Littelmann paths.

Here we will describe the data involved in defining the crystal basis and crystal graph associ-

ated to an integrable ŝl(n) representation and the structure of these under tensor products.

We will not prove any formula, nor the existence and uniqueness of any crystal graph related

data for integrable ŝl(n) representations. Aside from the references above, the interested

reader is referred to [38, 63, 39, 64] and the more modern review [65].

Before we continue, we must point out that although crystal graphs and bases are associated

to modules of the quantum group Uq(sl(n)) at q = 0, we will treat them as associated to

ŝl(n) modules (as is common) due to their role in the Littlemann path formulation8. We will

focus on crystal graphs associated to the affine Lie algebras ŝl(n), but also note that this

same structure exists for finite Lie algebras (such as sl(n)).

8In the Littelmann path formulation there are operators eα and fα equivalent to the Kashiwara raising and
lowering operators [66], and one can also define the Littelmann coloured graph G(π) which was independently
proven to be isomorphic to the crystal graph in [38] and [67], and as a corollary to the work in [68].
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Let LΛ be the irreducible highest weight module of ŝl(n) of highest weight Λ ∈ P+
n . We

now describe the crystal graph, denoted by BΛ, of LΛ. The nodes of BΛ are labelled by

special basis elements {b}b∈BΛ
for LΛ, the crystal (or canonical) basis BΛ. We also define

the Kashiwara raising and lowering operators ei and fi for i = 0, . . . , n− 1 that act on LΛ.

We denote the edge set for BΛ by EΛ. For each i-coloured edge (b
i−→ b′) ∈ EΛ between

two nodes b, b′ ∈ BΛ, which we will denote as an ordered pair (b, b′)i, there is an action of

Kashiwara operators between the corresponding vectors in LΛ. We have the following action

among corresponding basis elements b, b′ ∈ LΛ

fi(b) = b′, ei(b
′) = b, (1.3.46)

and fi(b) = 0 (equivalently ei(b
′) = 0) if there is no (b, b′)i ∈ EΛ for some b′ ∈ BΛ (respectively

b ∈ BΛ). Using this, we identify an action of ei and fi on BΛ ∪ {0} such that ei(b
′) = b and

fi(b) = b′ if there exists (b, b′)i ∈ EΛ and ei(b
′) = fi(b) = 0 otherwise.

Crystal graphs can also be defined starting from the action of operators fi and ei on a set

of nodes. In that case, we define the data of a set of nodes B and operators fi, ei : B −→
B ∪ {0} for i = 0, 1, . . . , n − 1 and define a crystal graph B with nodes B and edges (b, b′)i

corresponding to fi(b) = b′ (equivalently ei(b
′) = b).

Example 1.3.5.1. We consider the sl(3) highest weight representation VΛ with highest weight

Λ = [1, 0]. If we denote the highest weight vector by v, this module has a basis composed of

v, f1v, and f2f1v, and we have the following crystal graph B.

v· 1−→
f1v· 2−→

f2f1v·

Here the numbers over the edges denote their colours.

Due to the absence of mono-coloured cycles, the graph BiΛ, with nodes BΛ and the i-coloured

edges which we denote EiΛ, is composed of disjoint finite directed paths which we call i-strings.

For fixed i = 0, 1, . . . , n−1, each node b is part of one i-string, which we split into two halves,

the sequence of edges (ei(b), b)i, (e
2
i (b), ei(b))i, . . . , (e

εi(b)
i (b), e

εi(b)−1
i (b))i and the sequence of

edges (b, fi(b)), (f
ϕi(b)−1
i (b)i, . . . , f

ϕi(b)
i (b))i, where we have defined εi(b), ϕi(b) ∈ Z≥0 to be

the minimum integers such that eεi(b)+1(b) = fϕi(b)+1(b) = 0. These numbers are always

finite since LΛ is integrable.

Using this, we associate to a node b ∈ BΛ an i-signature ωi(b), which is a sequence of εi(b)

number of minus signs followed by ϕi number of plus signs, and an integer li(b) = ϕi(b)−εi(b)
which we will refer to as a label. Below we will see that these labels li form the Dynkin

labels for states in the module LΛ. We can visualise the application of ei on a node b using

i-signatures, where applying ei to b flips the right most minus sign in ωi(b) to a plus in
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ωi(e(b)) and the action of fi(b) as flips the left most plus sign in ωi(b) to a minus sign in

ωi(f(b)).

Example 1.3.5.2.

e3i (b)· −−→
e2i (b)· −−→

ei(b)· −−→︸ ︷︷ ︸
εi(b)=3

ϕi(b)=2︷ ︸︸ ︷
b· +−→

fi(b)· +−→
f2i (b)· (1.3.47)

In the example above, we have an i-string of 5 edges, corresponding to 3 possible applications

of ei and 2 of fi on the node b. This gives us εi(b) = 3 and ϕi(b) = 2, the i-signature as

ωi(b) = −−−++, and the label li = 2− 3 = −1.

We use εi, ϕi, and li to make contact with the representation theory of LΛ as follows

Definition 1.3.5.3. ([64, 2.1] specialised to ŝl(n) integrable representations) Let Λi for i =

0, 1, . . . , n − 1 be the fundamental weights of ŝl(n). For each b ∈ BΛ define the following 3

elements of the weight lattice P (ŝl(n)):

1. ϕ(b) :=
∑n−1

i=0 ϕi(b)Λi

2. ε(b) :=
∑n−1

i=0 εi(b)Λi

3. wt(b) :=
∑n−1

i=0 liΛi

The weight wt(b) is equal to the weight of the corresponding vector bΛ ∈ LΛ, and the li

form the Dynkin labels of wt(b). Let B1Λ be the crystal graph of the highest weight module

LΛ and B2Λ′ the one of LΛ′ with corresponding nodes B1
Λ and B2

Λ′ . We define the product

crystal graph BΛ,Λ′ as the graph with nodes BΛ,Λ′ = {b1 ⊗ b2|b1 ∈ B1
Λ, b2 ∈ B2

Λ′} and edges9

(b1⊗b2, b′1⊗b′2)i ∈ EΛ,Λ′ corresponding to fi(b1⊗b2) = b′1⊗b′2. The crystal graph defined this

way is the crystal graph of the tensor product LΛ ⊗ LΛ′ [69]. The action of the Kashiwara

operators is defined as follows for the node (b1 ⊗ b2) ∈ B1,2
Λ,Λ′ where b1 ∈ B1

Λ and b2 ∈ B2
Λ′ ,

ei(b1 ⊗ b2) =

ei(b1)⊗ b2, ϕi(b1) ≥ εi(b2)

b1 ⊗ ei(b2), else
(1.3.48)

fi(b1 ⊗ b2) =

fi(b1)⊗ b2, ϕi(b1) > εi(b2)

b1 ⊗ fi(b2), else
(1.3.49)

9Here the pairs of nodes in each factor, that is b1 with b′1 and b2 with b′2 are not necessarily distinct from
each other.
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Example 1.3.5.4. We consider again the module VΛ and crystal graph BΛ from example

1.3.5.1. We have the following values for ϵi and ϕi for i = 1, 2:

v f1v f2f1v

ϵ1 0 1 0

ϕ1 1 0 0

ϵ2 0 0 1

ϕ2 0 1 0

Using these we can build the crystal graph BΛ,Λ using the crystal graph tensor product rules

(1.3.48) and 1.3.49. We borrow this example and diagram from [70] and will match this

notation by defining v 7→ v1, f1v 7→ v2, and f2f1v 7→ v3. In this picture we have placed all

V

V

V ⊗ V

v1

f1

v2

f2

v3

v1
f1

v2
f2

v3

f1 f2

f2

f1

f2

f1 f1

f2 f2

v1 ⊗ v1

v1 ⊗ v2

v1 ⊗ v3

v2 ⊗ v1

v2 ⊗ v2

v2 ⊗ v3

v3 ⊗ v1

v3 ⊗ v2

v3 ⊗ v3

the nodes vi ⊗ vj ∈ BΛ,Λ on a lattice and then placed arrows corresponding to the action of

f1 and f2 according to our rules from above.

Remark 1.3.5.5. Drawing the tensor product in this way, where we have the crystal graphs

of the two factors on the outside, allows one to clearly see some features of its structure.

For instance, one can only have arrows corresponding to fi parallel and in line with one

of the fi occurring in one of the factors. Furthermore, the disjoint connected components

of the product graph correspond to the tensor product decomposition into highest weight

modules. From this simple diagram we can easily see that we have the following tensor

product decomposition of sl(3) highest weight modules:

L[1,0] ⊗ L[1,0] = L[2,0] ⊕ L[0,1]. (1.3.50)

The utility of this construction is much clearer when considering the i-signatures in the tensor

product. The i-signature ωi(b1 ⊗ b2) of a node b1 ⊗ b2 ∈ B1,2
Λ,µ is obtained by placing the

i-signature ωi(b1) to the left of ωi(b2) and successively eliminating pairs of signs where a +

sign is to the left of a − sign, a process we will denote by bracketing.
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Example 1.3.5.6. Consider two nodes b1 ∈ B1
Λ and b2 ∈ B2

µ with i-signatures

ωi(b1) = −−−−++, (1.3.51)

ωi(b2) = −−−+, (1.3.52)

the i-signature of the node b1 ⊗ b2 ∈ B1,2
Λ,µ is

ωi(b1 ⊗ b2) = −−−− (+(+−)−)−+ = −−−−−+ . (1.3.53)

We will use notion of the generalised i-signatures later. A generalised i-signature is a sequence

of + signs, − signs and empty slots □ with an infinite cyclic tail condition. For a highest

weight ŝl(n)k-module with highest weight Λ = [d0, . . . , dn−1], the infinite cyclic tail condition

is such that for sufficiently large m the m-th slot, denoted by ωi,m, in the generalised i-

signature is defined to be

ωi,m =


− · · ·−︸ ︷︷ ︸

di

+ · · ·+︸ ︷︷ ︸
di+1

□ . . .□︸ ︷︷ ︸
k−di−di+1

, m ≡ i mod n

□ . . .□︸ ︷︷ ︸
k

, else
(1.3.54)

Remark 1.3.5.7. These generalised i-signatures are equivalent to the Kyoto (and Littelmann)

path models for integrable highest weight ŝl(n)k modules, see [37, 38] and [66, 61, 62]. We

use them as a way to capture the combinatorics of tensor products of highest weight ŝl(n)-

modules.

For us, the utility of the crystal graph construction comes from the interpretation of the

i-signatures combinatorially. Having done so, we can easily calculate characters for tensor

products of integrable ŝl(n)-modules by taking products of the generating functions for i-

signatures. These generating functions have been shown to be the characters of CFT minimal

models (explained in section 1.5), building on the ABF path approach to restricted solid-on-

solid integrable models [71]. This forms the basis for our arguments in chapter 5.

1.4 Young Diagrams and ŝl(n)

Here we will describe a connection between highest weights of ŝl(n)N -representations and

cylindric partitions. This section builds on the content of sections 1.1, 1.2, and 1.3.
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1.4.1 Cylindric and Burge Partitions and ŝl(n) Representations

Let {Λ0, . . . ,Λn−1} be the fundamental weights of ŝl(n), so that they form a basis of the

weight lattice P (ŝl(n)) of ŝl(n). Let Λ =
∑n−1

i=0 aiΛi, ai ∈ Z≥0, be a dominant integral

weight. We can rewrite Λ as Λ =
∑N−1

i=0 Λσi , where 0 ≤ σ0 ≤ · · · ≤ σN−1 < n, uniquely.

The number N is referred as the level of Λ. Under this prescription we have explicitly

σ = (σ0, . . . , σN−1) = (0, . . . , 0︸ ︷︷ ︸
a0

, . . . , n− 1, . . . , n− 1︸ ︷︷ ︸
an−1

). We define ζi = σi+1 − σi for 0 ≤ i <

N − 1 and ζN−1 = n + σN−1 and use these to specify the cylindric inequalities (1.1.11) for

ζ = (ζ0, . . . , ζN−1) that are equivalent to the fundamental domain shape (∞N )/(na0 , (n −
1)a1 , . . . , 1an−1)/n.

This process also works in reverse, given a set of cylindric inequalities we can associate a

dominant integral ŝl(n)N weight. We will denote the set of all cylindric partitions whose

cylindric inequalities are associated to an ŝl(n) weight Λ in this way by CΛ. Note that the

level of the affine weight is equal to the number of rows of the fundamental domain shape

(the parameter N), and the rank is the cyclic shift (the parameter n).

Example 1.4.1.1. Consider again the cylindric partition π with fundamental domain shape

(∞3)/µ/4, where µ = (1, 1, 0), from examples 1.1.2.3 and 1.1.2.5 above. We can read off

the level and rank of the associated weight using d = 4 = n and N = 3, which is the

number of rows of µ. Using the above prescription, we can use ζ0 = µ1 − µ2 = 1 − 1 = 0,

ζ1 = µ2 − µ3 = 1 − 0 = 1 and ζ2 = d − µ1 + µ3 = 4 − 1 + 0 = 3. Therefore, the associated

ŝl(4)3 weight corresponding to these ζi is Λ = Λ0 + Λ0 + Λ1 = [2, 1, 0, 0]. The interested

reader can easily check that this gives the cylindric inequalities from the previous example.

Example 1.4.1.2. We now work in the reverse direction, and begin with an ŝl(n) weight

to obtain the associated cylindric inequalities. Consider the fundamental domain shape

associated to the ŝl(3)4 weight Λ = Λ0 + Λ0 + Λ1 + Λ2 = [2, 1, 1]. Using the prescription

above we find that ζ0 = 0, ζ1 = 1, ζ2 = 1, and ζ3 = 3− 2 = 1 so that we have the following

cylindric inequalities

λ
(0)
i ≥ λ

(1)
i ,

λ
(1)
i ≥ λ

(2)
i+1,

λ
(2)
i ≥ λ

(3)
i+1,

λ
(3)
i ≥ λ

(0)
i+1.

We then choose a specific example of this fundamental domain by using the following quadru-

ple of Young diagrams λ = (λ(0), λ(1), λ(2), λ(3)), where λ(0) = (6, 4, 1), λ(1) = (4, 2, 1),

λ(2) = (3, 2, 1) and λ(3) = (5, 1, 1). One can easily check the parts of these satisfy the cylin-

dric inequalities above and visually we can represent this quadruple of Young diagrams and
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cylindric inequalities by the cylindric partition:

...
...

...
...

6 4 1

4 2 1

3 2 1

5 1 1

6 4 1
...

...
...

...

Remark 1.4.1.3. The fundamental domain in the infinite array picture could begin on any

row, thus domains defined by a cyclic permutation of the labels and ζi’s are equivalent. This

changes the associated weight by a cyclic permutation of the labels σ1 through σN−1 and

relabelling σ0 = n − σN−1. Moreover we see that the weights Λ = [d0, d1, . . . , dn−1] and

Λ′ = [d1, d2, . . . , dn−1, d0] have equivalent associated fundamental domain shapes.

We can define a natural colouring on a cylindric partition λ = (λ(0), . . . , λ(N−1)) using its

associated ŝl(n)N weight. We colour its component Young diagrams with n-colours such that

the diagram λ(i) has a charge σi.

There is no reason to restrict only to this natural colouring, and we can also define other

colourings on a cylindric partition λ inm colours by the charge maps σ : {0, 1, . . . , N−1} −→
Zm, where we denote σi = σ(i), and define σ = (σ0, . . . , σN−1) ∈ (Zm)N to be the vector of

charges. Note that this general colouring works on any N -tuple of Young diagrams, and we

will not restrict this process to apply to only cylindric partitions. Once we have assigned a

Zm-charge to each component Young diagram, we colour them as described above and this

defines a colouring on the N -tuple λ. We will sometimes denote the m-coloured N -tuple

by λσ =
(
(λ(0))σ0 , . . . , (λ(N−1))σN−1

)
, although it is usually obvious if we are discussing an

N -tuple λ that is coloured or not.

We will let k
(i)
j denote the number of j-coloured boxes in λ(i) and δk

(i)
j = k

(i)
j − k

(i)
0 , we

then define kj =
∑N−1

i=0 k
(i)
j and δkj =

∑N−1
i=0 δk

(i)
j for j = 0, 1, . . . ,m − 1, and let k =

(k0, . . . , km−1) and δk = (δk0, . . . , δkm−1). By defining the size of a N -tuple of Young

diagrams to be |λ| =
∑N−1

i=0 |λ(i)|, we have that |λ| =
∑m−1

j=0 kj .

We will also consider more general cylindric style partitions by introducing a second vector

of positive integer parameters ξ = (ξ0, . . . , ξN−1) ∈ (Z≥0)
N−1.

Definition 1.4.1.4. Let λ = (λ(0), . . . , λ(N−1)) be an N -tuple of Young diagrams and ζ =

(ζ0, . . . , ζN−1) ξ = (ξ0, . . . , ξN−1) be N -tuples of positive integers. If λ satisfies

λ
(i)
j ≥ λ

(i+1)
j+ζi

− ξi, (1.4.1)
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we say it is a Burge multipartition of weight (ζ, ξ)

In the spirit of the connection between cylindric partitions and ŝl(n)-representations, we

choose to take both ζ and ξ as defining ŝl(n) weights. In this case, we have that ζ ∈ P+
N,n

and ξ ∈ P+
N,k for some level k.

Remark 1.4.1.5. Building on our discussion of the 3D interpretation of cylindric partitions,

we can think of the presence of non-zero ξ as a 3D shift of Young diagrams. Cylindric

multipartitions only depend on ζ, which was visualised as a shift in the 2-dimensional xy-

plane, as demonstrated in our visualization of them as arrays of numbers. The extra shift

introduced by ξ can be thought of as an additional shift along the z-axis.

We consider Burge multipartitions to be generalisations of restricted partition pairs [72],

as considered by Burge hence the name, which are N = 2 Burge multipartitions in this

language. The cylindric partitions and Burge multipartitions themselves are special cases of

(α, β)-cylindric partitions. In the language of [35], Burge multipartitions are (0, β)-cylindric

partitions, where β carries the information of both ζ and ξ.

1.4.2 Generating Functions

From an AGT perspective, the combinatorial objects we have just defined will be taken to

represent physical states that we will sum over when defining the instanton partition function.

For our purposes it will be useful to count these states using a generating function.

Recall that CΛ denotes the set of all cylindric partitions associated to a weight Λ ∈ P+
n,N .

We define the generating function Xn
Λ of coloured cylindric partitions associated to Λ by

Xn
Λ(q; z) =

∑
λ∈CΛ

qk0
n−1∏
i=1

zδkii . (1.4.2)

Here the exponent of q counts the 0-coloured boxes and the exponent of zi counts the differ-

ence between i-coloured boxes and 0-coloured boxes. We will also define a specialised version

of the generating function depending on only the parameter q by first sending q 7→ qn and

then zi 7→ q

XΛ(q) =
∑
λ∈CΛ

q
∑n−1

i=0 ki =
∑
λ∈CΛ

q|λ|, (1.4.3)

this specialised version ignores the colouring data, and thus counts uncoloured cylindric

partitions.
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Lemma 1.4.2.1. ([47]) For an ŝl(n) weight Λ we have the following explicit expression for the

specialised generating function XΛ(q),

XΛ(q) =
∑
λ∈CΛ

q|λ| =
1

(q; q)n∞

∑
K1+···+Kn=0

det
1≤s,t≤n

(
q(µt−t)(nKs+s−t)+Ks(

1
2
nKs+s)(n+N)

)
,

(1.4.4)

where µ = (na0 , (n − 1)a1 , . . . , 1an−1), is the partition par(Λ) associated to Λ (see 1.3.20 for

a definition).

In this lemma we have used the following notation

(a; q)k =

k∏
i=1

(1− aqi), (1.4.5)

for the q-Pochammer symbol. We will frequently make use of the q-Pochammer symbol

throughout this thesis in the guise of

1

(q; q)∞
= 1 + q + 2q2 + 3q3 + 5q4 + . . . , (1.4.6)

which is the generating function for partitions

∑
λ∈Par

q|λ| =
1

(q; q)∞
. (1.4.7)

Remark 1.4.2.2. As explained in [47], this expression for the generating function XΛ(q) is

a special case of [35, Th 2], where a more general expression is obtained in terms of the

parameters notated as bs and at. We can then obtain (1.4.4) by substituting the value bs = 0

and sending at 7→ ∞ for all t and s.

Consider an N -tuple of Young diagrams λ = (λ(0), . . . , λ(N−1)). Define kij(λ) to be the

number of rows with i number of boxes (that is λ
(l)
m = i for some 1 ≤ m ≤ l(λ(l)) and

0 ≤ l ≤ N − 1) such that the box at the end of the row is j-coloured, in all diagrams10.

Definition 1.4.2.3. ([73]) λ is said to be highest lift if for each i > 0, there exists at least

one j > 0 such that kij(λ) = 0. If λ is also a cylindric partition, we call it a FLOTW11

multipartition.

Example 1.4.2.4. In the case of N = 1 and arbitrary n, every Young diagram λ = (λ1, λ2, . . . )

is a cylindric partition by the weakly decreasing property on its parts. In this case, kij(λ) = 0

implies that no more than (n − 1) parts can be equal to each other. This condition defines

the n-regular partitions and they are the highest lift FLOTW multipartitions for N = 1.

10Note that this is a different object to k
(i)
j which we defined above. These two notations are differentiated

by the presence of the brackets on the superscript i.
11FLOTW is an acronym for the first letter of the surnames of the authors in the referenced paper.
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The following lemma shows how the concept of highest lift multipartitions is useful when

computing generating functions of cylindric partitions.

Lemma 1.4.2.5. ([47]) The generating function for FLOTW multipartitions (Xk
Λ)

∗(q; z) is

related to the generating function Xk
Λ(q; z) for cylindric partitions by

Xk
Λ(q; z) =

1

(q; q)∞
(Xk

Λ)
∗(q; z). (1.4.8)

Importantly, the generating function of FLOTW multipartitions gives the character (1.3.34)

for irreducible integrable ŝl(n)N highest weight modules, denoted by LΛ, as

χ
ŝl(n)N
Λ (q; z) = eΛ(Xk

Λ)
∗(q; z), (1.4.9)

where q = eδ and zi = eαi for i = 1, . . . , n − 1. Explicitly, let Λ =
∑N−1

i=0 Λσi , where

σ0 ≥ · · · ≥ σN−1, and define the partition σ = (σ0, . . . , σN−1). In chapter 4, we will match

the character for ŝl(n)N highest weight modules with a generating function for coloured

cylindric partitions with charges defined by σ. Due to this, it will be convenient to consider

a weight Λ to be defined using σ.

We defineMσ to be the set of N -tuples of coloured Young diagrams λ = (λ(0), . . . , λ(N−1))

that satisfy the following inequalities between their rows

λ
(i)
j ≥ λ

(i+1)
j+σi−σi+1

for j ≥ 1, 0 ≤ i ≤ N − 2; (1.4.10)

λ
(N−1)
j ≥ λ(0)j+σN−1−σ0+n, for j ≥ 1, (1.4.11)

it is clear that these are the cylindric partitions associated to Λ so that Mσ = CΛ, but

here we think of them as defined by the charges σ. We take each σi to be the natural

charge described above to colour λ(i) with n colours and denote the resulting coloured Young

diagram by (λ(i))σi . We will identify (λ(i))σi with λ(i) when it is clear to do so.

We define Mσ
∗ ⊂ Mσ to be the FLOTW multipartitions and have the following explicit

expressions for the character formula χ
ŝl(n)N
Λ (which we defined in (1.3.34)).

Lemma 1.4.2.6. ([60]) The character formula χ
ŝl(n)N
Λ has the following forms as sums over

Mσ
∗ for q = e−δ and ti = eei and t = (t1, . . . , tN−1)

χ
ŝl(n)N
Λ (q, t) = eΛ

∑
λ∈Mσ

∗

qk0(λ)
N−1∏
i=0

(
ti
ti+1

)ki(λ)
(1.4.12)

= eΛ
∑
λ∈Mσ

∗

qk0(λ)
N−1∏
i=1

(
ti
ti+1

)δki(λ)
. (1.4.13)

Where ei − ei+1 = αi are the weights of the fundamental representation LΛ1 of sl(n).
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As described in [47], the setMσ of all cylindric multipartitions is isomorphic to the product

ofMσ
∗ and the set of partitions

Mσ ↔Mσ
∗ × Par. (1.4.14)

Under this isomorphism, an N -tuple of coloured Young diagrams λ is mapped to (λ∗, µ)

where δki(λ) = δki(λ
∗) and k0(λ) = k0(λ

∗) + |µ|. We can then use the generating function

for partitions to obtain the following expression for the character of LΛ

χ
ŝl(n)N
Λ (q, t) = (q; q)∞

(
eΛ

∑
λ∈Mσ

qk0(λ)
n−1∏
i=1

(
ti
ti+1

)δki(λ))
, (1.4.15)

and it is this form of the character that we will compare against in chapter 4.

1.5 2D Conformal Field Theory

In this section we will review the necessary 2D conformal field theory notation, objects, and

results for studying an AGT style correspondence. As such, this will not form an in-depth

or comprehensive review of 2D conformal field theory as a whole. We will focus mostly

on collecting results and fixing notation except where we deem it enlightening to expand

calculations for the subsequent work presented in chapters 3, 4, and 5.

Most of this material is standard and taken from [50] with some sections, especially our

discussion of the free boson in section 1.5.6, supplemented by [74]. Our discussion of Liouville

theory in section 1.5.7 also draws on the notes [75], and we have also used this when writing

about axiomatic foundations for CFTs in section 1.5.1. Each of these three references are

excellent resources to learn CFT, although we single out [50] as the bible of CFT and [75]

for the reader without much of a background in quantum field theory.

This section is large, as most of the thesis centres on the CFT side of AGT correspondences.

We will begin in sections 1.5.1 and 1.5.2 by briefly reviewing two separate formalisms for

conformal field theory: the algebraic approach which is similar to what we have already

covered in sections 1.2 and 1.3, and the operator formalism. They are equivalent, as we

will describe. In sections 1.5.3 and 1.5.4 we will discuss the main objects of CFT in the

AGT context, the correlation functions and especially conformal blocks. The rest of the

sections focus on all the specific CFTs we will encounter in the context of AGT within

this thesis including: the free boson, minimal models (for both the V ir and WN algebras),

Wess-Zumino-Witten models, coset models, Liouville CFT, and Toda CFT.
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1.5.1 Basic Definitions and Notation - Algebraic Formalism

We will begin by reviewing what we mean by conformal field theory (CFT) in this thesis,

and give a formal definition. We will then discuss some of the basic objects, definitions, and

algebraic structure of CFTs. Within this thesis, we will always take the word algebra to

mean a Lie algebra or a vertex operator algebra (VOA) unless otherwise stated.

Let (M, g) be a pseudo-Riemannian manifold referred to as space-time where g : TM×TM →
R is the pseudo-Riemannian metric. Throughout this section, we will always work locally,

unless otherwise stated, and take a function ϕ(x) at the point x ∈M to be a function defined

for a local coordinate on M . Also let H be a vector space 12 equipped with a scalar product

that is called the space of states or spectrum of the theory. We will sometimes notate an

element σ ∈ H as a ket |σ⟩. As of now, this ket notation is different from used in sections

1.2 and 1.3 as it represents any element in H and there is no Lie algebra action yet defined

on it. Below, we will link these two notations together.

Next, we recall the definition of a conformal transformation. Let C :M →M be an invertible

transformation on (M, g), and denote by gx the metric tensor on the tangent space TxM to

the point x ∈ M . Denote by C∗g the pullback of g, and (C∗g)x the pullback at the point

x. The transformation C is conformal if the pullback of g is locally invariant up to a scale

factor, that is

gC(x) = Λ(x)(C∗g)x, (1.5.1)

where Λ(x) is a scalar, dependent only on the local coordinates for M . Here we note that

this ensures that angles are locally preserved, hence the name conformal.

In the case where M = Rd and gµν = ηµν is a metric of signature (p, q), the group of

global conformal transformations is the Lie group SO(p + 1, q + 1). Its Lie algebra so(d +

1, 1) is generated by: translations Pµ, dilatations D, rotations Lµν , and special conformal

transformations Kµ. We will never need the explicit form or brackets of these generators,

although the reader can find them in [50, §4] or [74, §1]. For the rest of this section, we

will focus on the algebra of local conformal transformations for the case where M = Σ is a

Riemann surface.

We now discuss the algebraic structure of CFTs before providing a more formal definition.

The generating algebra of local conformal transformations in 2-dimensions is a tensor prod-

uct of analytic and anti-analytic transformations, which are generated by the differential

operators ln = −zn+1∂z and l̄n = −z̄n+1∂z̄ for n ∈ Z respectively. This is isomorphic to

two commuting copies of the Witt algebra, a Lie algebra with generators ln for n ∈ Z and

12Typically in a quantum field theory, H is a Hilbert space. We relax this property to allow us to consider
CFTs that could be non-unitary.
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defining brackets

[lm, ln] = (m− n)lm+n. (1.5.2)

In a 2D theory with conformal symmetry, it is then natural to choose local coordinates

z = x1 + ix2 and z̄ = x1 − ix2, holomorphic and anti-holomorphic coordinates, and we will

employ this in the sequel.

Due to the commutativity of the two isomorphic algebras, we will focus all our subsequent

discussion on just the holomorphic sector and notate objects as only depending on the holo-

morphic coordinate z. The reader should note that although most objects in the sequel will

be notated as depending on z, they will also have an anti-holomorphic factor dependent on

z̄, unless otherwise stated, which we will not notate. Similarly, for any result or computa-

tion in the holomorphic sector there is usually an analogous result or computation for the

anti-holomorphic sector.

We define the Virasoro algebra (which we will denote by V ir) as the unique central exten-

sion13 of the Witt algebra with generators Lm for m ∈ Z that satisfy the Lie bracket

[Lm, Ln] = (m− n)Lm+n +
c̃

12
(m3 −m)δn+m,0, (1.5.3)

where c̃ is central in the algebra. When considering a specific representation of V ir, the

eigenvalue c ∈ C of the central element c̃ on that representation will be called the central

charge.

We denote a set of functions F = {ϕ1, ϕ2, ...} on Σ which are referred to as the fields of the

theory. In general, there are infinitely many such fields in a CFT. We also note that if ϕ ∈ F
we also have ∂ϕ ∈ F . These fields generate a vector space, called the space of fields. We take

as an axiom the state-field correspondence:

Axiom 1.5.1.1. ([75, 1.1]) There is an injective linear map from the spectrum H to the space

of fields which we notate as

|σ⟩ 7→ V (|σ⟩ , z). (1.5.4)

Remark 1.5.1.2. This is not true for other fields theories, so that the state-field correspon-

dence is a special property of conformal field theories. We also note that while this axiom

usually goes by the name of the state-field correspondence in the literature it is also some-

times referred to as the operator-field correspondence, for example in [50].

13The appearance of the Virasoro algebra instead of the Witt algebra in CFT comes from the concept of
quantization in physics. We only ever consider quantum (quantised) CFTs in this thesis so will always deal
with Virasoro not the Witt algebra.
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A CFT on (Σ, g) with spectrum H, is a collection of functions called the n-point correlation

functions for all n ∈ Z>0

⟨
n∏
i=1

V (|σi⟩ , zi)⟩, (1.5.5)

where z1, · · · , zn ∈ Σ and σi ∈ H, that are linear on the set F of fields, associated to H
through the state-field correspondence, and invariant under conformal transformations. In

section 1.5.4, we will discuss more of the structure of the correlation functions. Our goal is

to solve (or partially solve) CFTs, which is defined to be a determination of the spectrum

and all the correlation functions.

We collect all the data contained in this informal discussion into one formal definition for a

CFT.

Definition 1.5.1.3. (Paraphrased slightly from [12]) A meromorphic CFT (mCFT) defined

on a compact Riemann surface Σ is composed of a vector space H and a map V (|σ⟩ , z), that
maps a state |σ⟩ ∈ H and point z ∈ Σ to the space of fields on Σ and H. Furthermore, there

is a distinguished state |L⟩ which has an operator valued Laurent expansion

V (|L⟩ , z) =
∑
n∈Z

Lnz
−n−2 = T (z), (1.5.6)

whose modes {Ln}n∈Z generate the Virasoro algebra for some central charge c ∈ C.
The map V satisfies the following properties:

1. There exists a unique state |Ω⟩ ∈ H, called the vacuum state, such that V (|σ⟩ , z) |Ω⟩ =
ezL−1 |σ⟩.

2. The scalar product14 ⟨σ1|V (|σ⟩ , z) |σ2⟩ for σ1, σ2 ∈ H is a meromorphic function of z.

3. ⟨σ1|V (|σ⟩ , z)V (|ϕ⟩ , w) |σ2⟩ is a meromorphic function for |z| > |w|.

4. ⟨σ1|V (|σ⟩ , z)V (|ϕ⟩ , w) |σ2⟩ = ϵσϕ ⟨σ1|V (|ϕ⟩ , z)V (|σ⟩ , w) |σ2⟩ where ϵσϕ = ±1. If ϵσϕ =

1 we say the fields are bosonic and if ϵσϕ = −1 we say the fields are fermionic.

Of note, property one of this definition gives us the state-field correspondence. By taking

z → 0 we obtain

V (|σ⟩ , 0) |Ω⟩ = |σ⟩ , (1.5.7)

which is the usual form of the state-field correspondence encountered in textbooks.

The map V is called the vertex operator map. Although we have notated fields as depending

on only z, in general most fields depend on z and z̄ (this is an example of notating only the

14This is physics notation for ⟨σ1, (V (|σ⟩ , z) · σ2)⟩ = ⟨(σ1 · V †(|σ⟩ , z)), ψ2⟩, where ⟨ , ⟩ = is the scalar
product on H. We will use it throughout this thesis. In section 1.5.4, we will discuss this scalar product for
the Verma modules of CFTs and its relation to the correlation functions in more depth.
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holomorphic sectors as we noted above). Any fields that only depend on z or z̄ are referred

to as chiral or anti-chiral respectively.

T (z) is refered to as the (holomorphic) Virasoro energy-momentum tensor and the existence

of T (z) ensures that H forms a representation of V ir. When clear, we will sometimes notate

V (|ψ⟩ , z) = Vψ(z) or V (|ψ⟩ , z) = ψ(z) depending on context. This is the state-field map

from axiom 1.5.1.1. While this notation is useful when developing the theory axiomatically

and using the state-field correspondence, we will usually explicitly specify fields and their

corresponding states separately for clarity in actual computations. Finally, we will drop the

meromorphic prefix and henceforth refer to mCFTs as CFTs.

We will call {L−n} and {Ln} for n > 0 the raising and lowering operators15 respectively,

analogous to what was described for semi-simple Lie algebras in sections 1.2 and 1.3. We

will only consider the case where the spectrum H will be a product of highest weight Verma

modules for V ir, where each Verma module will form a representation of the same central

charge c.

As for simple Lie algebras, we define a V ir highest weight state |h⟩ by the following two

properties

L0 |h⟩ = h |h⟩ , Ln |h⟩ = 0, n > 0. (1.5.8)

The eigenvalue h of the L0 operator is what is known as the conformal dimension 16. We can

then create the descendant states of |h⟩ by the raising operators. Explicitly, a descendant

state |ψ⟩ is of the form

|ψ⟩ = L−n1L−n2 . . . L−nk
|h⟩ , ni ∈ Z>0. (1.5.9)

Through the state-field correspondence, we can define analogous descendant fields. In CFT,

highest weight states are usually referred to as primary states, and their corresponding fields

as primary fields. We will only consider the case where h ≥ 0. Analogously, the descendant

states correspond to descendant fields.

We define the Verma module Vc,h to be the V ir-module generated by the highest weight state

|h⟩ and its descendant states, with central charge c. Generally, the highest weight Verma

modules generated by primary fields may form reducible V ir representations and will contain

infinitely many subrepresentations. Physicists refer to the set of a primary field and all its

descendant fields as a conformal family. If we let ϕ(z) be a primary field, the conformal

15Physicists refer to these as creation and annihilation operators, due to their action on highest weight
states and the vacuum.

16The notation h for conformal dimension is not uniform across the literature. Throughout much of this
review of material we will defer to the canonical sources we have cited in the introduction and use h. When
discussing AGT correspondences, we will instead tend to use ∆, in line with the bulk of the AGT literature.
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family of ϕ(z) is notated as [ϕ]. Finally, non-primary, or descendant fields in a CFT are also

referred to as secondary fields by physicists.

From the V ir commutation relations (1.5.3), we see that the raising operators, Ln for n < 0,

increase the conformal dimension (L0 eigenvalue) of a state and the lowering operators, Ln

for n > 0, reduce it. We also note that even though L0 is not central in the algebra V ir,

it acts diagonally (and is the only non central generator that does so) on highest weight

representations. We will refer to
∑

i ni as the level of a descendant state, and all states of

level l will form the l-th level V(l)c,h of a V ir Verma module Vc,h.

Analogously to Lie algebras, CFTs have their own character functions which count the states

in a V ir-module. We will calculate these using AGT combinatorics in chapters 2, 4 and 5.

Definition 1.5.1.4. The character χc,h(q) of a V ir Verma module Vc,h with central charge c

acting on a highest weight state |h⟩ of conformal dimension h is defined to be the trace over

the module of states weighted by their conformal dimension

χc,h(q) :=TrVc,h
qL0−c/24 (1.5.10)

=
∞∑
n=0

dim(V(n)c,h )q
n+h−c/24. (1.5.11)

In the second line of this definition we have defined dimV(n)c,h as the number of linearly

independent states in Vc,h at level n.

Finally, we say a field is a current if it is a chiral field of conformal dimension h = 1. We

will sometimes refer to the conformal dimension of a current as its spin17.

1.5.2 Basic Definitions and Notation - Operator Formalism

Above, we discussed the basic objects and structure of CFTs from an algebraic perspective,

focusing on the states. We now look at the fields of a theory, taking the operator perspective.

This discussion follows the necessary material in [50, §6].

Let ϕ(z) be a primary field associated to a primary state |h⟩ of conformal dimension h. We

define a mode expansion of ϕ(z) by

ϕ(z) := V (|h⟩ , z) =
∑
n

ϕnz
−n−h, (1.5.12)

17Spin in a CFT is defined to be the difference L0 − L̄0 of the two chiral L0 operators. For a chiral field,
one of these operators (which we take to be the anti-holomorphic L̄0) must act trivially so that spin in this
case is simply equal to the eigenvalue of the other (L0).
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where the sum runs over n ∈ Z (bosonic fields) or n ∈ 1
2Z (fermionic fields). We can invert

this expansion to obtain an expression for the modes

ϕn =
1

2πi

∮
z=0

dz zn+h−1ϕ(z). (1.5.13)

We now postulate two more axioms, that are essential to our operator approach to CFT. In

the sequel, we only consider theories containing bosonic fields.

Axiom 1.5.2.1. (Radial Ordering) The fields appearing within an N -point correlation are

radially ordered. Here the radial ordering operator is defined to act on pairs of fields as

R (A(z)B(w)) =

A(z)B(w) if |z| > |w|,

B(w)A(z) if |z| < |w|.
(1.5.14)

Axiom 1.5.2.2. There exists an operator product expansion (OPE) between two fields A(z)

and B(w)

A(z)B(w) =

r0∑
r=−∞

(AB)r(w)

(z − w)r
(1.5.15)

for some r0 ∈ Z, and where the coefficients (AB)r are well defined as z → w. The OPE is

understood to only hold within correlations functions, and as such radial ordering is always

assumed to hold. Usually we will deal with OPEs where r0 > 0 so that there are singular

terms in the expansion.

We define the normal ordered product at the point w as the non-singular terms (AB)(w) =∑∞
r=0(AB)r(w)(w − w)r = (AB)0(w). This is the CFT generalisation of the usual normal

ordering from physics, which we define now. The normal ordering of two free fields18 ϕ1(z)

and ϕ2(w) is notated as : ϕ1ϕ2 : and means we place all raising operators involved in the

product to the left and all lowering operators to the right. Note that while normal ordering

and the normal ordered product are similar, they are not identical.

We define one final piece of notation for OPEs, where we take the singular terms to be called

a contraction, which we notate as

A(z)B(w) =

r0∑
r=1

(AB)r(w)

(z − w)r
. (1.5.16)

Using this notation, the normal ordered product at w is the difference of the OPE and the

contraction of a product of fields

(AB)(w) =

(
A(z)B(w)−A(z)B(w)

) ∣∣∣
z→w

(1.5.17)

18A free field in a CFT is taken to be a field whose OPE has only one singular term.
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The equivalence between the algebraic and operator formalism goes as follows: Consider

two fields A and B with mode expansions A(z) =
∑

n anz
−n−hA and B(z) =

∑
n bnz

−n−hB ,

respectively. We can calculate the commutator of the modes an and bm for n,m ∈ Z using

contour integrals as

[an, bm]

=

((∮
z=0

dz

∮
w=0

dw

)
|z|>|w|

−
(∮

w=0
dw

∮
z=0

dz

))
|z|<|w|

zn−1+hAwm−1+hBR(A(z)B(w))

(1.5.18)

=

∮
0
dw

∮
w
dz
(
wm−1+hBzn−1+hAA(z)B(w)

)
, (1.5.19)

where we have deformed the contours in between the first and second lines. Conversely, we

can reverse this and begin by calculating the right-hand side above for two fields A(z) and

B(w). Note that it is standard to drop the notation for radial ordering in such integrals, as

radial ordering is always assumed.

We have the following two examples, which we will need in the later subsections of this

section.

Example 1.5.2.3. The Virasoro energy-momentum tensor T (z) has the following OPE with

itself

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+O((z − w)0). (1.5.20)

This is equivalent to the modes Ln of T (z) generating a V ir representation with central charge

c, so that a theory containing any field with this singular OPE possesses V ir symmetry and

is a CFT.

Example 1.5.2.4. The OPE of T (z) with a primary field ϕ(w) of conformal dimension h is

T (z)ϕ(w) =
hϕ(z)

(z − w)2
+
∂ϕ(z)

z − w
+O((z − w)0), (1.5.21)

This OPE gives an action of the Vir modes on primary fields.

We can perform a consistency check on the OPEs given in these two examples, by checking

the consistency of the operator formalism with the algebraic formalism for V ir and primary

fields discussed in the previous section. In this case, we have that

[Lm, Ln] =

((∮
z=0

dz

∮
w=0

dw

)
|z|>|w|

−
(∮

w=0
dw

∮
z=0

dz

))
|z|<|w|

zm+1wn+1

(2πi)2
T (z)T (w)

= (m− n)Lm+n +
c

12
(m3 −m)δn+m,0, (1.5.22)
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by using the OPE (1.5.2.3) inside the integral. For the second, we again take ϕ(z) to be a

primary field of conformal dimension h and calculate

Lnϕ(w) =
1

2πi

∮
z=0

dz zn+1T (z)ϕ(w)

= h(n+ 1)wnϕ(w) + wn+1(h+ 1)∂ϕ(w), n > −2 (1.5.23)

here we reverse the contour and calculate the residue at z = w instead of z = 0. We see

from this that indeed L0ϕ(0) = hϕ(0) and Lnϕ(0) = 0 for n > 0, and that both OPEs are

equivalent contain the same information contained within the representatinon theory and Lie

brackets we previously discussed. We also see that L−1ϕ(w) = ∂ϕ(w), and in section 1.5.10

we will use this to derive a differential equation satisfied by n-point correlation functions in

WZW models.

We now focus on the case where Σ = P1 is the Riemann sphere, and discuss the structure of

the OPE between primary fields. Let |h⟩ ∈ H be a primary state that generates a highest

weight representation of V ir, with associated primary field ϕ(z). We define the notation ϕk⃗

for a vector k⃗ = (k1, . . . , kr) ∈ Zr>0 of r positive integers, to denote a descendant field in the

V ir Verma module generated by ϕ as

ϕk⃗(z) = L−k1L−k2 . . . L−krϕ(z). (1.5.24)

We can use this notation to write the OPE for two primary fields ϕ(1)(z) and ϕ(2)(0), with

conformal dimensions h1 and h2 respectively. Let ϕ
(p) be a primary field with coformal weight

hp, and denote by ϕ(p;⃗k)(0) the descendant field ϕ(p;⃗k)(0) = L−k1L−k2 . . . L−krϕ
(p)(0). Then

ϕ(1)(z)ϕ(2)(0) =
∑
k⃗

∑
p

Cp;⃗k12 z
hp−h1−h2+

∑
i kiϕ(p;⃗k)(0), (1.5.25)

where p runs over the labelling set of primary fields in the theory, k⃗ runs over vectors of

positive integers of arbitrary size, and Cp;⃗k12 are some coefficients to be determined. This

OPE structure is referred to as the operator algebra of the CFT.

Obtaining the coefficients in the OPE above is equivalent to determining the spectrum of the

model and allows one to reduce all higher point correlation functions to 2-point functions.

In the next section, we will discuss the correlation functions in CFTs and, specifically, the

conformal blocks which are the subject of our focus in chapters 2, 3, and 4.

Within the context of CFTs we have one more product to discuss. We call the process of

taking an OPE of two families of local fields in a CFT fusion. We say the fusion rules

are conditions on the possible conformal dimensions of conformal families that appear with

non-zero coefficients in an OPE between two fields in a CFT. Schematically we represent the
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rules by

[ϕi]× [ϕj ] =
∑
k

N ij
k[ϕk], (1.5.26)

where ϕi, ϕj , and ϕk are primary fields, the coefficients N ij
k are integers, and the × symbol

means to take an OPE. Note that the summation range is over all primary fields in the

theory, and as such the coefficients can vanish.

We note here that fusion rules are similar to the operator algebra defined in 1.5.25 above,

although not precisely the same. Fusion works at the level of conformal families, and only

states the possibility of fields appearing in an OPE. It has information about which Verma

modules can be included in the spectrum of the theory, and how they can be obtained through

OPEs. The full operator algebra can be used in the context of correlation functions for the

purpose of computation, it not only has information about which families appear but also

differentiates each individual state within the Verma modules obtained through the OPE.

1.5.3 Correlation Functions and Conformal Blocks

We begin by briefly reviewing the 2- and 3-point functions of CFTs, this material is a

summary of [74, §2]. We will denote a primary field of conformal dimension hi by ϕ(i)

throughout this section. First, consider the 2-point correlation function of two primary fields

ϕ(i)(z) and ϕ(j)(w), with conformal dimensions hi and hj , located at z and w respectively.

Conformal symmetry restricts this to be of the form

⟨ϕ(i)(z)ϕ(j)(w)⟩ = Cij
(z − w)2hi

δhihj , (1.5.27)

where Cij is some constant. This is obtained by acting on the theory with the generators

of the global conformal group and demanding the correlation function be invariant. For

example, invariance under translations and rotations implies the 2-point function can only

have dependence on the distance between the two coordinates. As noted in [50, §6], the

coefficients Cij are symmetric Cij = Cji, and as such we are free to pick a normalized basis

for the primary fields of the theory such that Cij = δij .

Similarly, the 3-point correlation functions of primary fields ϕ(i)(zi), ϕ
(j)(zj), and ϕ(k)(zk)

are constrained to be of the form

⟨ϕ(i)(zi)ϕ(j)(zj)ϕ(k)(zk)⟩ =
Cijk

z
hi+hj−hk
ij z

hj+hk−hi
jk z

hk+hi−hj
ki

, (1.5.28)

where we have employed the notation zij = (zi − zj). The constants Cijk are called the

3-point structure constants, and can be used to calculate the coefficients Cp;⃗k12 of the operator
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algebra from (1.5.25). Of note, the 3-point structure constants are not fixed by conformal

invariance, they are model dependent.

Remark 1.5.3.1. The fusion coefficients, (1.5.26) above, can be thought of as selection rules

for the 3-point correlation function. Fusion of two primary fields ϕ(1) and ϕ(2) onto a third

ϕ(3) is possible if the correlation function ⟨ϕ(1)ϕ(2)ϕ(3)⟩ does not vanish.

After considering conformal invariance, N -point functions, where N > 3, for fields located

at points zi for i = 1, . . . , N have a general dependence on the cross-ratios of coordinates of

the form
|zij ||zkl|
|zik||zjl|

, 1 ≤ i, j, k, l ≤ N, (1.5.29)

where i, j, k, l are distinct. The number of independent cross-ratios for N coordinates for

theories of dimension greater than 2 is N(N − 3)/2 [76]. We now use this knowledge and

turn to the 4-point function of four primary fields ϕ(i)(zi) for i = 1, . . . , 4, which we write as

⟨ϕ(1)(z1)ϕ(2)(z2)ϕ(3)(z3)ϕ(4)(z4)⟩. (1.5.30)

In this case, there is only one independent cross-ratio19

q =
z12z34
z13z24

. (1.5.31)

To make the dependence of the 4-point function on the cross ratio explicit, we perform a

global conformal transformation on the sphere. This allows us to fix any 3 points and we

choose a transformation such that z1 = ∞, z2 = 1, z3 = q, and z4 = 0. The 4-point

correlation function is now of the form

G21
34(q) = lim

z1→∞
z2h11 ⟨ϕ

(1)(∞)ϕ(2)(1)ϕ(3)(q)ϕ(4)(0)⟩. (1.5.32)

We can now use the OPE of primary fields within this correlation function form a sum over

3-point functions using the operator algebra (1.5.25). In this case, we use an OPE involving

ϕ(3)(q) and ϕ(4)(0), which we write as a sum over the conformal families, represented by the

subscript p, as

ϕ(3)(z)ϕ(4)(0) =
∑
p

Cp34z
hp−h3−h4Ψp(q|0), (1.5.33)

where Ψp(q|0) =
∑

k⃗
z
∑

i kiϕ(p;⃗k)(0). In this equation, the coefficients Cp34 only encode the

relationship of the operator algebra between ϕ(3), ϕ(4), and the conformal families represented

by the subscript p and as such are the 3-point structure constants. All other information

relating to the descendant fields within the operator algebra is contained within the function

19In this case we have |zij | = zij , as we are considering 1-dimensional complex vectors of coordinates.
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Ψp(q|0). This allows us to reduce the calculation of the 4-point correlation function to a sum

of 3-point correlation functions.

As discussed previously, the 3-point correlation functions have two factors: the 3-point struc-

ture constants, which are model dependent, and what is left that is fixed by conformal invari-

ance. We choose to write the 4-point correlation function in a new form, where we separate

the model dependence from the factors that are fixed by conformal invariance as

G21
34(q) =

∑
p

Cp34C
p
12F

21
34 (p|q). (1.5.34)

In this equation, we have a function F21
34 (p|q) which contains all the dependence of the 4-point

function fixed by conformal invariance, and this function is called a conformal block. Note

that this contains only the holomorphic dependence, and for the full correlation function be-

tween non-chiral fields there is also an anti-holomorphic conformal block factor. Throughout

this thesis we will write the conformal blocks as a power series in q as

F21
34 (p|q) = qhp−h3−h4

∞∑
i=0

Fiqi. (1.5.35)

The approach to 4-point functions we have just described is dependent on the conformal

transformation we picked. We instead could have chosen a conformal transformation which

fixed z2 = 0 and z4 = 1, and in this case we would have had z3 = 1 − q. As the correlation

functions of a theory are required to be invariant under conformal transformations, we have

that

G21
34(q) = G41

32(1− q). (1.5.36)

We can then repeat our arguments but interchange the roles of ϕ(2) and ϕ(4) and obtain a

different conformal block F41
32 (l|1− q).

We can represent the specific conformal block (or equivalently, OPE used when calculating

4-point correlation functions) diagrammatically. In figure 1.3 we represent the calculation

involving the conformal block F21
34 (p|q). We also represent the calculation involving the

ϕ(1) ϕ(4)

ϕ(2) ϕ(3)

ϕ(s)

Figure 1.3: A 4-point correlation function between primary fields represented pictorially.
In this case we are considering the s-channel.

conformal block F41
32 (l|1−q) in figure 1.4. These diagrams form an analogy to the perturbation

theory of quantum field theory, and due to this we refer to the calculation involving F 21
34 (p|q)
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ϕ(1) ϕ(4)

ϕ(2) ϕ(3)

ϕ(t)

Figure 1.4: A 4-point correlation function between primary fields represented pictorially.
In this case we are considering the t-channel.

as the s-channel, and the one involving F 41
32 (l|1− q) as the t-channel. In both diagrams, we

have notated the conformal families that result from the OPE expansions as ϕ(s) and ϕ(t)

respectively. We will sometimes refer to these families as flowing in the channel.

The invariance of the correlation functions in a CFT under conformal transformations guar-

antees that the result of the calculation in the s- and t-channel agree. Thus we obtain the

consistency condition

∑
p

Cp34C
p
12F

21
34 (p|q) =

∑
l

C l32C
l
14F41

32 (l|1− q), (1.5.37)

for the conformal blocks. In principle, we can solve these equations to determine the con-

formal blocks and solve all the conformal dependence of the correlation functions in the

theory, although in practice the algorithm to do so is tedious. This method is called the

conformal bootstrap, and is a historic alternative to what is presented within this thesis.

The AGT correspondences provide a direct way to compute these conformal blocks from 4D

supersymmetric gauge theories without the need for such an algorithm.

1.5.4 Scalar Product on the Space of States

Before discussing minimal models, the main family of CFTs we will consider within this

thesis, we will need to briefly touch on the structure of the scalar product on the spectrum

H. In particular, this scalar product between two states is the 2-point correlation function

between their respective fields. TheN -point correlation functions are similarly defined, where

one first acts on a state with (N − 2) field operators and then takes the scalar product. In

the section below, we will use this scalar product to determine which CFTs are V ir-minimal

models.
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Let |h⟩ ∈ H be a primary state of conformal dimension h that generates a Verma module

Vc,h for a representation of V ir with central charge c. This may or may not be a reducible

V ir-module. We define the normalized pairing of |h⟩ with itself as

⟨h|h⟩ = 1. (1.5.38)

We extend this to a scalar product on H as follows. For a descendant state

L−n1L−n2 . . . L−nk
|h⟩ = |ψ⟩ ∈ Vc,h, n1, . . . , nk > 0, k > 0, (1.5.39)

we define the dual state, which we notate as a bra, using the Hermitian dual V ir operators

(L−n)
† = Ln by

⟨ψ| = ⟨h|Lnk
. . . Ln2Ln1 . (1.5.40)

Note that this allows us to define a highest weight state with its dual definition

Ln |h⟩ = ⟨h|L−n = 0, n > 0. (1.5.41)

We first extend this to a scalar product on Vc,h space by bilinearity. As we assume that

the H is a direct sum of Verma modules and their quotients20, we can extend this scalar

product again to the full spectrum H through bilinearity. This defines the scalar product on

H. We will not need this full formalism, as we will only consider scalar products between

single primary and descendant states within one Verma module, together with any operators

acting on them.

By convention, when there is an operator inside the bra and ket states, we take it to act

on the ket |ψ⟩. We can then calculate the scalar products of the descendant states from |h⟩
using the commutation rules obtained from the Lie bracket of V ir (1.5.3). From this, we

note that two states |ψ1⟩ , |ψ2⟩ ∈ Vc,h have a non-zero scalar product only if they are the

same level l in the same Verma module.

Example 1.5.4.1. Let |ψ1⟩ = L2
−1 |h⟩ and |ψ2⟩ = L−2 |h⟩. We can calculate the scalar product

⟨ψ1|ψ2⟩ by

⟨ψ1|ψ2⟩ = ⟨h|L1L1L−2 |h⟩

= ⟨h|L1([L1, L−2] + L−2L1) |h⟩

= ⟨h|L1(3L−1) |h⟩

= 3 ⟨h| 2L0 |h⟩ = 6h.

20We will explain these quotients in the next section.
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1.5.5 Minimal Models

In general, CFTs tend to necessitate an infinite number of conformal families, although this

is not clear from what we have covered so far. Minimal models are CFTs composed of a

finite number of conformal families. Later in this section, we will give an idea why this occurs

within certain CFTs.

The primary fields in a minimal model are formed as an irreducible quotient of a full Verma

module by the maximal non-trivial highest weight submodule21. We will first begin by

discussing how to identify the primary states of submodules22. Using this identification, we

will state which highest weight V ir-representations (defined by their central charge) have

Verma modules with these submodules, and state the conformal dimensions of their primary

states and fields. We will construct the minimal models using these primary fields. Finally,

we will briefly describe why the minimal models have a spectrum composed of finitely many

conformal families.

Let |h⟩ be a primary state that generates a Verma module Vc,h. A descendant state |χ⟩ ∈
Vc,h of |h⟩ that satisfies the highest weight condition (1.5.41) is called a singular vector.

Singular vectors generate non-trivial Verma submodules. To construct an irreducible V ir

representation, we must identify all singular vectors and form a quotient that identifies them

and their descendants with the zero vector. This ensures that all singular states and their

descendants decouple from the theory.

Not all V ir representations have singular vectors, so we must first establish which represen-

tations do. We begin by noting that singular vectors have a vanishing scalar product with

themselves. We do so by representing a singular vector |χ⟩ as a descendant state of |h⟩

⟨χ| = ⟨h|Ln′
k′
Ln′

k′−1
. . . Ln′

1
, n′1, . . . , n

′
k′ > 0, k′ > 0, (1.5.42)

where we have defined |χ⟩ using its dual definition, and note that

⟨χ|χ⟩ = ⟨h|Ln′
k′
Ln′

k′−1
. . . Ln′

1
|χ⟩ = 0,

as n′1 > 0. Moreover, by repeating this argument for the descendant state (1.5.39) of |h⟩, we
see that |ψ⟩ has a vanishing scalar product with |χ⟩ since

⟨ψ|χ⟩ = ⟨h|Lnk
Lnk−1

. . . Ln1 |χ⟩ = 0. (1.5.43)

21In fact this is similar to the process to construct the highest weight module Lλ for simple Lie algebras.
22In the language of Lie algebras, this is a vector obtained from a highest weight vector in a Verma module,

that generates its own highest weight submodule.
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By similar arguments, we also note that any descendant states of |χ⟩, at level l, have a

vanishing scalar product with themselves and other level l states in Vc,h.

We fix a basis {|i⟩} for Vc,h, using an index set i ∈ I. Here we have introduced new notation

where i is a formal label, not in anyway related to conformal dimension of states. Note that

these states can be primary or descendants. Using this notation, we define the Gram matrix

M = (Mij) by

Mij = ⟨i|j⟩ , (1.5.44)

which, by the commutation relations (1.5.3), is block diagonal. We will denote the blocks by

M (l) where l ∈ Z>0 refers to the states V(l)c,h ⊂ Vc,h of level l in the Verma module. Since M

is Hermitian (by definition of the dual states), it is diagonalizable by a unitary matrix U .

If the state |i⟩ is a singular vector in the l-th block, we know that ⟨i|j⟩ = 0 for all j in the l-th

block. Therefore the i-th row in Gram matrix vanishes. Hence, the question of reducibility

of Vc,h as a V ir representation can be reduced to the existence of a zero eigenvalue for

some M (l). As the determinant of the block M (l) is equal to the product of its eigenvalues,

an eigenvalue of zero is equivalent to the determinant vanishing. Therefore Vc,h contains a

singular vector and is reducible if and only if det(M (l)) = 0 for some l ∈ Z>0.

Lemma 1.5.5.1. ([50, eq (7.28)]) The determinant of the Gram matrix has the following

formula, the so-called Kac determinant

det(M (l)) = αl
∏
r,s≥1
rs≤l

(h− hr,s(c))p(l−rs) . (1.5.45)

Remark 1.5.5.2. The Kac determinant was first proposed in [77], and its first published proof

is in [78].

In the formula for the Kac-determinant, αl is a non-zero constant, r, s ∈ Z>0 are parameters

that we will fix further below, hr,s(c) is a function of the central charge c that will be the

conformal dimension of minimal model primaries, and p(l − rs) is the number of partitions

of the number (l − rs).

We give three forms for the central charge and conformal dimensions of minimal models.

These are all useful in different applications, and we will use each of them in subsequent

sections.

For unitary CFTs,the functions hr,s(c) have the following form

hr,s(c) =
1

24
(c− 1) +

1

4
(rα+ + sα−), (1.5.46)
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where we have parameterised

α± =

√
1− c±

√
25− c√

24
. (1.5.47)

We note that for c > 1, this parameterization implies that hr,s is a complex number. Thus,

we only consider unitary V ir-minimal models where c ≤ 1.

Equivalently, we can introduce the parameter

p = −1

2

(
1∓

√
25− c
1− c

)
, (1.5.48)

and write the conformal dimensions as

hr,s(c) =
((p+ 1)s− pr)2 − 1

4p(p+ 1)
, (1.5.49)

where r and s are positive integers such that rs ≤ l. We will only consider the case where

p ∈ (0,∞). We will mostly consider the unitary minimal models23, whose characters we will

use in chapter 4. The unitary minimal models are a discrete subset of these V ir-minimal

models where p ∈ Z>2.

Using the Kac determinant we can now follow the arguments made above. By noting the

form of (1.5.45), we can see that the Gram matrix has vanishing eigenvalues if and only if

h = hr,s(c). This fixes the necessary form of h and c so that Vc,h contains singular vectors.

Thus, if we have a unitary CFT which forms a representation of V ir with central charge

cp,p+1, whose primary fields have conformal dimensions hr,s(c) we have a CFT with singular

vectors.

We have one final parameterization, which will be useful for the AGT correspondences in-

volving minimal models in chapter 2. We let b = i
√

p
p′ and write the conformal dimensions

and central charge as

cp,p′ =1 + 6(b+ b−1)2, (1.5.50)

hr,s(c) =
1

4

(
(b+ b−1)2 − (rb+ sb−1)2

)
. (1.5.51)

Relaxing our focus from unitary minimal models, we note that the CFTs described above

are a special case of a more general family of minimal models. These are described by two

coprime integers p and p′, and have central charge and conformal dimensions which generalize

23In unitary CFTs, the scalar product on H is a Hermitian inner product and makes H a Hilbert space.
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our second parameterization for minimal models by

cp,p′ =1− 6(p− p′)2

pp′
, (1.5.52)

hr,s(c) =
(p′r − ps)2 − (p− p′)2

4pp′
, (1.5.53)

where 1 ≤ r < p′, and 1 ≤ s < p. We note that hr,s = hp−r,p′−s = hp+r,p′+s, and we will

use this fact, referred to as a periodicity property, below. This class of minimal model CFTs

was shown to be rational (have finitely many primary fields) in [79]. The unitary minimal

models above correspond to the case p′ = p+ 1.

We will label all minimal model by the coprime integers p, p′ ∈ Z>0 that parameterize its

central charge (for unitary minimal models we take p′ = p + 1). The primary fields of the

V ir-minimal models are the highest weights states of the irreducible V ir-modules created

by taking the quotient of Vcp,p′ ,hr,s with the maximal non-trivial submodule. These highest

weight modules are sometimes referred to as degenerate representations. We will also label

the primary fields of a minimal model by the integers r and s parameterizing their conformal

dimension as ϕr,s. We notate the V ir-minimal model, which is the CFT of central charge

cp,p′ with the primary fields ϕr,s, for p and p′ by M(p, p′; 2).

To finish this section on minimal models, we will briefly talk about their fusion rules and

how this impacts their spectrum. It provides our first example of fusion, a process we will

do in chapter 4 for WZW models, and allows us to see why the spectrum of minimal models

only contains finitely many irreducible V ir representations.

The fusion rules (1.5.26) for the minimal model M(p, p′; 2), which first appeared in [80], are

[ϕr,s]× [ϕm,n] =

min(r+m−1,2p′−1−r−m)∑
k=1+|r−m|

k+r+m=1 mod 2

min(s+n−1,2p−1−s−n)∑
l=1+|s−n|

k+s+n=1 mod 2

[ϕk,l], (1.5.54)

where ϕr,s and ϕm,n represent minimal model primary fields of dimension hr,s and hm,n

respectively.

We are now ready to understand where the name minimal modes come from. Fusion rules of

the form above, imply that there is an infinite number of fields in the spectrum of a theory,

as we could successively fuse ϕr,s with itself and keep generating fields of new conformal

dimension. In the case of M(p, p′; 2), the periodicity property hr,s = hr+p,s+p′ ensures that

this process is cyclic and there are only a finite number of fields created from this iterative

fusion process.
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1.5.6 The Free Boson and Vertex Operators

Here we review the free boson in the setting of CFTs. The purpose of this is twofold, it is

the simplest example we can use to illustrate the machinery of CFTs, and we will use it in

sections 1.5.7 and 1.5.14 to build the CFTs that form the 2D side of the AGT correspondences

we will consider in chapter 2. This section will just collect results we need, and show how

they fit in with the general theory developed above.

We define the free boson to be a scalar field φ on a Riemann surface. For simplicity, we

restrict to the complex plane24, so that φ : C −→ C. The mode expansion of the free boson

reads

φ(z) = φ0 − ia0log(z) + i
∑
n̸=0

1

n
anz

−n. (1.5.55)

The free boson itself is not a conformal field, but its derivative25 ∂φ is. For our purposes,

we take the singular OPE of ∂φ with itself to be

∂φ(z)∂φ(w) = − 1

(z − w)2
+O((z − w)0), (1.5.56)

as an axiom. We can use the field ∂φ to construct the energy-momentum tensor

T (z) = −1

2
: ∂φ(z)∂φ(z) :, (1.5.57)

whose OPE with itself can be shown to be

T (z)T (w) =
1

4
: ∂φ(z)∂φ(z) :: ∂φ(w)∂φ(w) :

=
1/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+O((z − w)0) (1.5.58)

Note that to obtain this result, one needs to use Wick’s theorem (see [50, §2.3.5]).

By comparing the OPE of T (z) with (1.5.20), we see that the theory of the free field (defined

in footnote 18) ∂φ is a conformal field theory with central charge c = 1. We can then

calculate the OPE of T (z) with ∂φ, by again invoking Wick’s theorem, as

T (z)∂φ(w) =
∂φ(w)

(z − w)2
+
∂2wφ(w)

(z − w)
+O((z − w)0). (1.5.59)

24It is perfectly reasonable to define the free boson on other Riemann surfaces as a CFT, or general pseudo-
Riemannian manifolds as a field theory.

25To see this would take us outside the scope of this thesis. For the reader who is familiar with quantum
field theory, this is explained in [50] and [74]. In both references this is achieved by calculating the OPE using
Lagrangian field theory.
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This shows that indeed ∂φ is a primary field with conformal dimension h = 1, with mode

expansion

i∂φ(z) =
∑
n∈Z

anz
−n−1. (1.5.60)

The V ir modes for T (z) can be calculated in terms of the modes of ∂φ(z) as

Ln =
1

2

∑
m∈Z

an−mam, n ̸= 0, (1.5.61)

L0 =
1

2
a20 +

∑
n>0

a−nan. (1.5.62)

Remark 1.5.6.1. The free boson modes generate the Heisenberg (û(1)) algebra H. That is,

they satisfy the commutation relations

[an, am] = nδn+m. (1.5.63)

The additional factor of i used when defining the mode expansion (1.5.60) of ∂φ makes this

H-symmetry apparent.

Finally, we can define another primary field using the exponential of a free boson. Using a

parameter α ∈ C, which we call the conformal charge26 we define the vertex operators

Vα(z) :=: exp(
√
2iαφ(z)) :, (1.5.64)

which are fields in the CFT of the free boson. The normal ordering for the exponential

reminds us that when we calculate OPE’s using Wick’s theorem, we are not to contract the

fields appearing within its series form

: e
√
2iαφ(z) :=

∞∑
n=0

: (
√
2iαφ(z))n :

n!
, (1.5.65)

with each other. When writing these vertex operators, we will adopt the standard convention

that the normal ordering will always be assumed, and therefore will not be notated.

We claim the vertex operators Vα, are primary fields of the CFT defined using the free boson.

To show this we calculate the OPE of Vα(w) with T (z), again using Wick’s theorem, as

T (z)e
√
2iαφ(w) = −1

2

(
[∂φ(z)2iαφ(w)]2 e

√
2iαφ(w) + ∂φ∂φ(z)2iαφ(w)e

√
2iαφ(w)

)
. (1.5.66)

26This is also referred to as the conformal momentum in the literature. We defer to [50] here, which refers
to this parameter as charge. This will also allow us to follow the notation of [34] later in section 2.3.3, which
reserves the term momentum for a related vector which we define in (1.5.73) and (1.5.162).
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This calculation then involves the OPE formed by contracting φ and ∂φ. We can obtain this

by integrating the OPE of ∂φ with itself and find

∂φ(z)φ(w) = − 1

z − w
+O((z − w)0). (1.5.67)

Using this, the singular OPE of T (z) and e
√
2iαφ is

T (z)e
√
2iαφ(w) =

2α2e
√
2iαφ(w)

(z − w)2
+

1

z − w
∂e

√
2iαφ(w) +O((z − w)0). (1.5.68)

From this, we see that

Vα(z) := e
√
2iαφ(z), (1.5.69)

is a primary field of conformal dimension h = α2. These vertex operators are the fields used

for the CFT side of the original AGT correspondence which we will cover in chapter 2.

For later use, we note that the field V−α has the same conformal dimension as the field

Vα. Since correlation functions in CFTs depend only on the coordinates and conformal

dimensions of the fields, this symmetry α 7→ −α can be exploited in theories involving these

vertex operators to obtain information about correlation functions involving them.

Remark 1.5.6.2. Since their introduction, vertex operators have been subsequently gener-

alized into the concept of vertex operator algebras (VOAs). VOAs provide an alternative,

axiomatic framework to study CFTs to the one we have presented here.

Remark 1.5.6.3. These vertex operators are the first place we have to be mindful about the

chiral nature of our CFTs. In the mode expansion of the free boson (1.5.55), we note the

presence of the, not purely holomorphic, zero-mode term φ0. Due to this, naievely combining

two chiral free bosons φ∗(z, z) = φ(z)+φ(z), in an attempt to obtain the full CFT, duplicates

this zero-mode. We must instead think of φ(z) as containing the holomorphic dependence of

the free boson, where the full CFT is obtained through the equation φ(z, z) = φ(z)+φ(z)−φ0.

The corresponding vertex operator is commonly notated as Vα(z, z). This behaviour naturally

carries over to our constructed vertex operators. In this case, purely holomorphic or anti-

holomorphic vertex operators only make sense when paired their respective other parts in a

full vertex operator within a correlation function. With this caveat in mind, we will continue

to write our vertex operators as purely holomorphic in the sequel.

1.5.7 Liouville Conformal Field Theory

Liouville field theory is a model which has conformal symmetry in special cases. Of interest

to us is the fact that, although Liouville is an interacting field theory (that is, not a free field

theory), we can study it using free fields. To do so, we will build the theory using copies of
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the free boson vertex operator , and in doing so will obtain a free-field realization. Although

the idea of free-field realizations for intereacting theories is an interesting one, we will not

delve into it in any detail outside of our need of it here. The interested reader can read, for

example, [81].

This material is mostly a brief review of [75, §3]. To define a Liouville field theory, we need

two parameters: the background charge Q ∈ C, and coupling constant b ∈ C. The field theory

is conformal when

Q = b+
1

b
, (1.5.70)

and in this case has V ir central charge

c = 1 + 6Q2. (1.5.71)

In this sense, we think of Liouville CFT as a family of CFTs, parameterized by a central

charge c ∈ C.

Liouville theory will form the CFT side of the original AGT correspondence, and we will

consider the case where the Liouville theory has a minimal model central charge (1.5.52) and

the case where the central charge is generic (non-minimal). In both cases, we will consider

functions that involve the three Liouville parameters c, Q, and b and study their analytic

properties. Due to this, we think it is valuable to understand the relationship between these

parameters for different ranges of c. To collect this information, we reproduce a nice table

of these relationships here [75, eq (2.1.22)]:

central charge c C ≤ 1 1− 6 (p−p′)2
pp′ 1 [1, 25] 25 ≥ 25

background charge Q C iR i p−p
′

√
pp′

0 [0, 2] 2 ≥ 2

coupling constant b C∗ iR i
√

p
p′ i eiR 1 R

(1.5.72)

The reader should take particular notice of the values when c = 1−6 (p−p′)2
pp′ which correspond

to minimal models. The new results presented within this thesis hinge on analysis of a gauge

theory object dependent on a the corresponding Q and b values for miniaml models, which

we will introduce in chapter 2.

For a fixed value of c, the spectrum of a Liouville CFT is continuous. In fact, we will take

the definition of Liouville as a CFT to be the presence of a continuous spectrum where

each representation of V ir occurs with multiplicity zero or one, and one other assumption

we will clarify below. This means that in Liouville CFT we can have primary fields with

a continuum of conformal dimensions. The primary fields will be the vertex operators we

constructed for the free boson above for a continuous charge parameter α. In this setting,
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the vertex operators are often referred to as Liouville exponentials, and form the free-field

realization of Liouville theory.

It is also common to parameterize the conformal dimension of a Liouville exponential by a

new parameter P ∈ C, called the momentum. In this case we have that

α2 = h(P ) :=
Q2

4
− P 2. (1.5.73)

When utilizing this parameterization one has the symmetry P 7→ −P . This terminology is

not uniform across the literature, some sources refer to the parameter α as momentum, so

one must always confirm which convention is being used. Our final axiom to define Liouville

CFT is that the correlation functions are also meromorphic functions of the coupling constant

b and the momenta.

The spectrum of primary fields is defined by

P ∈ iR ⇐⇒ h ∈ c− 1

24
+ R≥0, (1.5.74)

and is one where the holomorphic and anti-holomrphic representations for a primary field

are isomorphic. Such a CFT is said to have a diagonal spectrum.

We note that when c ≤ 1 (Q ∈ iR), the presence of fields with minimal model momenta hr,s

(see (1.5.46)) create poles in the s-channel conformal blocks. To fix this, the spectrum is

perturbed to contain only fields with

P ∈ iR+ ϵ, ϵ ∈ R \ {0}, (1.5.75)

and can be shown to be independent of the perturbation parameter ϵ chosen. We must

therefore add in the minimal model primary fields as an additional assumption, and restrict

the OPEs of the theory, so that the minimal model primary fields do not appear and cause

a pole in the calculation of the conformal blocks.

These fields and parameters form the data for the basic form of the CFTs that are AGT

dual to generic SU(2) gauge theories, as we shall see in chapter 2. More importantly in

section 2.2.4, we will consider gauge theories that are dual to CFTs with central charge

c = 1 − 6 (p−p′)2
pp′ for two coprime integers p, p′. By comparison with (1.5.52), we see that in

this case we can have degenerate primary fields that form minimal models. This will be the

main focus of this thesis.
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1.5.8 The Coulomb-Gas Formalism for Minimal Models

When discussing the minimal model primary fields in this thesis, we will use the Coulomb-

gas formalism, originally introduced in the series of papers [82, 83, 84]. The utility of the

Coulomb-gas formalism is that, as we did for Liouville above, we can realize the minimal

models using the free boson. Many of these results and arguments will be repeated when

we discuss the Coulomb-Gas for Toda CFTs in section 1.5.15, and again in chapter 3 when

deriving the Burge conditions for our generalized AGT conjecture. In this section we will

collect the notation, objects, and results from [50, §9] we will require.

The motivation for this framework is derived from physical concerns, and as such, to go into

them would be outside the scope of this thesis. Instead we will take as an axiom that the

N -point correlation function of Liouville exponentials27

⟨
N∏
i=1

Vα(i)(zi)⟩, (1.5.76)

can only be non-zero if we have the charge neutrality condition

N∑
i=1

α(i) = 2α0, (1.5.77)

where 4α2
0 = −Q2. In the Coulomb-gas formalism, α0 is often referred to as the background

charge instead of Q. With this background charge, the vertex operator Vα = e
√
2iαφ has

conformal dimension28

∆(α) = α2 − 2α0α. (1.5.78)

In this case, the conformal dimension of Vα and V2α0−α are the same. We will exploit this

symmetry α 7→ 2α0 − α when discussing correlation functions below.

We now investigate what the neutrality condition seems to imply for the spectrum of a

Liouville CFT, realized using vertex operators. Consider, for instance, the 2-point function

⟨Vα(z)Vα(w)⟩ of two vertex operators with the same charge α, located at two distinct points

z and w. Under the symmetry α 7→ 2α0 − α we expect that this should be equivalent to the

2-point correlation function

⟨V2α0−α(z)Vα(w)⟩ =
1

(z − w)∆(α)
, (1.5.79)

27While we use the Coulomb-Gas formalism for minimal models not Liouville, the two models are limits of
each other. The reader unfamiliar with this should consult [75, §1].

28We have notated the conformal dimension here using ∆ instead of h. Here and in chapter 2, the chapters
which constitute a review of standard material, we will endeavour to match our notation to the cited references
that we most closely follow, for the ease of the reader who is learning this material using these references. In
all subsequent chapters we will notate conformal dimension only using ∆.
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for any allowed values of α in our CFT. We also note that this correlation function satisfies

our charge axiom (1.5.77). On the other hand, the neutrality condition suggests that the only

vertex operators who have a non-vanishing 2-point function with themselves ⟨Vα(z)Vα(w)⟩
are for α = α0, so that our theory only has two primary fields. This shows an incongruity

between the charge neutrality condition, and the form of the 2-point correlation functions

(1.5.27), which is determined by conformal symmetry.

Since we wish to consider CFTs with many distinct primary fields, we must find a way to

change the charges associated to the fields in the correlation function without changing their

conformal dimensions. This leads to the idea of screening operators or screening charges,

operators which have conformal dimension 0 and non-zero charge. The insertion of these

operators will allow us to change the charge associated to correlation functions without

changing the conformal dimension. In this way, we can construct correlation functions that

satisfy both the charge neutrality condition and the form determined by conformal symmetry.

To construct such an operator A, we can use the zero mode of a primary field ϕ of conformal

dimension ∆ϕ = 1, with non-zero charge. We can extract this using the contour integral29

A =

∮
z
dzϕ(z). (1.5.80)

In our case, the vertex operators

V±(z) := Vα±(z), α± := α0 ±
√
α0 + 1, (1.5.81)

have the conformal dimension

∆(α±) = α2
0 + α2

0 + 1± 2
√
α0 + 1α0 − 2α2

0 ∓ 2
√
α0 + 1α0 = 1, (1.5.82)

required. We say that α± are screening charges, and we note that they are the same as the

parameters (1.5.47) that we used in our calculation of the Kac determinant. The screening

operators are then defined to be

Q± =

∮
dzV±(z). (1.5.83)

We can now insert the operators Q± to a correlation function any amount of times so that,

for instance, the 2-point correlator

⟨Vα(z)Vα(w)Qm−Qn+⟩, (1.5.84)

29The specifics on this contour integral can get quite technical (see [85, §5]), for our purposes we will assume
this operation is well-defined and well-behaved.
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now has the neutrality condition

2α+mα− + nα+ = 2α0 = α+ + α−. (1.5.85)

We note that this equation means that the charge of a highest weight state and a vertex

operator insertion differ by 2α0 and we will use this fact when considering AGT involving

minimal models.

We also interpret this equation as meaning that if we have a theory where α is going to

be equivalent to 2α0 − α within the 2-point correlation functions, 2α must be some integer

multiple of α+ and α−. One can then consider a variety of different correlators to arrive at

the conclusion that this condition on 2α is necessary for any primary field in this CFT to

have non-trivial correlation functions. Thus we parameterise

αr,s := −
1

2
(r − 1)α+ −

1

2
(s− 1)α−, (1.5.86)

and we will sometimes refer to αr,s as degenerate charge. The corresponding vertex operator

Vαr,s has conformal dimension

∆(αr,s) =
1

4
(rα+ + sα−)

2 − α2
0, (1.5.87)

which is of the same form as (1.5.51) for the primary fields in the minimal models, although

it is not precisely the same as r and s are not restricted. To connect to the minimal models,

we consider the case where we have α+/α− ∈ Q, or equivalently

p′α+ + pα− = 0, (1.5.88)

and further restrict to p > p′. This second condition has the solution

α+ =

√
p

p′
, α− = −

√
p′

p
, (1.5.89)

which further implies that

αr,s =
1

2
√
pp′
(
p(1− r)− p′(1− s)

)
, α0 =

p− p′

2
√
pp′

. (1.5.90)

We can use these to calculate the central charge and conformal dimensions of primary fields

in the Liouville conformal field theory, where all correlators are assumed to have Coulomb-gas
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screening charges inserted into them to satisfy the neutrality condition (1.5.77), as

cp,p′ = 1− 6(p− p′)2

pp′
, (1.5.91)

∆r,s =
(rp− sp′)2 − (p− p′)2

4pp′
. (1.5.92)

These are the central charge (1.5.53) and conformal dimension (1.5.53) of minimal model

primary fields.

Remark 1.5.8.1. Fixing the possible values of the integer parameters to r = 1, 2, . . . , p and

s = 1, 2, . . . , p′, can be done by calculating the 3-point function

⟨Vr1,s1Vr2,s2Vr3,s3Qr+Qs−⟩. (1.5.93)

This process is necessary to realize the minimal models using the Coulomb-Gas formalism, as

a priori we could insert more screening charges than this and obtain non-trivial correlation

functions with fields that do not have the correct minimal model conformal dimension. To

do so would be outside the scope of this thesis, although it can be found in [50, §9.2] The

result of this calculation is that 1 ≤ r ≤ p and 1 ≤ s ≤ p′.

1.5.9 Wess-Zumino-Witten Models

The exposition in this section and the one below are a review of the material in [50, §15]. A

Wess-Zumino-Witten (WZW) model is a theory that exhibits Lie algebra symmetry. For a

simple Lie algebra g a ĝk-WZW model is a field theory which has a current J(z) of g-valued

modes (a g-symmetry). To define the theory, we fix the OPE of this current, and this is what

gives the WZW model its ĝk-structure.

In this section we will describe the Sugawara construction, which shows that ĝk-WZWmodels

contain the Virasoro energy-momentum tensor T (z) and are therefore not just field theories,

but also CFTs. Mathematically, this is equivalent to saying that the completion of the

universal enveloping algebra U(ĝ) of any affine Lie algebra ĝ contains a V ir subalgebra. As

discussed in the previous sections, a WZW model contains two commuting copies of V ir,

and all statements below should be read as applying to a pair of commuting holomorphic

and anti-holomorphic sector simultaneously.

We begin by making precise the defining properties of an ĝk-WZW model we described

above. Let J(z) =
∑

n∈Z Jnz
−n−1 be a current of g-valued modes on a Riemann surface

Σ (for our purposes, Σ will always be the Riemann sphere). Let {ta}a∈I be a basis for

a g-representation labelled by an index set I. Using this basis we write the current as
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J(z) =
∑

a J
a(z)ta =

∑
n,a J

a
nt
az−n−h. We define the structure constants fabc for g by

[ta, tb] =
∑
c

ifabc t
c, (1.5.94)

and fix the OPE of the mode Ja(z) with itself to be

Ja(z)Jb(w) =
kδab

(z − w)2
+
∑
c

ifabc
Jc(w)

z − w
+O(1). (1.5.95)

We can then use this OPE to obtain an OPE for the current J(z) with itself. Then, re-

membering our discussion in section 1.5.2, the current J(z) generates an ĝk-representation

in the CFT by its action on the space of states, where the modes {Jan}a for fixed n ∈ Z are

identified with the generators for ĝ at grade n. Here the constant k in the O((z−w)−2) term

of the OPE is the level of the representation, and we will always assume that k is a positive

integer30. Mathematically, we will treat the fields in ĝk-WZW models as ĝk representations.

We begin by showing that a CFT containing J(z) also contains the V ir energy-momentum

tensor. The Sugawara energy-momentum tensor Tĝk(z) is constructed using the modes of

J(z) by

Tĝk(z) =
−1

2(k + g)

∑
a

(JaJa)(z), (1.5.96)

where k is the level of the ĝ representation, g is the dual Coxeter number, (JaJa) represents

the normal ordered product as defined in 1.5.2, and the modes Jam are assumed to be or-

thonormal with respect to the Killing form. This generates a V ir representation of central

charge

c(ĝk) =
kdim(g)

k + g
, (1.5.97)

and the Virasoro modes {Ln}n∈Z for Tĝk(z) are

Ln =
1

2(k + g)

∑
a

 ∑
m≤−1

JamJ
a
n−m +

∑
m≥0

Jan−mJ
a
m

 . (1.5.98)

Note that Jam and Jan−m commute for n ̸= 0, and that for n = 0 we are simply placing the

terms with larger subscript on the right. This is just the definition of normal ordering, so

we can write

Ln =
1

2(k + g)

∑
a

(∑
m∈Z

: JamJ
a
n−m :

)
. (1.5.99)

This construction ensures that a ĝk-WZW model has a V ir energy-momentum tensor and

hence is a CFT.

30One can see this from a physics perspective, and the reader familiar with classical field theory can find
this calculation in [50, §15.1]
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We define an ĝk-WZW primary field ϕΛ̄ to be associated to an irreducible finite-dimensional

representation of g. Such representations are the modules LΛ̄ from section 1.2.1 associated to

dominant integral weights Λ̄ ∈ P+(g). Let ϕΛ̄(z) be an ĝk-WZW primary field and denote its

corresponding primary state by |ϕΛ̄⟩. If we let {ta
Λ̄
} be a basis for LΛ̄ we have the following

defining properties of the WZW primary state |ϕΛ̄⟩

Ja0 |ϕΛ̄⟩ = −taΛ̄ |ϕΛ̄⟩ , Jan |ϕΛ̄⟩ = 0, n > 0. (1.5.100)

Such states are also V ir primaries, although the converse is not true (V ir primary states are

not necessarily WZW primaries). The conformal dimension of |ϕΛ̄⟩ is

hΛ̄ =
(Λ̄, Λ̄ + 2ρ)

2(k + g)
. (1.5.101)

The descendant states are then constructed as

Ja−n1
Jb−n2

. . . |ϕΛ̄⟩ , n1, n2, · · · > 0. (1.5.102)

Note that we do not need to use the V ir modes L−n for n > 0 as the V ir energy-momentum

tensor (and hence V ir modes) were constructed out of J(z).

We now fix the basis for ĝk to be the Cartan-Weyl basis from section 1.3, for which the

primary field definitions (1.5.100) translate to

H i
0 |Λ̄⟩ = H i

0(Λ̄) |Λ̄⟩ , (1.5.103)

E±α
n |Λ̄⟩ = H i

n |Λ̄⟩ = Eα0 |Λ̄⟩ , n > 0, α ∈ ∆+. (1.5.104)

We will assume that all ĝk-WZW model primary fields in any theory we consider will be

such that the level k affine weight Λ with finite part Λ̄ is dominant and integral31. Then the

equations (1.5.103) and (1.5.102) ensure that all states in these theories form the highest

weight integrable gk-modules LΛ we discussed in section 1.3. Due to this, we identify the

primary states |Λ̄⟩ as states defined by the level k affine weight Λ, whose finite part is Λ̄, and

when doing so we notate the primary state as |Λ⟩. Thus, ĝk-highest weight modules generate

the spectrum for ĝk-WZW models, for which only the finite algebra g is a symmetry (as the

V ir modes do not commute with all the modes Jan).

The OPE of Ja(z) and a WZW primary field ϕΛ(w) associated to a primary state |Λ⟩ is

Ja(z)ϕΛ(w) =
−taΛϕΛ(w)
z − w

+O(1), (1.5.105)

31In fact, one can show that in a WZW model with at least one such state (which can be taken to be the
vacuum), all states that do not correspond to integrable ĝk modules in this way decouple from the theory. To
do so is unnecessary for us, and would take us outside the scope of this thesis.
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where we note that taΛ are the basis ta in the g-representation whose highest weight Λ̄ is the

finite part of Λ.

Finally, we define the character for the state |Λ̄⟩ to be

χĝk
Λ (q, t̂) = TrLΛ

qL0−c/24
n−1∏
i=1

t̂Hi
i , (1.5.106)

and a corresponding ĝk-WZW q-character as

χĝk
Λ (q) = TrLΛ

qL0−c/24 = qhΛ−c/24
∞∑
n=0

dim(L
(n)
Λ )qn, (1.5.107)

where we have notated the number of linearly independent states at level n (with regards

to the V ir generators) in LΛ as dim(L
(n)
Λ ). We will focus on the case of ĝk = ŝl(n)N and

consider the module LΛ, whose V ir-character we shall need in chapter 4. Here, L0 acts as

L0 7→ hΛId − d̂, where Id is the identity operator and we recall that d̂ is the derivation on

ŝl(n). Then (1.5.106) yields

χ
ŝl(n)N
Λ (q, t̂) = q hΛ TrL(Λ) q

−D
n−1∏
i=1

t̂Hi
i . (1.5.108)

Now note that (1.5.108) can be written as a sum of terms exp(β) with β of the form

β = Λ− kδ −
n∑
j=1

ej(lj − lj−1) = Λ− kδ −
n∑
j=1

ljαj (1.5.109)

for some k ∈ Z. Then, because β(D) = −k and β(Hi) = di+ li−1−2li+ li+1, (1.5.108) yields:

χ
ŝl(n)N
Λ (q, t̂) = q hΛ

∑
l∈Zn−1

σ̄Λl (q)
n−1∏
i=1

t̂
di+li−1−2li+li+1

i , (1.5.110)

where σ̄Λl (q) are normalized ŝl(n) string functions. Alternatively, this may be expressed using

the usual ŝl(n) string functions σΛγ(l)(q) as

χ
ŝl(n)N
Λ (q, t̂) = q hΛ

∑
l∈Zn−1

σΛγ(l)(q)
n−1∏
i=1

t̂
γ(l)i
i , (1.5.111)

after defining γ(l) = [γ0, γ1, . . . , γN−1] ∈ Pn,N , by setting

γi = di + li−1 − 2li + li+1 = di −
n−1∑
j=1

Aijlj , (1.5.112)
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for each i ∈ In. Then using a combinatorial expression for ŝl(n) string functions

σΛγ(l)(q) = (q; q)∞
∑
λ∈Mσ

l

q k0(λ) , (1.5.113)

we can also express (1.5.110) as

χ
ŝl(n)N
Λ (q, t̂) = q hΛ (q; q)∞

∑
λ∈Mσ

q k0(λ)
N−1∏
i=1

t̂
di+δki−1(λ)−2δki(λ)+δki+1(λ)
i , (1.5.114)

where we set δk0(λ) = δkN (λ) = 0. This final expression will be used in chapter 4 to check

our proposed AGT correspondence.

We have therefore shown that ĝk-WZW models are also CFTs. Moreover we can apply the

machinery described for CFTs described throughout this section on ĝk-WZW models. In the

subsection below, we will use this line of thinking to derive differential equations satisfied by

the correlation functions for WZW models. In our case, we will focus on the 4-point function

for the case ĝk = ŝl(n)N .

1.5.10 The KZ Differential Equation for WZW Models

We can derive a differential equation that must be satisfied by WZW n-point functions, which

we will use to test our generalized AGT hypothesis in chapter 4. To do so, we will construct

an affine null vector which decouples from the theory (analogously to the singular vectors

for minimal models in section 1.5.5). This singular vector will have a form involving V ir and

ĝ-modes. We will then substitute the action of the V ir modes as differential operators from

section 1.5.2 to a correlation function involving this singular vector to obtain a differential

equation.

We begin by using the WZW expression for the V ir modes (1.5.98) to obtain the following

action by L−1 on a WZW primary field |Λ⟩

L−1 |Λ⟩ =
1

k + g

∑
a

(Ja−1J
a
0 |Λ⟩) =

−1
k + g

∑
a

(Ja−1t
a
Λ) |Λ⟩ . (1.5.115)

We can use this to construct the null vector

|χ⟩ =

(
L−1 +

1

k + g

∑
a

(Ja−1t
a
Λ)

)
|Λ⟩ = 0. (1.5.116)
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We can obtain the action of Ja−1 on a WZW primary field ϕ(z) in an n-point correlation

function as

⟨ϕ1(z1) . . . (Ja−1ϕk(zk)) . . . ϕn(zn)⟩ =
1

2πi

∮
zk

dz
1

z − zk
⟨Ja(z)ϕ1(z1) . . . ϕn(zn)⟩

=
1

2πi

∑
j ̸=k

∮
zj

dz
1

z − zk

taΛj

z − zj
⟨ϕ1(z1) . . . ϕn(zn)⟩,

where we have used the compactness of Σ to reverse the contour and encircle all poles except

the one at zk. We substitute this expression, together with the differential operator expression

for L−1 from (1.5.23), to obtain the Knizhnik-Zamolodchikov (KZ) differential equation for

correlations functions [36]∂zi + 1

k + g

∑
j ̸=i

∑
a t
a
Λi
⊗ taΛj

zi − zj

 ⟨ϕ1(z1) . . . ϕn(zn)⟩ = 0. (1.5.117)

In the case of the ŝl(n)k-WZW 4-point correlation function32 of primary fields, we follow

our discussion from section 1.5.3. First we fix the three points z2 = 0, z3 = 1, z4 = ∞
so that there is only one independent variable z1 = q, which is the cross-ratio. We restrict

the four primary fields to be two transforming in the fundamental representation and two

transforming in the anti-fundamental.

The Casimir
∑

a t
a
Λi
⊗ taΛj

acts on the tensor product of a fundamental and anti-fundamental

representation. Using the Littlewood-Richardson rules (see section 1.2.3), these tensor prod-

ucts decompose into two factors. In this setting, the KZ equation has solutions built using a

basis of two solutions. For a 4-point correlation function composed of two fundamental and

two anti-fundamental primary fields, the KZ differential equation reduces to a second order

ordinary differential equation33

q(1− q)
n2

(
n2κ2∂2q +A(q)∂q +B(q)

)
f1(q) = 0, (1.5.118)

where κ = k+n, qr(1− q)sf1 is one of the linearly independent conformal blocks, and s and

r are to be determined. The functions A(q) and B(q) are rational functions involving all the

other parameters and their specific form is irrelevant for our purposes. Explicit expressions

can be found in [50, eqs (15.161), (15.162)].

32Note that the n here which defines the rank of the affine Lie algebra, is not related to the number of
primary fields in the correlation function, which we have confusingly notated as n throughout this section.
Here, we are considering a 4-point correlation function for the ŝl(n)k-WZW model of arbitrary rank.

33Although this derivation consists of standard algebraic manipulation for differential equations, and using
some basic Lie algebra representation theory identities, it is very long and not so enlightening. As such we
will omit it in this text, but point the reader to [50, §15.4] to see the full details.
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This ODE has 3 singular points so can be transformed into the hypergeometric differential

equation (
q(1− q)∂2q + [c− (a+ b+ 1)]∂q − ab

)
f(q) = 0, (1.5.119)

where a, b, c are functions of k and n, and q is the cross ratio

q =
(z1 − z2)(z3 − z4)
(z1 − z4)(z2 − z3)

. (1.5.120)

Doing so involves fixing the parameters r and s to

r = r+ =
1

κn
, or r = r− = −n

2 − 1

κn
, (1.5.121)

s = s+ =
1

κn
, or s = s− = 1− n2 − 1

κn
. (1.5.122)

Since this is a linear second-order ordinary differential equation, we can construct general

solutions to it out of a basis of two linearly independent solutions as expected. Solutions to

the hypergeometric differential equation are built out of the hypergeometric function

2F1(a, b, c; z) =
∑
n∈Z≥0

(a)n(b)n
(c)n

zn

n!
, (1.5.123)

where (x)n = x(x− 1) . . . (x−n+1) is the falling Pochammer symbol. In the case of the KZ

equation (1.5.118), the two linearly independent functions are

f
(−)
1 (q) =2F1

(
1

κ
,−1

κ
, 1− n

κ
; q

)
, (1.5.124)

f
(+)
1 (q) =2F1

(
n− 1

κ
,
n+ 1

κ
, 1 +

n

κ
; q

)
. (1.5.125)

This process is generic in that solutions of the KZ equations can be expressed in terms

of generalized hypergeometric functions (see [86] and [87]). In chapter 4, we will use the

following known series expressions for specific ŝl(n)k-WZW 4-point conformal blocks.

Example 1.5.10.1. The ŝl(n)N -WZW conformal blocks (note that here we have notated the

level by N not k to keep in line with our notation in [88]), for the 4-point function on the

Riemann sphere of primary fields with fundamental and anti-fundamental representations

(which we denote by □ and □̄ respectively), schematically denoted by

⟨ (∞) (1) (z) (0)⟩ŝl(n)NP1 , (1.5.126)
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were obtained in [36], as solutions to the Knizhnik-Zamolodchikov equation (1.5.117), as

F (0)
1 (z) = z−2h (1− z)hθ−2h

2F1

(
− 1

n+N
,

1

n+N
;

N

n+N
; z

)
,

F (0)
2 (z) =

1

N
z1−2h (1− z)hθ−2h

2F1

(
1− 1

n+N
, 1 +

1

n+N
; 1 +

N

n+N
; z

)
,

F (1)
1 (z) = zhθ−2h (1− z)hθ−2h

2F1

(
n− 1

n+N
,
n+ 1

n+N
; 1 +

n

n+N
; z

)
,

F (1)
2 (z) = −n zhθ−2h (1− z)hθ−2h

2F1

(
n− 1

n+N
,
n+ 1

n+N
;

n

n+N
; z

)
,

(1.5.127)

where h = n2−1
2n(n+N) is the conformal dimension of the four primary fields, and hθ = n

n+N

is the conformal dimension of the adjoint field with weight θ = [N − 1, 1, 0, . . . , 0, 1]. These

four solutions correspond to two choices of the representations of states in the internal chan-

nel which follow from the fusion of and , and F (0)
1 (z),F (0)

2 (z) (resp. F (1)
1 (z),F (1)

2 (z))

corresponds to the identity (resp. adjoint) field conformal block in the s-channel. Under a

hypergeometric transformation

z → q :=
z

z − 1
, (1.5.128)

the Gauss hypergeometric function transforms as

2F1 (α, β; γ; z) = (1− q)α 2F1 (α, γ − β; γ; q) , (1.5.129)

and the ŝl(n)N -WZW 4-point conformal blocks (1.5.127) are expressed, in the q-module, as

F̂ (0)
1 (q) := z2h F (0)

1 (z) = (1− q)2h − n+1
n+N 2F1

(
− 1

n+N
,
N − 1

n+N
;

N

n+N
; q

)
,

F̂ (0)
2 (q) := z2h F (0)

2 (z) = − q

N
(1− q)2h − n+1

n+N 2F1

(
N − 1

n+N
, 1− 1

n+N
; 1 +

N

n+N
; q

)
,

F̂ (1)
1 (q) :=

z2h

n
F (1)
1 (z) =

(−q)hθ
n

(1− q)2h − n+1
n+N 2F1

(
n− 1

n+N
, 1− 1

n+N
; 1 +

n

n+N
; q

)
,

F̂ (1)
2 (q) :=

z2h

n
F (1)
2 (z) = − (−q)hθ (1− q)2h − n+1

n+N 2F1

(
− 1

n+N
,
n− 1

n+N
;

n

n+N
; q

)
.

(1.5.130)

1.5.11 Fusion in WZW Models

We will now describe fusion in WZWmodels and present a combinatorial method to calculate

the fusion rules in WZW models [89, 90]. In chapter 4, we will calculate series expansions

for simple 4-point conformal blocks of primary fields in ŝl(n)N -models. The primary fields in

these correlation functions must respect the ŝl(n)N -WZW fusion rules, and we will use this

algorithm to determine the possible combinations primary fields we can consider.
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First, we describe the fusion of two ĝk-WZW primary fields. As primary fields in WZW

models are labelled by ĝ dominant integrable weights, we will schematically represent fusion

of conformal families associated to primary fields of highest weight Λ1 and Λ2 by

[ϕΛ1 ]× [ϕΛ2 ] 7→
∑
Λ3

NΛ3
Λ1Λ2

[ϕΛ3 ], (1.5.131)

where the sum is over dominant integral ĝ weights Λ3. In an ĝk-WZW model the algorithm

for fusion is as follows:

1. Add the finite part of Λ1 to the finite part of each weight Λ2 in the representation.

Denote the finite g weight produced by this by Λ̄3.

2. Extend the finite weight Λ̄3 to an affine weight Λ3 of level k.

3. Check the action of affine Weyl group W on each Λ3. If we have (siw)Λ3 = wΛ3 for

some w ∈ W , then we ignore the weight in this algorithm34. Otherwise we take the

weight wΛ3 such that wΛ3 ∈ P+
k,r, to appear in the fusion rules.

This is easier to see combinatorially, where we can describe fusion as an extension to the

Littlewood-Richardson rules for tensor products we described in section 1.2. To calculate

fusion, we first calculate the tensor product decomposition for the finite parts of Λ1 and Λ2

using the Littlewood-Richardson rules (leaving the tensor product decomposition in terms

of Young diagrams).

Then, consider a weight Λ̄′
3 that appears in this decomposition. If par(Λ̄3)1 ≤ k then Λ̄′

3

extends to a dominant integrable affine weight Λ3, otherwise we remove a boundary strip of

length

t = par(Λ̄3)1 − k − 1, (1.5.132)

from par(Λ̄3) beginning at the end of the first row and moving down and to the left and

place it at the n-th row moving up and right. We then eliminate any rows of length n. If this

process produces a standard Young diagram λ that corresponds to an ĝk weight Λ3 (that is if

λ = par(Λ3)) then the weight Λ3 appears in the fusion rules for Λ1 and Λ2. We will illustrate

this process performed after the Littlewood-Richardson rules with an example from ŝl(4)5

fusion, which shows the generic behaviour of this combinatorial algorithm.

Example 1.5.11.1. Consider the candidate weight Λ′ = [3, 6, 4] from a tensor product decom-

position using the LR rules. We have par(Λ′) = (13, 10, 4), and the algorithm at each step

34We cannot see why this is true from the combinatorial algorithm presented here. This method is a
combinatorial representation of the algorithm giving the Kac-Walton formula [91, 92], for which such weights
appear with a weight of opposite parity and thus cancel with each other. A pedagogical introduction to the
WZW fusion rules, the Kac-Walton formula, and this combinatorial representation is the subject of [50, §16].
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gives us

(13, 10, 4) −→ (9, 7, 6, 5) −→ (4, 2, 1) (1.5.133)

In terms of Young diagrams this can be visualised as

· · · · · · · · · 0 0 0 0

· · · · · · · 0 0 0

· · · ·

−→ · · · · · · · · ·
· · · · · · ·
· · · · 0 0

0 0 0 0 0

−→ · · · ·
· ·
·

(1.5.134)

where we have used 0’s to visually represent the boundary strip we have moved in between

the first and second diagrams. The third diagram is then obtained by deleting the 4 columns

of length 4.

1.5.12 The GKO Construction and Cosets

Originally used to prove the unitarity of theM(p, p+1; 2) minimal models [93], the Goddard-

Kent-Oliver (GKO) construction [94] is a method to construct new CFTs out of WZW

models. Consider an affine Lie algebra ĝ of rank r, with generators J in for n ∈ Z and

i = 1, . . . ,dim(g) (note that J i0 for i = 1, . . . ,dim(g) are the generators of the subalgebra g

in ĝ). Let p̂ ⊂ ĝ be an affine Lie subalgebra, with generators denoted by J̄ in. Since p̂ ⊂ ĝ,

each J̄ in can be expressed as a linear combination of the J in.

Recall that in an ĝk-WZW mode, we can construct a V ir energy-momentum tensor by

the Sugawara construction that we will denote by Tĝ(z). We can also define a second V ir

energy-momentum tensor Tp̂ associated to the p̂ subalgebra in this way. Now consider the

coset energy-momentum tensor Tĝ/p̂ defined by

Tĝ/p̂ = Tĝ − Tp̂. (1.5.135)

We can take the OPE of Tĝ/p̂ with itself (see (1.5.2.3)) and see that it generates a V ir

representation of central charge35 cĝ/p̂ = cĝ − cp̂, and we denote its Virasoro generators by

35Not strictly true, for general cosets we must be careful about the embedding xe index of p̂ in ĝ. The
embedding index is defined as the ratio of the projection of the norm-square of longest root θĝ for ĝ to the
norm-square of θp̂ for p̂

xe =
(θĝ, θĝ)

(θp̂, θp̂)
. (1.5.136)

We will only consider diagonal coset models for which xe = 1 and we can use this equation for the coset
central charge without fear.
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L
ĝ/p̂
n for n ∈ Z. Informally, we say the coset model ĝ

p̂
is a CFT whose energy-momentum

tensor is Tĝ/p̂. Formally, one defines36 the coset algebra ĝ
p̂
as the largest Lie algebra A such

that A ⊗ p̂ ⊂ ĝ. By an abuse of terminology, we will use the terms coset model and coset

algebra interchangeably throughout this thesis. In general, we will refer to coset models and

algebras as simply cosets. We will sometimes refer to the algebras ĝ and p̂ as the numerator

and denominator of the coset respectively.

Objects related to the subalgebra p̂ decouple from a coset model, lending validity to the

name coset. By considering ĝ
p̂
as a subalgebra of ĝ, we see that ĝ

p̂
commutes with p̂ since

[L
ĝ/p̂
j , J̄ im] = 0 ∀i, j,m (1.5.137)

This commutativity37 is what decouples p̂ in the coset model.

We have not discussed the fields of coset models, nor will we in much depth, as we wil never

directly consider coset fields when considering the cosets present in our work in chapters 4

and 5. In chapter 4, we will trivialize the coset factor in our generalized AGT correspondence,

leaving only an ŝl(n)N -WZW model. While in chapter 5, we will work with coset models,

but only at the level of characters. As such, we will not need to use the fields of a coset

theory, although we will briefly touch on them when discussing coset characters below.

General cosets are quite complicated, and in this thesis we will only study diagonal cosets,

which are cosets of the form

g =
ĝk1 × ĝk2
ĝk1+k2

. (1.5.138)

If we let (Jan)
(1) and (Jbm)

(2) denote the ĝk1 and ĝk2 generators respectively, diagonal cosets

correspond to embedding ĝk1+k2 using the generators (Jan)
(1) × (Jan)

(2).

We will finish this section by discussing the character functions of coset models. In practice,

to describe the states in a coset representation, we branch from the integrable representations

of the numerator algebra ĝ to the denominator algebra p̂. We know that if ĝ contains a p̂

subalgebra, the highest weight ĝ-module LΛ decomposes into p̂-modules by the branching

rules

LΛ 7→
⊕
µ

bµΛLµ, (1.5.139)

where µ are dominant integral p̂ weights. This suggests that the coset characters χµ/λ should

be taken to be the branching functions bµλ for ĝ to p̂. This brief discussion misses some of

the subtleties in this argument, and the reader should consult [50, §18.2] for a more in depth

36One can also define cosets using the modern framework of vertex operator algebras. To understand the
work in this thesis we will only need to understand the GKO construction of Tĝ/p̂.

37When considering cosets from a VOA perspective, the coset ĝ/p̂ is defined to be the commutant of p̂
within ĝ.
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discussion. Throughout this thesis we will take the coset characters and branching functions

in (1.5.139) to be interchangeable.

We will consider only the case where ĝ = ŝl(n)k1 × ŝl(n)k2 and p̂ = ŝl(n)k3 in chapter 5. This

is described by the branching of ŝl(n) representations to other ŝl(n) representations, and we

will not need to worry about these subtleties.

We have the following example to illustrate the use of the GKO construction to understand

the minimal models in terms of WZW models. This example also presents an important

character function expression that we will use in chapters 4 and 5.

Example 1.5.12.1. The GKO construction of the minimal model M(p+2, p+3; 2) is via the

coset [94]

M(p+ 2, p+ 3; 2) ≃ ŝl(2)p × ŝl(2)1

ŝl(2)p+1

. (1.5.140)

The branching function/character formula for the M(p + 2, p + 3; 2) minimal model with

conformal weight parameterised by 1 ≤ r < p and 1 ≤ s < p + 1 can be calculated by the

Rochi-Caridi expression [95]

χp,p+1
r,s (q) =

1

(q; q)∞

∑
k∈Z

qk
2p(p+1)+k((p+1)r−ps) − q(kp+r)(k(p+1)+s). (1.5.141)

We will generalize this construction in (1.5.143) below, with a corresponding generalized

character expression in (1.5.144).

1.5.13 W-Algebra Minimal Models

Here we discuss a generalisation of the Virasoro minimal models, the W-algebra minimal

models. This will mostly constitute a brief review of W-algebras, before defining certain

principal Wr-algebra minimal models as cosets of diagnoal ŝl(n) cosets in (1.5.143). The

presentation of the material in this section will be non-standard as an introduction to W-

algebras.

Throughout this thesis, we will only see W-algebras in two settings: Indirectly, through the

W-minimal model characters, and directly as a symmetry of AN−1-Toda field theories. As

such, we present only enough material to understand both cases. The reader who wishes to

understand W-algebras as algebraic objects should consult [96]. The reader interested in a

review from the perspective of CFTs should see [97]. An older review on their application

in integrable models can be found in [98], whereas the reader who wishes to see a review

covering these different approaches should see [99]. We begin by defining what we mean

when we say a W-algebra.
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Definition 1.5.13.1. ([12]) A quantumW-algebra is a mCFT, whose Hilbert space H contains

a finite number of distinguished chiral states |i⟩ including |T ⟩, whose corresponding vertex op-

erators W (si)(z) = V (|i⟩ , z) (where the Virasoro energy-momentum tensor T (z) = W (2)(z))

are quasiprimary fields of integer conformal dimension hi = si. Furthermore, the entire space

of fields is generated by normal ordered products of W (si)(z) and their derivatives.

A quantum principal Wr-algebra (or just Wr-algebra) is a quantum W-algebra where si =

i + 1 for i = 1, . . . , r − 1 (in the notation of [12] Wr is W (2, 3, . . . , r)). These states, and

their OPEs, define an action of an algebra on the spectrum H of this CFT, generated by the

states |i⟩. The algebra of this representation can be defined through relations that can be

obtained, in theory, through the OPEs of the distinguished states in this CFT. This algebra

is a W-algebra. Throughout this thesis, when we say a W-algebra we will always mean a

principal Wr-algebra obtained in this way.

Example 1.5.13.2. The V ir algebra can be obtained in this way through the action of the

energy-momentum tensor T (z) =W (2)(z). Therefore V ir is the W2-algebra.

This is one primary motivating factor for studying Wr algebras (and more general W-

algebras), as generalizations of V ir. The W-algebras were first introduced in [100], where

the principal algebra W3 was studied. In more modern applications, W-algebras are created

through quantum Hamiltonian reduction, see [101] and [102].

When considering AGT correspondences involving an SU(N) gauge theory on C2, the central

CFT object will be the correlation functions of Wr-primary fields. For CFTs with Wr-

symmetry, we define the Wr-primary fields by the properties

L0 |α⟩ = ∆(α) |α⟩ , W
(k)
0 |α⟩ = w(k)(α) |α⟩ , Ln |α⟩ =W (k)

n |α⟩ = 0, n > 0, (1.5.142)

where W
(k)
j is the j-th mode of the current W (k), ∆(α) is the conformal dimension of |α⟩,

and the eigenvalues w(k)(α) are the quantum numbers for the W-algebra currents.

Originally conjectured in [103, 104] and proven in [105], the Wr-minimal models, which we

notate by M(p, p′; r), are CFTs parameterized by two coprime integers p and p′. Of note,

the so-called unitary minimal models38 M(n+ p, n+ p+ 1;n) have a coset construction for

p ∈ Z≥1

M(n+ p, n+ p+ 1;n) ≃ ŝl(n)p × ŝl(n)1

ŝl(n)p+1

. (1.5.143)

We will only be concerned with the unitary minimal models in this thesis, and in chapter 5 we

will use this coset construction when calculating coset characters. From this, we can see that

primary fields in the unitary Wr-minimal models are labelled by two dominant integrable

ŝl(n) weights whose levels different by 1.

38Where we choose to notate the rank of the W-algebra by n, in line with our subsequent AGT notation.
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In the sequel, we will use a character expression from [47], for M(n + p, n + p′;n)-minimal

models. This formula is seen to generalize the Rochi-Caridi expression above (1.5.141). The

character for a unitary minimal model labelled by the two ŝl(n) weights ξ ∈ P+
n,p−n and

ζ ∈ P+
n,p′−n is

χn,p,p
′

ξ,ζ (q) =
q∆

r
ξ,ζ

(q; q)n−1
∞

∑
k1+···+kn=0

qp
′ ∑n

i=1 ki(
1
2
pki−νi+i) det

1≤s,t≤n

(
q(µt−t)(pks−νs+s+νt−t)

)
,

(1.5.144)

where µ = par(ζ) = (µ1, . . . , µn) and ν = par(ξ) = (ν1, . . . , νn) as defined in (1.3.20) and

∆r
ξ,ζ =

1
2pp′ |p

′(ξ + ρ)− p(ζ + ρ)|2 − 1
24(r − 1).

In our case, we will be interested in using these to calculate other coset characters combi-

natorially using coloured cylindric partitions. To do so, we connect these minimal model

characters to the cylindric generating functions from 1.1. By comparing (1.4.4) to χn,p,p
′

0,ζ (q)

we have the following equality

1

(q; q)∞
χn,p,p

′

0,ζ (q) = q∆
r
0,ζXΛ(q), (1.5.145)

which will form a combinatorial basis for calculating characters and branching functions in

chapter 5.

1.5.14 AN−1-Toda CFTs

Toda field theories (which we will refer to as Toda) are generalizations of Liouville field theory

that we met in section 1.5.7 and are defined for a simple Lie algebra g. While sharing many

similarities to Liouville theory, analysis of Toda is much more complicated, mostly due to

the presence of W-algebra symmetry, while for Liouville CFT there is only a V ir-symmetry.

Due to this, this section will be light on explicit calculations and proofs, although we will

provide references for each result for the interested reader. We will also only consider the

case where g = sl(N), corresponding to the root system AN−1, although many results are

phrased for general g.

As for Liouville theory, Toda is defined by a coupling constant b and background charge Q.

Toda is a CFT when

Q = b+
1

b
. (1.5.146)

We construct primary fields out of the (N − 1)-component field φ = (φ1, . . . , φN−1), where

each φi for i = 1, . . . , N − 1 is a free boson (see section 1.5.6).
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Additionally, we postulate the existence of N − 1 holomorphic currents W k(z) of spins k =

2, 3, N − 1 where

W 2(z) = T (z) = −1

2
: ∂φ∂φ : +(Qρ, ∂φ), (1.5.147)

is the V ir energy-momentum tensor, and ρ = 1
2

∑
α∈∆+(g) α and ( , ) denote the Weyl vector

and the scalar product on h∗ respectively. This V ir energy-momentum tensor, generates a

representation of V ir with central charge [106]

c = N − 1 + 12(Qρ,Qρ) = (N − 1)(1 +N(N − 1)(b+
1

b
)2). (1.5.148)

The currents W k(z) generate a representation of WN in Toda.

Remark 1.5.14.1. For the reader familiar with integrability we can provide a construction for

the currents. Note that while we can give an explicit expression for W 2(z), the higher spin

currents, for N > 2, are too complicated to provide closed form expressions. These currents

are related to the field φ through the Miura transformation [104]

N−1∏
i=0

(
(b+

1

b
) + (hN−i, ∂φ)

)
=

N∑
k=0

WN−k(z)

(
(b+

1

b
)∂

)k
, (1.5.149)

where hi for i = 1, . . . , N are the weights of the fundamental representation (which is the

highest weight module LΛ̄1
) of sl(N). Thus, we have that h1 = Λ̄1 and hk = Λ̄1 −

∑k−1
i=1 αi

This relation illustrates the link between the study of Toda (and more broadly, CFTs in

general) and integrability. Historically, this link was one motivating factor to study CFTs.

Again as for Liouville, the primary fields of AN−1-Toda field theory are vertex operators. We

will construct these using tensor products between (N − 1) copies of the free boson, denoted

as φi for i = 1, . . . , N − 1, and the simple roots αi.

Let φ =
∑N−1

i=1 φiαi = (φ1, . . . , φN−1) be a vector composed of (N − 1) copies of the free

boson in this way. We similarly define an (N−1)-component charge vector α =
∑N−1

i=1 α(i)αi,

where α(i) for i = 1, . . . , N − 1 are some scalar coefficients. We define the vertex operator

primary fields for Toda by

Vα = ei(α,φ), (1.5.150)

where here we note that the Killing form acts as (α,φ) =
∑N−1

i=i φi(α, αi). The leading order

behaviour of the singular OPE of Vα and the currents W k(z) is of the form

W k(z)Vα(w) =
w(k)(α)Vα(z)

(z − w)k
+ . . . . (1.5.151)
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The functions w(k)(α) are known as the quantum numbers39 for the W-algebra CFT in

physics, and they are known explicitly [104]. In particular

w(2)(α) = ∆(α) =
(α, 2Qρ− α)

2
, (1.5.152)

is the conformal dimension of the field Vα. One can obtain this OPE (and hence the quantum

numbers) using the OPEs for the free boson (from section 1.5.6), and the sl(N) Cartan matrix

(1.3.40) (to get the sl(N) matrix from the ŝl(N), we delete the 0-th row and column). The

singular OPE’s defined above imply that Vα is a WN -primary field in Toda.

Example 1.5.14.2. Let h1 = Λ̄1, h2 = Λ̄2 − Λ̄1, and h3 = −Λ̄2 be the three weights of the

highest weight sl(3)-representation LΛ̄1
. We have the following closed form expression for

w(3) [107]

w(3)(α) = i

√
48

22 + 5c
(α−Qρ, h1)(α−Qρ, h2)(α−Qρ, h3). (1.5.153)

1.5.15 The Coulomb-Gas Formalism for Toda Field Theories

The material covered in this section is only a brief review of the results on Toda correlation

functions and minimal models. Most of the material covered can be found in [108] and

[109, 110] with more depth, and the interested reader should consult these works to fully

understand the derivations required to obtain these results.

As for theories whose primary fields are Liouville exponentials, a naive study of the corre-

lation functions in Toda seems to suggest that there are few primary fields with non-trivial

correlation functions. For instance, the n-point correlation function ⟨
∏n
i=1 Vα(i)(z)⟩ is non-

zero only if the neutrality condition

n∑
i=1

α(i) = 2Qρ, (1.5.154)

is satisfied. We follow the same arguments as we did for the Liouville exponentials in section

1.5.8, and use the same method to form a theory with a continuum of primary fields. We again

introducing screening charges Qk and Q̃k, that are the zero modes obtained by integrating

the fields Vα(i) = eb(α
(i),φ) and Vα(i) = eb

−1(α(i),φ) of conformal dimension 1.

We then modify the n-point correlation functions by adding in these screening charges to

obtain ⟨
∏n
i=1 Vα(i)(z)

∏N−1
k=1 Q

sk
k

∏N−1
k=1 Q̃

rk
k ⟩, where now the the neutrality condition reads

(2Qρ−
n∑
i=1

α(i), Λ̄k) = bsk + b−1rk. (1.5.155)

39In physics, quantum numbers are used to classify states in a system, and are eigenvalues of operators.
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We now generalise the Coulomb-gas formalism for Liouville described in section 1.5.8 to

theories whose primary fields are the Toda vertex operators (1.5.150). By doing so, we will

obtain a description for the WN -minimal models from the previous section. In this general

framework, the Coulomb-gas formalism for Liouville is the special W2 ≃ V ir case.

First we define the screening charge parameters

α+ =

√
p

p′
, α− = −

√
p′

p
, (1.5.156)

where p, p′ ∈ Z are coprime, and the new background charge

α0 = α+ + α−. (1.5.157)

Note that we only consider the case where pα−+p′α+ = 0, as we will never use the Coulomb-

gas formalism for CFTs that aren’t minimal models. Using this, we parameterize the central

charge of the V ir subrepresentation in a minimal model manner as

cp,p
′

N = (N − 1)(1−N(N + 1)α2
0). (1.5.158)

In this case, the charges of the vertex operators are parameterized using two (N − 1)-tuples

of integers r = (r1, . . . , rN−1) and s = (s1, . . . , sN−1) as

αr,s = −
N−1∑
i=1

((ri − 1)α+ + (si − 1)α−) Λ̄i. (1.5.159)

Under this parameterization, the vertex operator40

Vαr,s = ei(αr,s,φ), (1.5.160)

has conformal dimension

∆(αr,s) =
1

2

(
P 2
r,s − α2

0ρ
2
)
, (1.5.161)

where ρ2 = (ρ, ρ) and α2
0 = (α0, α0), that is parameterized using the momentum vector

Pr,s = −
N−1∑
i=1

(riα+ + siα−) Λ̄i. (1.5.162)

We will use this formalism in section 2.3.3, and again in chapter 3.

40Note, the additional factor of i in the definition of the vertex operator when considering minimal models
with the Coulomb-gas formalism.
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1.6 Constructing the ALE Space of C2/Zn and the Instantons

In chapter 2 we will review minimal model AGT for SU(N) gauge theories on C2, while

the new results in chapters 3 4, and 5 will be based on extending this theory to the ALE

spaces. ALE spaces, first introduced to physics in [11] (see [111] for a review), are spaces

diffeomorphic to the minimal resolutions of singularities of C2/Zn [112]. Though not essential

to understanding the results presented in the sequel, we will review their construction below.

Then, since the fundamental object on the 4D gauge side of AGT dualities is Nekrasov’s

instanton partition function, we will briefly review the ADHM construction of instantons

on C2 [113] and a generalization to the ALE space diffeomorphic to C2/Zn [114] below

in sections 1.6.2 and 1.6.3. In principle, one does not need to understand the instantons

themselves to understand AGT dualities. Starting from the results of Nekrasov’s calculation

of the instanton partition function [4] is perfectly reasonable. In our case, we introduce these

two constructions to explain the rationale behind adding colours to multipartitions when

moving from AGT for gauge theories on C2 to theories on the ALE space C2/Zn in chapter

3.

1.6.1 Constructing ALE space associated to C2/Zn

In this section we will follow the approach of [114] and [112] to construct the ALE spaces

diffeomorphic to C2/Zn as hyper-Kähler quotients. By an abuse of notation, we will denote

these ALE spaces as C2/Zn. For a more complete story, the interested reader is pointed

towards the paper [42]. We will closely follow the exposition in [115], but replace the Kleinian

subgroup41 Γ of SU(2) with Zn.

Let ρR : Zn −→ End(R) be the regular representation of Zn. That is, R is the complex

vector space whose basis is given by {eh | h ∈ Zn}. The action of Zn on R is given by

g · eh = egh, for any g, h ∈ Zn. We use this action to define an action of Zn on End(R) by

conjugation. Let ρ
SU(2)
Q : SU(2) −→ End(Q) be the defining representation of SU(2), where

Q ∼= C2 and SU(2) action is by matrix multiplication. Note that we denote C2 by Q to

match the notation in [114]. Consider the representation ρQ : Zn −→ End(Q) induced by

the embedding Zn ↪→ SU(2) via

Zn =

{(
e

2πik
n 0

0 e−
2πik
n

)∣∣∣∣∣k = 0, 1, . . . , n− 1

}
. (1.6.1)

41ALE spaces can be constructed for any Kleinian (discrete) subgroup Γ of SU(2) as C2/Γ, although we
will only discuss Γ = Zn. References for Kleinian subgroups can be found in [116, 117]. Importantly, the
construction presented here makes use of the McKay correspondence between Kleinian subgroups of SU(2)
and the ADE classification of Dynkin diagrams [118].
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We will construct the ALE space associated to Zn as a quotient of the manifold

Ξ = (Q⊗ End(R))Zn , (1.6.2)

where we use the conjugation action of Zn on End(R) from above, and where the Zn super-

script means to restrict to the Zn-invariant elements of Q⊗ End(R). As a representation of

Zn, we decompose Q as

Q ≃ Q1 ⊕Q2, (1.6.3)

where Qi = Cei is a one-dimensional representation of Zn, and {e1, e2} are the standard

basis for Q ∼= C2. We now describe the Zn-invariant elements of Q ⊗ End(R). Let ζ =

e1⊗α+e2⊗β =

(
α

β

)
∈ Q⊗End(R) = (Q1⊗End(R))⊕(Q2⊗End(R)), where α, β ∈ End(R),

be an arbitrary element. For any γ ∈ Zn we can write the action of γ on

(
α

β

)
as

γ ·

(
α

β

)
= ρQ(γ)

(
(ρR(γ)

−1αρR(γ))

(ρR(γ)
−1βρR(γ))

)
= ρQ(γ)ρ

−1
R (γ)

(
α

β

)
ρR(γ). (1.6.4)

Note that ρQ(γ) acts on the basis elements e1 =

(
1

0

)
and e2 =

(
0

1

)
, while leaving α and β

invariant. Therefore,

(
α

β

)
is Zn-invariant if any only if

γ−1
R

(
α

β

)
γR = γ−1

Q

(
α

β

)
, (1.6.5)

for each element γ ∈ Zn, where γR = ρR(γ) and γQ = ρQ(γ) are matrix representations of

γ in End(R) and End(Q) respectively. This specifies the manifold Ξ. We now make explicit

the pairs of endomorphisms (α, β) on the manifold Ξ, following the exposition of [119].

We note that matrix representatives for each basis element in the regular representation of

Zn can be written as ρR(ek) = ρR(e1)
k for k = 0, . . . , n− 1 where

ρR(e1) =


0 0 . . . 0 1

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 . (1.6.6)

Using this, we can solve the invariance condition (1.6.5). First we make a change of basis on

R so that each matrix ρR(ek) is diagonal. Let ωn = e−2πi/n be an n-th root of unity. The
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matrices ρR(ek) are circulant42 matrices, so are diagonalized by discrete Fourier transform

matrices

S =

(
1√
n
ωmm

′
n

)
m,m′=0,1,...,n−1

, S−1 =

(
1√
n
ωmm

′
n

)
m,m′=0,1,...,n−1

. (1.6.7)

Under this change of basis we have

ρR(ek) = S
(
diag(1, ωk, ω2k, . . . , ω(n−1)k)

)
S−1. (1.6.8)

We let A = S−1αS and B = S−1βS be the matrix representations of α and β in this basis

respectively. We also denote Dk = diag(1, ωk, . . . , ω(n−1)k). The invariance condition for

γ = ek Zn in this basis now reads(
ωkn 0

0 ω−k
n

)(
SAS−1

SBS−1

)
=

(
SD−kS

−1αSDkS
−1

SD−kS
−1βSDkS

−1

)
(
ωknA

ω−k
n B

)
=

(
D−kADk

D−kBDk

)
. (1.6.9)

We note that for a matrix M = (Mij)0≤i,j≤n−1, we can write

D−kMDk =
(
ω(j−i)k
n Mij

)
0≤i,j≤n−1

, (1.6.10)

so that ωknM = D−kMDk implies that Mij = 0 for j − i ̸= 1. From this, we see that the

Zn-invariance condition in this basis is satisfied by endomorphisms A and B such that the

matrix representation of A has only non-zero entries when j − i = 1,−n + 1 and that of B

has only non-zero entries when j− i = −1, n−1. Therefore these matrices are parameterized

by 2n complex numbers u0, . . . , un−1 and v0, . . . , vn−1 as

A =



0 u0 0 . . . 0 0

0 0 u1 . . . 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . .
...

0 0 0 . . . 0 un−2

un−1 0 . . . . . . 0 0


, B =



0 0 0 . . . 0 v0

v1 0 0 . . . 0 0

0 v2 0 . . . 0 0
...

...
. . .

. . .
...

...
...

...
. . .

. . .
...

0 0 . . . . . . vn−1 0


. (1.6.11)

We now describe the quotient we take of Ξ to obtain the ALE space. We denote the quater-

nion algebra by H. We also choose an invariant hermitian metric gR on R. Using this we can

define a real structure, an anti-linear involution, on End(R) by defining a hermitian adjoint

42A circulant matrix is a matrix where the (i, j) entry is equal to the (i− 1, j − 1) entry.
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operator

gR(αX, Y ) = gR(X,α
†Y ), X, Y ∈ TxR, x ∈ R, α ∈ End(R). (1.6.12)

We can give the space Q ⊗ End(R) the structure of an H-module. This quaternion struc-

ture can then be seen by writing the pairs of endomorphisms p =

(
α

β

)
∈ Q ⊗ End(R) as

quaternions of matrices. These quaternions of matrices represent a quaternion-valued matrix

as a complex valued matrix, where matrix multiplication is equivalent to multiplication of

quaternions. We associate to p the following quaternion of a matrix

p =

(
α β

−β† α†

)
. (1.6.13)

Again, we represent α and β as complex matrices. We can then write each in terms of real

matrices as α = α1+α2i and β = β1+β2i where α1, α2, β1, β2 ∈Mn×n(R). We also associate

the matrix quaternion43

hp = α1 + α2i+ (β1 + β2i) j = α1 + α2i+ β1j + β2k, (1.6.14)

to the pair of endomorphisms

(
α

β

)
. Then, if the two quaternions of matrices p1 and p2, as-

sociated to pairs of endomorphisms

(
α(1)

β(1)

)
and

(
α(2)

β(2)

)
, have corresponding matrix quater-

nions hp1 and hp2 , the right matrix multiplication p1p2 corresponds to right multiplication

of quaternions hp1 · hp2 . Note that we have notated quaternion multiplication using a dot to

differentiate it from matrix multiplication.

This is a generalization of the quaternion structure on C2, obtained by representing the

quaternion h = Re(z) + Im(z)i+Re(w)j + Im(z)k by the 2× 2 complex matrix(
z w

−w z

)
, (z, w) ∈ C2, (1.6.15)

with matrix multiplication corresponding to right multiplication of quaternions.

Let gΞ be the Riemannian metric tensor on Ξ, and ∇ the Levi-Civita connection. Since Ξ is

an H-module, it has 3 complex structures I, J,K that satisfy the quaternion algebra relations

and are covariantly constant with respect to ∇

I2 = J2 = K2 = −1, IJ = −JI = K, ∇I = ∇J = ∇K = 0. (1.6.16)

43We take matrix quaternion to mean a quaternion valued matrix.
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Using these complex structures, we can define three symplectic (closed, non-degenerate 2-

)forms ωI , ωJ , and ωK on Q⊗ End(R) as

ωI(v, w) = gΞ(v, Iw), (1.6.17)

ωJ(v, w) = gΞ(v, Jw), (1.6.18)

ωK(v, w) = gΞ(v,Kw), (1.6.19)

where v, w ∈ TxΞ for x ∈ Ξ are vectors. A manifold with 3 symplectic forms defined from 3

complex structures in this way is called a hyper-Kähler manifold44.

Let U(R) denote the set of unitary transformations on R with respect to gR and denote by

F ⊂ U(R) the ones that commute with the action of Zn. We also denote by f = Lie(F ) the

corresponding Lie algebra to F . There is a natural action of F on Q⊗ End(R) by(
α

β

)
7→ f−1

(
α

β

)
f, f ∈ F,

(
α

β

)
∈ Q⊗ End(R). (1.6.20)

As F commutes with Zn, it defines an action on Ξ that preserves the complex structures I,

J , and K, and hence leaves the associated symplectic forms ωI , ωJ , and ωK invariant.

To construct the ALE space from Ξ, we will take a symplectic quotient with respect to F .

Below we will briefly review symplectic quotients to remind the reader of what this means.

For the reader unfamiliar with the material below we recommend the reference text [121]

and the lecture notes [122]. The author also used [123] in their first foray into symplectic

geometry.

1.6.1.1 Symplectic Quotients

Let X be a symplectic manifold with symplectic form ωX , and let G be a compact Lie group

with corresponding Lie algebra Lie(G) = g. Assume X carries a Hamiltonian G-action, that

is that the action preserves ω. We can associate to each ξ ∈ g a vector field Vξ of G whose

flow lines correspond to the action of G (in this case by mapping ξ 7→ exp(ξ)) on X. We

define the moment map µ : X −→ g∗ by

d([µ(x)](ξ)) = ωx(Vξ, ·), (1.6.21)

where [µ(x)](ξ) is the action of the map µ(x) ∈ g∗ on ξ. By considering only ζ ∈ Z :=

(g∗)G ⊂ g∗, where Z is the G-invariant45 subalgebra (g∗)G of g∗, we have that µ−1(ζ) is

44The reader unfamiliar with hyper-Kähler geometry should first begin with Kähler gemoetry, which is the
study of manifolds with one complex structure and one symplectic form, and is pointed to the lecture notes
[120].

45Here the G-action on g∗ is the co-adjoint action.
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invariant under the action of G. The space Z is the dual space to the centre of g. Assuming

the action is free, we can then form the symplectic quotient of this action by taking the

manifold

Xζ = µ−1(ζ)//G, (1.6.22)

on which the symplectic form ωX descends to another symplectic form ωζ (see [121] or [122]

for details).

This construction can be generalised to hyper-Kähler manifolds as follows. Let G be a Lie

group acting on a hyper-Kähler manifold X which leaves the 3 symplectic forms invariant.

Denote again its Lie algebra by g = Lie(G). This action then has 3 associated moment maps

µI , µJ , µK associated to the symplectic forms ωI , ωJ , ωK respectively. We then collect these

in one map µ : X −→ g∗ × g∗ × g∗, where µ(x) = (µI(x), µJ(x), µK(x)) for x ∈ X.

As above we denote the dual to the centre of g by Z. For ζ ∈ Z the symplectic quotient

Xζ is again a hyper-Kähler manifold [124]. When performing a symplectic quotient on a

hyper-Kähler manifold we refer to it as a hyper-Kähler quotient.

1.6.1.2 Constructing the ALE Space as a Hyper-Kähler Quotient

Thus to construct the ALE space associated to Zn from Ξ, we perform a hyper-Kähler

quotient on Ξ using the Lie group F of unitary transformations that commute with the

action of Zn. The associated moment map is µ = (µI , µJ , µK) : X −→ f∗× f∗× f∗. Explicitly,

the specific moment maps on X are defined purely in terms of the associated endomorphisms

α and β:

µI(α, β) =
1

2
i
(
[α, α†], [β, β†]

)
(1.6.23)

µJ(α, β) =
1

2

(
[α, β], [α†, β†]

)
(1.6.24)

µK(α, β) =
1

2
i
(
−[α, β], [α†, β†]

)
(1.6.25)

Following the notation of [124], we collect these maps into µR = µI and µC = µJ + iµK (note

µC(α, β) = [α, β]). We use these to perform a symplectic quotient by choosing a regular

point of the dual space which can be written as the triple ζ = (ζ1, ζ2, ζ3) ∈ Z×Z×Z, where
Z ⊂ f∗ is the dual to the centre of f. This constructs the quotient hyper-Kähler manifold

Xζ = µ−1(ζ)//F. (1.6.26)

The space Xζ is the ALE space and as shown in [112, Cor 3.12], is diffeomorphic to the

minimal resolution of C2/Zn.
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1.6.2 The ADHM Construction on C2

Central to this thesis is a study of the mathematical structure of the instanton partition

function, whose calculation involves integration over a moduli space Mk,N , k ∈ Z>0 (the

case k ∈ Z<0 are the so called anti-instantons) of linear operators satisfying the ADHM

constraints. We will call these the k-instantons and say thatMk,N is the k-instanton moduli

space. The construction described here is for 4D U(N) super Yang-Mills on C2 (or equiv-

alently R4). We also define MN = ∪∞k=1Mk,N , which we refer to as the instanton moduli

space.

We begin by considering two complex vector spaces V and W , with complex dimensions k

and N respectively. Associated to these we introduce 4 linear operators, Bi ∈ End(V ) for

i ∈ {1, 2}, I ∈ Hom(W,V ), and J ∈ Hom(V,W ). The group GL(V ) acts on the vector space

End(V )⊕ End(V )⊕Hom(W,V )⊕Hom(V,W ), (1.6.27)

induced by the natural GL(V ) action on V . An instanton is a quadruple (B1, B2, I, J) such

that the ADHM constraints

µC =[B1, B2] + IJ = 0, (1.6.28)

µR = [B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0, (1.6.29)

are satisfied. Note that the dagger superscript denotes the hermitian conjugate.

Remark 1.6.2.1. The ADHM constraints notation has been chosen suggestively, and they are

in fact the moment maps of a hyper-Kähler quotient as described in the previous section.

1.6.3 Constructing Instantons on the ALE Space

The instantons on Xζ are constructed in a similar fashion to the ADHM construction on

C2. As before we have the data of (B1, B2, I, J) such that Bi ∈ End(V ) for i ∈ {1, 2},
I ∈ Hom(W,V ), and J ∈ Hom(V,W ), with the added property that V and W are Zn-
modules and that B1 and B2 are Zn-equivariant endomorphisms (they commute with the

action of Zn). Since V and W are Zn-modules, they decompose under the Zn action as

V =
n−1⊕
i=0

Vi ⊗Ri, W =
n−1⊕
i=0

Wi ⊗Ri, (1.6.30)
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where Rk is the k-th irreducible representation of Zn (that is, generated by e2πik/n), and we

have

k = dim(V ) =
n−1∑
i=0

vi, N = dim(W ) =
n−1∑
i=0

wi. (1.6.31)

We then impose the generalised ADHM constraints on this data

ζR = [B1, B2] + IJ = 0, (1.6.32)

ζC = [B1,B
†
2] + [B1, B

†
2]− II

† + JJ† = 0. (1.6.33)

where (ζR, ζC) ∈ Z ×Z ×Z as described in the construction of the ALE space (that is, they

are the moment maps for GL(V )-action).





Chapter 2

AGT on C2

The original AGT conjecture [2], and the generalizations of AGT that we consider in this

thesis (AGT-W [6] and coset AGT [10]), proposed a duality between 2D conformal field

theories (CFTs) and certain 4D N = 2 supersymmetric (SUSY) gauge theories. We have

already covered the necessary CFT background material in section 1.5 that is required to

understand the 2D side of our results, and will not need such an in-depth discussion on SUSY

gauge theories to understand the 4D side. In this chapter, we will first define the objects

and tools that we will need for our work from the 4D side, and then discuss the original

AGT conjecture and its generalization to AGT-W for SU(2) and SU(N) gauge theories on

C2 respectively.

Within this thesis, we will use AGT dualities to to calculate 4-point conformal blocks and

character functions for CFTs using Nekrasov’s instanton partition function (defined for

SU(N) theories on C2 in (2.1.14)) from the dual 4D gauge theory. As such, we will endeavor

to only introduce the data required to mathematically define the SUSY gauge theories and

the instanton partition function we will use. The physics of AGT dualities is built on the

work of Seiberg and Witten [3, 125], and the reader interested in fully appreciating AGT first

needs to understand Seiberg-Witten theory and its subsequent developments. The review

[126] provides an introduction to Seiberg-Witten theory, and the thesis [127] has an in-depth

computation of Nekrasov’s partition function. Those unfamiliar with supersymmetry might

find use in the lecture notes [128], together with the standard reference [129].

93
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2.1 The Instanton Partition Function for N = 2 SU(N) Gauge

Theories

Central to our study of AGT correspondences will be Nekrasov’s instanton partition function

(which we will refer to as the instanton partition function, or partition function when clear),

which is associated to a sector of 4D N = 2 SUSY gauge theories. Specifically, the 4D

theories on the gauge side of the duality are special gauge theories referred to as class S

gauge theories, first introduced in [1].

In this section, we will introduce all the mathematical data needed to define the instanton

partition for the specified class S gauge theories we will encounter in this thesis. To do so,

we will need to know some of the mathematical data defining these class S gauge theories.

2.1.1 Coulomb Branch Data

Nekrasov’s instanton partition function is defined in the low-energy sector of N = 2 SUSY

gauge theories. Specifically, in the low-energy sector we consider the theory on the Coulomb

branch. This is in contrast to the Higgs branch, or a mixing of the two (both of which we

will not consider in this work). Thus, when discussing class S theories with a pair of pants

decomposition (defined in 2.1.2) in the sequel, the reader should always note that we are not

discussing the full theory, only the Coulomb branch.

We will begin by discussing the SUSY gauge theories. Gauge theories are defined on a pseudo-

Riemannian manifold (M, g) which is referred to as space-time, If we define dimR(M) = d,

we will say that a gauge theory is a d-dimensional (dD) gauge theory. To specify the gauge

theory we require a Lie group G, called the gauge group, with its Lie algebra g = Lie(G).

In SUSY gauge theories we also need an integer N = 1, 2, 4, 8 which is referred to as the

amount of supersymmetry. In our case, we will only consider theories where N = 2.

We will only consider gauge theories with flavours of matter, which have an additional

associated set of groups G1, . . . , Gk for some k > 0 which we use to define a group referred to

as a flavour symmetry group G1 × · · · ×Gk (in our case each factor of the flavour symmetry

group will be of the form Gi = U(M) or SU(M) for some M ∈ Z>0) with associated

mass parameters1 m0, . . . ,ml ∈ C where l + 1 is the sum of the dimensions of the defining

representations for each G1, . . . , Gk.

1Throughout this thesis, we will employ the non-standard convention that vectors of parameters in 4D
gauge theories start their labelling with 0. As we will be identifying gauge theory objects with ŝl(N) weights
on the CFT side, this convention will make our notation cleaner later.
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We specify the Coulomb branch by the parameters a0, . . . , arank(G)−1 ∈ C, called the Coulomb

parameters. The Coulomb parameters specify an element ϕ of the Cartan subalgebra h of g

in the adjoint representation.

Finally, we need to specify a collection of fields in our gauge theories. In supersymmetric

gauge theories, these are grouped into sets called multiplets, and we will only need to know

the multiplets in our theory to write down the instanton partition function. In this thesis, we

will only consider theories composed of a vector multiplet2 and a collection of other matter

multiplets associated to representations of g. We will refer to the matter multiplets by the

representations they are associated to. Specifically, our theories will be composed of some

combination of fundamental, anti-fundamental, and bifundamental multiplets.

The flavours of matter in our theories correspond to the matter multiplets. Each mass

parameter is associated to one matter field in the gauge theory, and each matter field is said

to be a flavour of matter. We will focus on theories with the flavour symmetry group U(N)×
U(N), which has 2N mass parameters m = (m0, . . . ,mN−1) and m′ = (m′

0, . . . ,m
′
N−1). To

denote that our theory has 2N flavours of matter, it is common to collect the number of

flavours of matter in an integer Nf . Then in our case, we have Nf = 2N . We will also

sometimes associate flavours of matter to their representations, and this is reflected in the

flavour symmetry group. In this vein, the matter in our theory can be further classified into

N flavours of fundamental and N flavours of anti-fundamental matter.

Class S gauge theories are a subset of N = 2 SUSY gauge theories on a 4D manifold M

that follow an ADE classification. They are defined in terms compact Riemann surface Σg,n

of genus g with n punctures for (g, n) ̸= (0, 0), (0, 1), (0, 2), (1, 0). Below in section 2.1.2, we

will describe the construction of compact Riemann surfaces via gluing pairs of pants that

shows these pairs (g, n) are not allowed. We note that these theories are obtained from 6D

SUSY gauge theories on M × Σg,n. The multiplets of the class S theories we will consider

are fully specified by the compact Riemann surface Σg,n, although to understand how this

works is outside the scope of this thesis. Instead we will just need the results of this, which

we will describe below. We will denote the class S theory with gauge group G on M = C2

associated to Σg,n by T Gg,n.

In this thesis, we will focus on AN−1-type class S theories associated to the Riemann surface

Σ0,4, the Riemann sphere with 4 punctures, so that we are considering T SU(N)
0,4 . Since ϕ is

in the Cartan subalgebra of the adjoint representation of su(n) on the Coulomb branch, we

2The Cartan element ϕ defines one of the fields in the vector multiplet.
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can write it explicitly as a diagonal matrix

ϕ =



a0 0 . . . . . . 0

0 a1 0 . . . 0
...

. . .
. . .

. . . 0
...

. . .
. . .

...

0 . . . . . . 0 aN−1


, a0, . . . , aN−1 ∈ C. (2.1.1)

Then the traceless condition for su(n) imposes
∑
ai = 0. The set {a0, . . . , aN−1} are the

Coulomb parameters for the SU(N) gauge theories we will consider. We will often collect

the Coulomb parameters into a vector a = (a0, . . . , aN−1).

Remark 2.1.1.1. In physics, the Coulomb parameters are complex numbers that are referred

to as vacuum expectation values (VEVs). In the literature, making a choice of Coulomb

parameters is often called fixing the vacuum.

2.1.2 Gluing Pair of Pants and Quivers

The next step is to link the multiplet content of the theory T SU(N)
0,4 to a pair of pants

decomposition of Σ0,4. Once we have done this, we will be able to write down the instanton

partition function. A pair of pants is a surface that is homeomorphic to the sphere with 3

punctures, a typical example of which is depicted in figure 2.1. In our case, we will take each

pair of pants to be a Riemann surface (have a complex structure).

Figure 2.1: A standard pair of pants surface.

We will briefly review the gluing (or sewing) procedure for Riemann surfaces here. Consider

two compact Riemann surfaces C1 and C2 (which in our case will be two copies of a pair

of pants), each with punctures (or marked points) p1 ∈ C1 and p2 ∈ C2. We define closed

disks around each puncture p1 ∈ D1 ⊂ C1 and p2 ∈ D2 ⊂ C2 with radii ρ1 ∈ R and ρ2 ∈ R
respectively.

For a compact Riemann surface Ci, a complex closed disk Di \ {pi} ⊂ Ci of radius ρi with

the centre point pi ∈ Di removed is homeomorphic to a semi-infinite cylinder as we will now
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review. We pick a local coordinate zi on Ci, such that in this coordinate we have

Di \ {pi} = {zi = reiθ + zi(pi) ∈ C|0 < r ≤ ρ1, 0 ≤ θ < 2π}. (2.1.2)

The points in Di\{pi} are now parameterized by θ and r, and we notate the point reiθ+pi =

w ∈ Di as (r, θ). We then define the homeomorphism between Di \{pi} and the semi-infinite

cylinder S1 × [1/ρi,∞) by (r, θ) 7→ (eiθ, 1/r).

Remark 2.1.2.1. The pair of pants pictured in figure 2.1 is a visual representation of CP1 \
{w1, w2, w3}, the Riemann sphere with punctures at the points w1, w2, w3 ∈ CP1, with this

cylinder homeomorphism applied to a disk around each puncture.

We note that as p1 ∈ C2 and p2 ∈ C2 are punctures, the two disks D1 \ {p1} and D2 \ {p2}
are homeomorphic to cylinders. We define two complex parameters z1 and z2 around p1 and

p2 such that zi = 0 at pi for i = 1, 2. We can then glue these two cylinders by using a

parameter q ∈ C \ {0} to identify neighbourhoods of p1 and p2 in D1 and D2 through the

imposed relationship z1z2 = q. Doing so allows us to define a new Riemann surface C, where

the two cylinders are glued.

The coordinates z1 and z2 are local and therefore we cannot have z1, z2 = ∞. Thus, we

cannot allow q −→ ∞ either. We note that the phase of q tells us how the two ends of the

cylinders are rotated in relation to each other before being glued.

Each compact Riemann surface Σg,n where (g, n) ̸= (0, 0), (0, 1), (0, 2), (1, 0) can be con-

structed by gluing some number of pair of pants in this way, and this is how the restriction

of Riemann surfaces used to define class S theories is determined. Thus, we can associate

a pair of pants decomposition3 and set of gluing parameters q1, . . . , qm ∈ C to any Σg,n. In

our case, we decompose Σ0,4 into two glued pairs of pants.

We now apply this gluing procedure to two pairs of pants and glue them along one of each of

their punctures to obtain Σ0,4, the compact Riemann surface of genus 0 with four punctures.

The pair of pants decomposition for Σ0,4 is represented in figure 2.2. In this setting, we have

one sewing parameter that we will denote by q ∈ C.

Figure 2.2: Two pairs of pants being glued along cylinders around punctures.

3There may be more than one pair of pants decomposition for one Σg,n. We only consider Σ0,4 in this
thesis, which has only one such decomposition, so that we need not worry about this.
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Finally, we will also associate a generalized quiver to a pair of pants decomposition of a com-

pact Riemann surface. A generalized quiver is a directed graph for which loops and multiple

arrows between nodes is allowed, with extra data associated to the nodes. Quiver gauge

theories were first introduced in [114], although we will not need the full formal description

of them. The definition we provide here is not the conventional definition of a quiver gauge

theory, and is instead sufficient to describe the data we require for the AGT calculations

within this thesis.

Let Σ be constructed by gluing n pairs of pants which we number i = 1, . . . , n. We will

let the graph QΣ = (E, V ), with edge set E and vertices V , be the associated quiver. The

vertices V will be further split into two types, which we will refer to as circular nodes Vc

or rectangular nodes Vr. The circular nodes will correspond to each gluing operation and

the rectangular nodes will correspond to the remaining unglued punctures. In our case, we

will only consider quivers with one circular node and four rectangular nodes. We further

associate each vr ∈ Vr an additional label i corresponding to the pair of pants the puncture

initially lay on. Finally, the edges will be between nodes corresponding to one pair of pants,

specifically between the circular and rectangular nodes.

When drawing the quiver QΣ, we will draw a pair of edges corresponding to a pair of punc-

tures originally on one pair of pants as one edge that splits into two rectangular nodes, shown

below in figure 2.3. When using this convention, each edge that is attached to the circular

−→

Figure 2.3: Drawing a pair of edges associated to unglued punctures on a pair of pants as
one edge splitting into two.

node corresponds to one pair of pants, and the number of rectangular nodes it connects to

tells one of the number of any punctures. This eliminates the need to track the label i, as

it is now clear which punctures correspond to which pair of pants originally. An example

of this is shown for Σ0,4 in figure 2.4. The utility of this will be clear when we describe the

AGT correspondence in section 2.2.

Having formalized this process, it is clearer to think about it in an informal way. Informally,

we can think of the quiver in the following way from our pair of pants decomposition for Σ0,4:

The round node represents the Riemann sphere, and each rectangular node represents punc-

tures. The split edges then correspond to the individual pairs of pants in the decomposition.
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Figure 2.4: The quiver diagram associated to Σ0,4 the Riemann sphere with 4 punctures.
Note that the punctures corresponding to each pair of pants are on the left and right side

of the circular node respectively, cf: figure 2.2 above.

2.1.3 Class S Quiver Gauge Theories for the Riemann Sphere

We can now describe how to associate a gauge group G and flavour symmetries to the quiver

for Σ0,4. To each circular node we associate a Lie group G(i) = SU(ni) such that the gauge

group is the product of groups in circular nodes G = G(1) × · · · ×G(k). Flavour symmetries

are then associated to the rectangular nodes. In our case, we place G = SU(N) in the

circular node and a flavour symmetry factor of U(N) ≃ U(1) ⋊ SU(N) split between the

top and bottom boxes on both the left and right side of the quiver. The vector multiplet

is associated to the circular node, while the N flavours of fundamental (anti-fundamental)

matter multiplets are associated to the left (right) pairs of rectangular nodes.

In this thesis, we will take the Riemann surface and quiver associated to class S theories as

being descriptive of the gauge theory. The reader should be aware that they are actually

prescriptive instead. To understand these constructions involves a thorough understanding

of work of Seiberg and Witten, which is outside the scope of this work. The excellent review

of AGT [130], and the references therein, covers this construction for the reader already

familiar with Seiberg-Witten theory. With this caveat in mind, we are ready to define what

we mean when we say class S gauge theory in this work.

Definition 2.1.3.1. A class S gauge theory is a gauge theory defined by gauge group G =

G(1) × · · · ×G(k), flavour symmetry group G1 × · · · ×Gk′ , a 4D manifold M , and a compact

Riemann surface Σg,n for (g, n) ̸= (0, 0), (0, 1), (0, 2), (1, 0) together with a pair of pants

decomposition of Σg,n. We denote this theory by T Gg,n when clear to do so.

In practice, we will describe our theories by filling in the nodes of the quiver diagram asso-

ciated to Σg,n with the gauge and flavour symmetry group factors. The purpose of this is

twofold. Firstly, it allows us to see all the data of our gauge theory. Secondly, as we will

describe below in section 2.2, the structure of the quiver is diagrammatically similar to the

correlation function that is AGT dual to the gauge theory. The theory T SU(N)
0,4 is represented

by the quiver in figure 2.5.

In this case, we associate to G1 = U(N) the fundamental representation ρ1 : su(N) →
End(LΛ̄1

) of su(N) and to G2 = U(N) the anti-fundamental representation ρ2 : su(N) →
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SU(N)

SU(N)SU(N)

U(1)U(1)

Figure 2.5: The quiver diagram for the SU(N) class S theory associated to Σ0,4 the
Riemann sphere with 4 punctures.

End(LΛ̄N−1
), where we recall that LΛ̄ refers to the highest weight su(N) ∼= sl(N)-module of

highest weight Λ̄ as described in section 1.2.2. This theory has Nf = 2N flavours of matter.

2.1.4 Nekrasov’s Instanton Partition Function

In this section we will define Nekrasov’s instanton partition function for N = 2 U(N) gauge

theories on C2, which we will use to compute conformal blocks in Liouville and AN−1 Toda

CFTs on C2. The instanton partition function is associated to the instantons in T SU(N)
0,4 ,

which we constructed in section 1.6.2. Below in section 2.3, we will use this for the AGT(-W)

correspondence.

The instanton partition function has only been calculated directly for U(N) gauge theories,

while we are interested in it for the 4D theory T SU(N)
0,4 . In section 2.2.1, we will discuss how

to obtain the instanton partition function we will need from the U(N) one. Until then, we

will refer to the 4D U(N) theory with the same multiplets as T SU(N)
0,4 as T U(N)

0,4 for ease of

notation.

To understand the mathematical definition of the instanton partition function we need to

understand some geometry of gauge theories. Mathematically, the matter fields are sections

of a bundle V over C2, which carries a G = U(N) action4. We refer to V as the gauge

bundle. The ADHM construction defines a self-dual connection on V , which then defines an

instanton. We additionally associate the mass parameters to these fields by taking the tensor

product of V with the flavour spaceM = CNf = CN ⊕CN , which contains the complex mass

parameters.

We define the instanton partition function for T U(N)
0,4 as the integral ([4, eq (1.7)])

Zinst(a,m,m′; q) :=
∑
k≥0

∫
Mk,N

Eu(V ⊗M)qk, (2.1.3)

over the k-instanton moduli spaces Mk,N from section 1.6.2, where the parameter q is the

gluing parameter for the pair of pants decomposition of Σ0,4. In this definition, M has

an action of the flavour symmetry group U(N) × U(N), while both M and Mk,N have

4Formally one can think of them as sections of associated bundles to a U(N)-principal fibre bundle. The
bundle V is then the sum of all these individual bundles.
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an action of the gauge group U(N). The notation Eu denotes the U(N) × U(N) × U(N)-

equivariant Euler class. The 3N parameters contained in the vectors a = (a0, . . . , aN−1),

m = (m0, . . . ,mN−1), and m′ = (m′
0, . . . ,m

′
N−1) are the equivariant parameters coming

from the U(N)× U(N)× U(N)-action. The moduli space is non-compact and a calculation

of the integral was not possible until the work of Nekrasov [4].

By implementing a so-called topological twist (which we will not discuss, but is explained in

the original papers [4, 5] and the reviews [130, 131]) and the Ω-deformation (see [5, §2.2]),

Nekrasov was able to calculate Zinst for a wide variety of U(N) gauge theories. To do so,

he used equivariant cohomology or what physicists call supersymmetric localization. Local-

ization in this case is very technical (see [132] and [133] for reviews) and an understanding

of these technicalities is unnecessary for our purposes. We only need the results of this

calculation, which we will describe here.

The Ω-deformation (or Ω-background) is parameterised by two numbers ϵ1, ϵ2 ∈ R which

are called the deformation parameters. They parameterize the action of the torus T 2 ∼=
U(1)× U(1) on C2 by

(z1, z2) 7→ (eiϵ1z1, e
iϵ2z2). (2.1.4)

It is a deformation of the metric of the 6D space C2 × Σg,n that the class S theories are

obtained from. The instanton partition function of T U(N)
0,4 can be calculated for theories with

the Ω-deformation applied to them.

Considering the Ω-deformation as the action of the torus T 2 on C2 (that is on the base space

of V ), the integrals over Mk,N localize to the fixed points of the combined action of T 2

with the actions of the gauge group5 and flavour symmetry group, denoted by T 2 ×U(N)×
U(N) × U(N). This procedure then reduces the integrals over the moduli spaces Mk,N to

regular contour integrals, by invoking the Duistermaat-Heckman formula [134].

After transforming (2.1.3) into regular contour integrals, the coefficient of qk for a fixed k can

be found by a residue calculation. These residues are rational functions of the parameters

and thus the expression (2.1.3) is a power series in q whose coefficients are rational functions.

We can write the results of this calculation in terms of N -tuples of Young diagrams λ =

(λ(0), . . . , λ(N−1)) with k boxes, that is |λ| = k, where each term in the series defining

Zinst(a,m,m′; q) (note that Zinst also depends on the deformation parameters) corresponds

to one N -tuple λ. For a fixed N -tuple of Young diagrams λ, the function defining the

coefficient of qk has a factorized form corresponding to the multiplets present in our gauge

theory. We will refer to each of these factors as the contribution of the multiplet. The residues

are sometimes referred to as the instantons that contribute to the partition function.

5Note again that although we discuss the Coulomb parameters as being associated to U(N) they are
actually parameterizing elements of the Cartan subalgebra of the Lie algebra u(N). When discussing the
torus action above, we are in a situation where the group U(N) has been broken to U(1)N .
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Here we will define the contributions from each multiplet for the G = U(N) theories on C2

we consider in the sequel (see [126]). All multiplet contributions to Zinst will be built using

the building block function E(x, λ̃, λ′), which depends on the deformation parameters ϵ1 and

ϵ2 and takes in as its arguments: a parameter x ∈ C, two Young diagrams λ̃ and λ′ that are

not necessarily distinct, and a box □ = (i, j) in either λ̃ or λ′. Explicitly, the building block

function is defined to be

E(x, λ̃, λ′,□) := x− ϵ1Lλ′(□) + ϵ2A
+

λ̃
(□). (2.1.5)

We recall that Lλ(m)(□) and Aλ(l) are the leg and arm length respectively, defined in (1.1.2),

while the superscript + notation is also defined in (1.1.3). In all cases we will consider, x

will be the difference of two Coulomb parameters or a mass parameter and the pair of Young

diagrams λ̃ and λ′ will both be from the N -tuple of Young diagrams λ. Due to this second

property, we will notate λ̃ and λ′ as λ(l) and λ(m) in the sequel, where it is always assumed

that 0 ≤ l,m ≤ N − 1.

Remark 2.1.4.1. We recall from our discussion in section 1.1, that if □ /∈ λ(l) we have

A+
λ(l)
≤ 0, and if □ /∈ λ(m) we have Lλ(m) < 0.

All results obtained in this thesis will be predicated on a strategy of finding pairs of Young

diagrams (λ(l), λ(m)) for which the building block function vanishes for fixed ϵ1, ϵ2, x, and a

box □ contained in either λ(l) or λ(m). We will then restrict the summation in the definition

of Zinst to avoid any N -tuples λ containing these pairs. As such, we note that due to A+
λ(l)

(□),

Lλ(m)(□) ∈ Z, the equation

0 = E(x, λ(l), λ(m),□) = x− ϵ1Lλ(m)(□) + ϵ2A
++
λ(l)

(□), (2.1.6)

implies that

x = k(m)ϵ1 + k(l)ϵ2, (2.1.7)

for some integers k(m) and k(l). As we will see, gauge theories where this relation is true are

special, and in the sequel we will provide evidence that they are AGT dual to minimal model

CFTs.

We will split the discussion of the gauge theories T SU(N)
0,4 , their instanton partition functions,

and AGT relations into two cases: N = 2 and N > 2. This is due to multiple reasons, one is

that for su(2) the highest weight fundamental representation LΛ1 is isomorphic to its complex

conjugate, the anti-fundamental representation. Furthermore, the AGT correspondence for

SU(2) and SU(N) gauge theories have subtle differences that we will discuss in section

2.3. All the subsequent expressions we reproduce in the review below are originally due to

Nekrasov [4].
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2.1.4.2 G = U(2)

We note that in this case, the partition function is defined as a sum over pairs λ = (λ(0), λ(1))

of Young diagrams. Similarly, we have a pair of Coulomb parameters a = (a0, a1), and two

pairs of mass parameters m = (m0,m1) and m
′ = (m′

0,m
′
1).

The summands of the partition function for T U(2)
0,4 have factors corresponding to three types

of multiplets, the vector multiplet (consisting of fields in the adjoint representation of U(2)),

fundamental multiplets (consisting of fields in the highest weight u(2) representation LΛ1),

and anti-fundamental multiplets (consisting of fields in complex conjugate of fundamental

representation, note that this is isomorphic to LΛ1).

We begin by defining the contribution of the multiplet containing the matter in the funda-

mental representation, or the fundamental contribution. We letm ∈ R be the mass parameter

associated to this multiplet. The contribution can be written as

Zfun(a, λ;m) :=
1∏
i=0

∏
□∈λ(i)

(
ai + ϵ1A

+
λ(i)

(□) + ϵ2L
+
λ(i)

(□)−m
)
. (2.1.8)

Similarly the contribution from the multiplet containing the matter in the anti-fundamental

representation, called the anti-fundamental contribution, can be written as

Zafun(a, λ;m) := Zfun(a, λ, ϵ1 + ϵ2 −m) =
1∏
j=0

∏
□∈λ(j)

(ai + ϵ1Aλ(j)(□) + ϵ2Lλ(j)(□)−m) .

(2.1.9)

In sections 2.2 and 2.3, and later in chapter 3, we will often work with the function Zvec(a, λ),

which is the inverse of contribution of the vector multiplet, when looking at non-physical

poles in Zinst for certain gauge theories. For ease of notation and terminology, we will refer

then refer to Zvec iteslf as the contribution of the vector multiplet. This can be written as

Zvec(a, λ) :=

1∏
i,j=0

∏
□∈λ(i)

E(ai − aj , λ(i), λ(j),□)

∏
■∈λ(j)

(
ϵ1 + ϵ2 − E(aj − ai, λ(j), λ(i),■)

)
, (2.1.10)

where the products run over pairs of (not necessarily distinct) boxes □ and ■ in pairs of

(not necessarily distinct) Young diagrams. Note that the boxes □ and ■ are not related to

any colouring of the Young diagrams, which are all uncoloured, they are just used to notate

different boxes6. Using these, we can write the instanton partition function for T U(2)
0,4 gauge

6We will also use this notation to differentiate boxes in products in chapter 3, where we will be considering
coloured Young diagrams. Within this thesis, all coloured boxes will be labelled by numbers and not shadings..
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theories on C2 as

Zinst(a,m,m′; q) =
∑
λ

Zfun(a, λ;m1)Zfun(a, λ;m2)Zafun(a, λ;m
′
1)Zafun(a, λ;m

′
2)

Zvec(a, λ)
q|λ|,

(2.1.11)

where the summation runs over all pairs of Young diagrams λ = (λ(0), λ(1)). By comparing

this expression to (2.1.3), we see that the residues of the poles contained in Mk,N can be

described by pairs of Young diagrams λ with k boxes as claimed.

2.1.4.3 G = SU(N) for N > 2

In this case, the partition function is written as a sum over N -tuples of Young diagrams

λ = (λ(0), . . . , λ(N−1)) of Young diagrams. Similarly, we have N Coulomb parameters

a = (a0, . . . , aN−1), and two N -tuples of mass parameters m = (m0, . . . ,mN−1) and m′ =

(m′
0, . . . ,m

′
N−1), corresponding to Nf = 2N .

The form of the partition function for T U(N)
0,4 has a factorized form corresponding to two

types of multiplets, a vector multiplet (again consisting of fields in the adjoint representa-

tion of U(N)) and two bifundamental7 multiplets (consisting of fields in the bifundamental

representation of U(N)). In our case, the bifundamental multiplets will have either a trivial

fundamental or anti-fundamental factor, so that the fields belonging to these multiplets will

only be in an anti-fundamental or fundamental representation of U(N) respectively.

We begin by defining a function Zbif , that depends on two vectors of N complex numbers

a = (a0, a1, . . . , aN−1), b = (b0, b1, . . . , bN−1) ∈ CN−1, and two N -tuples of Young diagrams8

λ(1) = (λ
(0)
(1), . . . , λ

(N−1)
(1) ) and λ(2) = (λ

(0)
(2), . . . , λ

(N−1)
(2) )

Zbif (a, λ(1);b, λ(2)) :=
N−1∏
i=0

N−1∏
j=0

∏
□∈λ(i)

(1)

(
E
(
ai − bj , λ(i)(1), λ

(j)
(2),□

))
∏

■∈λ(j)
(2)

(
ϵ1 + ϵ2 − E

(
bj − ai, λ(j)(2), λ

(i)
(1),■

))
. (2.1.12)

We will use Zbif to define the contribution of the N fundamental and N anti-fundamental

multiplets in one concise form. The contribution of the vector multiplet Zvec depends on the

Coulomb parameters a = (a0, a1, . . . , aN−1), and one multipartition λ = (λ(0), . . . , λ(N−1)),

7A bifundamental representation of a Lie algebra is the tensor product of a fundamental representation
and an anti-fundamental representation.

8Note that we have notated these multipartitions using subscripts with brackets to differentiate this nota-
tion from that corresponding to their rows.
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and can be written as

Zvec(a, λ) := Zbif (a, λ;a, λ;0) =

N−1∏
i,j=0

∏
□∈λ(i)

E
(
ai − aj , λ(i), λ(j),□

)
∏

■∈λ(j)

(
ϵ1 + ϵ2 − E(aj − ai, λ(j), λ(i),■)

)
(2.1.13)

Using these we can write the instanton partition function for U(N) gauge theories on C2 as

Zinst(a,m,m′; q) =
∑
λ

Zbif (a, λ;−m,∅)Zbif (m
′,∅;a, λ;m)

Zvec(a, λ)
q|λ|, (2.1.14)

where the summation runs over all N -tuples of Young diagrams λ = (λ(0), . . . , λ(N−1)).

We again remind the reader that these instanton partition functions we have just defined are

for U(N) gauge theories. Whereas the AGT correspondences we will meet in the subsequent

sections and chapters are between 2D CFTs and SU(N) gauge theories. An important part

of performing AGT style computations is extracting the SU(N) partition function from the

U(N) one, and in chapter 3 we will perform our own generalization of this for gauge theories

on C2/Zn.

Finally, we define a generating function for the instantons9, which we take to be generating

function for the N -tuples of Young diagrams defining Zinst. Thus for generic U(N) and

SU(N) gauge theories on C2 we define

XU(N)(q) = XSU(N)(q) =
∑

λ∈ParN
q|λ|. (2.1.15)

In subsequent chapters, we will generalise this definition to gauge theories on C2/Zn.

2.2 AGT for SU(2) gauge theories with Nf = 4 on C2

We are now ready to understand the original AGT correspondence. In 2009 Alday, Gaiotto,

and Tachikawa suggested a link between the class S theories T SU(2)
0,4 and T SU(2)

1,1 on C2 and

CFTs on the Riemann sphere and torus respectively [2]. They found that under a suitable

parameter identification, the instanton partition function we discussed above agrees with the

conformal blocks (see section 1.5.3) of Liouville CFT (section 1.5.7) on the compact Riemann

surfaces Σ = CP1, T 2 defining class S gauge theories.

Remark 2.2.0.1. In fact they found a stronger result than this. They conjectured that one

could obtain the full Liouville correlation functions from the gauge theory. As part of their

9Formally, the residues resulting from supersymmetric localization.
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conjecture they obtained he DOZZ factors (named for Dorn and Otto, and A. and Al.

Zamolodchikov, who first found them independently in [135] and [136]) of Liouville CFT

(see [75, §3]) in the gauge theory.

In this section, we will review their results, with most of this material taken from the original

work [2]. The reader unfamiliar with AGT but familiar with CFT and SUSY is recommended

the excellent (physics-slanted) review [130] and references therein. While the for reader

unfamiliar with SUSY gauge theories, CFTs, and AGT we recommend the thesis [131] and

references within.

We will focus here on the conformal blocks of Liouville theory on the Riemann sphere, which

corresponds to T SU(2)
0,4 . All subsequent material will also be for CFTs on the sphere, and

our results will be for this case. We will develop the dictionary of parameters necessary

to identify Nekrasov’s instanton partition function with the conformal blocks of Liouville

theory.

2.2.1 Gauge Theory Parameters and Stripping the U(1) Factor

We begin by motivating a specific reparameterization for the mass parameters of the gauge

theory. This will also begin the process of stripping the U(1) factor for the instanton partition

function. We note that this parameterization is for a 4D U(N) gauge theory, and stripping the

U(1) factor from its instanton partition function allows us to obtain the instanton partition

function for a 4D SU(N) gauge theory.

We begin by showing this parameterization explicitly for T SU(2)
0,4 . This was done in the

original paper [2], which we will follow when discussing AGT involving T SU(N)
0,4 . We choose

to parameterize the mass parameters m0, m1, m
′
0, and m

′
1 using new mass parameters n0,

n1, n
′
0, and n

′
1 as

m0 = n0 + n′0, m1 = n0 − n′0, m′
0 = n1 + n′1, m

′
1 = n1 − n′1. (2.2.1)

These n and n′ parameters will be identified with the conformal momentum for fields in the

Liouville theory. Importantly, we have the relations

1

2
(m0 −m1) = n′0,

1

2
(m0 +m1) = n0,

1

2
(m′

0 −m′
1) = n′1,

1

2
(m′

0 +m′
1) = n1. (2.2.2)

We will use generalizations of these relations when discussing AGT-W, which involves 4D

SU(N) gauge theories, without making this explicit reparameterization.

We now explain the general idea of this reparameterization fo T SU(N)
0,4 , which has flavour

symmetry U(N) × U(N). Note that we begin here simply to obtain the correct multiplet
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arrangement for our U(N) theory. In this setting, one U(N) flavour symmetry factor acts

on N complex valued fields as a matrix. We claim that it acts on the fields as if they are

in the adjoint representation of U(N) on its Lie algebra u(N). We then treat the matrix

of mass parameters as being from the adjoint representation of U(N) and split it into two

terms corresponding to the factorization U(N) ≃ U(1)⋊SU(N). To do so, we recall the Lie

algebra su(N) is the subpace of the complex-valued traceless matrices in u(N).

Following the arguments of the paragraph above, we can now understand this reparameter-

ization from a representation theory perspective. To illustrate this, we review the example

from [131, §7.3]. We consider the pair of matter multiplets with mass parameters m0 and

m1, which we write in the matrix M = diag(m0,m1). We then decompose as(
m0 0

0 m1

)
=

(
n0 + n′0 0

0 n0 − n′0

)
= n0

(
1 0

0 1

)
︸ ︷︷ ︸
U(1)

+n′0

(
1 0

0 −1

)
︸ ︷︷ ︸

SU(2)

(2.2.3)

where we view n0 term as coming from the U(1) Cartan subalgebra (where we have taken the

adjoint action of U(1) to act as diagonal 2× 2 matrices on the space of diagonal matrices),

and the n′0 term as coming from the Cartan subalgebra of SU(2) (represented on its Lie

algebra su(2)). Note that the parameters m0 and m1 correspond to one factor of U(2)

flavour symmetry and m′
0 and m′

1 to the other.

Note that the parameters n0, n1 corresponding to the U(1) factor still appear in the SU(2)

partition function. As we will see below, they also appear in the U(1) factor. This reasoning

generalizes to T SU(N)
0,4 as we will see in section 2.3.

We recall that the Coulomb parameters in a U(2) gauge theory parameterize an element

ϕ in the Cartan subalgebra of u(2). The element ϕ is then a complex valued diagonal

matrix, and we have two independent complex parameters which we collect in the vector

a = (a0, a1) ∈ C2. To move from the U(2) gauge theory to the SU(2) gauge theory, we must

restrict to the case where ϕ is in the Cartan subalgebra of su(2). Then ϕ will be a complex

valued traceless diagonal matrix so that
∑1

i=0 ai = 0. Due to this, we set the Coulomb

parameters (a1, a2) on the gauge side to (a,−a).

Once we have parameterized the gauge theory in the manner described above we can strip the

U(1) factor in the U(2) instanton partition function to obtain the SU(2) instanton partition

function, which is a process we will use this in every AGT correspondence and conjecture

we consider in this thesis. In general AGT relations involving gauge groups SU(N), we are

looking for an equation of the form

Z
U(N)
inst = (U(1) factor)× ZSU(N)

inst . (2.2.4)
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In each case we consider in this work, and in most cases for AGT10, the U(1) factor is

a geometric series, raised to some power involving the deformation parameters and mass

parameters corresponding to the U(1) factor of the flavour symmetry group.

For U(2) gauge theories, Alday, Gaiotto, and Tachikawa found that the correct factorization

was [2, eq (3.9)]:

Z
U(2),Nf=4
inst (a, n0, n

′
0, n1, n

′
1; q) = (1− q)2n0(ϵ1+ϵ2−n1) × ZSU(2)

inst (a, n0, n
′
0, n1, n

′
1; q), (2.2.5)

where we note that the U(1) factor is a geometric series raised to a power involving only the

deformation parameters and the mass parameters corresponding to the U(1) factor.

Remark 2.2.1.1. In the original paper [2], the mass parameters are denoted by µi for i =

1, . . . , 4 and the parameters we have denoted by ni and n
′
i for i = 0, 1 are denoted by mi and

m′
i. In this case, we have instead deferred to the notation of [33] and [34], which the work in

this thesis directly builds on.

2.2.2 Liouville Conformal Blocks from SU(2) Gauge theories

In this section, we will provide the AGT dictionary that identifies the SU(2) instanton

partition function with the Liouville 4-point conformal block of primary fields.

We begin by looking at the parameters needed to define the Liouville conformal block. We

recall our visual representation of conformal blocks in figure 1.3, which we have reproduced

here in figure 2.6. Note that we have represented the insertion of primary fields by their

conformal dimensions, here notated by ∆’s. With ∆i corresponding to vertex operators

ϕi(z) = Vα(i)(z) for i = 1, 2, 3, 4 and ∆ being the conformal weight of primary field defining

the conformal family flowing in the channel.

∆1 ∆4

∆2 ∆3

∆

Figure 2.6: A 4-point Liouville conformal block, with primary fields labelled by their
conformal dimensions.

10The author is not aware of any case where this is not true. When considering the dual expression involving
conformal blocks for 2D CFTS, this U(1) factor can be considered as corresponding to the free field correlation
function of chiral vertex operators (see [19, §4]). This correlation function has the form of a geometric series,
which suggests that the dual U(1) factor in the 4D gauge theory should also have this form.
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We recall that the central charge c of Liouville is parameterised using the background charge

Q ∈ C and coupling constant b ∈ C as

c = 1 + 6Q2, Q = b+
1

b
. (2.2.6)

The background charge and coupling constants are the Liouville objects that are identi-

fied with the Ω-deformation parameters of the gauge theory in the AGT correspondence.

Explicitly, we identify

ϵ1 = b, ϵ2 =
1

b
, =⇒ Q = ϵ1 + ϵ2. (2.2.7)

Next, we specify the Liouville exponentials in the 4-point block using gauge theory data.

The four legs have conformal dimensions determined from the mass parameters of the gauge

theory. The primary field for the internal conformal family that flows in the channel, has

conformal dimension determined from the Coulomb parameters. In this case, we identify

the gauge theory parameters with the conformal charge of the CFT (see sections 1.5.6 and

1.5.7). The identification is

∆1 = α0(Q− α0), ∆2 = n0(Q− n0), ∆3 = n1(Q− n1), ∆4 = α1(Q− α1), ∆ = α(Q− α),
(2.2.8)

where the Liouville charges α, α0, and α1 are defined in terms of the mass and Coulomb

parameters as

α0 =
Q

2
+ n′0, α1 =

Q

2
+ n′1, α =

Q

2
+ a. (2.2.9)

We note that our reparameterization makes clear the asymmetry between the mass parame-

ters n0 and n1 corresponding to the U(1) in the flavour symmetry group and the parameters

n′0 and n′1 corresponding to the SU(2) factor on the CFT side of the correspondence.

Identifying the Coulomb parameters with the conformal family flowing in the channel and

the mass parameters with the primary fields of the block is a general feature of AGT style

correspondences. Comparing figure 2.5 with 2.6 we can see this diagrammatically. We

associate the mass parameters to the flavour symmetries (legs of the quiver) and the Coulomb

parameters to the gauge group (the internal node of the quiver), this structure is similar to

the conformal block.

We have made this correspondence explicit in figure 2.7, where we have placed a quiver

and conformal block side-by-side with the parameters associated to each object labelled.

Note that we have drawn the conformal block in a slightly modified form here to make this

identification clearer. The external legs are still labelled by ∆1 and ∆4, while the internal

are labelled by ∆2 and ∆3. Furthermore, the Riemann surface Σ0,4 can be thought of as the

Riemann sphere, which contains the 2D Liouville CFT, with 4 punctures corresponding to

the insertion of the 4 primary fields.
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∆1 ∆4

∆2 ∆3

∆
a

n′0n′1

n0n′0

Figure 2.7: A comparison between the diagrammatic structure and parameters associated
to a quiver diagram for a 4D SUSY gauge theory and a 2D Liouville conformal block.

2.2.3 AGT for U(2) Gauge Theories

In this section we review [19], which proved the AGT correspondence for SU(2) gauge theories

and a special set of primary fields on the CFT side from first principles in the CFT. We will

also review their exposition on the AGT interpretation of the full U(2) instanton partition

function in CFT terms. This explicit proof, for the AGT correspondence in one context

provides both tools to attempt more general proofs and validity to conjecture.

Until now, we have spoken only of a connection between SU(2) gauge theories and CFTs with

symmetry algebra V ir. We now discuss the connection between the full U(2) theory and a

2D CFT. To do so, we interpret the U(1) factor in the U(2) instanton partition function from

a CFT perspective. Following [19], on the CFT side we take the U(1) factor to correspond

to a copy of the Heisenberg algebra H with generators {an}n∈Z and relations

[an, am] =
n

2
δn+m, (2.2.10)

in the symmetry algebra. Under this identification, the CFT that is AGT dual to U(2) gauge

theories on C2 has the combined symmetry algebra A = H⊗ V ir, with the usual generators

an ∈ H, Lm ∈ V ir for n,m ∈ Z, and additional relation

[an, Lm] = 0. (2.2.11)

We now construct such a theory and its primary fields, using the Liouville vertex operators.

As before, we parameterise the central charge in Liouville form

c = 1 + 6Q2, Q = b+
1

b
= ϵ1 + ϵ2. (2.2.12)

We now define new free fields using the Heisenberg modes (note that these are free fields

built out of the positive or negative modes of the free boson from section 1.5.6)

φ± := i
∑
±n>0

an
n
z−n, (2.2.13)
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which we use to define the free exponential

Vα = e2(α−Q)φ−e2αφ+ . (2.2.14)

Then, the A-primary fields Vα of conformal charge α ∈ C are constructed as the product of

a free and Liouville exponential as

Vα := Vα · V L
α , (2.2.15)

where V L
α are V ir primary fields of conformal dimension ∆ = α(Q− α).

We now use these primary fields to build highest weight modules. We build an A-highest
weight Verma module with highest weight vector |P ⟩, where we recall that P is the mo-

mentum vector described in (1.5.73). The conformal dimension of this state is the eigen-

value of L0, constructed using the Heisenberg modes as for the free boson, defined by

L0 |P ⟩ = (Q2/4 − P ) |P ⟩. As usual we define the highest weight state by the relations

an |P ⟩ = Ln |P ⟩ = 0 for n > 0, and the inner product ⟨P |P ⟩ = 1. The highest weight module

is then built using the basis of descendant states

a−lm . . . a−l1L−kn . . . L−k1 |P ⟩ , k1 ≥ · · · ≥ kn > 0, l1 ≥ · · · ≥ lm > 0. (2.2.16)

As the labels {li}i∈Z>0 and {kj}j∈Z>0 are sequences of weakly decreasing integers, it is natural

to define this basis in terms of Young diagrams of length m and n. We define the pair of

Young diagrams λ(0) = (l1, l2, . . . , lm) and λ
(1) = (k1, k2, . . . , kn) and define the new notation

involving Young diagrams for the descendant state defined above

â(−λ(0))L̂(−λ(1)) |P ⟩ := a−lm . . . a−l1L−kn . . . L−k1 |P ⟩ . (2.2.17)

In this module one can construct a unique basis that reproduces the form of the instanton

partition function for the conformal blocks, leading us to the following proposition.

Proposition 2.2.3.1. ([19, Prop 2.1]) For λ = (λ(0), λ(1)), there exists a unique orthogonal

basis |P ⟩λ for the Verma module of the form

|P ⟩λ =
∑

|µ|=|λ|

Cµ
(0)µ(1)

λ (P )â(−µ(0))L̂(−µ(1)) |P ⟩ , (2.2.18)

with Hermitian conjugate

λ⟨P | =
∑

|µ|=|λ|

Cµ
(0)µ(1)

λ (P ) ⟨P |
(
â(−µ(0))

)† (
L̂(−µ(1))

)†
, (2.2.19)
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such that the matrix elements for this basis have the following form

µ ⟨P ′|Vα |P ⟩λ
∅ ⟨P |Vα |P ⟩∅

= Zbif (P
′, µ;P, λ;α). (2.2.20)

The coefficients Cµ
(0)µ(1)

λ (P ) in (2.2.18) and (2.2.19) are determined by the equation (2.2.20).

This proposition was proved by finding the coefficients for λ = (∅, λ(1)) and (λ(0),∅), where

∅ is the empty Young diagram. In this case, it was found that the coefficients Cµ
(0)µ(1)

λ (P )

involve special linear combinations of the Jack polynomials J
(−1/b2)
λ . Then the well known

properties of the Jack polynomials (see for example [46]) were used to describe an algorithm

to generate |P ⟩λ for all λ.

This proposition provides an interpretation for the combinatorial form of the conformal blocks

purely through CFT considerations in a special case. That is, it proves the AGT conjecture

for this case. In doing so, we have more evidence for the validity of more complicated and

generalized AGT correspondences.

Before finishing this section, we will provide the dictionary for the SU(2) AGT conjecture

on C2, from [2], which will be useful to refer back to throughout this thesis.

Gauge Theory Conformal Field Theory

Deformation Parameters Liouville Parameters b,Q and Central Charge c

ϵ1, ϵ2 (ϵ1, ϵ2) = (b, 1/b)

Q = b+ 1/b, c = 1 + 6Q2

Flavour symmetry U(2)× U(2) A 4-point correlation function on the sphere

Mass Parameter m Insertion of a Liouville Exponential

associated to a flavour symmetry e2mφ

One SU(2) gauge group A thin neck (or channel) with sewing parameter

with associated sewing parameter q = e2πiτ

Coulomb parameters a for the complex Primary field e2αφ flowing in the channel

scalar field for SU(2) gauge group α = Q/2 + a

Zinst Conformal blocks

(2.2.21)

2.2.4 SU(2) Gauge Theories and Minimal Models

In this section we will review an AGT correspondence between SU(2) gauge theories and

minimal model CFTs, first considered in [33]. All new results in chapters 3, 4, and 5 are

obtained utilizing a similar flow of logic and arguments as here. As such, this section should
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be well understood by the reader before attempting to understand the results presented in

this thesis.

This process will involve working on both sides of an AGT correspondence simultaneously.

The flow of logic goes as follows: First, we make use of the AGT dictionary above to choose

an Ω-deformation on the gauge side such that the dual CFT is a minimal model. Then, we

fix the gauge theory through its mass and Coulomb parameters so that dual object to Zinst

is a 4-point conformal block of minimal model primary fields. To do so, we make use of the

Coulomb gas formalism, reviewed in section 1.5.8, which describes the minimal model CFT

with screening charges. After using the Coulomb gas screening charges to parameterize the

conformal momentum of all primary fields in the conformal block, we return to the gauge

theory where the corresponding mass and Coulomb parameters are now parameterized in

terms of screening charges. By considering the usual definition of the instanton partition

function for these gauge theories, we obtain an expression for the instanton partition function

that contains non-physical poles and is ill-defined. Finally, we restrict the summation of the

partition function so that we remove these poles, by imposing the Burge conditions on pairs

(N -tuples in subsequent sections on SU(N) gauge theories) of Young diagrams.

To assist with understanding of this flow of logic, we have created a flow chart depicting

this process in figure 2.8. Note that in the flowchart, the calculation starts with an AGT

identificiation, then moves across the duality and back again. We have also colour coded

boxes depending on which side of the correspondence they occur on.

As described in section 1.5.5, the central charge c and conformal dimensions ∆r,s of primary

fields are constrained in the minimal models. When considering the dictionary above, we see

that there should be special values of the deformation parameters ϵ1 and ϵ2 (corresponding

to a minimal model central charge), Coulomb parameters a (corresponding to the conformal

dimension of the primary field flowing in the channel), and mass parameters mi,m
′
j (corre-

sponding to the conformal dimensions of the legs of the conformal block) of the gauge theory,

for which the gauge theory has behaviour analogous to removing the null states in a minimal

model.

This line of thinking was considered in [33], and led to the idea that the summations defining

instanton partition functions of guage theories that are AGT dual to minimal models should

be restricted to special sets of Young diagrams. In the case of AGT for SU(2) gauge theories,

these are Burge pairs, as we shall now review.

We match the notation in [33], and choose to write the central charge cp,p′ of a minimal

model using the parameter ap,p′ as

cp,p′ = 1− 6

(
ap,p′ −

1

ap,p′

)2

, ap,p′ =

√
p′

p
. (2.2.22)
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Fix ϵ1, ϵ2 so that
c = 1− 6(ϵ1 + ϵ2)

2

corresponds to cp,p′ in (1.5.52).

Parameterize conformal
charge of primary fields

using screening charges as
αr,s := −1

2(r − 1)α+ − 1
2(s− 1)α−.

Identify mass parameters mi and m
′
j

and Coulomb parameters ak
for i, j, k = 0, 1

with the conformal charges αi
and α of primary fields.

Identify ϵ1 and ϵ2 with the
screening charges α+ and α−.

Substitute new values of gauge parameters
into Zinst, which now contains poles.

Eliminate poles of Zinst
by restricting summation range to
Burge pairs of Young diagrams.

Figure 2.8: A flowchart representing the flow of logic in our subsequent minimal model
calculations from AGT.

We then identify the parameter ap,p′ with the screening charges {α+, α−} of the Coulomb-gas

formalism, from section 1.5.8, as

α+ = ap,p′ , α− = − 1

ap,p′
. (2.2.23)

When considering AGT involving minimal models, we make a slight modification to the AGT

identification for the deformation parameters, and identify them with the screening charges

ϵ1 < 0 < ϵ2, ϵ1 = α−, ϵ2 = α+. (2.2.24)

Remark 2.2.4.1. Note that the identification of the deformation parameters here differs by

a factor of i from the AGT dictionary described above. This factor comes from the form of

the coupling constant b (see (1.5.72)).

We then move to the CFT side of the correspondence and parameterize all conformal charges

parameterizing the vertex operator primary fields using the screening charges as in (1.5.86).

Then we identify these minimal model charges with gauge theory parameters using the

dictionary (2.2.21). In this case, we have two distinct objects that are parameterized in

terms of the Coulomb-gas formalism, the charge of a highest weight M(p, p′; 2) state and the
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charge of the vertex operator insertions. Remembering our discussion in section 1.5.8 we are

led to identify the gauge theories that are dual to CFT V ir-minimal models as ones where

the mass parameters mi and m′
j and Coulomb parameters a = (a,−a) have the following

expressions

mr,s
i ,m′r,s

j = −r − 1

2
α+ −

s− 1

2
α−, ar,s = −r

2
α+ −

s

2
α−, (2.2.25)

for 0 < r < p and 0 < s < p′. The superscripts for these parameters denotes their pa-

rameterization in terms of screening charges and represents the fact that these are identified

with minimal model CFT parameters. The instanton partition function is then expected

to be AGT dual to the 4-point conformal block of 4 minimal model primary fields. Gauge

theories whose parameters satisfy the above relations are central to this thesis, and show

unique behaviour (as we will see in the sequel), leading us to the following definition.

Definition 2.2.4.2. An N = 2 class S gauge theory with the Ω-deformation, whose deforma-

tion parameters ϵ1 and ϵ2 satisfy (2.2.24), and mass and Coulomb parameters satisfy (2.2.25),

such that the theory is AGT dual to a minimal model CFT, is called a gauge theory under

a minimal model identification.

The expressions above both correspond to the conformal charges of fields, so are expected

to be symmetric, but we only consider the case of a correlation function where a field flows

in the channel. Due to this we must respect the fusion rules for V ir minimal models, so

that the the legs are arbitrary minimal model primary fields and the family that flows in the

channel is the product of the fusion of minimal model primary fields.

We now consider the instanton partition function Zinst of the gauge theory under these

parameter identifications. As we will see, allowing Zinst to be defined by an unrestricted

summation over pairs of Young diagrams leads to terms whose denominator vanishes. More-

over, each term where this would be true has a factor in the numerator that also vanishes

leading to indeterminate expressions of the form 0
0 .

To resolve this, we redefine the definition of Zinst for gauge theories under a minimal model

identification to be a restricted summation of pairs of Young diagrams, where the restriction

is to pairs of Young diagrams for which there is no zero in the denominator. We will make

this restriction explicit below in proposition 2.2.4.3, where it is written as conditions on the

pairs of Young diagrams.

We recall the definition (2.1.14) of Zinst for U(2) gauge theories with Nf = 4 flavours of

matter (2 fundamental and 2 anti-fundamental matter multiplets). Consider a summand

in its series definition, corresponding to a pair of Young diagrams λ = (λ(0), λ(1)), whose

denominator term Zden is the contribution of the vector multiplet (2.1.10) which we reproduce
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here

Zden(a,m,m
′, λ) = Zvec(a, λ) =

∏
i,j=0,1

( ∏
□∈λ(i)

(
E(ai − aj , λ(i), λ(j),□

)
∏

■∈λ(j)

(
ϵ1 + ϵ2 − E(aj − ai, λ(j), λ(i),■)

))
. (2.2.26)

We specialise to the case of gauge theories under a minimal model identification, so that the

gauge theory parameters satisfy (2.2.25) and (2.2.24). Investigating the zeroes of Zden leads

one to the following proposition.

Proposition 2.2.4.3. ([33, Prop 4.1]) For fixed r, s, such that 0 < r < p and 0 < s < p′,

the function Zden (ar,s, λ) ̸= 0 if and only if

λ
(1)
i ≥ λ

(0)
i+s−1 − r + 1, λ

(0)
i ≥ λ

(1)
i+p′−s−1 − (p− r) + 1, (2.2.27)

for any i ≤ θ where θ = min(l(λ(1)), l(λ(0) − s+ 1)).

In section 2.3.3 we will review a variation of this proposition, for SU(N) gauge theories,

which we will prove using similar methods. Then, in chapter 3, we will present a new

(although superficially similar) result for gauge theories on C2/Zn, again using a variation

on this proof. Due to this, we will reproduce the full proof, edited to align better with our

own proof for gauge theories on C2/Zn of proposition 3.4.2.1, for this proposition here, which

will be beneficial to refer back to later.

Proof. We begin by considering the various factors present in Zden(a
r,s, λ). Each factor

corresponds to a choice of an ordered pair of Young diagrams (λ(i), λ(j)) for i, j = 0, 1 and

a box □ ∈ λ(i) or ■ ∈ λ(j). We introduce new notation for these factors, which is a white

or black box with superscript (i, j). Under this notation we have, for instance, the factor

corresponding to the square ■ ∈ λ(1) and the ordered pair (λ(0), λ(1)) notated as ■(0,1). Note

that this superscript is not related to the lattice coordinates of the box in question.

We also introduce new terminology for boxes that cause a factor of Zden to vanish. If we

find a an condition equivalent to □(i,j) = 0 or ■(i,j) = 0 for some i, j respectively, we say

that condition is a vanishing or zero condition. On the other hand, if we can find some

condition that guarantees □(i,j) ̸= 0 or ■(i,j) ̸= 0, we say that we have found a non-vanishing

or non-zero condition. In our case, we will find zero conditions in the form of inequalities on

pairs of Young diagrams, and the corresponding non-zero conditions will involve reversing

these inequalities.
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Using this notation, we begin by considering the case where i = j, so that the factor □(i,i)

can be written as

E(ai − ai, λ(i), λ(i),□) = E(0, λ(i), λ(i),□) (2.2.28)

= A+
λ(i)

(□)α+ − Lλ(i)(□)α−. (2.2.29)

Since □ ∈ λ(i) and α+ > 0 and α− < 0, we have A+
λ(i)

(□) > 0 and Lλ(i)(□) ≥ 0 and hence

□(i,i) = E(ai − ai, λ(i), λ(i),□) > 0. (2.2.30)

This means that the factor □(i,i) can never vanish, and hence will never cause Zden to vanish.

Similarly, ■(i,i) gives us

■(i,i) = −Aλ(i)(■)α+ + L+
λ(i)

(■)α− < 0, (2.2.31)

by the same argument as above, so that ■(i,i) also cannot vanish and hence cause Zden to

vanish.

We now check the remaining factors of Zden for zeroes. Consider, for instance, the equation

□(0,1) = A+
λ(0)

(□)α+ − Lλ(1)(□)α− = 0, (2.2.32)

which is of the form

C+α+ + C−α− = 0, (2.2.33)

for C± ∈ Z. Equations of this form, where the screening charges have the form (2.2.23), have

solutions of the following form

C+ = cp, C− = cp′, (2.2.34)

where c ∈ Z is a constant that is to be determined for the specific equation in question11.

We will encounter equations of this form frequently within this thesis, and the subsequent

method of finding its solution will be invoked each time.

Substituting our minimal model parameterisation for a, and using a0 − a1 = a− (−a) = 2a,

the vanishing □(0,1) = 0 is equivalent to the following two equations

A+
λ(0)

(□)− r = cp, −Lλ(1)(□)− s = cp′, (2.2.35)

for some □ ∈ λ(0). Assuming this is true, we can then find the implications of the existence

of such a box □ = (i, j). We know that there is a box □′ at the end of the i-th row of λ(0)

with coordinates □′ = (i, j + Aλ(0)(□)) so that the (j + Aλ(0)(□))-th column has length at

11This notation may be confusing, as this c is not the central charge of the V ir representation. It is simply
some integer constant which we will fix.
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least i, giving us the following inequality

(λ(0))Tj+A
λ(0)

(□) ≥ i. (2.2.36)

We then solve the condition cp′ + Lλ(1)(□) + s = cp′ + (λ(1))Tj − i+ s = 0, to obtain

i = cp′ + (λ(1))Tj + s, (2.2.37)

and hence

(λ(0))Tj+A
λ(0)

(□) ≥ cp
′ + (λ(1))Tj + s. (2.2.38)

Similarly, we can substitute Aλ(0)(□) = r + cp− 1 into the inequality above to obtain

(λ(0))Tj+r+cp−1 ≥ cp′ + (λ(1))Tj + s. (2.2.39)

This inequality is a property for the Young diagram λ(0) which is equivalent to the vanishing

of the factor □(0,1) for some □ ∈ λ(0). Thus, we can reverse this inequality to guarantee that

no such □ ∈ λ(0) exists

(λ(0))Tj+r+cp−1 < cp′ + (λ(1))Tj + s (2.2.40)

⇐⇒(λ(0))Tj+r+cp−1 ≤ cp′ + (λ(1))Tj + s− 1, (2.2.41)

which we write as

(λ(1))Tj ≥ (λ(0))Tj+r+cp−1 − cp′ − s+ 1. (2.2.42)

We now determine the value of c that will eliminate all possible boxes. We do this in two

steps, first we determine the largest set of possible values for c, then we choose the value

in this set corresponding to the strongest inequality. We can fix the set of all possible c by

noting that, as □ ∈ λ(0), we have the bound A+
λ(0)

(□) = cp+ r > 0, and since 0 < r < p we

have that c ≥ 0. Furthermore, we already know that c ∈ Z, so that the largest set of possible

values for c is c ∈ Z≥0.

The weakly decreasing property of Young diagrams states that (λ(0))Tj+r−1 ≥ (λ(0))Tj+r+cp−1,

since −s + 1 ≥ −cp′ − s + 1 for c ≥ 0. Thus, the strongest bound is obtained for c = 0,

allowing us to write our first non-zero condition as the inequality

(λ(1))Tj ≥ (λ(0))Tj+r−1 − s+ 1. (2.2.43)

Finally, we translate this condition into an equivalent one involving the original Young dia-

grams, not their transposes. To do this, we note that this inequality is equivalent to saying



119 AGT for SU(2) gauge theories with Nf = 4 on C2

that the last box in the j-th row of (λ(1))T is to the right of the box (s− 2) boxes from the

end of the (j + r − 1)-th row of (λ(0))T .

We can visualise this condition by first shifting the Young diagram (λ(0))T up and to the

left by (r − 1) and (s − 1) slots respectively on its lattice, so that the top left box now has

coordinates □ = (−r + 1,−s + 1). We then define a new diagram λ′, which is composed of

all the boxes from the shifted diagram □ = (i, j) ∈ (λ(0))T that still lay in the positive x and

y-quadrant of the lattice. These are defined by i − r + 1 > 0 and j − s + 1 > 0. Then the

boxes in the i-th row for i = 1, . . . , l(λ′) in the new shifted diagram are to left of the end of

the i-th row of (λ(1))T .

Said in a more geometric way, we can informally say that the outline Lλ′ (from section 1.1) of

λ′ never lies to the right of the outline Lλ(1))T of (λ(1))T . More formally, we can say that if we

start Lλ(1))T at a point (a, b) ∈ Z2 and Lλ′ at (a−1, b−1), the two paths are non-intersecting

lattice paths12.

We now take the transpose of this relationship of shifts between diagrams, and consider how

these shifts act on the the non-transposed diagrams λ(0) and λ(1). The shifts are now (r− 1)

slots to the left and (s− 1) slots up, but the relationship between outlines is still the same.

Then by implementing this logic in reverse, we see that these inequalities on transposed

diagrams are equivalent to the following inequalities for the original diagrams

λ
(1)
j ≥ λ

(0)
j+s−1 − r + 1, (2.2.44)

where we note, that this process interchanges the roles of s and r in the inequalities. This is

the first inequality claimed to be true in the proposition.

We now repeat the same argument as above for □(1,0) to obtain

A+
λ(1)

(□) + r = dp, −Lλ(0)(□) + s = dp′, (2.2.45)

where we define a new constant d ∈ Z to be determined in the role of c from before. By follow-

ing our previous arguments, a square □ ∈ λ(1) satisfying these zero conditions is equivalent

to the following inequality

(λ(0))Tj ≥ (λ(1))Tj+dp−1−r1 + s− dp′. (2.2.46)

This time we have Aλ(1)(□) = dp− r− 1 ≥ 0 so that d ∈ Z>0, and as before we must choose

the smallest possible d to obtain the strongest bound, which gives the following non-zero

12As Burge multipartitions (defined by the Burge conditions) are a subset of cylindric partitions (see section
1.1), we note that this idea of non-intersecting lattice paths forms the basis of Gessel and Krattenthalers
computation of the generating function of cylindric partitions [35].



AGT on C2 120

condition where d = 1

(λ(0))Tj ≥ (λ(1))Tj+p−1−r + 1 + s− p′. (2.2.47)

We again follow our previous arguments to obtain the inequality

λ
(0)
j ≥ λ

(1)
j+p′−1−s + 1 + r − p, (2.2.48)

involving the non-transposed diagrams. This is the second inequality of the proposition.

The two inequalities obtained by considering the ■(i,j) factors contributing zeros are weaker

than the bounds obtained here. For example ■(0,1) = 0 is equivalent to the following equa-

tions for some e ∈ Z
−Aλ(1)(■)− r = ep, L++

λ(0)
(■)− s = ep′, (2.2.49)

from which it is apparent that we obtain a similar inequality to the second non-zero condition

above where we replace s and r by s+ 1 and r − 1 respectively. Thus this bound is weaker

than the second non-zero condition. The case ■(1,0) follows an analogous argument with the

first non-zero condition.

This proposition tells us that to remove the poles that appear in instanton partition function

for SU(2) gauge theories under a minimal model identification, we must restrict our sum to

Burge pairs, and here lies our interest in Burge multipartitions. In this simple case, where

we are considering models that are AGT dual to the well understood V ir minimal models,

we can use the AGT correspondence to find interesting behaviour on the gauge side. In

chapters 3, 4, and 5 we will work in the reverse direction, we will aim to use the gauge

theory to study the less well understood ŝl(n)-WZW models and, more generally, CFTs with

symmetry algebra A(N,n; p).

As a consequence of proposition 2.2.4.3, we define the Burge reduced instanton partition func-

tion Z for U(2) gauge theories with two multiplets of each fundamental and anti-fundamental

matter under a minimal model identification as follows

Z(a,m,m′; q) := Zinst(a,m,m′; q)

=
∑

λ∈Cr−1,s−1

Zfun(a, λ;m1)Zfun(a, λ;m2)Zafun(a, λ;m
′
1)Zafun(a, λ;m

′
2)

Zvec(a, λ)
q|λ|, (2.2.50)

which is identical to (2.1.14), except we are restricting the sum to Cr−1,s−1 which we define

to be the set of all Burge pairs (equivalently cylindric partitions). This process, where we

redefine the definition of Zinst to be a sum of Burge multipartitions instead of all pairs of

Young diagrams, is interpreted as a gauge theoretic equivalent to removing null states with

V ir minimal models.
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2.2.5 The Instanton Generating Function and Minimal Model Characters

For gauge theories under a minimal model identification, we note that our redefinition of Zinst

implies we should similarly define the Burge-reduced instanton generating function X̂SU(2)

using the usual instanton generating function (2.1.15). In this case, we go one step further

than for the partition function and factorize the U(1) (free boson) factor to obtain the SU(2)

Burge-reduced instanton generating function should be taken to be

X̂SU(2)
r,s (q) = (q; q)∞ ×XU(2)

r,s (q) = (q; q)∞ ×
∑

λ∈Cr−1,s−1

q|λ|. (2.2.51)

Since it is known that X
U(2)
r,s (q) is equal to the character function χp,p+1

r,s (q) (1.5.141) for

V ir-minimal models, up to a factor of (q; q)−1
∞ [40, 20], we see that the Burge-reduced in-

stanton generating function is equal to χp,p+1
r,s (q). Thus, we see the AGT dual object to the

instanton generating function is the character function of the dual 2D CFT. We will utilize

this correspondence when testing our proposed generalization in chapter 4, and in chapter

5 this will form the basis for our new combinatorial identities for ŝl(n)-string functions and

coset characters.

2.3 SU(N) AGT-W with Nf = 2N on C2

We now discuss a generalisation of AGT to a correspondence between 4D N = 2 SUSY

gauge theories on C2 with gauge group G = SU(N) and 2D AN−1-Toda field theory, first

suggested in [6]. This generalized correspondence is commonly referred to as AGT-W due to

theW-algebra symmetry of Toda (see section 1.5.14). The AGT correspondence discussed in

the previous sections, between N = 2 SU(2) gauge theories on C2 and Liouville CFT, is the

N = 2 case of this more general framework. In our case, we will restrict our focus to the class

S theory T SU(N)
0,4 and the 4-point conformal block for AN−1-Toda field theory. We recall,

that the theory T SU(N)
0,4 has a U(N) × U(N) ≃ U(1)2 × SU(N)2 flavour symmetry and has

Nf = 2N flavours of matter, composed of N flavours of fundamental and anti-fundamental

matter.

2.3.1 WN -Chiral Blocks

The AN−1-Toda conformal field theory on the 2D side of the correspondence, has a WN

symmetry algebra, as explained in section 1.5.14. As such, we will begin by briefly discussing

WN -chiral blocks, which are the conformal blocks of this theory.
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The calculation of conformal (or chiral) blocks (and by extension, correlation functions) in

WN CFTs for N > 2 is more complicated than for V ir CFTs. The most important difference

is that the general n-point correlation functions ofWN primary fields can not be determined

in terms of only the 3-point functions ofWN -primaries (see (1.5.142) for the defining property

of WN -primary fields).

This means that a full computation of all correlation functions inWN CFTs using the generic

WN chiral blocks (this is the equivalent of V ir conformal blocks for WN algebras) is so far

unknown. Thus, the SU(N) AGT-W relation follows from the results of [108, 109] and

restricts to a special class of n-point correlation functions which are determined in terms of

the 3-point functions of primary fields. In our case we will only consider n = 4.

We recall our discussion from section 1.5.14, where we constructed primary fields in Toda as

vertex operators. These fields are parameterized by a sl(N) weight, which is their conformal

charge. We will calculate the same conformal block in this generalized correspondence as in

figure 2.6 for these primary fields. For Toda blocks, we will label the legs by the conformal

charges parameterizing the conformal dimensions of the primary fields. We depict this in

figure 2.9. In this case, the conformal dimension ∆ of a Toda primary field is now calculated

α(0) α(3)

α(2) α(3)

α

Figure 2.9: A 4-point AN−1-Toda chiral block, with primary fields labelled by their con-
formal charges.

by (1.5.152), which we reproduce here

∆(α) =
(α, 2Qρ− α)

2
, (2.3.1)

where we recall that ρ = 1
2

∑
α∈∆+

α is the Weyl vector. We allow the conformal charge of

the external legs, labelled by α(0) and α(3), to be any sl(N) weights, while the internal legs

α(1), α(2) are restricted to have conformal charge of the form

α(i) ∈ {kΛ̄1, k
′Λ̄N−1|k, k′ ∈ R}, i = 1, 2, (2.3.2)

where we recall that Λ̄i denotes the i-th fundamental weight of sl(N). In the language of the

dual 4D gauge theory, we will take this special restriction to correspond to the factorisation of

the flavour symmetry group. We also recall that the central charge of Toda is parameterised

as

c = (N − 1)(1 +N(N + 1)(Qρ,Qρ)), Q = b+
1

b
. (2.3.3)
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As for SU(2) gauge theories, we make the AGT identification ϵ1 = b and ϵ2 = b−1 and

Q = ϵ1 + ϵ2. We form the following conformal charges from the mass parameters of the

gauge theory [6]

α(0) =
Qρ

2
+
N−1∑
i=1

(mi+1 −mi) Λ̄i, α(1) =
N∑
i=1

miΛ̄1, (2.3.4)

α(3) =
Qρ

2
+

N−1∑
i=1

(
m′
i −m′

i+1

)
Λ̄i, α(2) =

N∑
i=1

m′
iΛ̄N−1, (2.3.5)

and we can see here that α(1) and α(2) have been restricted to the special values described

above in (2.3.2). We also note that form of α(0) and α(3) generalizes the formulas (2.2.2).

Remark 2.3.1.1. One can take the point of view of 4 dimensional gauge theory to explain

this lack of symmetry in the vertex operator momenta. Each puncture on the Riemann

sphere with four punctures in T G0,4 corresponds to the insertion of a vertex operator in a

correlation function via AGT. In the case of the class S theories we are considering, there is

extra information associated to each puncture. In the case of T G0,4, we have been considering

theories with two types of punctures, one on each pair of pants, which correspond to the two

different types of legs in the 4-point block.

Remark 2.3.1.2. We can also make a parameter matching argument. On the SU(N) gauge

side we have 2N mass parameters and N − 1 Coulomb parameters for a total of 3N − 1

parameters defining our theory, whereas on the CFT side for an unrestricted 4-point correla-

tion function, we have 5 weight labels with N − 1 components. We can then see that in the

case of N = 2 we have 3N − 1 = 5(N − 1) = 5 but that this is the only such case for N ≥ 2.

This suggests that not every parameter on the CFT side that is AGT dual to SU(N) gauge

theories for N > 2 can be free.

We then identify the Coulomb parameters a = (a0, . . . , aN−1) with the charge of the internal

channel as follows. We recall our discussion in section 1.3.3, and embed the dual h∗ of the

Cartan algebra for su(N) into CN by fixing the basis {ei} and defining13 αi = ei − ei+1. We

define e0 = 1
N−1

∑N
i=1 ei and εi = ei − e0 and in this notation the internal momentum α is

related to the Coulomb parameters by

2α = Qρ+

N∑
i=1

ai−1εi. (2.3.6)

To confirm that this is a natural generalization of SU(2) AGT, we take the N = 2 case of

what this setup, and we see that α(0) and α(3) reduce to α1+α2 and α1−α2 (in the language

of [2]) as expected, while α(1), α(2), and α also obviously reduce to their SU(2) counterparts.

13Note that here αi refers to the i-th root of su(N) not the conformal charge of a vertex operator.
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2.3.2 Gauge Theory Parameters and Stripping the U(1) Factor

Recall that our U(N) theory has 2N mass parameters and N Coulomb parameters collected

in the vectors m = (m0, . . . ,mN−1), m
′ = (m′

0, . . . ,m
′
N−1), and a = (a0, . . . , aN−1). In the

SU(N) gauge theory we additionally have the relation
∑N−1

i=0 ai = 0.

As before, we strip the U(N) instanton partition function of the U(1) factor to obtain the

SU(N) partition function. In this case, the factorization is conjectured to be [6]

Z
U(N)
inst = (1− q)

(
∑N−1

i=0
mi)(ϵ1+ϵ2−

1
N

∑N−1
i=0

m′
i)

ϵ1ϵ2 Z
SU(N)
inst . (2.3.7)

Here we have written the U(1) factor in terms of the gauge theory parameters, whereas in the

AGT literature this factor is often written in terms of the Q and α parameters of the CFT

side. We do so to match with our later notation and to emphasize this factor as naturally

occurring in the gauge theory.

Remark 2.3.2.1. Having stripped the U(1) factor and formed an AGT dictionary between

SU(N) theories on C2 and AN−1-Toda CFTs, it is natural to attempt to extend the approach

of the proof for AGT involving SU(2) gauge theories on C2 reviewed in section 2.2.3, to the

case of SU(N) gauge theories. This was done in [137], where a special basis for the highest

weight modules of the corresponding Toda CFT symmetry algebra H⊗WN was constructed

using Jack polynomials. The matrix elements of this basis reproduced the bifundamental

multiplet contribution for the corresponding SU(N) gauge theory. As noted in section 2.1.4,

all other multiplet contributions in the gauge theory can be obtained as special cases of

the bifundamental multiplet contribution, so that the conformal blocks in the CFT can be

identified with the instanton partition function in the gauge theory.

2.3.3 SU(N) AGT and WN -Minimal Models

As we did for the AGT correspondence between SU(2) gauge theories and CFTs with a

V ir symmetry algebra, we now consider the case of gauge theories that are AGT dual to

WN -minimal models, reviewing the results of [34]. We recall that the WN minimal models

are labelled by two coprime integers p < p′, and we denote the WN minimal models by

M(p, p′;N). We shall describeM(p, p′;N) using the Coulomb-gas formalism of section 1.5.15,

analogously to our discussion of Liouville minimal models in section 2.2.4.

In the Coulomb-gas formalism, primary fields in M(p, p′;N) are labelled by their conformal

charges

αr,s = −
N−1∑
i=1

((ri − 1)α+ + (si − 1)α−) Λ̄i, (2.3.8)
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where we recall that α± are the screening charges (1.5.156). It is convenient to supplement

our r and s parameters with two strictly positive integers r0 and s0, defined by

N−1∑
i=0

ri = p,
N−1∑
i=0

si = p′. (2.3.9)

Under this parameterization, the conformal charges of the internal legs are restricted to be

of the following two forms

αr1,s1 = ((r1 − 1)α+ + (s1 − 1)α−) Λ̄1, ((r1 − 1)α+ + (s1 − 1)α−) Λ̄N−1. (2.3.10)

The momentum vector Pr,s (see (1.5.162)) for the field with charge αr,s in this theory is

Pr,s = −
N−1∑
i=1

(riα+ + siα−) Λ̄i. (2.3.11)

Using this we can write the conformal dimension ∆r,s of a primary field labelled by r and s

as

∆r,s =
1

2
(Pr,s + α0ρ) · (Pr,s − α0ρ) =

1

2

(
P 2
r,s − α2

0ρ
2
)
. (2.3.12)

Remark 2.3.3.1. In this equation α0 is denoting the background charge for the Coulomb-

gas formalism, not the affine root of ŝl(N). We have denoted both of these objects in this

confusing way throughout this thesis, as both of these notations are uniform across the

literature. When using the SU(N) AGT dictionary for correspondences involving minimal

models this notation will always reference the background charge. Importantly, the charge

vectors for AN−1-Toda only involve sl(N) weights, never affine roots.

To identify the Coulomb parameters a = (a0, . . . , aN−1) with minimal model conformal

momenta, we parameterize

ai = a+i α+ + a−i α−, (2.3.13)

and identify

a+i =

N−1∑
j=1

(Λj , hi+1)rj , a−i =
N−1∑
j=1

(Λj , hi+1)sj , (2.3.14)

where hj for j = 1, . . . , N−1 are the weight vectors of the fundamental representation of sl(N)

(defined in remark 1.5.14.1). Taking the fundamental representation to have highest weight

Λ̄N−1, the weight vectors are h1 = Λ̄N−1 and hj = Λ̄N−1 −
∑N−1

k=j αk for j = 2, . . . , N − 1,

where we recall that the set {αi}i=1,...,N−1 is the set of simple roots for sl(N). We then have

hi − hi+1 = αi which fixes (N − 1) of the Coulomb parameters.

Remark 2.3.3.2. Note that the weight vectors hi for the fundamental representation are the

embedded weight vectors we defined for (2.3.6) above.
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The final Coulomb parameter follows from the condition
∑N−1

i=0 ai = 0, where we substitute

(2.3.14), and the definition of the screening charges which we reproduce here

α+ =

√
p′

p
, α− = −

√
p

p′
. (2.3.15)

Solving these conditions, shows us that the difference of successive coulomb parameters is of

the form

a+i − a
+
i+1 = −ri, a−i − a

−
i+1 = −si, i = 1, . . . , N − 1, (2.3.16)

while the sum of all the differences must add to pα+ + p′α−, so that the final difference

involves the strictly positive integers r0 and s0, defined in (2.3.9), and is of the form

a+N−1 − a
+
0 = −r0, a−N−1 − a

−
0 = −s0. (2.3.17)

This finishes our parameterization of SU(N) gauge theories under a minimal model iden-

tification. We now use this identification and write the denominator of a term in Z
U(N)
inst

as

Zden(a,m,m′) =

N−1∏
i,j=0

∏
□∈λ(i)

(
E(−

j−1∑
k=i

(riα+ + siα−), λ
(i), λ(j),□)

)
∏

■∈λ(j)

(
ϵ1 + ϵ2 − E(

j−1∑
k=i

(riα+ + siα−), λ
(j), λ(i),■)

)
. (2.3.18)

In this formula we let the i and j labels be defined modulo N so that if j − 1 < i we have

j−1∑
k=i

=

N−1∑
k=i

+

j−1∑
k=0

(2.3.19)

Remark 2.3.3.3. We note that for (i, j) = (i, i+ 1) the corresponding factors in Z
U(N)
den look

analogous to the factors present in Z
U(2)
den .

We can now see that, as for SU(2) gauge theories, using the usual definition for the instanton

partition function of SU(N) gauge theories under a minimal model identification will not

work. Under this parameterization of the gauge theory parameters, Zden vanishes for some

N -tuples of Young diagrams. As before, we can create a well-defined partition function by

modifying the definition of Zinst to eliminate these poles. To do so, we define it as a sum

over a restricted set of N -tuples of Young diagrams. This leads to the following proposition.

Proposition 2.3.3.4. ([34, Prop 4.1]) The denominator function Zden in Z
SU(N)
inst for gauge
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theories under a minimal model identification does not vanish for an N -tuple of Young dia-

grams λ = (λ(0), . . . , λ(N−1)) if and only if λ satisfies the following Burge conditions

λ
(i)
j ≥ λ

(i+1)
j+si−1− ri+1, i = 0, . . . , N − 1, 1 ≤ j ≤ min(l(λ(i)), l(λ(i+1))− si+1), (2.3.20)

where the Young diagram superscript labels are defined modulo N , and ri, si for i = 0, . . . , N−
1 are strictly positive integers that parameterize the conformal momentum of the conformal

family that flow in the channel.

The proof of this proposition is analogous to the proof of proposition 2.2.4.3. In this case,

the Burge conditions follow from eliminating the zeros in the products corresponding to the

pairs of Young diagrams (λ(i), λ(i+1)), and the proof for these pairs is exactly the same as

for SU(2).

After showing this, we are left to show that the zeros occurring in the factors corresponding

to the other possible pairs of Young diagrams (λ(i), λ(i+k)) for k ̸= ±1 are also eliminated if

the Burge conditions are satisfied. This amounts to showing that the (λ(i), λ(i+k)) non-zero

conditions are weaker bounds than the Burge conditions.

Proof. Consider the pair of Young diagrams (λ(i), λ(i+k)), for which there is a corresponding

factor in Zvec

□(i,i+k) :=
∏

□∈λ(i)

(
E(−

i+k−1∑
j=i

(rjα+ + sjα−), λ
(i), λ(i+k),□)

)

=
∏

□∈λ(i)

(
E(−

i+k−1∑
j=i

(rjα+ + sjα−), λ
(i), λ(i+k),□)

)
. (2.3.21)

We note that this factor is of a similar form as the factor in the SU(2) which we notated

as □(0,1). The differences being that there is a different parameter x in the building block

function E(x, λ(l), λ(m),□) and the labels of the Young diagrams. Thus, we can follow the

arguments from our previous proof of proposition 2.2.4.3 with different Young diagram labels

and we replace our previous parameter with this new one, which amounts to replacing

ri 7→
i+k−1∑
j=i

ri, si 7→
i+k−1∑
j=i

si. (2.3.22)

After doing so, we see that to eliminate the zeros in this factor we find the same inequalities as

before except with the parameters replaced as above. Thus, we find the non-zero conditions

λ
(i)
j ≥ λ

(i+k)

j+(
∑i+k−1

l=i si)−1
−

(
i+k−1∑
l=i

ri

)
+ 1. (2.3.23)
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We claim that the strongest bound one finds in this way is obtained using the non-zero

conditions found for the pairs of Young diagrams of the form (λ(i), λ(i+1)), which we will

refer to as sequential conditions. To show this, we will compare the bounds obtained for pairs

of diagrams of the form (λ(i), λ(i+k)) for k > 1 using the sequential conditions against non-

zero conditions on (λ(i), λ(i+k)) obtained using the arguments from the proof of proposition

2.2.4.3.

We begin by considering what the sequential conditions obtained for the pairs of diagrams

of the form (λ(i), λ(i+1)) and (λ(i+1), λ(i+2)) imply as a restriction on pairs of diagrams of the

form (λ(i), λ(i+1)). Explicitly, we have the two sequential conditions

λ
(i)
j ≥ λ

(i+1)
j+si−1 − ri + 1, (2.3.24)

and

λ
(i+1)
j ≥ λ(i+2)

j+si+1−1 − ri+1 + 1, (2.3.25)

which together imply that

λ
(i)
j ≥ λ

(i+2)
j+si−1+si+1−1 − ri + 1− ri+1 + 1 = λ

(i+2)
j+si+si+1−2 − ri − ri+1 + 2. (2.3.26)

We repeat this argument, using induction, and see that the sequential conditions imply the

following inequalities between pairs of diagrams of the form (λ(i), λ(i+k))

λ
(i)
j ≥ λ

(i+k)

j+
∑i+k−1

l=i (sl−1)
−
i+k−1∑
l=i

(rl − 1). (2.3.27)

If we now compare (2.3.23) to (2.3.27), we see that the second is stronger for k > 1, so that

the sequential conditions also imply all other non-zero conditions for this factor. Thus, if we

restrict to N -tuples of Young diagrams that satisfy (2.3.27) we remove all zeros from this

factor. We now repeat this process for the pair (λ(i), λ(i+k)) and the corresponding factor

■(i,i+k) :=
∏

■∈λ(i+k)

(
ϵ1 + ϵ2 − E(

i+k−1∑
k=i

(riα+ + siα−), λ
(i+k), λ(i),■)

)
. (2.3.28)

As before, this corresponds to a factor ■(0,1) in the SU(2) proof with a changed parameter

and a relabelling of the Young diagrams, so that, as above, we obtain the same inequalities

between this pair of diagrams to remove all zeros in this factor. As explained in the SU(2)

proof, these inequalities are actually weaker than those to eliminate the zeroes coming from

the other factor, so do not contribute any new information.

This is only half of the possible pairs of diagrams, and hence half the possible factors in Zden.

To repeat this argument for the other half, we substitute i+ k 7→ i− k and consider the case
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of k > 0 under this substitution. We have that

ai − ai−k =
i−1∑
j=i−k

(rjα+ + sjα−) = pα+ + p′α− −

i−k−1∑
j=0

+

N−1∑
j=i

 (rjα+ + sjα−), (2.3.29)

where in the second equality we have used the definitions of r0 and s0

r0 = p−
N−1∑
j=1

rj , s0 = p−
N−1∑
j=1

sj . (2.3.30)

We can now repeat the same arguments as for the pairs of diagrams of the form (λ(i), λ(i+k))

except we now compare the SU(N) factors □(i,i−k) and ■(i,i−k) with the SU(2) factors we

notated as □(1,0) and ■(1,0) respectively. Thus, we obtain the non-zero conditions

λ
(i)
j ≥ λ

(i−k)
j+p′−(

∑i−k−1
j=0 +

∑N−1
j=i )(si)−1

− p+

i−k−1∑
j=0

+
N−1∑
j=i

 (ri) + 1, (2.3.31)

which compare with the non-zero conditions implied on the pair (λ(i), λ(i−k)) by the sequential

conditions. In this case, we repeat the process described above. When using the inequality

λ
(N−1)
j ≥ λ(0)j+s0−1 − r0 + 1, (2.3.32)

we substitute the definition of r0 and s0 to obtain

λ
(N−1)
j ≥ λ(0)

j+p−(
∑N−1

j=1 sj)−1
− p+

N−1∑
j=1

rj + 1. (2.3.33)

Then, using induction as above, we see that the sequential conditions imply the following

inequalities between the pair (λ(i), λ(i−k))

λ
(i)
j ≥ λ

(i−k)
j+p′−(

∑i−k−1
j=0 +

∑N−1
j=i )(si−1)

− p+

i−k−1∑
j=0

+
N−1∑
j=i

 (ri + 1). (2.3.34)

As before we see that (2.3.34) is a set of stronger bounds than (2.3.31). This shows that

we need only to restrict our summation to the Burge conditions implied by the adjacent

factors to eliminate all zeros in the denominator of Zinst and completes our proof of the

proposition.

Remark 2.3.3.5. In essence, relying on the N = 2 case and using the sequential conditions

works as each sequential condition compares the i-th and (i + si − 1)-th row of sequential

diagrams. When repeatedly applied, we can think of this as moving down the rows of

diagrams repeatedly, where we move by si down and then one back up the diagram. This is
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in contrast to the bounds on non-adjacent pairs, which move by si down for each row but

then back up one only once. Similar arguments follow for the ri parameters, where we recall

our discussion in section 2.2.4 and interpret these as shifting along columns. We will use

this argument later when considering the case of AGT for gauge theories on the ALE space

C2/Zn.

These Burge multipartitions, which are defined by the labels r and s of primary field defining

the conformal family that flows in the channel, are weight (ζ, ξ)-Burge multipartitions where

ζ = [s0 − 1, . . . , sN−1 − 1] and ξ = [r0 − 1, . . . , rN−1 − 1] in the notation of (1.1.11). When

discussing them in the context of physics, we will prefer the CFT notation involving r and

s and notate as Cr,s the set of Burge multipartitions of weight (ζ, ξ), when it is clear to do

so. When discussing these inequalities in the context of representation theory and algebraic

combinatorics, we will prefer to notate them using ζ and ξ. Here we make a distinction

between the set of strictly positive integers r and s, and Dynkin labels ξ and ζ. We will

sometimes refer to this set as the set of (r, s)-Burge partitions.

We now define the Burge-reduced instanton partition function ZU(N) which is conjectured

to be in AGT correspondence with the 4-point comformal blocks of H⊕WN minimal models

on the sphere

ZU(N)(a,m,m′; q) := Z
U(N)
inst (a,m,m′; q) =

∑
λ∈Cr,s

q|λ|
Zbif (a,m, λ)Zbif (a,m

′, λ)

Zvec(a, λ)
. (2.3.35)

In [34], this was checked against the W3 minimal model M(8, 9; 3). To do this, they fixed

one of the Toda vertex operator insertions (in our notation, α1) to be a W3 null state, which

determines the labels of this vertex operator. A null-state is a descendant field of a degenerate

primary field, and by representing the action of the algebra generators of the W3-symmetry

as differential operators, one can show that the correlation function satisfies a third-order

ordinary differential equation of Pochammer type, whose solutions are constructed using the

3F2 hypergeometric function.

By expanding the instanton partition function up to order |λ| = 4 the authors confirmed that

ZU(N) agreed with 3F2 term-by-term up to some overall q factor, after stripping the U(1)

factor from ZU(N). This allowed a tangible prediction to be tested and provides validity to

this process which we shall repeat for AGT on C2/Zn in chapter 4. In our case, we will utilize

the KZ differential equation from (1.5.117), and check the instanton partition function on

C2/Zn space against it.

We finish by again checking the gauge theory instanton generating function against the CFT

character function. Having defined a Burge-reduced partition function we again define the
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Burge reduced SU(2) instanton generating function as

X̂
U(N)
r,s (q) := (q; q)∞ ×XU(N)

r,s (q) = (q; q)∞ ×
∑
λ∈Cr,s

q|λ|, (2.3.36)

which is known to be equal to the character function (1.5.144) forWN -minimal models [41].





Chapter 3

AGT for N = 2 SU(N) Gauge

Theories on C2/Zn

In this chapter we discuss a conjectured extension of the AGT correspondence to N = 2

SU(N) gauge theories on C2/Zn with CFTs with symmetry algebra

A(N,n; p) = ĝl(p−N)N

ĝl(p−N − n)N
∼= H⊕ ŝl(n)N ⊕

ŝl(N)n ⊕ ŝl(N)p−N

ŝl(N)p+n−N
, (3.0.1)

first suggested in [10], which we call coset AGT. We begin by reviewing the material of [42],

which calculated the instanton partition function for U(N) gauge theories on C2/Zn as a

sum of N -tuples of coloured Young diagrams. We then propose how to strip the U(1) factor

and obtain the SU(N) instanton partition function.

We then propose an explicit dictionary between the mass, and deformation parameters of the

gauge theory and the conformal charge of primary fields in the CFT. We use this dictionary

to identify gauge theories that we conjecture are AGT dual to A(N,n; p)-CFTs that involve
minimal models (in a sense that we will make precise in section 3.4.1). We will then show that

in these gauge theories, the usual definition of the partition function contains non-physical

poles and is ill-defined. Finally, we eliminate these poles by imposing the Burge conditions,

calculated in proposition 3.4.2.1, on our N -tuples of coloured Young diagrams to obtain a

well-defined partition function for these theories. The material in this section is based on

the content from [43] co-authored by the author.

133
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3.1 Instanton Partition Function on C2/Zn

In this section, we discuss how the instanton partition function for N = 2 SU(N) gauge

theories on C2/Zn is defined using the building blocks of the instanton partition function on

C2 (2.1.12) and the action of Zn. We begin by discussing the action of Zn on both C2 and

the Coulomb parameters, and how this action affects the instantons. We will then see that

the residues that contribute to instanton partition function on C2/Zn are now characterized

by n-coloured N -tuples of Young diagrams.

3.1.1 Gauge Theories and Instantons on C2/Zn

We begin by considering the action of Zn on the space C2, where we have an N = 2 SU(N)

class S gauge theory with Nf = 2N flavours of matter (with N flavours of both funda-

mental and anti-fundamental matter) as described in chapter 2. We again introduce the

Ω-deformation parameters ϵ1, ϵ2 ∈ R by the U(1)2-torus action (see (2.1.4))

C2 → C2, (z1, z2) 7→ (eiϵ1z1, e
iϵ2z2), (3.1.1)

and define the action of Zn on C2 to be

ρ : Zn × C2 −→ C2

(σ, (z1, z2)) 7→ (e
2πi
n
σz1, e

−2πi
n

σz2), σ ∈ Zn. (3.1.2)

Let ai ∈ C, i = 0, 1, . . . , N − 1 denote the Coulomb parameters of the U(N) gauge theory.

These Coulomb parameters also transform under this Zn-action as

Zn : eiai 7→ e
2πi
n
σieiai , (3.1.3)

where each parameter ai has an associated Zn-charge σi ∈ Zn for i = 0, . . . , N − 1. Note

that σ = 0 is the trivial transformation. Below in section 3.1.2, we will use the invariance of

the instanton partition function on C2/Zn under the action of Zn to restrict which possible

representations can appear in this way, as conditions on the charges σi for i = 0, . . . , N − 1.

Remark 3.1.1.1. Mathematically, this involves associating irreducible Zn-representations to

the ai as follows. As the Coulomb parameters are complex numbers, we can consider the

circles

Cj = {eireiaj |r ∈ R}, j = 0, 1, . . . , N − 1, (3.1.4)

where Zn acts on Cj by the rotation (σ, eireiaj ) 7→ e
2πiσ
n eireiaj . The action of Zn on Cj ex-

tends to a one dimensional complex representation of Zn. Note that there are n-distinct

one dimensional complex irreducible representations of the Zn labelled by the elements
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0, 1, . . . , n − 1 ∈ Zn. The charge σi ∈ Zn then determines which irreducible representa-

tion of the Zn-action we associate to each ai.

In [42], it was shown that the instanton partition function for these theories can again be

computed using localization. The new information for this calculation on C2/Zn is carried

in the Zn-charges σi of the Coulomb parameters ai for i = −0, . . . , N − 1, which appears as

the charges used to colour the N -tuples of Young diagrams λσ = (λ(0,σ0), . . . , λ(N−1,σN−1))

describing the residues of the contour integrals. When discussing AGT for gauge theories on

C2/Zn in the sequel, each Young diagram will be coloured in n-colours in this way. As such

we will drop the charge superscript σi for Young diagrams so that when discussing N -tuples

of Young diagrams λ = (λ(0), . . . , λ(N−1)) we have

λ(i) := λ(i,σi), (3.1.5)

except when we explicitly state that we are considering an uncoloured Young diagram.

We will assume (without loss of generality) that the charges satisfy

σ0 ≥ σ1 ≥ · · · ≥ σN−1, (3.1.6)

as this can always be achieved by rearranging the labels of the Coulomb parameters ai.

We recall (see sections 1.6.2 and 1.6.3) that we can use the ADHM construction, and its

generalization to C2/Zn, to construct the instantons on C2/Zn. These solutions describe a

self-dual or anti-self dual connection on a U(N)-principal bundle, this is the gauge bundle (cf:

section 2.1.4), over C2/Zn. Mathematically, these self-dual and anti-self dual connections for

this bundle are the instantons [113, 112]. The instanton solutions are then classified by both

the first and second Chern classes, c1, c2 of the gauge bundle with these connections, which

is called the instanton bundle, over the space C2/Zn.

Following [112, 42], we can write down the Chern classes of the instanton bundle using

the Chern classes of a tautological Zn-bundle T = C2 ×Zn C[Zn] on C2/Zn. The fibres of

this bundle T are isomorphic to the regular representation C[Zn] of Zn. We then decompose

C[Zn] = ⊕i=0,...,n−1Ri, where {Ri}i=0,...,n−1 are the 1-dimensional irreducible representations

of Zn, and the instanton bundles as follows

T =
⊕

i=0,··· ,n−1

Ti, where Ti := C2 ×Zn Ri. (3.1.7)

Recall from section 1.6.3 that when constructing the instantons on C2/Zn we have two vector
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spaces V and W , that are also Zn-modules. These vector spaces decompose under the Zn-
action as

V =
n−1⊕
i=0

Vi ⊗Ri, W =
n−1⊕
i=0

Wi ⊗Ri, (3.1.8)

with dimensions ki = dim(Vi) and Ni = dim(Wi) for i = 0, . . . , n− 1.

The first and second Chern classes c1 and c2 of the gauge bundle are defined in terms of the

Chern classes of the line bundles Ti, the dimensions of the vector spaces Vi and Wi under

the Zn-decomposition, and the instanton data on C2/Zn as

c1 =

n−1∑
i=0

cic1(Ti), (3.1.9)

c2 =
n−1∑
i=0

cic2(Ti) +
k

|Zn|
, (3.1.10)

where k =
∑n−1

i=0 ki, and c1(Ti) and c2(Ti) are the first and second Chern classes of Ti for
i = 0, . . . , n− 1 respectively. The coefficients ci are functions of ki and Ni, and are given by

ci = Ni − 2ki + ki+1 + ki−1, where ki+n = ki, i = 0, . . . , n− 1. (3.1.11)

Note that the 1-dimensional irreducible representation corresponding to i = 0 is the trivial

representation, as such the Chern class vanishes, c1(T0) = 0.

Remark 3.1.1.2. Recall the ŝl(n) Cartan matrix A, defined by (1.3.40), which we reproduce

here (remembering that we label our rows and columns by i, j = 0, 1, . . . , n− 1)

Aij =


2, i = j,

−1, i ≡ j ± 1 mod n,

0, else.

(3.1.12)

By forming the vectors k = (k0, . . . , kn−1), N = (N0, . . . , Nn−1), c = (c0, . . . , cn−1), we can

rephrase the n equations (3.1.11) into one matrix equation as

A · k = (N− c). (3.1.13)

Then by defining δki = ki − k0 we have the following (n− 1) equations

ci = Ni − 2δki + δki+1 + δki−1, i = 2, . . . , n− 2, (3.1.14)
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together with

c1 = N1 − 2δk1 + δk2, (3.1.15)

cn−1 = Nn−1 − 2δkn−1 + δkn−2. (3.1.16)

In matrix form we can write this system of equations as

Ā · δk = (N̄− c̄), (3.1.17)

where Ā is the sl(n) Cartan matrix, N̄ = (N1, . . . , Nn−1), and c̄ = (c1, . . . , cn−1). The utility

of this second form for this system of equations lies in the fact that the finite Cartan matrix

Ā is invertible.

By rephrasing the equations in this manner using A we see that classification of the instanton

solutions through the Chern classes uses the structure of ŝl(n). As we will show in chapter

4, we can finetune the Ω-deformation used to calculate the instanton partition function for

these theories on C2/Zn to obtain the characters and conformal blocks of ŝl(n)-WZW models.

It then seems to be no coincidence that the Chern classes are of this form, when considering

that the primary fields of ŝl(n)-WZW models form integrable highest weight ŝl(n)-modules.

We will take the Chern classes c1 and c2 of the gauge bundle to be fixed parameters defining

the instantons. Through equations (3.1.11) this defines a set of possible solutions for N and

k, which we take to define the possible instanton solutions for our gauge theory. In this sense,

we will ignore the Chern classes and parameterize our theories using two sets of integers N

and k.

Example 3.1.1.3. ([32]) Let N = 2 be fixed and c1 = 0. In this case we have the matrix

equation

Ā · δk = N̄, (3.1.18)

which we can invert using the inverse sl(n) Cartan matrix

Ā−1
ij = min(i, j)− ij

n
, (3.1.19)
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to solve for the differences δki for i = 1, . . . , n−1. For n = 2, 3, 4 we have the following table

of integer solutions to this matrix equation:

n = 2 {N} {δk}
(2, 0) (0, 0)

(0, 2) (1, 1)

n = 3 {N} {δk}
(2, 0, 0) (0, 0, 0)

(0, 1, 1) (0, 1, 1)

n = 4 {N} {δk}
(2, 0, 0, 0) (0, 0, 0, 0)

(0, 1, 0, 1) (0, 1, 1, 1)

(0, 0, 2, 0) (0, 1, 2, 1)

(3.1.20)

3.1.2 Defining the Partition Function

Here we will recall the form of SU(N) instanton partition function for C2/Zn first derived

in [42]. The instanton partition function is defined as a series over the set of N -tuples

of coloured Young diagrams with fixed charges σ = (σ0, . . . , σN−1) ∈ (Zn)N and colour

data δk = (δk0, . . . , δkn−1) ∈ Zn−1, denoted by Pσδk. The charges in the vector σ are the

Zn-charges associated to the Coulomb parameters a = (a0, . . . , aN−1) and the differences

δk = (δk1, . . . , δkn−1) are calculated using the dimensions of the vector spaces Vi used when

constructing the instantons as

δki = ki − k0, ki = dim(Vi). (3.1.21)

To calculate the terms in this series, we will start with the terms from the partition function

on C2 and project out all factors that are invariant under the action of Zn (we will make

this process explicit in example 3.1.2.2). Due to this, the instanton partition function on

C2/Zn is constructed using the building block E(x, λ(l), λ(m),□) function used to construct

the partition function on C2 (2.1.5), which we reproduce below. We recall that E depends

on a complex parameter x, a pair of Young diagrams (λ(l), λ(m)), and a box □ = (i, j) in

either λ(l) or λ(m), and is defined as

E(x, λ(l), λ(m),□) = x− ϵ1Lλ(m)(□) + ϵ2A
+
λ(l)

(□), (3.1.22)

where Lλ(□) and Aλ(□) are the leg and arm length of the box □ in the Young diagram

λ respectively (see (1.1.2) and (1.1.3)). Using this, we can define Z∗
bif , the contribution of

the bifundamental multiplet on C2/Zn, that depends on two vectors of N complex numbers
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a = (a0, a1, . . . , aN−1) and b = (b0, b1, . . . , bN−1) ∈ CN−1, and two N -tuples of Young

diagrams λ(1) = (λ
(0)
(1), . . . , λ

(N−1)
(1) ) and λ(2) = (λ

(0)
(2), . . . , λ

(N−1)
(2) )

Z∗
bif (a, λ(1);b, λ(2)) =

N−1∏
i,j=0

∗∏
□∈λ(i)

(1)

E
(
ai − bj , λ(i)(1), λ

(j)
(2),□

)
∗∏

■∈λ(j)
(2)

(
ϵ1 + ϵ2 − E

(
bj − ai, λ(j)(2), λ

(i)
(1),■

))
, (3.1.23)

where the asterisks mean to take a product over only the Zn-invariant factors modulo1 2π.

Below we will explicitly describe what this means by calculating which boxes □ ∈ λ(i)(1) and

■ ∈ λ(j)(2) for i, j = 0, . . . , N − 1 contribute as factors for Z∗
bif . Note that Z∗

bif is composed

of the Zn-invariant factors of Zbif , the contribution of the bifundamental multiplet on C2,

defined in (2.1.12).

We remind the reader that the colours of the two boxes □ ∈ λ
(i)
(1) and ■ ∈ λ

(j)
(2) are not

related to the colourings associated to λ
(i)
(1) and λ

(j)
(2), which we still denote by the integers

0, 1, . . . , n − 1. In this case, we are denoting the boxes in these products to distinguish the

boxes □ which are from diagrams λ
(i)
(1) in the first N -tuple of Young diagrams and the boxes

■ which are from the diagrams λ
(j)
(2) in the second.

Remark 3.1.2.1. In [42], the form of (3.1.23) was again calculated using supersymmetric

localization. The process to do so is similar to the calculation for N = 2 SU(N) gauge

theories on C2, as the fixed points of the instanton moduli space for C2/Zn are also the fixed

points for C2. The difference between these two calculations is that the contribution of these

fixed points for the gauge theories on C2/Zn only comes from boxes whose contribution is

invariant under the action of Zn on this gauge theory.

We will now calculate which boxes in the N -tuples of Young diagrams λ(1) and λ(2) cor-

respond to Zn-invariant factors. Under a Zn-transformation, the gauge theory parameter

transformations are generated by

ϵ1 7→ ϵ1 +
2π

n
, ϵ2 7→ ϵ2 −

2π

n
, ai 7→ ai +

2π

n
σi, bj 7→ bj +

2π

n
σ′j . (3.1.24)

We recall our notation from the proof of proposition 2.2.4.3, where for fixed i, j = 0, 1, . . . , N−
1 and a box □ in either λ

(i)
(1) or λ

(j)
(2), we denote the factor

E
(
ai − bj , λ(i)(1), λ

(j)
(2),□

)
, (3.1.25)

1Here and in the sequel, when we say modulo 2π we mean that two numbers are equal up to the addition
of a term of the form 2πm for some m ∈ Z.
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in (3.1.23) by □(i,j). Similarly, we denote

ϵ1 + ϵ2 − E
(
bj − ai, λ(j)(2), λ

(i)
(1),■

)
, (3.1.26)

by ■(i,j). To show □(i,j) is invariant modulo 2π under a Zn-transformation it is sufficient

to show that it is invariant under (3.1.24). To do so, we apply (3.1.24) to the parameters

and then substitute these transformed parameters into (3.1.23). We denote by □(i,j)
Zn

and

■(i,j)
Zn

these factors after a Zn-transformation. In the following example, we follow these

steps explicitly for one such factor and derive the necessary conditions on a box □ = (i, j),

in terms of the Coulomb parameter charges σ0 and σ′0, to correspond to a factor invariant

under the action of Zn modulo 2π.

Example 3.1.2.2. Consider the □(0,0) factor

□(0,0) = E
(
b0 − a0, λ(0)(1), λ

(0)
(2),□

)
= b0 − a0 − ϵ1Lλ(0)

(2)

(□) + ϵ2A
+

λ
(0)
(1)

(□), □ ∈ λ(0)(1). (3.1.27)

After applying the Zn-transformation and substituting in the transformed gauge parameters

we obtain

□(0,0)
Zn

= b0+
2π

n
σ′0−ai−

2π

n
σ0−(ϵ1+

2π

n
)L

λ
(0)
(2)

(□)+(ϵ2−
2π

n
)A+

λ
(0)
(1)

(□), □ ∈ λ(0)(1). (3.1.28)

The asterisk product in (3.1.23) means to take only terms satisfying

□(0,0) ≡ □(0,0)
Zn

mod 2π, (3.1.29)

which we have shown in (3.1.28) is equivalent to the condition that

σ′0 − σ0 − Lλ(0)
(2)

(□)−A+

λ
(0)
(1)

(□) ≡ 0 mod n. (3.1.30)

The computation in example 3.1.2.2 can be generalized to all i, j = 0, . . . , N − 1 and boxes

□ ∈ λ(i)(1) and ■ ∈ λ(j)(2). After doing so, we obtain the following equations, which we refer to

as the orbifold conditions, that determine which boxes correspond to Zn-invariant factors:

σ′j − σi − Lλ(j)
(2)

(□)−A+

λ
(i)
(1)

(□) ≡ 0 mod n, □ ∈ λ(i)(1), (3.1.31)

σi − σ′j − Lλ(i)
(1)

(■)−A+

λ
(j)
(2)

(■) ≡ 0 mod n, ■ ∈ λ(j)(2). (3.1.32)

We use Z∗
bif to define Z∗

vec, the inverse of the vector multiplet contribution on C2/Zn, which
depends on a single N -tuple of Young diagrams λ = (λ(0), . . . , λ(N−1))

Z∗
vec(a, λ) = Z∗

bif (a, λ;a, λ). (3.1.33)
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Using this we can define the instanton partition function Z
U(N)
inst for N = 2 U(N) class

S gauge theories with N flavours of fundamental and anti-fundamental matter on C2/Zn.
The partition function is defined using the mass parameters m = (m0, . . . ,mN−1) ∈ CN

and m′ = (m′
0, . . . ,m

′
N−1) ∈ CN (defined in section 2.1.1) and Coulomb parameters a =

(a0, . . . , aN−1) ∈ CN . We remind again that the SU(N) factor of this U(N) partition

function is conjectured to be equal to the conformal block of a CFT with symmetry algebra

A(N,n; p) under a suitable identification of parameters. The definition of Z
U(N)
inst on C2/Zn

will involve empty coloured N -tuples of Young diagrams ∅b, where we will consider N -tuples

of Young diagrams which have no boxes. As they are coloured they will still have charges

b = (b0, . . . , bN−1) ∈ (Zn)N , which are referred to as the Zn-boundary charges.

Theorem 3.1.2.3. ([32]) Using equivariant localization, the U(N) instanton partition function

Z
U(N)
inst for the class S theory with N fundamental and N anti-fundamental matter multiplets

on the ALE space C2/Zn can be written as the following sum overN -tuples of coloured Young

diagrams λ with charge vector σ = (σ0, . . . , σN−1) and colour data δk = (δk1, . . . , δkn−1)

Z
U(N)
σ;δk (a,m,m′,b,b′; q) =

∑
λ∈Pσ

δk

Z∗
bif (m,∅b;a, λ)Z∗

bif (a, λ;−m′,∅b′
)

Z∗
vec(a, λ)

q
1
n
|λ|, (3.1.34)

where Pσδk is the set of all N -tuples of Young diagrams with charges σ = (σ0, . . . , σN−1)

and colour differences δk = (δk1, . . . , δkn−1), a = (a0, . . . , aN−1) ∈ CN are the Coulomb

parameters, m = (m0, . . . ,mN−1) ∈ CN and m′ = (m′
0, . . . ,m

′
N−1) ∈ CN are the mass

parameters for the fundamental and anti-fundamental multiplets associated to a U(N) ×
U(N) flavour symmetry, and b = (b0, . . . , bN−1) ∈ (Zn)N and b′ = (b′0, . . . , b

′
N−1) ∈ (Zn)N

are the Zn-boundary charges, which are assigned to empty coloured Young diagrams ∅b and

∅b′
.

We assume the Zn-boundary charges are ordered as

b0 ≥ b1 ≥ · · · ≥ bN−1, b′0 ≥ b′1 ≥ · · · ≥ b′N−1. (3.1.35)

Remark 3.1.2.4. Note that the instanton partition function for gauge theories on C2/Zn has

explicit dependence on the Zn-boundary charges b and b′. In the sequel, we will employ the

shorthand

Z
U(N)

b,b′ (a,m,m′; q) := Z
U(N)
σ;δk (a,m,m′,b,b′; q), (3.1.36)

which is not Zinst(a,m,m′; q), the instanton partition function on C2 (2.1.14) (which has no

dependence on Zn-boundary charges). We will also always notate the multiplet contributions

with an asterisk superscript to differentiate them from the multiplet contributions on C2.
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3.1.3 Stripping the U(1) Factor in Z
U(N)
inst

The coset AGT correspondence is between the instanton partition function for N = 2 SU(N)

gauge theories on C2/Zn and the 4-point conformal blocks for a 2D CFT with symmetry

algebra A(N,n; p). As in the case of AGT for gauge theories on C2, only the U(N) instanton

partition function (3.1.34) has been calculated explicitly [42]. As explained in chapter 2, we

therefore must find a U(1) factor in Z
U(N)

b,b′ to obtain Z
SU(N)

b,b′ , the SU(N) partition function

on C2/Zn.

To do so, we begin by recalling that we must impose the traceless condition

N−1∑
i=0

ai = 0, (3.1.37)

on the Coulomb parameters ai for i = 0, . . . , N − 1, so that they parameterize an element ϕ

of the Cartan subalgebra of sl(n). Then following [2, 6, 26, 138] we propose a U(1) factor

for the instanton partition function of the following form

ZU(1) := (1− q)
(
∑N−1

i=0
mi)(ϵ1+ϵ2−

1
N

∑N−1
i=0

m′
i)

nϵ1ϵ2 . (3.1.38)

We regard this as a generalization of the form for the U(1) factor for SU(N) gauge theories

on C2 (cf: (2.2.5) for the SU(2) case and (2.3.7) for the general SU(N) case, which we recall

was obtained in [6]), and of the form for SU(2) gauge theories on C2/Z2. We will check this

proposal against the U(1) factors known for N = 3, n = 1 and N = 2, n = 2 below. In

chapter 4, we will factorize the partition function as

Z
U(N)

b,b′ (a,m,m′; q) = ZU(1) × ZSU(N)

b,b′ (a,m,m′; q), (3.1.39)

and identify the conformal blocks of the 4-point ŝl(n)-WZW function with Z
SU(N)

b,b′ (a,m,m′; q).

By doing so we will see that our proposed fator ZU(1) naturally corresponds to the Heisenberg

algebra factor H for our CFT. Then by the arguments in chapter 2, we can identify ZU(1) as

the correct U(1) factor of the U(N) partition function.

Example 3.1.3.1. In the case of SU(3) for gauge theories C2 (that is N = 3, n = 1), the

instanton partition function Z
U(3)
inst was found to factorize in the form [139, 25]

Z
U(3)
inst (a,m,m′; q) =ZU(1)Z

SU(3)
inst (a,m,m′; q) (3.1.40)

=(1− q)
(
∑2

i=0 mi)(ϵ1+ϵ2−
1
3

∑2
i=0 m′

i)
ϵ1ϵ2 Z

SU(3)
inst (a,m,m′; q). (3.1.41)



143 The Algebra A(N,n; p)

For SU(2) on C2/Z2 (that is N = 2, n = 2) the instanton partition function Z
U(2)
inst was found

to factorize in the form [26, 28, 140]

Z
U(2)
inst (a,m,m′,b,b′; q) =ZU(1)Z

SU(2)
inst (a,m,m′; q) (3.1.42)

=(1− q)
(
∑1

i=0 mi)(ϵ1+ϵ2−
1
2

∑1
i=0 m′

i)
2ϵ1ϵ2 Z

SU(2)
inst (a,m,m′,b,b′; q). (3.1.43)

As we can clearly see by the form we have written the U(1) factors for both cases above, our

proposed U(1) factor (3.1.38) reduces to these for the specified choices of parameters.

3.2 The Algebra A(N, n; p)

In this section we consider the 2D CFTs with the symmetry algebra A(N,n; p), which have

been conjectured to be dual to our gauge theories on C2/Zn. The algebra A(N,n; p) is of

the following form [10, 32, 138, 34]

A(N,n; p) = ĝl(p−N)N

ĝl(p−N − n)N
∼= H⊕ ŝl(n)N ⊕

ŝl(N)n ⊕ ŝl(N)p−N

ŝl(N)p+n−N
, (3.2.1)

where n,N, p ∈ Z>0, n ≤ p − N , and p ≥ N , H is the Heisenberg algebra. We will

only consider the second presentation of the algebra A(N,n; p), which itself has 3 distinct

components, in the subsequent material of this chapter and chapter 4. We will then explore

the first presentation in chapter 5. On the CFT side, the parameter p is fixed in terms of

the Ω-deformation parameters for the gauge theory by

ϵ1
ϵ2

= −n+ p

p
. (3.2.2)

When the deformation parameters satisfy this for n, p ∈ Z, they define what is referred to as

the rational Ω-background.

A CFT with the symmetry algebra A(N,n; p) represents a combined system of three 2D

CFTs: a free boson (corresponding to H, see section 1.5.6), an ŝl(n)N -WZW model, and a

diagonal coset model which is referred to as a n-th WN -parafermion system that we notate

as Wpara
n,N (see [141] and references therein). As explained in chapter 2, the Heisenberg factor

on the CFT side corresponds to the U(1) factor in the gauge group U(N) on the gauge side

of the correspondence. The U(1) factor appearing in the U(N) instanton partition function

then appears as the correlator of a free boson on the CFT side.

There are two important special cases of this algebra A(N,n; p) to highlight, the case of

n = 1 with p > N , and the case p = N with n > 1.
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3.2.0.1 n = 1 and p > N

For the first case, the symmetry algebra is

A(1, N ; p) = H⊕ ŝl(1)N ⊕
ŝl(N)1 ⊕ ŝl(N)p−N

ŝl(N)p−N+1

. (3.2.3)

As ŝl(1)N -WZW models are trivial (see [50]), for these choices of parameters the symmetry

algebra is of the form

A(1, N ; p) = H⊕
ŝl(N)1 ⊕ ŝl(N)p−N

ŝl(N)p−N+1

. (3.2.4)

Since p > N we can redefine (p−N) 7→ p and see that (3.2.4) is the same as (1.5.143) with

one additional Heisenberg factor. Thus we obtain a combined CFT which describes one free

boson and M(N + p,N + p+ 1;N) (a (p, p+ 1)-WN unitary minimal model). On the gauge

side, we see that for n = 1 we have that C2/Zn
n=17→ C2 and this structure reduces to the

AGT-W correspondence for N = 2 SU(N) gauge theories on C2 described in chapter 2.

Remark 3.2.0.2. We will base our proposed generalization around the form of the AGT-W
conjecture discussed in section 2.3. Thus, our identifications between the gauge theory and

CFT parameters will be of the same form as (2.3.4). When we further restrict to gauge

theories that are AGT dual to minimal model CFTs, the gauge theory parameters will be in

the form (2.3.8).

3.2.0.3 p = N and n > 1

For the second case, we trivialize the coset factor in the second presentation of A(N,n; p) in
(3.2.1) (as now p−N = 0). This leaves us with the symmetry algebra

A(N,n;N) = H⊕ ŝl(n)N . (3.2.5)

In this case, we are considering a CFT composed of a free boson and an ŝl(n)-WZW model,

and this will be the topic of chapter 4. There we will show that one can calculate the char-

acters and conformal blocks of ŝl(n)-WZW models using the instanton generating function

and instanton partition function of N = 2 SU(N) gauge theories with specific mass and

deformation parameters.

For later reference, we state here the central charge for a CFT with symmetry algebra

A(N,n; p), by adding the individual central charges of its factors. For the first two factors

we have [50]

c(H⊕ ŝl(n)N ) = 1 +
N(n2 − 1)

n+N
, (3.2.6)
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whereas the Wpara
n,N central charge can be calculated string theoretically as [10]

c(Wpara
n,N ) =

n(N2 − 1)

n+N
− nN(N2 − 1)

p(p+ n)
(3.2.7)

=
n(N2 − 1)

n+N
+
N(N2 − 1)

n

(ϵ1 + ϵ2)
2

ϵ1ϵ2
. (3.2.8)

3.3 AGT Dictionary for N = 2 SU(N) Gauge Theories on

C2/Zn

Here we provide a proposal [43] which identifies the parameters in (3.1.34) with those defining

the conformal blocks of the 4-point Wpara
n,N correlation function on P1 between primary fields

ψαr(zr), r = 0, 1, 2, 3, which are labelled by the charge αr ∈ P+(sl(N)) and where the

primary fields are inserted at zr ∈ P1. After a PSL(2,C) transformation we can fix 3 of the

zr coordinates to 0, 1,∞, so that the 4-point function

⟨ψα0(∞)ψα1(1)ψα2(q)ψα3(0)⟩
Wpara

n,N

P1 , (3.3.1)

depends on one variable q, which is the cross-ratio (1.5.31). We identify the cross ratio q

with the variable q used to define the series expansion of Z
U(N)

b,b′ in (3.1.34).

Following the discussion of section 2.3 we again only consider special values of α1, α2 in the

4-point functions (3.3.1) on the CFT side of the conjectured correspondence below. As in

the case for CFTs whose symmetry algebras are theWN algebras, we will restrict to the case

where the charge of the two internal legs are taken to be scalar multiples of Λ̄1 and Λ̄N−1.

This leads to the following conjecture.

Conjecture 3.3.0.1. ([43]) The charges αr for r = 0, 1, 2, 3, which define the primary fields

for an A(N,n; p) 4-point function on C (3.3.1), are related to the mass parameters mi, m
′
i

and the deformation parameters ϵ1 and ϵ2 for an N = 2 SU(N) gauge theory on C2/Zn as

follows:

2α0 = Qρ+
N−2∑
i=0

(mi+1 −mi) Λ̄i+1, 2α1 =
N−1∑
i=0

miΛ̄1 (3.3.2)

2α3 = Qρ+
N−2∑
i=0

(
m′
i −m′

i+1

)
Λ̄i+1, 2α2 =

N−1∑
i=0

m′
iΛ̄N−1. (3.3.3)

Here Q = ϵ1 + ϵ2, ρ = 1
2

∑
α∈∆+

α is the Weyl vector, and {Λ̄i}i=1,...,N−1 are the sl(N)

fundamental weights. Furthermore, the internal charge αs (see section 1.5.3) for the 4-point
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function is related to Coulomb parameters ai as

2αs = Qρ+
N−1∑
i=0

aiεi, (3.3.4)

where we have used the notation εi := ei+1 − e0 we introduced for AGT-W involving SU(N)

gauge theories on C2 in section 2.3.

Remark 3.3.0.2. Comparing these identifications to the C2 identifications (2.3.4) and (2.3.5),

we see that this is a generalization of AGT-W for N = 2 SU(N) gauge theories on C2. In

fact this is the same identification, as might be expected. The only difference is that the

levels of the associated Dynkin labels defining our minimal model representations have a

larger upper bound of (p+n) compared to (p+1) for AGT for N = 2 SU(N) gauge theories

on C2.

We rewrite the conformal charge explicitly αr =
∑N−1

i=1 α
(i)
r Λ̄i+1 for r = 0, 1, 2, 3 (note that

for the restricted charge α1 and α2, the only non-zero labels are α
(N−1)
1 and α

(1)
2 ), and invert

these relations to express the mass parameters in terms of the conformal charge as

mi =

(
i− N + 1

2

)
Q+

2

N

− i−1∑
j=1

jα
(j)
0 +

N−1∑
j=i

(N − j)α(j)
1 + α

(N−1)
1

 , (3.3.5)

m′
i = −

(
i− N + 1

2

)
Q+

2

N

 i−1∑
j=1

jα
(j)
3 +

N−1∑
j=i

(N − j)α(j)
0 − α

(0)
2

 . (3.3.6)

As for the mass parameters we can invert the equation defining the internal charge (3.3.4)

above, to express the Coulomb parameters in terms of the conformal charge of defining the

conformal dimension of the family that flows in the channel by using the pairing on the root

lattice P (sl(N))

ai =
1

N

N−1∑
i=0

⟨2αs −Qρ, ei⟩. (3.3.7)

3.4 Burge Conditions

We wish to consider AGT correspondences involving minimal models on the CFT side. Fol-

lowing section 2.3.3, we can achieve this by restricting the Ω-deformation parameters so that

the conjectured corresponding central charge on the CFT side is that of a minimal model.

We then employ the Coulomb-gas formalism for the conformal charges (from section 1.5.15)

of the minimal model primary fields for a CFT with symmetry algebra Wpara
n,N and identify

these CFT charge with the mass and Coulomb parameters of the gauge theory2. For ease of

2The Wpara
n,N models have not been proven to exist. We simply assume their existence and show through

calculation that our methods are consistent.
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notation, we will sometimes refer to the combined CFT involving these minimal models as a

A(N,n; p)-minimal model, although only the Wpara
n,N factor is a minimal model in the usual

sense. In this case, we will see that the usual definition for the instanton partition will have

poles. In proposition 3.4.2.1, we will eliminate these poles by restricting the summation to

N -tuples of n-coloured Young diagrams with specified colour content that satisfy the Burge

inequalities. This is a new generalization of the results we reviewed in sections 2.2.4 and

2.3.3, and contains both as subcases.

3.4.1 Minimal Model Identification and Zn-Charge Conditions

By analogy with the known WN -minimal model CFTs (see sections 1.5.13 and 1.5.15) and

our discussion on other AGT correspondences involving minimal models in chapter 2, we

propose that the charge for primary fields in Wpara
n,N models should take the values

2αr,s :=
N−1∑
i=1

((ri − 1)ϵ1 + (si − 1)ϵ2) Λ̄i, (3.4.1)

where ri > 0 and si > 0, and
∑N−1

i=1 ri ≤ p and
∑N−1

i=1 si ≤ n+p = p′, which we call degenerate

charge. We note that our proposal for the degenerate charge is identical (up to a scalar) to

the known case of WN -minimal models under the Coulomb-gas formalism of sections 1.5.15

and 2.3.3. We also note that the proposed degenerate charge also reproduces the singular

vectors for CFTs with the symmetry algebra A(2, 2; p) (the Neveu-Schwarz-Ramond algebra)

[28].

These values of the charge are conjectured to parameterize the conformal dimensions of min-

imal model primary fields with associated V ir-highest weight modules that have null states.

We define the additional parameters r0 and s0 such that
∑N−1

i=0 ri = p and
∑N−1

i=0 si = p′ and

we can collect these into the strictly positive ŝl(N) Dynkin labels r = [r0, r1, . . . , rN−1] ∈ P++
N,p

and s = [s0, s1, . . . , sN−1] ∈ P++
N,n+p.

For N = 2 SU(N) gauge theories on C2/Zn, we consider the so-called rational Ω-background3

pϵ1 + p′ϵ2 = 0, (3.4.2)

where p ≥ N , p and p′ are coprime, and we take p′ = p+ n. In our case, if gcd(p, p) = d ̸= 1

we see that in (3.2.2) we have that

−n+ p

p
= −k

′d

kd
= −k

′

k
, gcd(k, k′) = 1, (3.4.3)

3Note that this is the same Ω-background we considered in chapter 2. The reader should also note the
similarity of this formula to (1.5.88), which connected the Coulomb-gas formalism to minimal models.
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which corresponds to the rational Ω-background kϵ1+k
′ϵ2 = 0. This background is equivalent

to the minimal model identification we made for the deformation parameters in 2.2.4 and

2.3.3.

For the rational Ω-background, the inverse of the vector contribution Z∗
vec (3.1.33), which

appears as the denominator in the summand of Z
U(N)

b,b′ (3.1.34), can vanish and cause a pole

in Z
U(N)

b,b′ . This occurs for the special values of the Coulomb parameters corresponding to

the degenerate charge

ar,si := −
N−1∑
j=1

⟨Λ̄j , ei⟩ (rjϵ1 + sjϵ2) = −
N−1∑
j=i

(rjϵ1 + sjϵ2) +
1

N

N−1∑
j=1

j (rjϵ1 + sjϵ2) . (3.4.4)

Remark 3.4.1.1. The second summation in (3.4.4) enforces the traceless property for the

Coulomb parameters, ensuring that the set {ar,si }i=0,...,N−1 parameterize an element of the

Cartan subalgebra ĥ
ŝl(N)

. Since the building block functions only involve the difference

(ai − a′j), adding the same term to all Coulomb parameters does not change its value.

By restricting on the CFT side of the conjectured correspondence to minimal models, we have

been able to consider their AGT dual gauge theories to propose a specific parameterization

of the gauge theory parameters for a special subset of gauge theories. As we will show in the

sequel, the usual definition of the instanton partition function for these theories is ill-defined,

and must be altered to obtain a well-defined one. By parameterizing the mass and Coulomb

parameters, of an N = 2 SU(N) gauge theory on C2/Zn with the rational Ω-background,

in this way by (3.3.5) and (3.4.1), and (3.4.4) respectively we have a gauge theory under

a minimal model identification, as it identifies this gauge theory as AGT dual to a CFT

minimal model.

Remark 3.4.1.2. By letting p′ = p+n we see that under our conjectured AGT correspondence

the rational Ω-background corresponds to the central charge of the algebra A(N,n; p). Thus
our conjectured AGT dual CFT to N = 2 SU(N) gauge theories on C2/Zn should have a

process dual to removing these non-physical poles. Remembering our discussion in sections

2.2.4 and 2.3.3, this suggests that the AGT dual CFT to SU(N) gauge theories on C2/Zn
with mass parameters defined by (3.3.5) and (3.4.1) and Coulomb parameters by (3.4.4)

should be a minimal model. In this CFT, the process that is dual to removing poles should

be the removal of null states. This supports our conjecture that the dual CFTs should have

the symmetry algebra A(N,n; p).

Under this minimal model identification, we obtain restrictions on the Zn-charges of the

Coulomb parameters gauge theory parameters by considering the Zn-invariance of Z
U(N)

b,b′ .

Consider a Zn-transformation (3.1.24) on the minimal model Coulomb parameters (3.4.4).

We see that the r and s parameters are related to the Zn-charges σi associated to the Coulomb
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parameters ai for i = 0, . . . , N − 1 by

σi − σi+1 ≡ si − ri mod n, (3.4.5)

where the relative between rj and sj is due to the differing transformation properties of ϵ1

and ϵ2. We refer to (3.4.5) as the Zn-charge conditions.

3.4.2 Eliminating the Poles in Z
U(N)

b,b′

Below in the proof of proposition 3.4.2.1, we will show that when considering gauge theories

under a minimal model identification there are unphysical poles in the unrestricted instanton

partition function that we must eliminate. To eliminate them, we restrict the summation

range of Z
U(N)

b,b′ analogously to the case of Z
U(N)
inst for gauge theories on C2, as discussed

in section 2.3.3. This process is then an AGT dual process to removing null states in the

minimal model CFT, and must be performed when comparing Z
U(N)

b,b′ to conformal blocks,

and when calculating CFT characters.

We begin by discussing the poles themselves. The partition function Z
U(N)

b,b′ (3.1.34) is defined

as a sum over N -tuples of coloured Young diagrams λ = (λ(0), . . . , λ(N−1)), where each term

is a rational function of ϵ1 and ϵ2. Furthermore, the numerator of each term is finite for

any λ, so that all the poles in Z
U(N)

b,b′ are when Z∗
vec vanishes for some λ. Using (3.1.23) and

(3.1.33), we can write the inverse vector multiplet contribution as

Z∗
vec(a

r,s, λ) =

N−1∏
i,j=0

∗∏
□∈λ(i)

E
(
ar,si − a

r,s
j , λ(i), λ(j),□

)
∗∏

■∈λ(j)

(
ϵ1 + ϵ2 − E

(
ar,sj − a

r,s
i , λ(j), λ(i),■

))
. (3.4.6)

Due to the similarity of Z∗
vec to Zvec (the vector multiplet contribution for gauge theories on

C2), we will use the same logic and terminology as we did in chapter 2, which we recall here.

The poles in Z
U(N)

b,b′ correspond to the zeroes of Z∗
vec(a

r,s, λ). We associate these zeroes to

an N -tuple of Young diagrams λ = (λ(0), . . . , λ(N−1)) and a box in one of the λ(i) for some

i = 0, . . . , N − 1 as follows. Each term in the series (3.1.34) defining Z
U(N)

b,b′ corresponds

to one N -tuple of Young diagrams, therefore we can associate the pole of one term to an

N -tuple λ in this way. We also note that due to the factorized form of Z∗
vec(a

r,s, λ), these

poles are caused by the vanishing of a factor □(i,j) or ■(i,j) (notation from section 2.2.4),

and we use this to further associate the pole to a box in one of the diagrams of the N -tuple

λ.
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We will therefore think of individual boxes as causing zeros in Z∗
vec and hence poles in Z

U(N)

b,b′ .

Thus a box □ ∈ λ(i) such that E
(
ar,si − a

r,s
j , λ(i), λ(j),□

)
= 0 or such that

(
ϵ1 + ϵ2 −E

(
ar,sj

−ar,si , λ(j), λ(i),□
))

= 0 is said to cause a pole in Z
U(N)

b,b′ .

We will then reduce our search to poles in Z
U(N)

b,b′ to searching for □ ∈ λ(i) which cause poles

in Z
U(N)

b,b′ . For gauge theories with a minimal model identification we must then restrict the

summation of Z
U(N)

b,b′ to N -tuples of coloured Young diagrams which have no boxes that cause

a pole.

To do so, we use the same argument that we used in chapter 2. In proposition 3.4.2.1 below,

we will see that to eliminate all poles we must again restrict the summation of Z
U(N)

b,b′ to

N -tuples of Young diagrams that satisfy the Burge inequalities.

The proof will proceed analogously as in section 2.3.3, except we have a new condition on

which boxes we sum over defined by (3.1.31) and (3.1.32) and the new Zn-charge conditions

(3.4.5). We will also remove the restriction that p and p′ = n+ p are coprime integers, that

we used for the SU(N) minimal model identification, and craft our proof to work for all

p′ ∈ Z such that p′ > p. We can do this without changing the rational Ω-background of

the gauge theories we are considering since, as seen in (3.4.3), when p and (p + n) are not

coprime they still correspond to some rational Ω-background with k and k′ coprime. While

this does not effect the computation of Z
U(N)

b,b′ on the gauge side, it allows us to use this AGT

conjecture to compute conformal blocks in a broader spectrum of CFTs.

Proposition 3.4.2.1. ([43, Prop 4.3]) To eliminate the poles of the instanton partition

function Z
U(N)

b,b′
for an N = 2 SU(N) gauge theory on C2/Zn under a minimal model identi-

fication, the summation in (3.1.34) must be restricted to N -tuples of coloured charged Young

diagrams that satisfy the Burge conditions

λ
(i)
j ≥ λ

(i+1)
j+ri−1 − si + 1, (3.4.7)

where ri and si for i = 0, . . . , N − 1 parameterize the Coulomb parameters, ar,sj for j =

0, . . . , N − 1, corresponding to the degenerate charge (3.4.4).

We assume that the Coulomb parameters take the degenerate values ar,si . Again our logic will

be as follows: We will first assume that some box □ in one of our coloured Young diagrams

λ(i) causes a pole in Z
U(N)

b,b′ , so that the denominator of a term in the instanton partition

vanishes. We will then show that the existence of □ is equivalent inequalities on the N -tuple

of coloured Young diagrams λ that we will calculate.

Recall that the conditions on an N -tuple of coloured Young diagrams λ such that λ contains

a box □ ∈ λ(i) for some i ∈ {0, . . . , N−1} which causes Zvec to vanish (equivalently, a pole in



151 Burge Conditions

Z
U(N)

b,b′ ) are called zero-conditions or vanishing-conditions. Similarly, conditions that ensure

no such box exists are referred to as nonzero-conditions. We also refer to an equation which

is equivalent to Zvec = 0 as a vanishing equation.

We will then restrict to the definition of Z
U(N)

b,b′ to be a sum over N -tuples of Young diagrams

that do not satisfy these zero-conditions. This will be Burge conditions, and by applying

them to Z
U(N)

b,b′ we will have therefore eliminated the non-physical poles.

Proof. For a gauge theory under a minimal model identification, Zvec = 0 if and only if there

exists □ = (x, y) ∈ λ(i) such that one of the following equations

E(ar,si − a
r,s
i+k, λ

(i), λ(i+k),□) = 0, (3.4.8)

ϵ1 + ϵ2 − E(ar,si+k − a
r,s
i , λ(i+k), λ(i),□) = 0, (3.4.9)

is true for some i ∈ {0, 1, . . . , N−1} and k ∈ Z. Note that here we have substituted j = i+k

into (3.4.6). We can combine both of these equations into one for the rational Ω-background

parameterized by pϵ1 = −p′ϵ2 with p′ − p = n, as

Er,si,i+k(□) + η = 0, η = 0, n, (3.4.10)

where Er,si,i+k(□) = p
ϵ2
E(ar,si − a

r,s
i+k, λ

(i), λ(i+k),□).

We begin again by considering the case N − i ≥ k > 0, and later we will consider the case

where k > N − i which is equivalent (as we define the labels of Young diagrams modulo N)

to −N − i ≤ k < 0. Since the second term in our Coulomb parameter parameterization is a

constant for all i, we have that the difference of two Coloumb parameters under a minimal

model identification can be written as

ar,si − a
r,s
i+k =

i+k−1∑
j=i

(rjϵ1 + sjϵ2). (3.4.11)

Similarly by substituting k with −k we have

ar,si − a
r,s
i−k =−

i−1∑
j=i−k

(rjϵ1 + sjϵ2) (3.4.12)

= −pϵ1 − p′ϵ2 +

i−k−1∑
j=0

+

N−1∑
j=i

 (rjϵ1 + sjϵ2). (3.4.13)

After substituting these values for the differences of Coulomb parameters into Er,s
i,i±k above,

we see that we have the same vanishing equations as we did for SU(N) on C2 in 2.3.3. In this
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case, we must additionally constrain any solutions to this vanishing equation by the orbifold

conditions (3.1.31) and (3.1.32).

As before, we can immediately discount the case where k = 0 from introducing a pole as this

corresponds to the vanishing equation

Er,s
i,i (□) + η = 0 (3.4.14)

=⇒ p

ϵ2

(
−ϵ1Lλ(i)(□) + ϵ2A

+
λ(i)

(□)
)
= −η (3.4.15)

=⇒ p′Lλ(i)(□) + pA+
λ(i)

(□) = −η, (3.4.16)

for some □ ∈ λ(i). As for the case of gauge theories on C2 we have that Lλ(i)(□) > 0 and

A+
λ(i)

(□) > 0 for □ ∈ λ(i). Therefore this equation can never be satisfied, and the zero

conditions can only come from factors where k ̸= 0.

Case 1 k > 0

For this case the zero condition becomes Er,si+k,i(□)+η = 0, where □ ∈ λ(i+k), 0 ≤ i ≤ N −2,

and 1 ≤ k ≤ N − 1. Substituting the values (3.4.4) for ar,si and ar,si+k, we have this zero

condition is explicitly

i+k−1∑
j=i

(
rjp

′ − sjp
)
+ p′Lλ(i+k)(□) + pA+

λ(i)
(□) + η = 0. (3.4.17)

We now introduce a new element to the proof we described in section 2.3.3, and define

d = gcd(p′, p) so that p′ = dp′d and p = dpd, where pd, p
′
d ∈ Z>0 and gcd(pd, p

′
d) = 1. We

then factor d out of the zero condition, leaving us with the same equations for the leg length

and arm length as before4

Lλ(i+k)(□) = −

i+k−1∑
j=i

rj + cpd + δηn

 , (3.4.18)

Aλ(i)(□) =
i+k−1∑
j=i

sj + cp′d + δηn − 1, (3.4.19)

where c ∈ Z is an constant to be determined, and we have replaced p and p′ with pd and p′d

respectively.

We know that for any Young diagram λ and □ = (x, y) ∈ λ the definition Lλ(□) = λTy − x
implies that

λTy ≥ x. (3.4.20)

4Note the δηn term comes from writing n = p′ − p.
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In our situation, we apply this to the box at the end of the x-th row (the one that contains

□ = (x, y) that causes a pole) which has coordinates (x, y +Aλ(i)(□) and obtain

(λ(i))Ty+A
λ(i)
≥ x. (3.4.21)

We then substitute (3.4.19) into this inequality and solve equation (3.4.18) for x to obtain

the inequality

(λ(i+k))T
y+

∑i+k−1
j=i sj+cp′d+δηn−1

≥ (λ(i))Ty +
i+k−1∑
j=i

rj + cpd + δηn, (3.4.22)

which is a zero-condition for Zvec.

We now consider how the Zn-charge conditions (3.4.5), and the two orbifold conditions,

(3.1.31) and (3.1.32), for □ restrict the possible values for the indeterminate constant c in

(3.4.18) and (3.4.19). We telescope the Zn-charges of the Coulomb parameters by

σi − σi+l = σi − σi+1 − σi+2 + · · ·+ σi+l−1 − σi+l, (3.4.23)

and note that

σi − σi+k = σi − σi+1 − σi+2 + · · ·+ σi+k−1 − σi+k

≡ si − ri + si+1 − ri+1 + · · ·+ si+k−1 − ri+k−1 mod n, (3.4.24)

through (3.4.5). We now substitute (3.4.18) and (3.4.19) into the orbifold condition (3.1.31)

together with p′ − p = n to obtain the following condition satisfied by c

−c(p′d − pd) = −
cn

d
≡ 0 mod n. (3.4.25)

As this is an equation between integers, we see that c must be of the form c = dcd for some

cd ∈ Z, analogously to p and p′. This new parameter cd then satisfies

−cdn ≡ 0 mod n. (3.4.26)

Now we wish to eliminate the poles caused by any □ ∈ λ(i). As the existence of such a

pole is equivalent to the zero-condition (3.4.22) defined by the inequalities, we can eliminate

these poles by restricting to Young diagrams that do not satisfy these inequalities. Thus, we

consider Young diagrams that satisfy the nonzero-conditions

(λ(i+k))T
y+

∑i+k−1
j=i sj+cp′d+δηn−1

< (λ(i))Ty +
i+k−1∑
j=i

rj + cpd + δηn. (3.4.27)
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We then substitute the new parameter cd, which allows us to obtain a zero condition using

our original p and p′ parameters, and move from a strict bound a nonstrict one to obtain

(note the additional −1 term on the right-hand side)

(λ(i+k))T
y+

∑i+k−1
j=i sj+cdp′+δηn−1

≤ (λ(i))Ty +

i+k−1∑
j=i

rj + cdp+ δηn − 1. (3.4.28)

The final step to obtaining the zero condition is to find the values of cd and η that will give

us the strongest such bound. Since A+
λ(i)

(□) > 0 and
∑
si ≤ p′ + n we can see from (3.4.19)

that we must also have cd ≥ 0.

As for the case for theories on C2, we can use the weakly decreasing property of Young

diagrams to see that any inequality satisfied by the highest Young diagram row on the left-

hand side (that is, the one with the smallest row index) will imply all lower rows satisfy the

same inequality. Whereas the smallest number on the right-hand side of the bound implies

all larger numbers will also satisfy the bound. Using the equation satisfied by cd (3.4.28) and

both of these facts, we see that γd = 0 and η = 0 give us the strongest bound.

We also note that once we have found the strongest zero condition that satisfies our Zn-
charge and orbifold conditions, we can safely follow the arguments we used for the C2 to see

that the k = 1 inequality implies all other inequalities. Finally, we translate this back into

a condition for the original Young diagrams, instead of the transposed ones, to obtain the

necessary condition to eliminate all the zeros from Zvec, and hence poles from Z
U(N)

b,b′ , as

λ
(i)
j ≥ λ

(i+1)
j+ri−1 − si + 1. (3.4.29)

Case 2: k < 0

In this case we will substitute k 7→ −k so that we are considering vanishing equations of the

form

E(ar,si − a
r,s
i−k, λ

(i), λ(i−k),□) = 0, (3.4.30)

ϵ1 + ϵ2 − E(ar,si−k − a
r,s
i , λ(i−k), λ(i),□) = 0, (3.4.31)

for some □ ∈ λ(i).

We repeat the proof above, where we now have the vanishing condition:

−
i−1∑
j=i−k

(
rjp

′ − sjp
)
+ p′Lλ(i−k)(□) + pA+

λ(i)
(□) + η = 0. (3.4.32)
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To eliminate zeroes in Zvec the N -tuples of Young diagrams must then satisfy

(λ(i−k))T
x+

∑i−1
j=i−k sj+cdp

′+δηn−1
≤ (λ(i))Tx −

i−1∑
j=i−k

rj + cdp+ δηn − 1. (3.4.33)

In this case we now have that cd ≥ 1, where this bound is obtained from analogous equations

to (3.4.18) and (3.4.19). The equation satisfied by cd is again (3.4.28), so that we see that

cd = 1 and η = 0 gives the strongest bounds. As before the k = 1 bound implies all

subsequent inequalities, so that we can eliminate all poles occurring in Z
U(N)

b,b′ by imposing

λ
(i)
j ≥ λ

(i+1)
j+ri−1 − si + 1. (3.4.34)

Finally we can repeat these arguments for k = N − i and i = 0 to obtain

λ
(N−1)
j ≥ λ(0)j+r0−1 − s0 + 1, (3.4.35)

which completes the cyclic set of inequalities.

We see that even though we only consider boxes with Zn-invariant contributions to the

partitions function, we can still eliminate the poles in Z
U(N)

b,b′ by imposing the Burge conditions

on the N -tuples of coloured Young diagrams we sum over. It is important to note that for

gauge theories on C2/Zn we are considering coloured Burge multipartitions, whereas for

gauge theories on C2 we consider uncoloured ones.

As a corollary to this proposition, we see that the generating function for the instantons

for N = 2 SU(N) gauge theories on C2/Zn under a minimal model identification is the

generating function of Burge multipartitions (1.4.3) up to some q-factor. This fact is central

to the work in chapters 4 and 5.





Chapter 4

Instanton Counting on C2/Zn and

ŝl(n)N-WZW Models

In this chapter, we will test the specialization coset AGT conjecture to gauge theories under

a minimal model identification, discussed in chapter 3, against ŝl(n)N -WZW models. We

will prove that a generalization of Burge generating functions, to a generating function of

coloured Burge multipartitions, can be used to calculate the ŝl(n)N -WZW characters, using

the crystal graph techniques described in section 1.3.5. We will then compare simple cases

of the instanton partition function on C2/Zn with solutions to the KZ differential equation,

which will reduce to linear combinations of hypergeometric functions. Using the discussion in

1.5.9, special cases of ŝl(n)N -WZW 4-point conformal blocks satisfy this differential equation

and this will test our proposed AGT identification from chapter 3.

4.1 Burge Conditions for N = 2 SU(N) Gauge Theories when

p = N

Here we consider the N = 2 SU(N) gauge theories under a minimal model identification

from chapter 3, and specialise to the case p = N (cf: section 3.2). We will then see that the

condition p = N specializes the Burge conditions, which we use have a well-defined instanton

partition function in these theories (see proposition 3.4.2.1), to a special case (4.1.8), which

we will refer to as cylindric Burge conditions.

As discussed in chapter 3, when the Ω-deformation parameters ϵ1 and ϵ2 for the rational

Ω-background are parameterized such that p = N by

ϵ1
ϵ2

= −n+ p

p
= −n+N

N
, n,N ∈ Z>0, (4.1.1)

157
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the N = 2 SU(N) gauge theories on C2/Zn are conjectured, see 3.3.0.1, to be in AGT

correspondence with 2D CFTs that have the symmetry algebra (see section 3.2)

A(N,n;N) = H⊕ ŝl(n)N ⊕
ŝl(N)n ⊕ ŝl(N)N−N

ŝl(N)N+n−N
= H⊕ ŝl(n)N . (4.1.2)

This symmetry algebra describes a CFT which is the combined system of an ŝl(n)N -WZW

model with a free boson.

Recall that for r = [r0, r1, . . . , rN−1] ∈ P++
N,p , and s = [s0, s1, . . . , sN−1] ∈ P++

N,p+n, we denote

the Coulomb parameters of theories under a minimal model identification by ar,s. We also

note that the parameters ar,s correspond to the degenerate charge (3.4.4) of the conformal

family that flows in the channel. Since
∑N−1

i=0 ri ≤ p = N and ri > 0 for all i = 0, . . . , N − 1,

the only choice for these parameters when p = N is

ri = 1, i = 0, 1, . . . , N − 1. (4.1.3)

In this case, r = 1 = [1, 1, . . . , 1] ∈ P+
N,N and we denote the Coulomb parameters by a1,si or

asi for i = 0, . . . , N − 1 when it is clear to do so.

As discussed in section 3.4.1, the labels r and s are linked to the Zn-charges assigned to the

Coulomb parameters, and equivalently, the charges of N -tuples of coloured Young diagrams,

through the Zn-charge conditions (3.4.5). When r = 1 the Zn-charge conditions become

σi − σi+1 ≡ si − 1 mod n. (4.1.4)

Remembering that we order the charges {σi}i=0,...,N−1 by size, so that σ0 ≥ σ1 ≥ · · · ≥ σN−1,

we have |σi − σi+1| ≤ n and we are free to define

si = σi − σi+1 + 1, i = 1, . . . , N − 1, (4.1.5)

where σN = σ0 and

s0 = σ0 − σ1 + n+ 1. (4.1.6)

Remark 4.1.0.1. When p = N = 1 so that r = [1], the contributing instantons for the

partition function are described by one coloured Young diagram λ = (λ(0)). The singular

Burge condition (3.4.7) for this case, where we take s = s0, then reads

λ
(0)
j ≥ λ

(0)
j − s+ 1, j = 1, . . . , l(λ(0)), (4.1.7)

for n+1 ≥ s ≥ 1. This is true for any Young diagram since 1− s ≤ 0. Z
U(N)
inst is then defined

as a summation over all Young diagrams. On the CFT side, this is equivalent to the fact



159 Burge Generating Functions and ŝl(n)N -WZW Characters

that there are no null states to remove for the highest weight A(1, n; 1)-modules.

In the sequel we will specialise to p = N > 1. We substitute r = 1 into the Burge inequalities

(3.4.7) to obtain

λ
(i)
j ≥ λ

(i+1)
j − si + 1, i = 0, . . . , N − 1, j = 1, . . . , l(λ

(i)
j ), (4.1.8)

where we note that if j > l(λ
(i+1)
j ), we take λ

(i+1)
j = 0.

Definition 4.1.0.2. A coloured cylindric Burge multipartition λ = (λ(0), . . . , λ(N−1)) is an N -

tuple of n-coloured Young diagrams that satisfy the inequalities (4.1.8) for some s ∈ P++
N,N+n.

This definition uses a dominant integral ŝl(N) weight s with strictly positive Dynkin labels.

We can instead express coloured cylindric Burge multipartitions using the notation of section

1.1, defining cylindric Burge multipartitions using a dominant integral ŝl(N) weight ζ, which

does not necessarily have strictly positive Dynkin labels.

We define the following ŝl(n) weights, which are not strictly positive, ζ = s − 1 = [s0 −
1, . . . , sN−1 − 1] and ξ = 0 = [0, . . . , 0], and Λ =

∑N−1
i=0 Λσi . Then, a coloured cylindric

Burge multipartition for s ∈ P++
N,N+n is a coloured (0, ζ)-Burge multipartition.

We denote by C(n;ζ,0)Λ the set of N -tuples of coloured cylindric Burge multipartitions. Below

in proposition 4.2.2.2, we will show that this set is equal to the set of cylindric partitions

Mσ with their natural colouring. Note that this set is equal to CnΛ defined in section 1.1,

and is the coloured version of the set Cr,s defined in chapter 2. We have chosen to now

emphasize the weights (0, ζ) defining the Burge inequalities with this new notation. We will

also equivalently refer to this set as Cr,sσ when emphasizing the charges σ = (σ0, . . . , σN+1)

and the CFT labels r and s.

When it is clear if we are considering N -tuples of coloured Young diagrams that satisfy

(4.1.8), we will refer to elements of C(n;ζ,0)Λ as cylindric Burge multipartitions. Following

the proof of 2.3.3.4, the specialised Burge inequalities (4.1.8) are equivalent to cylindric

inequalities (1.1.11) on the transposed diagrams λT = ((λ(0))T , . . . , (λ(N−1))T ), hence the

name cylindric Burge multipartitions.

4.2 Burge Generating Functions and ŝl(n)N-WZW Characters

As usual, it is expected that the generating functions for instantons will agree with the

characters of CFTs (1.5.10), up to some overall factors. When considering minimal model

CFTs, this will mean that the Burge generating functions are expected to correspond to

A(N,n; p)-minimal model characters (see discussion in section 3.2), and, in the case of p = N ,
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to a product of Heisenberg (the generating function of partitions (1.4.7)) and ŝl(n)N -WZW

characters (1.5.106). Since ŝl(n)N -WZW primary fields form irreducible ŝl(n)N -modules, we

will use the work in sections 1.1 and 1.5.9 (based on [60, 142]) to write the WZW characters

using generating functions for highest-lift cylindric partitions.

4.2.1 Defining New Generating Functions

In this section, we introduce a refined Burge generating function of coloured Burge multipar-

titions which carries the information of the Chern classes on the instanton bundle (3.1.11).

Recall the Chern classes c1, c2 of the instanton bundle are given by

c1 =
n−1∑
i=0

cic1(Ti), c2 =
n−1∑
i=0

cic2(Ti) +
k

|Zn|
, (4.2.1)

where each line bundle Ti → C2/Zn is associated to one of the 1-dimensional irreducible

representations of Zn (see section 3.1.1), and

ci = Ni − 2ki + ki+1 + ki−1

= Ni − 2δki + δki+1 + δki−1, where δki := ki − k0. (4.2.2)

We introduce new formal parameters {ti}i=1,...,n−1 which we collect in a vector t = (t1, . . . ,

tn−1). We then refine the Burge generating function (1.4.3) using these parameters so that

the exponents of {ti}i=1,...,n−1 in the refined generating function correspond to the values

ci classifying the instanton solution through their Chern classes. Note, that for i = 0 the

corresponding 1-dimensional irreducible representation is trivial so we do not introduce a

parameter, say t0, which corresponds to c0.

Recall that the contribution of a residue, corresponding to an instanton, to the partition

function is associated to an N -tuple of Young diagrams λ. We therefore also associate the

Chern classes classifying this instanton solution to the N -tuple λ, and denote them by ci(λ).

Definition 4.2.1.1. The t-refined Burge generating function Xr,s
σ (q; t) of coloured Burge mul-

tipartitions with colour content defined by δk = (δk1, . . . , δkn−1) (cf: (1.4.3)) for r ∈ P++
N,p ,

s ∈ P++
N,p+n, and a partition σ = (σ0, σ1, . . . , σN−1) with σ0 ≤ n is defined by

Xr,s
σ (q; t) =

∑
λ∈Cr,s

σ

q
1
n
|λ|

n−1∏
i=1

t
ci(λ)
i , (4.2.3)

where ci is defined by (4.2.2).
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Note that Xr,s
σ (q; t) is the generating function of instantons for SU(N) theories under a min-

imal model identification on C2/Zn, where the Zn-charges σ = (σ0, σ1, . . . , σN−1) associated

to the Coulomb parameters are fixed.

We can use the t-refined Burge generating function to count the contributing instantons of

specific Chern classes. For fixed Chern classes, defined by fixed ci for i = 1, . . . , n − 1, the

coefficient of
∏n−1
i=1 t

ci(λ)
i in Xr,s

σ (q; t) (which is a series in q) counts the instantons classified

by these Chern classes (which correspond to many different N -tuples of coloured Young

diagrams λ = (λ(0), . . . , λ(N−1))).

This leads us to define a second new generating function Xr,s
σ;l (q), which counts coloured

cylindric Burge multipartitions with prescribed colour data defined by the vector of differ-

ences δk. For a vector of integers l= (l1, . . . , ln−1) ∈ Zn−1 we define a generating function

of Burge multipartitions with fixed colour data δki = li for i = 1, . . . , n (note that this is a

series only in q)

Xr,s
σ;l (q) =

∑
λ∈Cr,s

σ;l

q
1
n
|λ|. (4.2.4)

The ci defining the Chern classes depend on two vectors of integers: N = (N0, . . . , Nn−1)

where Ni is the number of diagrams with charge i ∈ Zn, and the colour differences δk =

(δk1, . . . , δkn−1). From this, we can see that the Chern classes are fixed across sets of in-

stantons corresponding to Young diagrams with fixed charges σ = (σ0, . . . , σN−1) and colour

data defined by δk. Thus, we can rewrite the t-refined Burge generating function (4.2.3) as

a sum over the Burge generating functions with prescribed colour data Xr,s
σ;l (q) as (note that

we have substituted the definition (4.2.2), with fixed δki = li for i = 1, . . . , n− 1, of ci in the

exponent of ti here)

Xr,s
σ (q; t) =

∑
l∈Zn−1

Xr,s
σ;l (q)

n−1∏
i=1

t
Ni−2li+li+1+li−1

i . (4.2.5)

4.2.2 Calculating ŝl(n)N -WZW Characters Using the Instanton Generating

Function

In this section we will prove that the generating function of instantons for N = 2 SU(N)

gauge theories on C2/Zn with a minimal model identification can be identified with the V ir

character function χ
ŝl(n)N
Λ (1.5.114) for integrable ŝl(n)N -modules when p = N .

We begin by recalling some facts about integrable ŝl(n)N -modules. Let Λ = [d0, . . . , dn−1] ∈
P+
n,N and LΛ be the irreducible highest weight ŝl(n)N -module with highest weight Λ. As

explained in section 1.5.9, LΛ is a V ir-module and we can write its conformal dimension hΛ
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(as the eigenvalue of L0 ∈ Vir (1.5.96)) and central charge c (1.5.97) as

hΛ =
⟨Λ,Λ + 2ρ⟩
2(N + n)

, c =
N(n2 − 1)

N + n
, (4.2.6)

where ρ = 1
2

∑
α∈∆+ α is the Weyl vector. Using the parameter t̂ = (t̂1, . . . , t̂n−1), the

(graded-) character for LΛ as a V ir-module is defined to be

χ
ŝl(n)N
Λ (q, t̂) = TrLΛ

qL0

n−1∏
i=1

t̂Hi
i , (4.2.7)

where Hi ∈ ĥ ⊂ ŝl(N) for i = 1, . . . , n − 1 are the Chevalley basis elements for the Cartan

subalgebra. We will use this form of the character function to identify the ci, defining the

Chern classes classifying the instanton solutions on the gauge side of the conjecture 3.3.0.1,

for p = N with elements of the Cartan subalgebra of ŝl(N) for the CFT side, below in

proposition 4.2.2.2.

Having discussed the form of the character function on the CFT side, we now discuss the form

of the instanton generating function we will use on the gauge side. We begin by noting that

the Burge conditions for p = N (4.1.8) have the form λ
(i)
j ≥ λ

(i+1)
j −si+1, which compares the

size of the j-th row of i and (i+1)-th Young diagrams with a shift defined by the i-th element

of the vector s. We shall refer to pairs such as this as sequential Young diagrams (cf: the

proof of 2.3.3.4). On the other hand, the setMσ of cylindric multipartitions in the formula

of χ
ŝl(n)N
Λ satisfies the inequalities λ

(i)
j ≥ λ

(i+1)
j+σj−σj+1

, for j ≥ 1, 0 ≤ i ≤ N − 2 and λ
(N−1)
j ≥

λ
(0)
j+σN−1−σ0+n, for j ≥ 1 (which are equations (1.4.10) and (1.4.11)), which compare different

parts of sequential Young diagrams with no shift. To compare the generating function of

instantons with the character function χ
ŝl(n)N
Λ , we will use following the following lemma.

Lemma 4.2.2.1. ([43]) The map of Young diagrams λ 7→ λT gives the following equality of

sets of Burge multipartitions

Cr,s = Cs,r. (4.2.8)

Proof. This proof uses an idea from the proofs of the propositions 2.2.4.3, 2.3.3.4, 3.4.2.1.

Consider an N -tuple of Young diagrams λ = (λ(0), . . . , λ(N−1))) ∈ Cr,s satisfies the Burge

inequalities

λ
(i)
j ≥ λ

(i+1)
j+ri−1 − si + 1. (4.2.9)

The N -tuple of its transposes λT = ((λ(0))T , . . . , (λ(N−1))T ) then satisfy different Burge

inequalities given by

(λ(i))Tj ≥ (λ(i+1))Tj+si−1 − ri + 1, (4.2.10)

so that λT ∈ Cs,r. Thus, the map λ 7→ λT provides a bijection between Cr,s and Cs,r as

required.
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Putting together both sides of this discussion leads us to the following proposition.

Proposition 4.2.2.2. ([43]) For a partition σ = (σ0, σ1, . . . , σN−1) for which σ0 < n, define

s = [s0, s1, . . . , sN−1] by (4.1.5) and (4.1.6), and set Λ =
∑N−1

i=0 Λσi. Then

X1,s
σ (q, t) =

qwΛ−hΛ

(q, q)∞
χ
ŝl(n)N
Λ (q, t̂), (4.2.11)

where t̂ = (̂t1, . . . , t̂n−1) is related to t = (t1, . . . , tn−1) by

t̂i = q−
1
2n
i(n−i) ti (4.2.12)

for 1 ≤ i < n, and

wΛ =
1

2n

n−1∑
i=1

i(n− i)Ni, (4.2.13)

where Λ = [N0, N1, . . . , Nn−1].

Remark 4.2.2.3. The partition σ defines the charges of the component partitions of the Burge

multipartitions.

Proof of Proposition 4.2.2.2. Comparison of the conditions (1.4.10) and (1.4.11) with (3.4.7)

for r = 1 shows that there is a bijectionMσ → Cs,1 (note that in this case, we have reversed

the usual order of r and s), with the map λσ 7→ λ from the former to the latter being the

forgetful map, which maps a coloured Young diagram λσ to the uncoloured Young diagram

obtained by forgetting its colouring.

We have chosen to notate the charges for λ to emphasize the contrast between the uncoloured

λ ∈ Cs,1 and coloured nature of λσ ∈ Mσ. Combining this with the bijection described by

(4.2.8) then yields a bijectionMσ → C1,s described by λσ 7→ λ 7→ λT .

Because of the differing ways in which the colours are ordered inMσ and C1,sσ , colouring λT to

give an element of C1,sσ , results in the coloured Young diagram (λT )σ. As explained in lemma

4.2.2.1 we are free to describe Burge, and therefore cylindric, multipartitions using diagrams

λ or their transposes λT . Thus, in the expression (4.2.3), Cs,1σ ≡ C1,sσ can be replaced byMσ.

Noting that |λ| =
∑n−1

i=0 ki(λ) = nk0(λ) +
∑n−1

i=1 δki(λ), and using (4.2.2), then gives

X1,s
σ (q, t) =

∑
λ∈Mσ

q k0(λ)
n−1∏
i=1

q
1
n
δki(λ)t

Ni+δki−1(λ)−2δki(λ)+δki+1(λ)
i

=
∑
λ∈Mσ

q k0(λ)
n−1∏
i=1

tNi
i

(
q

1
n
ti−1ti+1

t2i

)δki(λ)
,

(4.2.14)
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where we set t0 = tn = 1. Substituting for each ti using (4.2.11) then shows that

X1,s
σ (q, t) = qwΛ

∑
λ∈Mσ

q k0(λ)
n−1∏
i=1

t̂Ni
i

(
t̂i−1t̂i+1

t̂2i

)δki(λ)
(4.2.15)

which yields (4.2.11) using (1.5.114).

We now recall that the primary fields of ŝl(N)-WZW models form integrable highest weight

representations of ŝl(N), so that the WZW characters are also ŝl(N) characters for a highest

weight module LΛ. We can use this fact to re-express the cylindric Burge generating function

for fixed colours X1,s
σ;l (q) in (4.2.4) in terms of the ŝl(n) string functions σΛµ (q) in (1.3.32)

through the identification (4.2.11). To do so, we define a different notation for the ŝl(n)N

string functions, using a vector of integers l = (l1, . . . , ln−1) ∈ Zn−1, which parameterizes the

weight µ of the descendent state in LΛ while ignoring the grade as,

σΛl (q) = σΛ
Λ−

∑n−1
i=1 liαi

(q). (4.2.16)

The descendant state Λ −
∑n−1

i=1 liαi is obtained by a sequence composed of li applications

of the lowering operators fi for i = 1, . . . , n− 1. Using this, we have the following corollary

to proposition 4.2.2.2:

Corollary 4.2.2.4. For a partition σ = (σ0, σ1, . . . , σN−1) for which σ0 < n, define s =

[s0, s1, . . . , sN−1] by (4.1.5) and (4.1.6), and set Λ =
∑N

i=1 Λσi. Then for each l = (l1, . . . ,

ln−1) ∈ Zn−1,

X1,s
σ;l (q) =

q
1
n
|l|

(q, q)∞
σΛl (q), (4.2.17)

where we set |l| =
∑n−1

i=1 li.

Proof. This results from reexpressing the left and right sides of (4.2.11) using (1.5.110) and

(4.2.12), and then using the fact that the finite Cartan matrix Ā is invertible.

Until now, we have considered the Burge generating function (that is, the generating function

for instantons) X1,s
σ to be defined for a fixed vector of charges for an N -tuple of Young

diagrams σ = (σ0, . . . , σN−1), while we have considered the ŝl(n)N characters to be defined

for a dominant integral weight Λ ∈ P+(ŝl(n)). Thus, to connect both sides of (4.2.12) (or

equivalently (4.2.17)), we will instead define X1,s
σ for a dominant integral ŝl(n) weight.

This will give us a uniform way of notating character and generating functions on both

sides of our generalized conjecture, allowing one to see that our proposed identifications are

natural. In the sequel, we will be notating both the generating function of instantons and

the ŝl(n)N character functions using one dominant integral weight.
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To do this, we use the vector of integers N = (N0, . . . , Nn−1) used to define the Chern

classes of the instanton bundle through (3.1.11). In terms of the N -tuples of coloured Young

diagrams labelling an instanton, each Ni corresponds to the number of Young diagrams of

charge i. Then, as each Ni ≥ 0, we can instead consider N to be a dominant integral ŝl(n)N

weight.

Since we have ordered the Young diagram charges by size, specifying the vector N is equiv-

alent to specifying the vector of charges σ = (σ0, . . . , σN−1). So, we let N = [N0, N1, . . . ,

Nn−1] ∈ P+
n,N be such that eachNi ≥ 0 with

∑n−1
i=0 Ni = N . If we regardN as an ŝl(n) weight,

then N =
∑n−1

i=0 NiΛi ∈ P+
n,N . We rewrite N =

∑N−1
j=0 Λσj and define σ = (σ0, σ1, . . . , σN−1).

Then σ = λT , the partition conjugate to λ = par(N) defined by (1.3.20).

Remark 4.2.2.5. Note that in this case, N is a cyclic permutation of the dual weight (s−1)† ∈
P+
n,N (see (1.3.42)). In chapter 5, we will extend this process for identifying the generating

function of cylindric Burge partitions with a CFT character to general Burge partitions.

Now define s = [s0, s1, . . . , sN−1] by (4.1.5) and (4.1.6), and define the SU(N) t-refined Burge-

reduced generating function of coloured Young diagrams, by factoring out the Heisenberg

factor H, whose character is χH(q) = (q; q)−1
∞ , by

X̂red
N (q, t) := (q, q)∞ ×X1,s

σ (q, t). (4.2.18)

We choose to factorize the Burge generating function in this way to match the form of

A(N,n;N) (4.1.2). This factorization leads us to propose that X̂red
N is the natural gauge

theoretic object to be identified with the ŝl(n)N -WZW characters (that is, not with the

character of the combined system H⊕ ŝl(n)N ) through the coset AGT conjecture 3.3.0.1 for

gauge theories under a minimal model identification when p = N . This is shown through

the following corollary to proposition 4.2.2.2.

Corollary 4.2.2.6. If N ∈ P+
n,N , then

X̂red
N (q, t) = qwN−hN χ

ŝl(n)N
N (q, t̂), (4.2.19)

where t̂ is related to t by (4.2.12), and hN and wN are given by (4.2.6) and (4.2.13).

From this corollary we see that X̂red
N is the natural object to use in our generalized AGT

conjecture, as we predicted, since it is equal term-by-term, up to a factor of qwN−hN , with

an ŝl(n)N -WZW character.

This corollary implies that the Chern classes (3.1.11) on the gauge side are AGT dual objects

to the eigenvalues of Cartan elements Hi of ŝl(n) on the CFT side, by identifying the ci with

the Hi. To see this, we expand both sides of (4.2.19) term-by-term and note that in the
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factorization (4.2.18) we have not factorized out any function of the parameters {ti}i=1,...,n−1.

Thus in the q-series expansion of X̂red
N , we retain the form of the t factors of Xr,s

σ . By using

the t factors in (4.2.3), which carry the information of the Chern classes, and comparing

them to the t factors in (4.2.7), we see that we can identify the Chern classes with the

Cartan eigenvalues. This natural identification between the Chern classes on the gauge side

and the Cartan eigenvalues on the CFT side of the generalized AGT conjecture, provides

strong evidence for its validity. We note that this identification supports our observations in

remark 3.1.1.2.

Example 4.2.2.7. In the case of N = 1, (4.2.19) is particularly simple, because then hN = wN.

For instance, for (N,n) = (1, 2) we have

X̂red
[1,0](q, t) = (q; q)∞

∑
l∈Z

X(0);(−l)(q) t
2l =

1

(q; q)∞

∑
j∈Z

qj
2
t̂ 2j = χ

ŝl(n)N
[1,0] (q, t̂),

X̂red
[0,1](q, t) = (q; q)∞

∑
l∈Z

X(1);(−l)(q) t
2l+1 =

1

(q; q)∞

∑
j∈Z+ 1

2

qj
2
t̂ 2j = χ

ŝl(n)N
[0,1] (q, t̂),

(4.2.20)

where t̂ = q−
1
4 t.

In section 4.4, we will give explicit examples of corollary 4.2.2.6 for (N,n) = (2, 2), (2, 3)

and (3, 2) by comparing with the ŝl(n)N -WZW characters computed using the Weyl-Kac

character formula (1.3.36).

Note that when t = (1, . . . , 1), we have that

X̂red
N (q, (1, . . . , 1)) = (q, q)∞ ×X1,s

σ (q), (4.2.21)

gives the ŝl(n) principally specialised character (1.3.38). Therefore we say t = (1, . . . , 1) is

the principally specialised case of the t-refined Burge reduced generating function.

4.3 Burge-reduced instanton partition functions and ŝl(n)N-

WZW conformal blocks

In this section, we use the generalized AGT conjecture 3.3.0.1 for N = 2 SU(N) gauge

theories on C2/Zn under a minimal model matching for p = N to extract integrable ŝl(n)N -

WZW conformal blocks from the well-defined instanton partition function Ẑ := ZSU(N). We

then make explicit conjectures of this nature for specific choices of parameters, such that on

the CFT side we extract conformal blocks that satisfy the KZ differential equation (1.5.117)

when it reduces to the hypergeometric differential equation (specifically, those of example

1.5.10.1). Finally, we show that the series expansions of the instanton partition function
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for these cases matches the of solutions to the KZ equation, and hence integrable ŝl(n)N

conformal blocks, up to a given order.

4.3.1 U(1) instanton partition function

We begin by considering U(1) gauge theories on C2/Zn, which are conjectured to be AGT

dual with CFTs whose symmetry algebra is the N = 1 algebra A(1, n; p) = H⊕ ŝl(n)1. Note

that since N = 1, the instantons are labelled by one coloured Young diagram. Equivalently,

we consider cases where N is a fundamental ŝl(n) weight. We choose to notate this level 1

weight N = Nσ, where σ is the charge of Young diagram.

We now consider the instanton partition function for this gauge theory. Following corollary

4.2.2.6, the corresponding module in ŝl(n)1 is the highest-weight module with Λ = Λσ. For

b, b′ ∈ Zn, m,m′ ∈ C, and Nσ ∈ P+
n,1 we define

Zb,b
′

Nσ
(m,m′; q) =: Z

U(N)
σ;0 (0, b, b′,m, ,m′; q), (4.3.1)

and make the following conjecture.

Conjecture 4.3.1.1. The U(1) instanton partition function (4.3.1) on C2/Zn with b′ = b

and N0 = [1, 0, . . . , 0] is

Zb,bN0
(m,m′; q) = (1− q)

m(ϵ1+ϵ2−m′)
n ϵ1 ϵ2 (1− q)−2hb , (4.3.2)

where hb = hNb
= b(n−b)

2n is the conformal dimension of the highest-weight state |Nb⟩ in the

ŝl(n)1-WZW model. The first factor is the U(1) factor ZH (m,m′; q) in (3.1.38) for N = 1,

and the second factor is the 2-point function (see (1.5.27)) of ŝl(n)1-WZW primary fields

with highest-weights Λb and Λn−b

Note that in this case the Burge conditions are vacuous. We also note that we have a closed

form expression for the CFT (right-hand) side. In general, only the 2-point function is

sufficiently restricted by conformal invariance which gives one simple closed form expressions

such as these on the CFT side, while on the gauge side only when N = 1 will the instanton

partition function involve an unrestricted sum over Young diagrams.

4.3.2 SU(N) Burge-reduced instanton partition functions

For N ≥ 2, in the same way that we defined the Burge-reduced generating function (4.2.18)

of coloured Young diagrams, we now introduce a reduced version of the instanton partition
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function (3.1.34) by imposing the specialized Burge conditions (3.4.7) with r = 1 ∈ P++
N,N

and s ∈ P++
N,N+n,

Zs;b,b′

σ;l

(
a,m,m′; q

)
=

∑
λσ∈Cs

σ;l

Zbif

(
m,∅b;a, λσ

)
Zbif

(
a, λσ;−m′,∅b

′)
Zvec (a, λσ)

q
1
n
|λσ |, (4.3.3)

where
∑N−1

i=0 ai = 0 is assumed. The Coulomb parameters a = (a0, . . . , aN−1), and the mass

parameters m = (m0, . . . ,mN−1), m
′ = (m′

0, . . . ,m
′
N−1), are related to the internal charge

αs, and the external charge αr=0,1,2,3, of a 4-point conformal block in a W para
n,N CFT, by the

relations (3.3.7) and (3.3.5) respectively. The gauge theory in the rational Ω-background

(3.2.2) for p = N ,

ϵ1
ϵ2

= −1− n

N
, (4.3.4)

is expected, via the proposed AGT correspondence, to describe a minimal model CFT whose

charge take the degenerate values (3.4.1) when ri = 1 for i = 0, . . . , N − 1,

2αs = −
N−1∑
i=1

(si − 1) ϵ2 Λi,

(3.3.7)
=⇒ ai−1 = asi−1 := −

N−1∑
j=i

(
sj − 1− n

N

)
ϵ2 +

1

N

N−1∑
j=1

j
(
sj − 1− n

N

)
ϵ2,

(4.3.5)

parametrized by s = [s0, s1, . . . , sN−1] ∈ P++
N,N+n. Using these degenerate values, we write the

charge of the 4 primary fields on the CFT side using the new parameters s(0) = [s
(0)
0 , s

(0)
1 , . . . ,

s
(0)
N−1] ∈ P

++
N,N+n, s

(3) = [s
(3)
0 , s

(3)
1 , . . . , s

(3)
N−1] ∈ P

++
N,N+n, and

s(1) = [s
(1)
0 , s

(1)
1 , . . . , s

(1)
N−1] = [s

(1)
0 , 1, . . . , 1, s

(1)
N−1] ∈ P

++
N,N+n,

s(2) = [s
(2)
0 , s

(2)
1 , . . . , s

(2)
N−1] = [s

(2)
0 , s

(2)
1 , 1, . . . , 1] ∈ P++

N,N+n,
(4.3.6)

which parameterize the mass parameters m and m′ for a gauge theory under a minimal

model identification

2α0 = −
N−1∑
i=1

(
s
(0)
i − 1

)
ϵ2 Λi, 2α1 = −

(
s
(1)
N−1 − 1

)
ϵ2 ΛN−1,

2α3 = −
N−1∑
i=1

(
s
(3)
i − 1

)
ϵ2 Λi, 2α2 = −

(
s
(2)
1 − 1

)
ϵ2 Λ1.

(4.3.7)



169 Burge-reduced instanton partition functions and ŝl(n)N -WZW conformal blocks

Note that we have α1 ∝ ΛN−1 and α1 ∝ Λ1. This allows us express the dual gauge theory

mass parameters using (3.3.2) and (3.3.5) as

mi+1 = ms(0),s(1)

i+1 :=−
(
i− N + 1

2

)
n

N
ϵ2

+
1

N

 i−1∑
j=1

j
(
s
(0)
j − 1

)
−
N−1∑
j=i

(N − j)
(
s
(0)
j − 1

)
−
(
s
(1)
N−1 − 1

) ϵ2,

(4.3.8)

m′
i+1 = m′s(2),s(3)

i+1 :=

(
i− N + 1

2

)
n

N
ϵ2

+
1

N

− i−1∑
j=1

j
(
s
(3)
j − 1

)
+
N−1∑
j=i

(N − j)
(
s
(3)
j − 1

)
−
(
s
(2)
1 − 1

) ϵ2.

(4.3.9)

By using (4.1.5), we can fix the s parameters defining the Coulomb parameters for gauge

theories under a minimal model identification as si = σi−1 − σi + 1, from the ordered Zn-
charges σ0 ≥ . . . ≥ σN−1. Similarly, we now fix the s parameters s(0) and s(3) defining the

mass parameters using the Zn-boundary charges as follows. Taking a shift by the central

U(1) factor in the U(N) flavor symmetry (from (3.3.5)) into account, one obtains the Zn-
boundary charge conditions (note the similarity to the Zn-charge conditions obtained for the

Coulomb parameters in (3.4.5))

s
(0)
i − 1 ≡ bi−1 − bi mod n, s

(3)
i − 1 ≡ b′i−1 − b′i mod n, i = 1, . . . , N − 1. (4.3.10)

We can then determine the independent parameters in s(0) and s(3) as

s
(0)
i = bi−1 − bi + 1, s

(3)
i = b′i−1 − b′i + 1, i = 1, . . . , N − 1. (4.3.11)

The remaining independent parameters s
(1)
N−1 and s

(2)
1 in (4.3.6) will be determined below in

(4.3.15), by imposing that these parameters satisfy the ŝl(n)-WZW fusion rules on the CFT

side in the conformal blocks, when applying the conjecture.

By factorizing out the U(1) factor (3.1.38), as in the case of the t-refined Burge-reduced

generating function (4.2.18), we define a Burge-reduced instanton partition function labelled

by N = [N0, . . . , Nn−1] ∈ P+
n,N , l = (l1, . . . , ln−1) ∈ Zn−1, and Zn-boundary charges b =

(b0, . . . , bN−1) and b′ = (b′0, . . . , b
′
N−1) as follows.
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Definition 4.3.2.1. The SU(N) Burge-reduced instanton partition function is defined by [43]

Ẑb,b′

N;l (q) = ZH

(
ms(1),s(2) ,m′ s(3),s(4) ; q

)−1
×Zs;b,b′

σ;l

(
as,ms(1),s(2) ,m′ s(3),s(4) ; q

)
. (4.3.12)

Here the Coulomb parameters as = (as0, . . . , a
s
N−1) are given by (4.3.5) with si = σi−1−σi+1

in (4.1.5), and the mass parameters ms(0),s(1) = (ms(0),s(1)

0 , . . . ,ms(0),s(1)

N−1 ) and m′ s(2),s(3) =

(m′ s(2),s(3)
0 , . . . ,m′ s(2),s(3)

N−1 ) are given by (4.3.8) and (4.3.9) with s
(0)
i , s

(3)
i in (4.3.10) and s

(1)
N−1,

s
(2)
1 determined below in (4.3.15) with the fusion rules.

By corollary 4.2.2.6, the set {Ni}i=0,...,n−1, determined from the Zn-charges σ, is identified

with the eigenvalues of the action of the ŝl(n)N Cartan algebra. Therefore we take the vector

N to define a level N highest weight for the ŝl(n)N -WZW model.

We now use the preceding discussion to conjecture which ŝl(n)N -WZW 4-point conformal

blocks are dual to Ẑb,b′

N;l (q). We begin by forming two new ŝl(n)N weights associated to the

Zn-boundary charges by (note that this defines two sets of Dynkin labels as well)

B = [B0, B1, . . . , Bn−1] :=

N∑
i=1

Λbi , B′ = [B′
0, B

′
1, . . . , B

′
n−1] :=

N∑
i=1

Λb′i . (4.3.13)

We recall our discussion of 4-point conformal blocks in section 1.5.3. We consider the con-

formal blocks from the 4-point correlation function between primary fields

⟨ψα0(∞)ψα1(1)ψα2(q)ψα3(0)⟩
ŝl(n)
P1 , (4.3.14)

which we calculate by taking an OPE between ψα1(1)ψα2(q), so that our calculation is for the

s-channel. We also recall that this 4-point function satisfies the KZ differential equation, and

that we can reduce this KZ differential equation to the hypergeometric differential equation

for special choices of primary fields (see section 1.5.10).

We propose that for the ŝl(n)N -WZW 4-point conformal blocks, the integrable representa-

tions of the primary fields for the two external legs are of highest weight, with the highest

weights being B and B′, the ŝl(n)N weights corresponding to the Zn-boundary charges b and

b′ defined above. We then notate the highest weights of the primary fields corresponding

to the internal legs as Bc,B
′
c ∈ P (ŝl(n)) (note that as of now, we have not fixed these) and

now represent the Burge-reduced instanton partition function Ẑb,b′

N;l (q) (4.3.12) pictorially in

figure 4.1 (cf: figure 1.3).



171 Burge-reduced instanton partition functions and ŝl(n)N -WZW conformal blocks

In this diagram, we have labelled the primary fields by their associated dominant integrable

ŝl(n)N highest weights. In terms of the labelling of primary fields used for figure 1.3, we have

B ∼ ϕ1, Bc ∼ ϕ2, B′
c ∼ ϕ3, B′ ∼ ϕ4, N ∼ ϕs.

We have additionally included the associated vectors of Zn-charges on the gauge side, which

are used in the definition of the instanton partition function, directly below their associated

ŝl(n) weights (through (4.3.13)).

b

B

b′

B′

Bc B′
c

σ

N

Figure 4.1: Pictorial representation of a 4-point conformal block in ŝl(n)N -WZW models
obtained from the instanton partition function for N = 2 SU(N) gauge theories on C2/Zn

under a minimal model identification when p = N .

We also represent figure 4.1 schematically by b − bc − (N) − b′
c − b′, where the vectors

bc,b
′
c ∈ (Zn)N are associated to the weights Bc and B′

c through equations analogous to

(4.3.13). The representations with highest weights Bc and B′
c of the remaining two of the

four external primary fields need to be taken so that the highest weights Bc and B′
c respect

the WZW fusion rules from section 1.5.11, which apply from right to left in this diagram, of

the ŝl(n)N -WZW model when N, b and b′ are fixed. The choice of the integers l for Ẑb,b′

N;l (q),

which indicate the states of internal channel following corollary 4.2.2.6, is also restricted by

the fusion rules of b′ and b′
c.

In (4.3.10) and (4.3.11), the parameters in s(0) and s(3) were fixed using the Zn-boundary
charge conditions. We now fix the remaining parameters s

(1)
N−1, s

(2)
1 in (4.3.6) using the fusion

rules. Let bc = (bc,0, . . . , bc,N−1) and b′
c = (b′c,0, . . . , b

′
c,N−1) be boundary charges associated

with Bc and B′
c, respectively.

1 We propose that they satisfy the same type of boundary

charge conditions with (4.3.8) as s
(1)
i − 1 ≡ bc,i − bc,i−1 (mod n) and s

(2)
i − 1 ≡ b′c,i−1 − b′c,i

(mod n) for the parameters in (4.3.6). As a result, these boundary charges are

bc ≡ (bc, bc, . . . , bc, bc + s
(1)
N−1 − 1) (mod n),

b′
c ≡ (b′c + s

(2)
1 − 1, b′c, b

′
c, . . . , b

′
c) (mod n),

(4.3.15)

where bc, b
′
c ∈ {0, 1, . . . , n− 1}, and s(1)N−1, s

(2)
1 should be determined by the fusion rules. For

definiteness, we restrict s
(2)
N−1, s

(3)
1 ∈ {1, . . . , n}, and ifN = 2 we take bc+s

(2)
1 ≤ n, b′c+s

(3)
1 ≤ n

so that the boundary charges are bc = (bc, bc + s
(2)
1 − 1) and b′

c = (b′c + s
(3)
1 − 1, b′c).

1 We will not assume the ordering of the boundary charges bc and b′
c.
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4.3.3 Conjectured ŝl(n)-WZW Conformal Blocks from Instanton Partition

Functions

We propose the following conjectures on the relation between the SU(N) Burge-reduced

instanton partition functions (4.3.12) on C2/Zn and the ŝl(n)N -WZW conformal blocks. To

describe our conjectures, we represent Λ = [d0, d1, . . . , dn−1] ∈ P+
n,N as a Young diagram by

a partition λ = par(Λ) using (1.3.20).

Conjecture 4.3.3.1 (The case corresponding to the diagram ∅−∅− (∅)−∅−∅). The trivial

ŝl(n)N -WZW correlation function of the type

⟨∅(1) ∅(q)⟩ŝl(n)NP1 , (4.3.16)

agrees with the following Burge-reduced instanton partition function

Ẑ0,0
[N,0,...,0];0(q) = (1− q)−2h∅ = 1. (4.3.17)

Here s = s1 = s2 = s(3) = s(4) = [n + 1, 1, . . . , 1] are fixed by (4.1.5), (4.3.11) and (4.3.15),

and h∅ = 0 is the conformal dimension for the representation ∅ = [N, 0, . . . , 0].

Visually this is represented as

b = (0, . . . , 0)

B = ∅

b′ = (0, . . . , 0)

B′ = ∅

Bc = ∅ B′
c = ∅

σ = (0, . . . , 0)

N = ∅

Remark 4.3.3.2. The 4-point correlation function in this case reduces to the the 2-point

function (4.3.16) as it is a pairing between the states ⟨∅(1)| and |∅(q)⟩ together with the

insertion of two empty vertex operators. In this case, the vertex operators are trivial so we

are left with the trivial 2-point function.

Conjecture 4.3.3.3 (The case corresponding to ∅ − [N − 1, 0, . . . , 0, 1]− ( )− − ∅). The

ŝl(n)N -WZW 2-point conformal block of the type ⟨ (1) (q)⟩ŝl(n)NP1 = (1− q)−2h agrees with

the Burge-reduced instanton partition function Ẑ0,0
[N−1,1,0...,0];0(q). That is

Ẑ0,0
[N−1,1,0...,0];0(q) = (1− q)−2h . (4.3.18)

Here s = s(3) = [n, 2, 1, . . . , 1], s1 = s(4) = [n+1, 1, . . . , 1] and s
(2)
N−1 = n are fixed by (4.1.5),

(4.3.11) and (4.3.15), and h = n2−1
2n(n+N) is the conformal dimension for the representation

= [N − 1, 1, 0 . . . , 0].
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b = (0, . . . , 0)

B = ∅

b′ = (0, . . . , 0)

B′ = ∅

Bc = ... n− 1 B′
c = ∅

σ = (0, . . . , 0)

N = ∅

Figure 4.2: The conformal block for conjecture 4.3.3.3.

Visually this is represented in figure 4.2.

Conjecture 4.3.3.4 (The case corresponding to − − (∅ or [N − 2, 1, 0, . . . , 0, 1]) − −
[N − 1, 0, . . . , 0, 1]). The ŝl(n)N -WZW 4-point conformal blocks of the type

⟨ (∞) (1) (q) (0)⟩ŝl(n)NP1 ,

agree with, up to certain overall factors, the following Burge-reduced instanton partition

functions,2

Ẑ(1,0,...,0),(n−1,0,...,0)
[N,0,...,0];l (q) (4.3.19)

=

(1− q)2h − n+1
n+N 2F1

(
− 1
n+N ,

N−1
n+N ; N

n+N ; q
)
, for l = 0,

1
N q

1
n (1− q)2h − n+1

n+N 2F1

(
N−1
n+N , 1−

1
n+N ; 1 + N

n+N ; q
)
, for l = (−1, . . . ,−1),

and

Ẑ(1,0,...,0),(n−1,0,...,0)
[N−2,1,0,...,0,1];l (q) (4.3.20)

=

(1− q)2h − n+1
n+N 2F1

(
− 1
n+N ,

n−1
n+N ; n

n+N ; q
)
, for l = 0,

1
n q

1− 1
n (1− q)2h − n+1

n+N 2F1

(
n−1
n+N , 1−

1
n+N ; 1 + n

n+N ; q
)
, for l = (1, . . . , 1).

Here, by (4.1.5), (4.3.11) and (4.3.15), for (4.3.19) s = [n + 1, 1, . . . , 1], s1 = s(3) =

[n, 2, 1, . . . , 1], s(4) = [2, n, 1, . . . , 1] and s
(2)
N−1 = 2 are fixed, and for (4.3.20) s = [2, n −

1, 2, 1, . . . , 1], s1 = s(3) = [n, 2, 1, . . . , 1], s(4) = [2, n, 1, . . . , 1] and s
(2)
N−1 = 2 are fixed, where

when N = 2, [2, n− 1, 2, 1, . . . , 1] means [3, n− 1]. The integers l = δk are taken so that the

corresponding modules on the CFT side, following corollary 4.2.2.6, are in the fundamental

chamber under the action of affine Weyl group of ŝl(n), and the second ones in (4.3.19) and

2(4.3.19) and (4.3.20) correspond to, respectively, the 4-point WZW conformal blocks F̂ (0)
i=1,2(q) and

F̂ (1)
i=2,1(q) in (1.5.130)
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(4.3.20) respect the fusion rules by

N = [N, 0, . . . , 0] = ∅ δk=(−1,...,−1)−→ c = [N − 2, 1, 0, . . . , 0, 1] ,

N = [N − 2, 1, 0, . . . , 0, 1]
δk=(1,...,1)−→ c = [N, 0, . . . , 0] = ∅,

(4.3.21)

where c = [c0, c1, . . . , cn−1] are defined by the Chern classes (3.1.11). When n = 2, [N−2, 1, 0,
. . . , 0, 1] means [N − 2, 2] = and then σ = (1, 1, 0, . . . , 0).

Visually we represent Ẑ(1,0,...,0),(n−1,0,...,0)
[N,0,...,0];l (q) as

b = (1, 0, . . . , 0)

B =

b′ = (0, 0, . . . , 1)

B′ = ... n− 1

Bc = B′
c =

σ = (n, 0, 0, . . . , 0)

N = ∅

and Ẑ(1,0,...,0),(n−1,0,...,0)
[N−2,1,0,...,0,1];l (q) by

b = (1, 0, . . . , 0)

B =

b′ = (n− 1, 0, . . . , 0)

B′ = ... n− 1

Bc = B′
c =

σ = (n− 1, 1, 0, . . . , 0)

N = ... n− 1

B B′

Bc B′
c

N

Figure 4.3: Pictorial representation of the fusion rules respected for the 4-point conformal
block in ŝl(n)N -WZW models obtained from the instanton partition function for N = 2

SU(N) gauge theories on C2/Zn under a minimal model identification when p = N .

Here we include an example of the fusion calculations required to determine which arrange-

ments of highest weights (in terms of ŝl(n) weights) are allowed in these conformal blocks.

We begin by noting that the fusion rules needing to hold from right to left is represented in

figure 4.3. There are two vertices in the diagram, and both represent fusion between primary

fields. The arrows pointing towards a vertex are the two fields fusing and the arrow pointing
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away from the vertex represents the product of this fusion. Our example will focus on the

right hand vertex of the block.

Example 4.3.3.5. Consider the fusion in conjecture 4.3.3.4, involving the primary fields

of weights Λ(2) = [1, 0, . . . , 0] and Λ(3) = [0, . . . , 1] with corresponding Young diagrams

par(Λ(2)) = (1) and par(Λ(3)) = (1, . . . , 1︸ ︷︷ ︸
n−1

). We first use the Littlewood-Richardson rules

for Λ(3) ⊗ Λ(2) which gives the two Young diagrams λ = (2, . . . , 1︸ ︷︷ ︸
n−1

) and µ = (1, . . . , 1︸ ︷︷ ︸
n

). We

now use the fusion rules for ŝl(n)N and remove all columns of length n. This leaves the two

diagrams λ = (2, . . . , 1︸ ︷︷ ︸
n−1

) and µ = (∅) corresponding to the weights [1, 0, . . . , 1] and [0, . . . , 0].

This correctly gives the two cases in the conjecture.

4.4 Examples of SU(N) Burge-reduced instanton counting on

C2/Zn

We illustrate the statement of corollary 4.2.2.6 and check conjectures 4.3.3.1, 4.3.3.3 and

4.3.3.4 for (N,n) = (2, 2), (2, 3) and (3, 2). In particular we demonstrate how one can extract

their ŝl(n)N -WZW conformal blocks from the Burge-reduced instanton partition functions.3

4.4.1 (N, n) = (2, 2) and ŝl(2)2-WZW model

For (N,n) = (2, 2), there are three highest-weight representations

∅ = [2, 0], = [1, 1], = [0, 2], (4.4.1)

with conformal dimensions

h[k0,k1] =
k1 (k1 + 2)

16
: h∅ = 0, h =

3

16
, h =

1

2
. (4.4.2)

3 The computations in this section heavily rely on Mathematica. We have also checked conjectures 4.3.3.1,
4.3.3.3 and 4.3.3.4 for (N,n) = (2, 4) up to O(q5).
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4.4.1.1 Burge-reduced generating functions of coloured Young diagrams

The t-refined Burge-reduced generating functions (4.2.18) for (N,n) = (2, 2) are obtained as

X̂red
[2,0](q, t) = (q; q)∞

∑
l∈Z

X
[3,1]
(0,0);(−l)(q) t

2l = X
[2,0]
[2,0] (q) f0(q, t̂) +X

[2,0]
[0,2] (q) f1(q, t̂),

X̂red
[0,2](q, t) = (q; q)∞

∑
l∈Z

X
[3,1]
(1,1);(−l)(q) t

2l+2 = X
[0,2]
[0,2] (q) f1(q, t̂) +X

[0,2]
[2,0] (q) f0(q, t̂),

X̂red
[1,1](q, t) = (q; q)∞

∑
l∈Z

X
[2,2]
(1,0);(−l)(q) t

2l+1 = X
[1,1]
[1,1] (q) g(q, t̂),

(4.4.3)

where t̂ = q−
1
4 t,

X
[2,0]
[2,0] (q) = 1 + q + 3q2 + 5q3 + 10q4 + 16q5 + 28q6 + 43q7 + 70q8 + 105q9 + 161q10 + · · · ,

X
[2,0]
[0,2] (q) = q

1
2 + 2q

3
2 + 4q

5
2 + 7q

7
2 + 13q

9
2 + 21q

11
2 + 35q

13
2 + 55q

15
2 + 86q

17
2 + 130q

19
2 + · · · ,

X
[1,1]
[1,1] (q) = 1 + 2q + 4q2 + 8q3 + 14q4 + 24q5 + 40q6 + 64q7 + 100q8 + · · · ,

X
[0,2]
[0,2] (q) = X

[2,0]
[2,0] (q), X

[0,2]
[2,0] (q) = X

[2,0]
[0,2] (q),

(4.4.4)

and

fσ(q, t̂) =
∑

j∈4Z+2σ

q
1
8
j2 t̂ j , σ = 0, 1, g(q, t̂) =

∑
j∈2Z+1

q
1
8
j2+ 1

8 t̂ j . (4.4.5)

The Burge-reduced generating functions (4.4.3) agree with the ŝl(2)2-WZW characters com-

puted by (1.3.36),

X̂red
[2,0](q, t) = χ

ŝl(2)2
[2,0] (q, t̂), X̂red

[0,2](q, t) = χ
ŝl(2)2
[0,2] (q, t̂), X̂red

[1,1](q, t) = q
1
16 χ

ŝl(2)2
[1,1] (q, t̂), (4.4.6)

and corollary 4.2.2.6 is confirmed. Up to an overall factor, the functions (4.4.4) are the ŝl(2)

string functions of level-2 in [57] and given by (cf. Corollary 4.2.2.4),

X
[2,0]
[2,0] (q) +X

[2,0]
[0,2] (q) =

(
−q

1
2 ; q
)
∞

(q; q)∞
, X

[2,0]
[2,0] (q)−X

[2,0]
[0,2] (q) =

(
q

1
2 ; q

1
2

)
∞

(q; q)2∞
, X

[1,1]
[1,1] (q) =

(
q2; q2

)
∞

(q; q)2∞
.

(4.4.7)

Using the Jacobi triple product identity

∑
l∈Z

xl y
1
2
l(l−1) = (−x; y)∞

(
−y
x
; y
)
∞
(y; y)∞ , (4.4.8)
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one can easily obtain (4.2.21) for the principal characters of ŝl(2),

X̂red
[2,0](q, 1) = X̂red

[0,2](q, 1) = Prχ
ŝl(2)
[2,0] (q) =

(
−q

1
2 ; q

1
2

)
∞
(−q; q)∞ ,

X̂red
[1,1](q, 1) = Prχ

ŝl(2)
[1,1] (q) =

(
−q

1
2 ; q

1
2

)
∞

(
−q

1
2 ; q
)
∞
.

(4.4.9)

4.4.1.2 Burge-reduced instanton partition functions

For N = 2 with general n, the Burge-reduced instanton partition functions (4.3.12) are

determined by the parameters in s = [s0, s1] ∈ P++
2,n+2 and sr = [sr,0, sr,1] ∈ P++

2,n+2, r =

1, 2, 3, 4, fixed by the relations (4.1.5), (4.3.11):

s1 = σ0 − σ1 + 1, s
(1)
1 = b0 − b1 + 1, s

(4)
1 = b′0 − b′1 + 1, (4.4.10)

and (4.3.15) from the ordered charges σ0 ≥ σ1, b0 ≥ b1 and b′0 ≥ b′1. The Coulomb parameters

are then determined from the parameter s := s1 by (4.3.5):

a0 = −
1

2

(
s− 1− n

2

)
ϵ2, a1 =

1

2

(
s− 1− n

2

)
ϵ2, (4.4.11)

and the mass parameters m = (m0,m1) and m′ = (m′
0,m

′
1) are determined from the param-

eters in s1, s2 and s(3), s(4), respectively, by (4.3.7).

Let us consider the case of (N,n) = (2, 2) with the rational Ω-background ϵ1/ϵ2 = −2 in

(4.3.4).4

Example 4.4.1.3 (∅−∅−(∅)−∅−∅). Consider the Burge-reduced instanton partition function

Ẑ(0,0),(0,0)
[2,0];(l) (q) and take l = 0 in the fundamental chamber, which respects the fusion rules,

as in conjecture 4.3.3.1. Here s = s1 = s2 = s(3) = s(4) = [3, 1] are fixed. Then, the

Burge-reduced instanton partition function is obtained as

Ẑ(0,0),(0,0)
[2,0];(0) (q) = (1− q)−2h∅ = 1, h∅ = 0, (4.4.12)

which agrees with conjecture 4.3.3.1.

Example 4.4.1.4 (∅− −( )− −∅). Consider the Burge-reduced instanton partition function

Ẑ(0,0),(0,0)
[1,1];(l) (q) and take l = 0 in the fundamental chamber as in conjecture 4.3.3.3. Here

s = s2 = s(3) = [2, 2] and s1 = s(4) = [3, 1] are fixed. Then we see that the Burge-reduced

instanton partition function is

Ẑ(0,0),(0,0)
[1,1];(0) (q) = (1− q)−2h = 1 +

3q

8
+

33q2

128
+

209q3

1024
+

5643q4

32768
+

39501q5

262144
+ · · · ,

(4.4.13)

4 Examples 4.4.1.3, 4.4.1.4 and 4.4.1.5 are confirmed up to O(q6).
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where h = 3/16, which agrees with conjecture 4.3.3.3.

Example 4.4.1.5 ( − − (∅) − − and − − ( ) − − ). For conjecture 4.3.3.4,

first consider the Burge-reduced instanton partition function Ẑ(1,0),(1,0)
[2,0];(l) (q), where s = [3, 1]

and s1 = s2 = s(3) = s(4) = [2, 2] are fixed. Then we find that the Burge-reduced instanton

partition functions for l = 0,−1 in the fundamental chamber are

Ẑ(1,0),(1,0)
[2,0];(0) (q) = (1− q)2h − 3

4 2F1

(
−1

4
,
1

4
;
1

2
; q

)
= 1 +

q

4
+

11q2

64
+

35q3

256
+

949q4

8192
+

3333q5

32768
+

47909q6

524288
+ · · · ,

Ẑ(1,0),(1,0)
[2,0];(−1) (q) =

q
1
2

2
(1− q)2h − 3

4 2F1

(
1

4
,
3

4
;
3

2
; q

)
=
q

1
2

2
+
q

3
2

4
+

23q
5
2

128
+

37q
7
2

256
+

2013q
9
2

16384
+

3537q
11
2

32768
+ · · · ,

(4.4.14)

where h = 3/16, and the second one respects the fusion rules by (4.3.21). Next consider

the Burge-reduced instanton partition function Ẑ(1,0),(1,0)
[0,2];(l) (q), where s = [3, 1] and s1 = s2 =

s(3) = s(4) = [2, 2] are fixed. Then we obtain the Burge-reduced instanton partition functions

for l = 0, 1 in the fundamental chamber as

Ẑ(1,0),(1,0)
[0,2];(0) (q) = (1− q)2h − 3

4 2F1

(
−1

4
,
1

4
;
1

2
; q

)
= Ẑ(1,0),(1,0)

[2,0];0 (q),

Ẑ(1,0),(1,0)
[0,2];(1) (q) =

q
1
2

2
(1− q)2h − 3

4 2F1

(
1

4
,
3

4
;
3

2
; q

)
= Ẑ(1,0),(1,0)

[2,0];−1 (q),

(4.4.15)

where the second one respects the fusion rules by (4.3.21). The above results (4.4.14) and

(4.4.15) support conjecture 4.3.3.4. By

2F1

(
−1

4
,
1

4
;
1

2
; q

)
=

(
1 +
√
1− q
2

) 1
2

,
q

1
2

2
2F1

(
1

4
,
3

4
;
3

2
; q

)
=

(
1−
√
1− q
2

) 1
2

, (4.4.16)

they are also consistent with the results in [27].5

4.4.2 (N, n) = (2, 3) and ŝl(3)2-WZW model

For (N,n) = (2, 3), there are six highest-weight representations

∅ = [2, 0, 0], = [1, 1, 0], = [0, 2, 0], = [1, 0, 1], = [0, 1, 1], = [0, 0, 2],

(4.4.17)

5 More precisely, in [27], the generic Ω-background, without the Burge conditions, was discussed. Then
the first one of (4.4.14) and the second one of (4.4.15), with c = 0, were obtained as prefactors combined with

the N = 1 super-Virasoro Ramond conformal blocks H±(q), F±(q), H̃±(q) and F̃±(q). What we found is
that, when we impose the specific Burge conditions, the conformal blocks are trivialized as H±(q), F±(q) → 1

and H̃±(q), F̃±(q) → 0, and only the prefactors are obtained.
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with conformal dimensions

h[k0,k1,k2] =
k21 + k22 + k1k2 + 3k1 + 3k2

15
:

h∅ = 0, h = h =
4

15
, h = h =

2

3
, h =

3

5
.

(4.4.18)

4.4.2.1 Burge-reduced generating functions of coloured Young diagrams

The t-refined Burge-reduced generating functions (4.2.18) for (N,n) = (2, 3) are obtained as

X̂red
[2,0,0](q, (t1, t2)) = (q; q)∞

∑
(l1,l2)∈Z2

X
[4,1]
(0,0);(−l1,−l2)(q) t

2l1−l2
1 t−l1+2l2

2

= X
[2,0,0]
[2,0,0] (q) f00(q, t̂1, t̂2) +X

[2,0,0]
[0,1,1] g00(q, t̂1, t̂2),

X̂red
[0,2,0](q, (t1, t2)) = (q; q)∞

∑
(l1,l2)∈Z2

X
[4,1]
(1,1);(−l1,−l2)(q) t

2+2l1−l2
1 t−l1+2l2

2

= X
[0,2,0]
[0,2,0] (q) f10(q, t̂1, t̂2) +X

[0,2,0]
[1,0,1] (q) g10(q, t̂1, t̂2),

X̂red
[0,0,2](q, (t1, t2)) = (q; q)∞

∑
(l1,l2)∈Z2

X
[4,1]
(2,2);(−l1,−l2)(q) t

2l1−l2
1 t2−l1+2l2

2

= X
[0,0,2]
[0,0,2] (q) f01(q, t̂1, t̂2) +X

[0,0,2]
[1,1,0] (q) g01(q, t̂1, t̂2),

X̂red
[1,1,0](q, (t1, t2)) = (q; q)∞

∑
(l1,l2)∈Z2

X
[3,2]
(1,0);(−l1,−l2)(q) t

1+2l1−l2
1 t−l1+2l2

2

= X
[1,1,0]
[1,1,0] g01(q, t̂1, t̂2) +X

[1,1,0]
[0,0,2] (q) f01(q, t̂1, t̂2),

X̂red
[0,1,1](q, (t1, t2)) = (q; q)∞

∑
(l1,l2)∈Z2

X
[3,2]
(2,1);(−l1,−l2)(q) t

1+2l1−l2
1 t1−l1+2l2

2

= X
[0,1,1]
[0,1,1] (q) g00(q, t̂1, t̂2) +X

[0,1,1]
[2,0,0] (q) f00(q, t̂1, t̂2),

X̂red
[1,0,1](q, (t1, t2)) = (q; q)∞

∑
(l1,l2)∈Z2

X
[2,3]
(2,0);(−l1,−l2)(q) t

2l1−l2
1 t1−l1+2l2

2

= X
[1,0,1]
[1,0,1] (q) g10(q, t̂1, t̂2) +X

[1,0,1]
[0,2,0] (q) f10(q, t̂1, t̂2),

(4.4.19)

where t̂1 = q−
1
3 t1, t̂2 = q−

1
3 t2,

X
[2,0,0]
[2,0,0] (q) = 1 + 2q + 8q2 + 20q3 + 52q4 + 116q5 + 256q6 + 522q7 + · · · ,

X
[2,0,0]
[0,1,1] (q) = q

1
3 + 4q

4
3 + 12q

7
3 + 32q

10
3 + 77q

13
3 + 172q

16
3 + 365q

19
3 + 740q

22
3 + · · · ,

X
[0,1,1]
[0,1,1] (q) = 1 + 4q + 13q2 + 36q3 + 89q4 + 204q5 + 441q6 + 908q7 + · · · ,

X
[0,1,1]
[2,0,0] (q) = 2q

2
3 + 7q

5
3 + 22q

8
3 + 56q

11
3 + 136q

14
3 + 300q

17
3 + 636q

20
3 + 1280q

23
3 + · · · ,

X
[0,2,0]
[0,2,0] (q) = X

[0,0,2]
[0,0,2] (q) = X

[2,0,0]
[2,0,0] (q), X

[0,2,0]
[1,0,1] (q) = X

[0,0,2]
[1,1,0] (q) = X

[2,0,0]
[0,1,1] (q),

X
[1,1,0]
[1,1,0] (q) = X

[1,0,1]
[1,0,1] (q) = X

[0,1,1]
[0,1,1] (q), X

[1,1,0]
[0,0,2] (q) = X

[1,0,1]
[0,2,0] (q) = X

[0,1,1]
[2,0,0] (q),

(4.4.20)
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and f00, f10, f01, g00, g10, g01 are

fσ1σ2(q, t̂1, t̂2) =
∑

(j1,j2)∈{2Z}2

j1−j2∈6Z+2(σ1−σ2)

q
1
6(j

2
1+j

2
2+j1 j2) t̂ j11 t̂ j22 ,

gσ1σ2(q, t̂1, t̂2) =
∑

(j1,j2)∈{2Z+1}2

j1−j2∈6Z+2(σ1−σ2)

q
1
6(j

2
1+j

2
2+j1 j2)+

1
6 t̂ j11 t̂ j22

+
∑

(j1,j2)∈{2Z}×{2Z+1}
j1−j2∈6Z+1+2(σ1−σ2)

q
1
6(j

2
1+j

2
2+j1 j2)+

1
6

(
t̂ j11 t̂ j22 + t̂ j21 t̂ j12

)
.

(4.4.21)

The Burge-reduced generating functions (4.4.19) agree with the ŝl(3)2-WZW characters com-

puted by (1.5.114), using the change of parameters

xi
xi+1

=
t̂i−1t̂i+1

t̂2i
⇐⇒ xi =

t̂i−1

t̂i

t̂M

t̂M−1

xM , (4.4.22)

as

X̂red
[2,0,0](q, (t1, t2)) = χ

ŝl(3)2
[2,0,0](q, (̂t1, t̂2)), X̂red

[0,2,0](q, (t1, t2)) = χ
ŝl(3)2
[0,2,0](q, (̂t1, t̂2)),

X̂red
[0,0,2](q, (t1, t2)) = χ

ŝl(3)2
[0,0,2](q, (̂t1, t̂2)), X̂red

[1,1,0](q, (t1, t2)) = q
1
15 χ

ŝl(3)2
[1,1,0](q, (̂t1, t̂2)),

X̂red
[0,1,1](q, (t1, t2)) = q

1
15 χ

ŝl(3)2
[0,1,1](q, (̂t1, t̂2)), X̂red

[1,0,1](q, (t1, t2)) = q
1
15 χ

ŝl(3)2
[1,0,1](q, (̂t1, t̂2)),

(4.4.23)

which agrees with corollary 4.2.2.6. Up to an overall factor, the functions (4.4.20) are the

ŝl(3) string functions of level-2 in [57] and given by (cf. Corollary 4.2.2.4),

X
[2,0,0]
[2,0,0] (q)− q

1
6 X

[2,0,0]
[0,1,1] (q) =

(
q

1
2 ; q

1
2

)
∞

(
q; q

5
2

)
∞

(
q

3
2 ; q

5
2

)
∞

(
q

5
2 ; q

5
2

)
∞

(q; q)4∞
,

X
[2,0,0]
[0,1,1] (q) = q

1
3

(
q2; q2

)
∞
(
q2; q10

)
∞
(
q8; q10

)
∞
(
q10; q10

)
∞

(q; q)4∞
,

X
[0,1,1]
[0,1,1] (q) =

(
q2; q2

)
∞
(
q4; q10

)
∞
(
q6; q10

)
∞
(
q10; q10

)
∞

(q; q)4∞
,

q
1
6 X

[0,1,1]
[0,1,1] (q)−X

[0,1,1]
[2,0,0] (q) = q

1
6

(
q

1
2 ; q

1
2

)
∞

(
q

1
2 ; q

5
2

)
∞

(
q2; q

5
2

)
∞

(
q

5
2 ; q

5
2

)
∞

(q; q)4∞
.

(4.4.24)
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By taking t1 = t2 = 1, the principal characters of ŝl(3) are obtained as in (4.2.21):

X̂red
[2,0,0](q, (1, 1)) = X̂red

[0,2,0](q, (1, 1)) = X̂red
[0,0,2](q, (1, 1)) = Prχ

ŝl(3)
[2,0,0](q)

=
(q; q)∞(

q
1
3 ; q

1
3

)
∞

(
q

2
3 ; q

5
3

)
∞

(
q; q

5
3

)
∞

,

X̂red
[1,1,0](q, (1, 1)) = X̂red

[0,1,1](q, (1, 1)) = X̂red
[1,0,1](q, (1, 1)) = Prχ

ŝl(3)
[1,1,0](q)

=
(q; q)∞(

q
1
3 ; q

1
3

)
∞

(
q

1
3 ; q

5
3

)
∞

(
q

4
3 ; q

5
3

)
∞

.

(4.4.25)

4.4.2.2 Burge-reduced instanton partition functions

For (N,n) = (2, 3), the rational Ω-background (4.3.4) yields ϵ1/ϵ2 = −5/2. The parameters

in s = [s0, s1] ∈ P++
2,5 and sr = [sr,0, sr,1] ∈ P++

2,5 , r = 1, 2, 3, 4, which determine the Burge-

reduced instanton partition functions, are fixed as in (4.4.10).6

Example 4.4.2.3 (∅−∅−(∅)−∅−∅). Consider the Burge-reduced instanton partition function

Ẑ(0,0),(0,0)
[2,0,0];(l1,l2)

(q) and take (l1, l2) = (0, 0) in the fundamental chamber as in conjecture 4.3.3.1.

Here s = s1 = s2 = s(3) = s(4) = [4, 1] are fixed. Then we see that the Burge-reduced

instanton partition function is

Ẑ(0,0),(0,0)
[2,0,0];(0,0)(q) = (1− q)−2h∅ = 1, h∅ = 0, (4.4.26)

which agrees with conjecture 4.3.3.1.

Example 4.4.2.4 (∅− −( )− −∅). Consider the Burge-reduced instanton partition function

Ẑ(0,0),(0,0)
[1,1,0];(l1,l2)

(q) and take (l1, l2) = (0, 0) in the fundamental chamber as in conjecture 4.3.3.3.

Here s = s(3) = [3, 2], s1 = s(4) = [4, 1] and s2 = [2, 3] are fixed. Then the Burge-reduced

instanton partition function is

Ẑ(0,0),(0,0)
[1,1,0];(0,0)(q) = (1− q)−2h = 1 +

8q

15
+

92q2

225
+

3496q3

10125
+

46322q4

151875
+

3149896q5

11390625
+ · · · ,

(4.4.27)

where h = 4/15. This expansion agrees with conjecture 4.3.3.3.

Example 4.4.2.5 ( − −(∅)− − and − −( )− − ). For conjecture 4.3.3.4, consider,

first, the Burge-reduced instanton partition function Ẑ(1,0),(2,0)
[2,0,0];(l1,l2)

(q), where s = [4, 1], s1 =

s2 = s(3) = [3, 2] and s(4) = [2, 3] are fixed. Then we find that the Burge-reduced instanton

6 Examples 4.4.2.3, 4.4.2.4 and 4.4.2.5 are confirmed up to O(q5).
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partition functions for (l1, l2) = (0, 0) and (−1,−1) in the fundamental chamber are

Ẑ(1,0),(2,0)
[2,0,0];(0,0)(q) = (1− q)2h − 4

5 2F1

(
−1

5
,
1

5
;
2

5
; q

)
= 1 +

q

6
+

34q2

315
+

67q3

810
+

49309q4

722925
+

254267q5

4337550
+ · · · ,

Ẑ(1,0),(2,0)
[2,0,0];(−1,−1)(q) =

q
1
3

2
(1− q)2h − 4

5 2F1

(
1

5
,
4

5
;
7

5
; q

)
=
q

1
3

2
+

4q
4
3

21
+

79q
7
3

630
+

4619q
10
3

48195
+

16237q
13
3

206550
+ · · · ,

(4.4.28)

where h = 4/15, and the second one respects the fusion rules by (4.3.21). Consider next, the

Burge-reduced instanton partition function Ẑ(1,0),(2,0)
[0,1,1];(l1,l2)

(q), where s = s1 = s2 = s(3) = [3, 2]

and s(4) = [2, 3] are fixed. Then we see that the Burge-reduced instanton partition functions

for (l1, l2) = (0, 0) and (1, 1) in the fundamental chamber are

Ẑ(1,0),(2,0)
[0,1,1];(0,0)(q) = (1− q)2h − 4

5 2F1

(
−1

5
,
2

5
;
3

5
; q

)
= 1 +

2q

15
+

13q2

150
+

8792q3

131625
+

218507q4

3948750
+

54190157q5

1135265625
+ · · · ,

Ẑ(1,0),(2,0)
[0,1,1];(1,1)(q) =

q
2
3

3
(1− q)2h − 4

5 2F1

(
2

5
,
4

5
;
8

5
; q

)
=
q

2
3

3
+

7q
5
3

45
+

1867q
8
3

17550
+

32582q
11
3

394875
+

18575621q
14
3

272463750
+ · · · ,

(4.4.29)

where the second one respects the fusion rules by (4.3.21). The above results (4.4.28) and

(4.4.29) support conjecture 4.3.3.4.

4.4.3 (N, n) = (3, 2) and ŝl(2)3-WZW model

For (N,n) = (3, 2), there are four highest-weight representations

∅ = [3, 0], = [2, 1], = [1, 2], = [0, 3], (4.4.30)

with conformal dimensions

h[k0,k1] =
k1 (k1 + 2)

20
: h∅ = 0, h =

3

20
, h =

2

5
, h =

3

4
. (4.4.31)



183 Examples of SU(N) Burge-reduced instanton counting on C2/Zn

4.4.3.1 Burge-reduced generating functions of coloured Young diagrams

The t-refined Burge-reduced generating functions (4.2.18) for (N,n) = (3, 2) are obtained as

X̂red
[3,0](q, t) = (q; q)∞

∑
l∈Z

X
[3,1,1]
(0,0,0);(−l)(q) t

2l = X
[3,0]
[3,0] (q) f0(q, t̂) +X

[3,0]
[1,2] (q) g0(q, t̂),

X̂red
[0,3](q, t) = (q; q)∞

∑
l∈Z

X
[3,1,1]
(1,1,1);(−l)(q) t

2l+3 = X
[0,3]
[0,3] (q) f1(q, t̂) +X

[0,3]
[2,1] (q) g1(q, t̂),

X̂red
[2,1](q, t) = (q; q)∞

∑
l∈Z

X
[2,2,1]
(1,0,0);(−l)(q) t

2l+1 = X
[2,1]
[2,1] (q) g1(q, t̂) +X

[2,1]
[0,3] (q) f1(q, t̂),

X̂red
[1,2](q, t) = (q; q)∞

∑
l∈Z

X
[2,1,2]
(1,1,0);(−l)(q) t

2l+2 = X
[1,2]
[1,2] (q) g0(q, t̂) +X

[1,2]
[3,0] (q) f0(q, t̂),

(4.4.32)

where t̂ = q−
1
4 t,

X
[3,0]
[3,0] (q) = 1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 39q6 + 64q7 + 108q8 + · · · ,

X
[3,0]
[1,2] (q) = q

1
2 + 2q

3
2 + 5q

5
2 + 9q

7
2 + 18q

9
2 + 31q

11
2 + 55q

13
2 + 90q

15
2 + 149q

17
2 + · · · ,

X
[1,2]
[1,2] (q) = 1 + 2q + 5q2 + 10q3 + 20q4 + 36q5 + 64q6 + 108q7 + 180q8 + · · · ,

X
[1,2]
[3,0] (q) = q

1
2 + 3q

3
2 + 6q

5
2 + 13q

7
2 + 24q

9
2 + 44q

11
2 + 76q

13
2 + 129q

15
2 + 210q

17
2 + · · · ,

X
[0,3]
[0,3] (q) = X

[3,0]
[3,0] (q), X

[0,3]
[2,1] (q) = X

[3,0]
[1,2] (q), X

[2,1]
[2,1] (q) = X

[1,2]
[1,2] (q), X

[2,1]
[0,3] (q) = X

[1,2]
[3,0] (q),

(4.4.33)

and

fσ(q, t̂) =
∑

j∈6Z+3σ

q
1
12
j2 t̂ j , gσ(q, t̂) =

∑
j∈6Z± (2−σ)

q
1
12
j2+ 1

6 t̂ j , σ = 0, 1. (4.4.34)

The Burge-reduced generating functions (4.4.32) agree with the ŝl(2)3-WZW characters com-

puted by (1.3.36),

X̂red
[3,0](q, t) = χ

ŝl(2)3
[3,0] (q, t̂), X̂red

[0,3](q, t) = χ
ŝl(2)3
[0,3] (q, t̂),

X̂red
[2,1](q, t) = q

1
10 χ

ŝl(2)3
[2,1] (q, t̂), X̂red

[1,2](q, t) = q
1
10 χ

ŝl(2)3
[1,2] (q, t̂),

(4.4.35)
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and corollary 4.2.2.6 is confirmed. Up to an overall factor, the functions (4.4.33) are the ŝl(2)

string functions of level-3 in [57] and given by (cf. Corollary 4.2.2.4),

X
[3,0]
[3,0] (q)− q

1
6 X

[3,0]
[1,2] (q) =

(
q

2
3 ; q

5
3

)
∞

(
q; q

5
3

)
∞

(
q

5
3 ; q

5
3

)
∞

(q; q)2∞
,

X
[3,0]
[1,2] (q) = q

1
2

(
q3; q15

)
∞
(
q12; q15

)
∞
(
q15; q15

)
∞

(q; q)2∞
,

X
[1,2]
[1,2] (q) =

(
q6; q15

)
∞
(
q9; q15

)
∞
(
q15; q15

)
∞

(q; q)2∞
,

q
1
6 X

[1,2]
[1,2] (q)−X

[1,2]
[3,0] (q) = q

1
6

(
q

1
3 ; q

5
3

)
∞

(
q

4
3 ; q

5
3

)
∞

(
q

5
3 ; q

5
3

)
∞

(q; q)2∞
.

(4.4.36)

By taking t = 1, the principal characters of ŝl(2) are obtained as in (4.2.21):

X̂red
[3,0](q, 1) = X̂red

[0,3](q, 1) = Prχ
ŝl(2)
[3,0] (q) =

(
−q

1
2 ; q

1
2

)
∞(

q; q
5
2

)
∞

(
q

3
2 ; q

5
2

)
∞

,

X̂red
[2,1](q, 1) = X̂red

[1,2](q, 1) = Prχ
ŝl(2)
[2,1] (q) =

(
−q

1
2 ; q

1
2

)
∞(

q
1
2 ; q

5
2

)
∞

(
q2; q

5
2

)
∞

.

(4.4.37)

Note that, these principal characters are related to the principal characters of ŝl(3) in (4.4.25)

by

Prχ
ŝl(2)
[3,0] (q

2)

(q2; q2)∞
=

Prχ
ŝl(3)
[2,0,0](q

3)

(q3; q3)∞
,

Prχ
ŝl(2)
[2,1] (q

2)

(q2; q2)∞
=

Prχ
ŝl(3)
[1,1,0](q

3)

(q3; q3)∞
. (4.4.38)

4.4.3.2 Burge-reduced instanton partition functions

For N = 3 with general n, the Burge-reduced instanton partition functions (4.3.12) are

determined from the parameters in s = [s0, s1, s2], s1 = [s
(1)
0 , s

(1)
1 , s

(1)
2 ], s2 = [s

(2)
0 , 1, s

(2)
2 ],

s(3) = [s
(3)
0 , s

(3)
1 , 1] and s(4) = [s

(4)
0 , s

(4)
1 , s

(4)
2 ] in P++

3,n+3 that are fixed by the relations (4.1.5),

(4.3.11):

si+1 = σi−1 − σi + 1, s
(1)
i+1 = bi−1 − bi + 1, s

(4)
i = b′i−1 − b′i + 1, i = 1, 2, (4.4.39)
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and (4.3.15) from the ordered charges σ0 ≥ σ1 ≥ σ2, b0 ≥ b1 ≥ b2, b
′
0 ≥ b′1 ≥ b′2. The

Coulomb parameters are then determined from s by (4.3.5):

a0 =
1

3

∑
I=1,2

(I − 3)
(
sI − 1− n

3

)
ϵ2,

a1 =
1

3

∑
I=1,2

(3− 2I)
(
sI − 1− n

3

)
ϵ2,

a2 =
1

3

∑
I=1,2

I
(
sI − 1− n

3

)
ϵ2,

(4.4.40)

and the mass parameters m = (m0, . . . ,mN−1) and m′ = (m′
0, . . . ,m

′
N−1) are determined

from the parameters in s1, s2 and s(3), s(4), respectively, by (4.3.7).

We now consider the case of (N,n) = (3, 2) with the rational Ω-background ϵ1/ϵ2 = −5/3 in

(4.3.4).7

Example 4.4.3.3 (∅−∅−(∅)−∅−∅). Consider the Burge-reduced instanton partition function

Ẑ(0,0,0),(0,0,0)
[3,0];(l) (q) and take l = 0 in the fundamental chamber, which respects the fusion rules,

as in conjecture 4.3.3.1. Here s = s1 = s2 = s(3) = s(4) = [3, 1, 1] are fixed. Then we see that

the Burge-reduced instanton partition function is

Ẑ(0,0,0),(0,0,0)
[3,0];(0) (q) = (1− q)−2h∅ = 1, h∅ = 0, (4.4.41)

which agrees with conjecture 4.3.3.1.

Example 4.4.3.4 (∅− −( )− −∅). Consider the Burge-reduced instanton partition function

Ẑ(0,0,0),(0,0,0)
[2,1];(l) (q) and take l = 0 in the fundamental chamber as in conjecture 4.3.3.3, where

s = s(3) = [2, 2, 1], s1 = s(4) = [3, 1, 1] and s2 = [2, 1, 2] are fixed. Then the Burge-reduced

instanton partition function is obtained as

Ẑ(0,0,0),(0,0,0)
[2,1];(0) (q) = (1− q)−2h = 1 +

3q

10
+

39q2

200
+

299q3

2000
+

9867q4

80000
+

424281q5

4000000
+ · · · ,

(4.4.42)

where h = 3/20. This series expansion agrees with conjecture 4.3.3.3.

Example 4.4.3.5 ( − −(∅)− − and − −( )− − ). For conjecture 4.3.3.4, consider,

first, the Burge-reduced instanton partition function Ẑ(1,0,0),(1,0,0)
[3,0];(l) (q), where s = [3, 1, 1],

s1 = s(3) = s(4) = [2, 2, 1] and s2 = [2, 1, 2] are fixed. Then, we find that the Burge-reduced

7 Examples 4.4.3.3, 4.4.3.4 and 4.4.3.5 are confirmed up to O(q
11
2 ).
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instanton partition functions for l = 0,−1 in the fundamental chamber are

Ẑ(1,0,0),(1,0,0)
[3,0];(0) (q) = (1− q)2h − 3

5 2F1

(
−1

5
,
2

5
;
3

5
; q

)
= 1 +

q

6
+

13q2

120
+

87q3

1040
+

8669q4

124800
+

344797q5

5740800
+ · · · ,

Ẑ(1,0,0),(1,0,0)
[3,0];(−1) (q) =

q
1
2

3
(1− q)2h − 3

5 2F1

(
2

5
,
4

5
;
8

5
; q

)
=
q

1
2

3
+
q

3
2

6
+

61q
5
2

520
+

289q
7
2

3120
+

222529q
9
2

2870400
+

25723q
11
2

382720
+ · · · ,

(4.4.43)

where h = 3/20, and the second one respects the fusion rules by (4.3.21). Consider, next,

the Burge-reduced instanton partition function Ẑ(1,0,0),(1,0,0)
[1,2];(l) (q), where s = s2 = [2, 1, 2] and

s1 = s(3) = s(4) = [2, 2, 1] are fixed. Then we find that the Burge-reduced instanton partition

functions for l = 0, 1 in the fundamental chamber are

Ẑ(1,0,0),(1,0,0)
[1,2];(0) (q) = (1− q)2h − 3

5 2F1

(
−1

5
,
1

5
;
2

5
; q

)
= 1 +

q

5
+

183q2

1400
+

353q3

3500
+

796073q4

9520000
+

17182143q5

238000000
+ · · · ,

Ẑ(1,0,0),(1,0,0)
[1,2];(1) (q) =

q
1
2

2
(1− q)2h − 3

5 2F1

(
1

5
,
4

5
;
7

5
; q

)
=
q

1
2

2
+

29q
3
2

140
+

393q
5
2

2800
+

51949q
7
2

476000
+

1725293q
9
2

19040000
+

74432711q
11
2

952000000
+ · · · ,

(4.4.44)

where the second one respects the fusion rules by (4.3.21). The above results (4.4.43) and

(4.4.44) support conjecture 4.3.3.4.



Chapter 5

The Full Algebra A(N, n; p)

We now consider the coset AGT correspondence conjectured in the previous two chapters

between gauge theories under a minimal model identification and CFTs with the symmetry

algebra A(N,n; p), and let p ̸= N with p > n. In this case, we choose to consider A(N,n; p)
using the first form

A(N,n; p) = ĝl(p)N

ĝl(p− n)N
. (5.0.1)

In the following, we reindex and use the convention

A(N,n;n+ p) =
ĝl(n+ p)N

ĝl(p)N
, (5.0.2)

instead, where p ̸= N − n.

Following the ideas presented in 4.2, we will use our conjectured AGT correspondence be-

tween 2D CFTs and 4D N = 2 SU(N) gauge theories on C2/Zn to calculate the character

functions for representations of A(N,n;n + p) using the generating functions for coloured

Burge multipartitions. We propose a non-trivial identification between the minimal model

parameters on the CFT side and the parameters defining the Burge inequalities and their

colourings for the instantons on the gauge theory side.

We will then provide evidence of this identification in examples where N , n and p are small.

We will then discuss new ŝl(n) string function identities that arise as a consequence of this

conjecture, and provide evidence of their existence. These string functions identities will come

in two forms: as expressions involving WN -minimal model characters and as q-generating

functions of Burge multipartitions, the latter of which we define in (5.3.4).

187
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5.1 Some Coset Character Identities

We begin by recalling that we denote by PN,a the ŝl(N)-weight lattice of level a ∈ Z>0, and

by P+
N,a the level a dominant integral weights. For ξa ∈ P+

N,a, ξb ∈ P
+
N,b, and ξa+b ∈ P

+
N,a+b,

we also recall, from section 1.3, that we denote the branching functions, describing Lξa+b
as

a submodule in the decomposition of the tensor product Lξa ⊗ Lξb , by b
ξa×ξb
ξa+b

.

We also have the following equality of the branching functions [143]

∑
ξa+b∈P+

N,a+b

bξa×ξbξa+b
b
ξa+b×ξc
ξa+b+c

= bξa×ξb×ξcξa+b+c
, (5.1.1)

where ξa ∈ P+
N,a, ξb ∈ P

+
N,b, and ξa+b+c ∈ P

+
N,a+b+c.

As diagonal branching functions of the form bξa×ξbξa+b
are closely associated with diagonal coset

characters (see section 1.5.12), we choose to represent the equation (5.1.1) with a formal

product of coset algebras

ŝl(N)a × ŝl(N)b

ŝl(N)a+b
× ŝl(N)a+b × ŝl(N)c

ŝl(N)a+b+c
=

ŝl(N)a × ŝl(N)b × ŝl(N)c

ŝl(N)a+b+c
. (5.1.2)

We find this is an efficient way to manipulate branching functions, as this formal product of

cosets resembles the usual rules for multiplying fractions. This formal product of diagonal

cosets only exists if the level of the denominator of one factor is equal to the level of one of

the numerator factors of the other. In this case we say the two coset factors are compatible.

In (5.1.2), the presence of ŝl(N)a+b in the denominator of the first factor and numerator of

the second factor ensures that these two cosets are compatible.

Remark 5.1.0.1. This notation is inspired to be of similar style to the coset arguments used in

[143, 27]. In particular in [27], the non-minimal model characters of A(n, 2; p) were calculated
and found to agree with the non-Burge reduced generating functions of instantons, which

are generating functions of pairs of coloured Young diagrams where the Burge inequalities

are not enforced.

As the authors of [27] did not consider minimal model CFTs they had to first enlarge the

symmetry generating currents of the product of cosets on the left-hand side of (5.1.2) to

obtain a realization of the algebra A(n, 2; p). As we will see in the subsequent text, the

minimal model characters for A(N,n;n + p) are equal to the branching functions of left-

hand side without consideration of additional holomorphic currents. We also note that in

the context of minimal models, these coset manipulations have been shown to correspond to

constructions of CFTs and some primary fields [144]. Due to this, we motivate our forms for

the branching functions through these formal coset arguments.
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We have the following level-rank duality1 identity

ĝl(p+ 1)N

ĝl(1)N × ĝl(p)N
=

ŝl(N)1 × ŝl(N)p

ŝl(N)p+1

, (5.1.3)

which is an equality between algebras and is used in similar coset manipulations in [138, 28].

We can then use (5.1.2) and (5.1.3) to obtain a formal expression for the branching functions

of the A(N,n;n + p)-minimal models. This is a conjectured equality, which will imply our

conjecture 5.4.1. The examples we have computed in section 5.6.1 will provide evidence for

its validity.

We begin with an n-fold product of compatible cosets

A(N,n;n+ p) =
ĝl(n+ p)N

ĝl(p)N
=

ĝl(n+ p)N

ĝl(n+ p− 1)N
× ĝl(n+ p− 1)N

ĝl(n+ p− 2)N
× · · · × ĝl(p+ 1)N

ĝl(p)N
.

(5.1.4)

For each factor, we formally multiply and divide by ĝl(1)N which gives us

ĝl(n+ p− i)N
ĝl(n+ p− i− 1)N

= ĝl(1)N ×
ĝl(n+ p− i)N

ĝl(1)N × ĝl(n+ p− i− 1)N
, 0 ≤ i ≤ n− 1. (5.1.5)

We now use the level-rank identity (5.1.3) on the right-hand side of this equality and substi-

tute ĝl(1) as the Heisenberg algebra H to obtain

ĝl(1)N ×
ĝl(n+ p− i)N

ĝl(1)N × ĝl(n+ p− i− 1)N
= H× ŝl(N)1 × ŝl(N)n+p−i−1

ŝl(N)n+p−i
. (5.1.6)

We substitute this expression into our compatible coset product expression for A(N,n;n+p)
to obtain

A(N,n;n+ p) =

(
H× ŝl(N)1 × ŝl(N)n+p−1

ŝl(N)n+p

)
× · · · ×

(
H× ŝl(N)1 × ŝl(N)p

ŝl(N)p+1

)
(5.1.7)

We now note that the diagonal cosets in each factor represent the GKO construction for the

minimal models as described in section 1.5.12. Thus, we can express the i-th factor in terms

of minimal models as

H× ŝl(N)1 × ŝl(N)n−i+p−1

ŝl(N)n−i+p
=M(N + n+ p− i,N + n+ p− i+ 1;N). (5.1.8)

1As the name implies, level-rank duality refers to dualities between the conformal blocks of ŝl(n)N and

ŝl(N)n-WZW models, so that the representations ŝl(n)N and ŝl(N)n are in a sense dual to each other.
The reader interested in learning about level-rank and its origins from conformal embeddings is pointed to
[145, 146]. For an example of the application of level-rank duality to cosets see [147].
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We substitute this in above to obtain

A(N,n;n+ p) = Hn ×M(N + n+ p− 1, N + n+ p;N)

×M(N + n+ p− 2, N + n+ p− 1;N)× · · · ×M(N + p− 1, N + p;N).

(5.1.9)

Now the expression (5.1.1) for the branching function of a product of diagonal cosets is in

terms of minimal model factors. It is then natural to expect that there will be an expression

for the minimal model characters of A(N,n;n + p) in terms of a sum of products of WN -

minimal model characters χN+k,N+k+1
ξζ for k ∈ {p−1, n, . . . , n+p−1}. In the following section,

we use the explicit series expansion (1.5.144) for χN+k,N+k+1
ξζ to obtain series expansions for

A(N,n;n+ p)-minimal model characters.

5.2 Calculating Coset Branching Functions

In this section, we discuss how we will calculate the coset branching functions as sums of

products of minimal model characters. To do this, we will calculate the branching functions

of the tensor product

ŝl(N)1 ⊗ · · · ⊗ ŝl(N)1︸ ︷︷ ︸
n

⊗ ŝl(N)p (5.2.1)

to irreducible ŝl(N)n+p-modules.

To calculate this combinatorially, we will use the i-signatures of crystal graphs described

in section 1.3.5. In this case, as we are only taking tensor products of level 1 irreducible

representations, this greatly simplifies computation. As we will see below, this process is

straightforward but tedious and long. To find these branching functions efficiently we intro-

duce new objects called B-matrices in section 5.2.3.

5.2.1 Rules for ŝl(N) Branching

We begin by describing which highest weights appear in the branching of the tensor prod-

uct of two ŝl(N)-modules, calculated using the i-signatures of crystal graphs. Let ξ =

[ξ0, . . . , ξN−1] ∈ P+
N,p and ζ = [ζ0, . . . , ζN−1] ∈ P+

N,n+p and consider the branching of the

tensor product Lξ ⊗ Lζ to irreducible ŝl(N)2n+p-modules.

Proposition 5.2.1.1. Let µ be a dominant integral weight such that Lµ is an irreducible

ŝl(N)2n+p-submodule of Lξ ⊗ Lζ , then

cls(µ) = cls(ξ + ζ). (5.2.2)
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Although this result is standard in the usual theory of affine Lie algebras, we believe the

proof will be instructive to the reader. We will prove this using crystal graph techniques,

and the methodology presented will be used to calculate the branching rules below.

Proof. Let Bξ and Bζ be the crystal graphs with respective node sets Bξ and Bζ of the

irreducible highest weight modules Lξ and Lζ respectively. We recall that ΩLΛ
denotes the

weight space of the module LΛ. Let ξ′ ∈ ΩLξ
and ζ ′ ∈ ΩLζ

be two weights with Dynkin

labels ξ′ = [ξ′0, . . . , ξ
′
N−1] and ζ

′ = [ζ ′0, . . . , ζ
′
N−1].

The i-signatures of the nodes bξ′ ∈ Bξ and bζ′ ∈ Bζ corresponding to vectors vξ′ ∈ Lξ and

vζ′ ∈ Lζ with weights ξ′ and ζ ′ respectively are

ω̂iξ′ = − · · ·−︸ ︷︷ ︸
(ξ′)−i

(ξ′)+i︷ ︸︸ ︷
+ · · ·+, ω̂iζ′ = − · · ·−︸ ︷︷ ︸

(ζ′)−i

(ζ′)+i︷ ︸︸ ︷
+ · · ·+, (5.2.3)

where the i-th Dynkin labels of the weights ξ and ζ ′ are ξ′i = ξ′−i − ξ
′+
i and ζ ′i = ζ ′−i − ζ

′+
i

respectively. We can associate these parameters ζ ′±i and ξ′±i to the vectors vξ′ ∈ Lξ and

vζ′ ∈ Lζ , which will be assumed in the sequel.

Now we consider the node b = (bξ′ × bζ′) in the product crystal graph Bξ×ζ . If b ∈ Bξ×ζ
corresponds to a highest weight vector vb ∈ Lξ ⊗ Lζ then

eivb = 0, for i = 0, 1, . . . , N − 1. (5.2.4)

In terms of i-signatures, this means that the signatures ω̂ib for each i = 0, . . . , N − 1 must

not contain a plus sign. To calculate the signature ω̂ib, we concatenate the signatures ω̂
i
ξ′ and

ω̂iζ′ and cancel ordered pairs of (+−). From this we can see that for ω̂ib to correspond to a

highest weight vector ω̂iζ′ must also contain no plus signs so that

ω̂iζ′ = ω̂iζ = − · · ·−︸ ︷︷ ︸
ζi

, (5.2.5)

and therefore the node bζ′ corresponds to the highest weight vector of Lζ .

Having constrained bζ′ we can determine the different forms of (bξ′ × bζ′) by considering the

different forms of bξ′ . Each weight ξ′ ∈ ΩLξ
is such that cls(ξ′) = cls(ξ), and you can obtain

the node bξ′ corresponding to ξ′ by a sequence of applications of the Kashiwara raising {ei}i
and lowering {fi}i operators on the highest weight node bξ. Thus if we can show that the

action of Kashiwara operators on the nodes Bξ is equivalent to the action of Kashiwara

operators on Bξ×ζ then we have shown that each highest weight vector (bξ′×bζ′) has weights
µ that are in the same class as (ξ + ζ).
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The action of a Kashiwara operator can do three things to an i-signature: flip the right most

plus sign to a negative sign, add a negative sign (if it flips a plus sign to a negative sign in

the (i− 1)-th or (i+1)-th signatures), or remove a negative sign (flipping a negative sign to

a plus sign in the (i− 1)-th or (i+1)-th signatures). Let us consider how these three options

effect the Dynkin labels associated to a node.

Let µ be the weight associated to b, assuming b is a highest weight vector µi = ξ′i
−+ζ−(ξ′)+i .

Flipping a plus to a minus sign in ω̂iξ′ changes ξ′i
− 7→ ξ′i

− − 1 and ξ′i
+ 7→ ξ′i

+ + 1 so that

ξ′i 7→ ξ′i + 2. When concatenating i-signatures this additional plus is paired off so that

µi 7→ (ξ′)−i − 1 + (ζ − 1) − (ξ′)+i = µi − 2. When adding or removing a negative sign we

change (ξ′)−i 7→ (ξ′)+i ± 1 and ξ′i 7→ ξ′i ± 1. From this we have that µi 7→ µi ± 1 and we

see that the action of a raising or lowering operator on bξ′ is equivalent to the action raising

or lowering operator on b. Since weights that are obtained from a sequence of raising and

lowering operator actions are in the same class, we can conclude that

cls(µ) = cls(ξ + ζ), (5.2.6)

as desired.

Using this we can write down the branching rules (see (1.3.44)) Lξ×ζ as

Lξ×ζ

∣∣∣
ŝl(N)2n+p

=
⊕

cls(µ)=cls(ξ+ζ)
k∈Z≥0

b(ξ×ζ),(µ−kδ)Lµ−kδ, bξ×ζ,(µ−kδ) ∈ Z≥0. (5.2.7)

5.2.2 Determining the ŝl(N) Branching Functions

In this section, we calculate the branching functions of

ŝl(N)1 ⊗ · · · ⊗ ŝl(N)1︸ ︷︷ ︸
n

⊗ ŝl(N)p. (5.2.8)

We begin by considering the character of

ŝl(N)1 ⊗ ŝl(N)p, (5.2.9)

which is the n = 1 case of (5.2.8). As this product will branch to ŝl(N)p+1-representations,

we have the following identity

χ
ŝl(N)
Λi

(q)χ
ŝl(N)
ξ (q) =

∑
ζ∈P+

N,p+1

bΛi×ξ
ζ (q)χ

ŝl(N)
ζ (q), (5.2.10)
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where Λi ∈ P+
N,1 is the i-th ŝl(N) fundamental weight and ξ ∈ P+

N,p. To determine the

branching function bΛi×ξ
ζ we represent the branching from LΛi×ξ to Lζ by the coset

ŝl(N)1 × ŝl(N)p

ŝl(N)p+1

, (5.2.11)

whose character is the branching function bΛi×ξ
ζ . As per our discussion in section 1.5.12, this

represents the minimal model M(N + p,N + p+ 1;N) so that the branching function is the

minimal model character χN,N+p,N+p+1
ξ,ζ when cls(ζ) = cls(Λi + ξ) and vanishes otherwise.

We therefore have the equality of characters

χ
ŝl(N)
Λi

(q)χ
ŝl(N)
ξ (q) =

∑
ζ∈P+

N,p+1

cls(ζ)=cls(ξ+Λi)

q
1
2(|ζ−ξ|

2−|Λi|2)χN,N+p,N+p+1
ξ,ζ (q)χ

ŝl(N)
ζ (q). (5.2.12)

The powers of q in an ŝl(N) character count the grade at which states occur as discussed in

section 1.3. To obtain the exponent of the extra q-factor in this expression we consider the

occurrence of the weight ζ in the representation Lξ ⊗ LΛi , where cls(ζ) = cls(ξ + Λi). This

can be found first at grade
1

2

(
|ζ − ξ|2 − |Λi|2

)
, (5.2.13)

and this gives the q-exponent.

We now repeat this process and consider characters of the associative 3-fold tensor product

of ŝl(N) representations

ŝl(N)1 ⊗ ŝl(N)1 ⊗ ŝl(N)p = ŝl(N)1 ⊗
(
ŝl(N)1 ⊗ ŝl(N)p

)
, (5.2.14)

which we perform in two steps indicated by the brackets. To compute the character of

this, we first branch the bracketed tensor product to ŝl(N)p+1 and then tensor the result of

this with the final ŝl(N)1 representation. As described above, this gives us the equality of

characters

χ
ŝl(N)
Λj

(q)

(
χ
ŝl(N)
Λi

(q)χ
ŝl(N)
ξ (q)

)
= χ

ŝl(N)
Λj

(q)

×


∑

ζ∈P+
N,p+1

cls(ζ)=cls(ξ+Λi)

q
1
2(|ζ−ξ|

2−|Λi|2)χN,N+p,N+p+1
ξ,ζ (q)χ

ŝl(N)
ζ (q)

 . (5.2.15)
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We then do this branching procedure again on the right-hand side to obtain

χ
ŝl(N)
Λj

(q)
(
χ
ŝl(N)
Λi

(q)χ
ŝl(N)
ξ (q)

)
=∑

ζ∈P+
N,p+1

cls(ζ)=cls(ξ+Λi)

q
1
2(|ζ−ξ|

2−|Λi|2)χN,N+p,N+p+1
ξ,ζ (q)

×

( ∑
ζ′∈P+

N,p+2

cls(ζ′)=cls(ζ+Λj)

q
1
2(|ζ

′−ζ|2−|Λj |2)χN,N+p+1,N+p+2
ζ,ζ′ (q)

)
χ
ŝl(N)
ζ′ (q). (5.2.16)

By induction on the 3-fold branching function process we have described, we can algorithmi-

cally obtain the branching functions of the n-fold tensor product (5.2.8). It is clear that the

resulting expressions will be products of minimal model characters that are contracted over

their subscripts, which will be ŝl(N) weights of levels l = p + 1, p + 2, . . . , n + p − 1. This

allow us to calculate the branching functions of

ŝl(N)1 ⊗ · · · ⊗ ŝl(N)1︸ ︷︷ ︸
n

⊗ ŝl(N)p, (5.2.17)

using matrix multiplication.

Example 5.2.2.1. When p = 0, we calculate the characters similarly of an n-fold product of

ŝl(N)1 representations

ŝl(N)1 ⊗ · · · ⊗ ŝl(N)1︸ ︷︷ ︸
n

, (5.2.18)

which we represent by

n−1∏
i=0

χ
ŝl(N)
Λσi

=
∑

ζ∈P+
N,n

cls(ζ)=cls(η)

b
∏p−1

i=0 Λσi
ζ (q)χ

ŝl(N)
ζ (q), (5.2.19)

where η =
∑n−1

i=0 Λσi . As we will see in section 5.5, this will give us the ŝl(N) string functions.

5.2.3 B-Matrices

In this subsection, we introduce the B-Matrices to compute the branching functions of n-fold

products of ŝl(N)1 representations. An individual B-matrix will represent one step of the

recursive process described in (5.2.16).

We will refer to each step step of this process as the level, as after the l-th step we are

considering branching to level l representations. The B-matrices of level l will be a set of

matrices {BΛi | i = 0, 1, . . . , N − 1} labelled by the ŝl(N) fundamental weights. We define
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the matrix BΛi = B
(N,l)
Λi

(q) of level l ∈ Z≥1, for N ∈ Z≥2, i = 0, 1, . . . , N − 1, with rows

labelled by weights ξ ∈ P+
N,l and columns by ζ ∈ P+

N,l+1 as

(
B

(N,l)
Λi

(q)
)
ξζ

=

q
1
2(|ζ−ξ|

2−|Λi|2)χN,N+l,N+l+1
ξ,ζ (q) if cls(ζ − ξ − Λi) = 0,

0 else,
(5.2.20)

and supplement these with the 1×N level 0 matrices(
B

(N,0)
Λi

)
1j

= δji. (5.2.21)

We see that non-zero B-matrix entries are minimal model characters χN,N+l,N+l+1
ξ,ζ with a q

prefactor whose exponent is equal to the grade at which ζ first appears in the module ζ×Λi.

Example 5.2.3.1. The N = 3 matrices for l = 1 are

B
(3,1)
Λ0

=


χ4,5
[100],[200] 0 0 0 qχ4,5

[100],[011] 0

0 χ4,5
[010],[110] 0 0 0 qχ4,5

[010],[002]

0 0 qχ4,5
[001],[020] χ4,5

[001],[101] 0 0


(5.2.22)

B
(3,1)
Λ1

=


0 χ4,5

[100],[110] 0 0 0 qχ4,5
[100],[002]

0 0 χ4,5
[010],[020] χ4,5

[010],[101] 0 0

χ4,5
[001],[200] 0 0 0 χ4,5

[001],[011] 0

 (5.2.23)

B
(3,1)
Λ2

=


0 0 qχ4,5

[100],[020] χ4,5
[100],[101] 0 0

χ4,5
[010],[200] 0 0 0 χ4,5

[010],[011] 0

0 χ4,5
[001],[110] 0 0 0 χ4,5

[001],[002]

 , (5.2.24)

Note here that we have labelled the rows and columns by ŝl(3) dominant integral weights.

When writing down an explicit B-matrix, one must make a choice of ordering the row and

column weights, in this case we ordered by size of Dynkin labels in numerical order (that is,

from the 0th to 2nd).

Let η ∈ P+
N,n be a dominant integral weight and decompose η into a sum of the fundamental

weights as η =
∑n+p−1

i=p Λσi , where we order σp ≤ σp+1 ≤ · · · ≤ σn+p−1, and let p be as in

(5.2.17). We define a n-fold product of B-matrices to be

B(N,n+p;p)
η (q) =

n+p−1∏
l=p

B
(N,l)
Λσl

(q), (5.2.25)

where the order of the matrix multiplication is according to σp ≤ σp+1 ≤ · · · ≤ σn+p−1. The

weight η carries the information of the highest weights of each ŝl(N)1 factor in the tensor

product (5.2.18) for the fixed ordering of the weight labels {σi}i=p,...,n+p−1. The matrix
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elements of B
(N,n+p;p)
η then give the branching functions b

Λσp×...Λσn+p−1

ζ , where ζ ∈ P+
N,n+p,

for this branching.

For p = 0 we can associate the product B-matrix

B(N,n;0)
η (q) = B

(N,0)
Λσ0

(q)B
(N,1)
Λσ1

(q) . . . B
(N,n−1)
Λσn−1

(q), (5.2.26)

to an n-fold tensor product of ŝl(N)1 representations (5.2.18), which we represent using their

highest weights as

Λσ0 ⊗ · · · ⊗ Λσn−1 , (5.2.27)

where again η =
∑n−1

i=0 Λσi . In this case, the entries of B
(N,n;0)
η (q) are the branching functions

for ŝl(N)n. Explicitly, the entry labelled by (Λσ0 , ζ) will give the branching function for the

weight ζ, that is (
B(N,n,0)
η (q)

)
Λσ0ζ

= b
∏n−1

i=0 Λσi
ζ (q). (5.2.28)

This p = 0 case reproduces the character expressions in chapter 4.

Up until this point we have just introduced formalism, but we can use this to derive identities

between minimal model characters. As mentioned above, the product B-matrix (5.2.25) for

fixed η ∈ P+
N,n represents the tensor product of ŝl(N) representations

Λσp ⊗ Λσp+1 ⊗ . . .Λσn+p−1 ⊗ ξ, ξ ∈ P+
N,p, (5.2.29)

where we have ordered σp ≤ · · · ≤ σn+p−1. In this case, we can use the well known commuta-

tivity isomorphism between tensor products of irreducible ŝl(N)-modules to obtain identities

between B-matrices.

By commuting two or more factors in the tensor product above, we obtain two branching

functions for each tensor product that are identical by the commutativity isomorphism. We

can then calculate these equivalent branching functions using inequivalent products of B-

matrices. The matrix elements of these matrix products are inequivalent sums of products

of minimal model characters, which must be equal. We illustrate this below with a simple

example.

Example 5.2.3.2. We consider the isomorphism of tensor products of ŝl(2)1 representations

Λi ⊗ Λ0 ⊗ Λ1
∼= Λi ⊗ Λ1 ⊗ Λ0, i = 0, 1. (5.2.30)

We have the following relevant B-matrices

B
(2,1)
Λ0

(q) =

(
χ3,4
1,1 0 qχ3,4

1,3

0 χ3,4
2,2 0

)
, B

(2,1)
Λ1

(q) =

(
0 χ3,4

1,2 0

χ3,4
2,1 0 χ3,4

2,3

)
(5.2.31)
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B
(2,2)
Λ0

(q) =


χ4,5
1,1 0 qχ4,5

1,3 0

0 χ4,5
2,2 0 qχ4,5

2,4

qχ4,5
3,1 0 χ4,5

3,3 0

 , B
(2,2)
Λ1

(q) =


0 χ4,5

1,2 0 q2χ4,5
1,4

χ4,5
2,1 0 qχ4,5

2,3 0

0 χ4,5
3,2 0 χ4,5

3,4

 .

(5.2.32)

The branching functions of each tensor product are obtained by the two inequivalent products

B
(2,0)
Λi

(q)B
(2,1)
Λ0

(q)B
(2,2)
Λ1

(q) and B
(2,0)
Λi

(q)B
(2,1)
Λ1

(q)B
(2,2)
Λ0

(q) respectively. By the commutativity

isomorphism we must then have

B
(2,0)
Λi

(q)B
(2,1)
Λ0

(q)B
(2,2)
Λ1

(q) = B
(2,0)
Λi

(q)B
(2,1)
Λ1

(q)B
(2,2)
Λ0

(q), (5.2.33)

which is true if B
(2,1)
Λ1

(q)B
(2,2)
Λ0

(q) = B
(2,1)
Λ1

(q)B
(2,2)
Λ0

(q). By considering the non-zero matrix

elements we obtain the following identities between minimal model characters

χ4,5
1,1(q)χ

4,5
1,2(q) + qχ4,5

1,3(q)χ
4,5
3,2(q) = χ4,5

1,2(q)χ
4,5
2,2(q) (5.2.34)

qχ4,5
1,1(q)χ

4,5
1,4(q) + χ4,5

1,3(q)χ
4,5
3,4(q) = χ4,5

1,2(q)χ
4,5
2,4(q) (5.2.35)

By generalizing this process we have the following identity between B-matrices for Λ,Λ′ ∈
P+
N,1:

B
(N,l)
Λ (q)B

(N,l+1)
Λ′ (q) = B

(N,l)
Λ′ (q)B

(N,l+1)
Λ (q), (5.2.36)

which correspond to the following isomorphism of tensor products

· · · ⊗ Λ⊗ Λ′ ⊗ . . . ∼= · · · ⊗ Λ′ ⊗ Λ⊗ . . . (5.2.37)

These identities appear to be generalizations of those in [148] to WN -minimal models for

N > 2, and our generalization contains these previously known identities as the N = 2 case.

5.2.4 Using the B-Matrices to Calculate A(N, n;n + p) Minimal Model

Characters

We now consider the branchings for an n-fold product of ŝl(N)1 representations with a ŝl(N)p

representation by the formal coset product

ŝl(N)1 ⊗ ŝl(N)n+p−1

ŝl(N)n+p
× ŝl(N)1 ⊗ ŝl(N)n+p−2

ŝl(N)n+p−1

× · · · × ŝl(N)p+1 ⊗ ŝl(N)1

ŝl(N)p+2

× ŝl(N)p ⊗ ŝl(N)1

ŝl(N)p+1

.

(5.2.38)

Following our discussion in section 5.2.3 above, we can calculate the branching function

represented by this coset product using the B-matrix product B
(N,n+p;p)
η . Note that here

we begin the ŝl(N) product with a level p representation, so that we must begin our matrix

product with a B-matrix of level p.



The Full Algebra A(N,n; p) 198

For this calculation, e will need to understand the generic structure of B-matrices, which we

now discuss. We have the following properties of the B-matrix product B
(N,n+p;p)
η :

• Its rows are labelled by ξ ∈ P+
N,p and columns by ζ ∈ P+

N,n+p.

• Its matrix elements vanish when cls(ζ − ξ) ̸= cls(η).

• Its non-zero elements are sums of products of minimal model characters with some

additional q-factors.

Let (Λσp , . . . ,Λσn+p−1) be a sequence of ŝl(N) fundamental weights such that σj ≤ σj+1 for

p ≤ j ≤ n + p − 1 and η =
∑n+p−1

i=p Λσi a corresponding ŝl(N)n dominant integral weight.

The products of minimal model characters in the non-zero matrix elements
(
B

(N,n+p;p)
η

)
ξζ

can be defined by sequences µ = (µp+1, . . . , µn+p−1) of ŝl(N) weights such that µj ∈ P+
N,j and

cls(µj) = cls(ξ+
∑j

i=p Λσi) for p ≤ j ≤ n+p−1. The non-zero elements are then formed as a

summation over each possible sequence of weights satisfying those conditions, with suitable

q factors. Therefore, the branching functions for (5.2.17), which we can represent by the

formal coset product (5.2.38), are given by matrix elements of B
(N,n+p;p)
η .

To obtain the minimal model characters of A(N,n;n+p) from these branching functions, we

must include another factor for the n-copies of the Heisenberg algebra H. Since the character
of H is the generator of partitions, 1

(q;q)∞
, we define the hatted B-matrix product

B̂(n+p;p)
η (q) =

1

(q; q)n∞
B(N,n+p,p)
η (q), (5.2.39)

so that the matrix elements of B̂
(n+p;p)
η (q) are coset characters for A(N,n;n + p). These

elements are labelled by ξ ∈ P+
N,n and ζ ∈ P+

N,n+p, and combined with η these weights fully

determine the coset branching, as there are no additional parameters coming from Hn. In

the hatted notation B̂
(n+p;n)
η (q), we drop the superscript N since the rank of the algebras

ŝl(N) used to calculate the branching is clear from the length of the weight η.

5.3 Burge Generating Functions and Dual Dynkin Rings

The AGT conjecture in chapter 3 predicts a relationship between the generating function for

the instantons in N = 2 SU(N) supersymmetric gauge theories on C2/Zn and the character

functions for A(N,n; p). The latter are identified as the matrix entries of B̂
(n+p;n)
η (q) in

section 5.2.4 above. We will view this identification as a relationship between two combina-

torial objects, the (ξ, ζ)-Burge multipartitions and the sums of products of minimal model

characters.
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5.3.1 Coloured Burge Generating Functions

We only consider coloured (ξ, ζ)-Burge multipartitions that satisfy the Zn-charge conditions

(3.4.5), which are satisfied by imposing a colouring defined by the charges σ = (σ0, . . . , σN−1) ∈
(Zn)N , where

σj = σ0 +

j∑
i=0

(ζi − ξi), j = 0, . . . , N − 1. (5.3.1)

Remark 5.3.1.1. These coloured Burge multipartitions can be thought of as skew 3D plane

partitions built from Young diagrams stacked besides each other, with an additional cyclic

condition. In this view point, the box □ = (1, 1) in the j-th diagram is lined up with the

box ■ = (1 + ζj , 1 + ξj) in the (j + 1)-th diagram. The charge σj ensures this skew plane

partition is coloured so that the colour of adjacent boxes in distinct diagrams are the same.

Skew plane partitions are outside the scope of this thesis, the interested reader should refer

to [149].

We recall some of the notation from section 1.1. We denote the set of coloured (ξ, ζ)-

multipartitions with charge σ = (σ0, . . . , σN−1) by C
σ
ξζ . Given a multipartition λ = (λ(0), . . . ,

λ(N−1)) coloured with n colours, we define the total number of i-coloured boxes to be ki(λ)

and collect them in the vector k = (k0, . . . , kn−1). We then define the generating function

for (ξ, ζ)-Burge multipartitions with the colouring σ to be

Xξ,ζ;n(q; z) =

k0(λ)∑
λ∈Cσ

ξζ

n−1∏
i=1

z
ki(λ)
i . (5.3.2)

As this generating function counts the number of total coloured boxes, we also define a second

generating function using the variables q = q/(x1 . . . xn−1) and zi = xi for i = 1, . . . , n − 1

by

Xξ,ζ;n(q/(x1 . . . xn−1);x) =
∑
λ∈Cσ

ξζ

qk0(λ)
n−1∏
i=1

x
δki(λ)
i , (5.3.3)

where we recall that δki(λ) = ki − k0 is the difference of coloured boxes. Finally, for a fixed

δk = (δk1, . . . , δkn−1) ∈ Zn−1 we define a third generating function

Xδk
ξ,ζ;n(q) = [xδk]Xξ,ζ;n(q/(x1 . . . xn−1);x)

∣∣∣xi 7→q
q7→qn

, (5.3.4)

where here the prefix [xδk] means to take only the terms where the exponent of xi is δki for

each i = 1, . . . , n−1. We will refer to this last generating function as the coloured (ξ, ζ)-Burge

q-generating function. The function Xδk
ξ,ζ;n counts n-coloured (ξ, ζ)-Burge multipartitions

with colouring data specified by δk = (δk1, . . . , δkn−1) where the exponent of q counts the

number of boxes in the multipartition λ. We conjecture that Xδk
ξ,ζ;n equals to the matrix
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elements of B̂
(n+p;p)
η (q) under some identification of parameters. In the sequel, we will make

this identification explicit.

Our notation so far has been used suggestively intentionally, and this equivalence will involve

identifying the weight labels ξ and ζ used to define the Burge inequalities with the labels

of matrix elements for B̂
(n+p;p)
η (q). Identifications for η and δk are more involved and will

require the dual weights and Dynkin rings from section 1.3.

We will split this discussion into two distinct cases where possible, one where the level and

rank are coprime integers and one where they are not coprime. The reason we do this is

due to the rotation invariance of Dynkin rings, which means that Dynkin rings represent

multiple different ŝl(n) weights whose Dynkin labels are cyclic permutations of each other.

When taking a dual of a weight, this rotation invariance will lead to an ambiguity related to

classes of weights that needs to be fixed as we will see below.

This combinatorial identification will involve finding the sequence of raising and lowering

operators to obtain a descendant state from a highest weight in an ŝl(N)-module. Since all

weights in a highest weight module have the same class, this will necessitate that we choose

a cyclic permutation of a dual weight with a prescribed class.

5.3.2 Dual Dynkin Rings and Fixing Classes

Proposition 5.3.2.2 below shows that we can fix which weight a Dynkin ring should represent,

when the level and rank of the weight are coprime, by fixing its class. We first define the

automorphism τ : P (ŝl(N)) −→ P (ŝl(N)) that acts on the weight Λ = [m0, . . . ,mN−1] as

τ(Λ) = τ([m0, . . . ,mN−1]) = [mN−1,m0, . . . ,mN−2]. (5.3.5)

Clearly, τ has order N . This proposition is then a consequence of the following lemma.

Lemma 5.3.2.1. Let Λ = [m0, . . . ,mN−1] be an ŝl(N)n weight. For any j ∈ Z, the class of

the weight τ j(Λ) is related to the class of Λ by

cls(τ j(Λ)) = cls(Λ) + jn mod N. (5.3.6)

Proof. The class of Λ is:

cls(Λ) =

N−1∑
i=0

imi mod N. (5.3.7)

We begin with the j = 1 case. As above we have that

τ(Λ) = τ([m0, . . . ,mN−1]) = [mN−1,m0, . . . ,mN−2]. (5.3.8)
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So that we can calculate the class of τ(Λ) as

cls(τ(Λ)) =
N−2∑
i=0

(i+ 1)mi mod N (5.3.9)

=

N−1∑
i=0

imi +

N−2∑
i=0

mi − (n− 1)mN−1 mod N (5.3.10)

=
N−1∑
i=0

imi +
N−2∑
i=0

mi +mN−1 −mN−1 − (N − 1)mN−1 mod N (5.3.11)

=
N−1∑
i=0

imi +
N−1∑
i=0

mi −NmN−1 mod N (5.3.12)

= cls(Λ) + n mod N. (5.3.13)

We now apply this result recursively j number of times to obtain

cls(τ j(Λ)) = cls(Λ) + jn mod N. (5.3.14)

Proposition 5.3.2.2. Let D be a Dynkin ring that represents a set W of ŝl(N)n weights.

The class of each weight ξ ∈W is unique if N and n are coprime.

Proof. Let Λ = [m0, . . . ,mN−1] be an ŝl(N)n weight inW , and fix the numbering of the slots

of D so that Λ is the canonical choice of weight for D (that is that there are m0 empty slots

starting with the 1st slot before the 1st bead, m1 empty slots after that until the 2nd bead

etc). The last slot of a Dynkin ring corresponding to an ŝl(N) weight must be occupied, so

there are N different weights associated to D. We will define each weight in turn by rotating

D clockwise so that the (N − 1)-th bead is now the N -th bead, and represent this operation

on Λ by the automorphism τ which cyclically permutes Dynkin labels defined above.

Two ŝl(N)n are in the same class if the difference of their classes vanishes modulo N . We

rotate the ring j < N times which corresponds to the weight τ j(Λ). Using lemma 5.3.2.1

above we have that

cls(Λ)− cls(τ j(Λ)) = −jn mod N. (5.3.15)

There are only up to (N − 1) unique rotations of D possible, so that the classes of these

differ by n, 2n, . . . , (N − 1)n. If gcd(N,n) = 1 then jn does not vanish modulo N for

j = 1, . . . , N − 1 and the classes of these rotations are all unique.

From this we see that in the case where the level and rank for an ŝl(N)n weight are coprime,

we can uniquely fix j in τ j(Λ†) by specifying the value of cls(τ j(Λ†)).
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5.4 The Coset-Burge Character Conjecture

We can now formulate the coset-Burge character conjecture which identifies the matrix ele-

ments of the truncated product of B-matrices with the generating function of coloured Burge

multipartitions.

Conjecture 5.4.0.1. The matrix elements of the truncated B-matrix B̂
(n+p;p)
η (q), defined

in (5.2.39), are equal to the q-generating functions Xδk
(ξ,ζ;n)(q) of (ξ, ζ)-Burge multipartitions

with prescribed colour data δk = (δk1, . . . , δkn−1), where ξ ∈ P+
N,p, ζ ∈ P

+
N,n+p, η ∈ P

+
N,n.

That is, we have (
B̂(n;d)
η (q)

)
ξ,ζ

= Xδk
(ξ,ζ;n)(q)q

∆, (5.4.1)

where ∆ is some constant. The parameters on both sides are identified using

δk = A−1
(
(ζ − ξ)† − τ−j(η†)

)
, (5.4.2)

where A is the ŝl(n) Cartan matrix, † means to take the dual weight, τ cyclic permutes

Dynkin labels, and2 j = 1
N

∑N−1
i=0 i(ζi − ξi − ηi).

Remark 5.4.0.2. In section 5.6.1, we will discuss our evidence for the coset-Burge character

conjecture. We will also provide 3 fully worked examples of these calculations that include

2 examples for the simpler non-coprime case and one of the coprime case.

Below we motivate the form of the coset-Burge character conjecture and then move on

to simple checks that reproduce previous known results in [49]. The specific form of the

conjecture was derived through experimentation on Mathematica using the motivation below.

5.4.1 Motivation

We will refer to the combinatorial objects in the coset-Burge character conjecture by their

positions in (5.4.1). We will therefore refer to the branching functions of tensor products

of ŝl(N) representations, calculated as hatted B-matrix elements, as the left-hand side and

q-generating functions for coloured (ξ, ζ)-Burge multipartitions as the right-hand side.

We now describe the parameters on both sides of (5.4.1). On the left-hand side we have

matrix elements labelled by two ŝl(N) weights ξ ∈ P+
N,p and ζ ∈ P+

N,n+p, which defines two

integer parameters n ∈ Z>0 and p ∈ Z≥0, and a product of a sequence of B-matrices defined

by a weight η ∈ P+
N,n. The weights ξ and ζ define the irreducible ŝl(N)n+p-module we are

branching from and the ŝl(N)p-module we are branching to. Whereas η tells one the sequence

of level 1 modules we take successive tensor products of.

2This is the cls∗ operator which we will define later in (5.4.13).
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On the right-hand side the coloured Burge multipartitions are defined by the Burge inequal-

ities and prescribed colour data. We define the Burge inequalities by two ŝl(N) weights, ξ′ ∈
P+
N,p and ζ ′ ∈ P+

N,n+p and the colour data by the vector of differences δk = (δk1, . . . , δkn−1).

Based on level-rank considerations the identification of weights

ξ′ = ξ, ζ ′ = ζ, (5.4.3)

is obvious.

We motivate the identification of colours by analogy to the work in [60] (see also [142] for more

details), which identifies cylindric multipartitions with states in irreducible ŝl(N)-modules.

Under this identification we colour a cylindric multipartition λ′ = (λ′(0), . . . , λ′(N−1)) associ-

ated to a descendant state v′ in an irreducible ŝl(N)-module LΛ using the natural colouring

described in 1.1. Then each i-coloured box represents the application of the lowering opera-

tor fi for i = 0, . . . , N − 1 on the highest weight state. The descendant state associated with

λ′ then has weight

Λ′ = Λ−
n−1∑
i=0

ki(λ
′)αi, (5.4.4)

where Λ is the highest weight. Note that as
∑n−1

i=0 αi = δ, the Dynkin labels are then

completely determined by the differences δk.

We take the colour data on right-hand side of (5.4.1) to represent the simple roots in this

way. Thus, one can consider the vector of differences δk to represent a sum of simple

roots. This represents a level 0 weight of class 0. To naturally form such a weight from the

parameters on the left-hand side we therefore must consider the difference of the two dual

weights (ζ − ξ)† ∈ P+
n,N and η† ∈ P+

n,N . There is a problem with simply considering the

difference

(ζ − ξ)† − η† = ϕ, (5.4.5)

as we are taking these to represent dual Dynkin rings, which have rotation invariance, it is

possible that ϕ may not be of class 0. Therefore, we must consider some cyclic permutation

of one of these dual weights so that both dual weights are of the same class.

5.4.2 The Case Where N and n are Coprime

As only the difference in class between these dual weights is important, we fix our convention

by fixing the orientation of the ring corresponding to (ζ−ξ), and rotate the ring corresponding

to η. Thus we are trying to find j such that

cls
(
(ζ − ξ)†

)
= cls

(
τ j(η†)

)
. (5.4.6)
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In the case of coprime N and n we can use proposition 5.3.2.2 to fix j by choosing the unique

solution k = 0, . . . , n − 1 such that cls(τ j(η†)) = cls((ζ − ξ)†). We begin by discussing this

case. Explicitly, we then consider the level 0 weight

ψ = (ζ − ξ)† − τ j(η†), (5.4.7)

and expand it using the basis of simple roots so

ψ =
n−1∑
i=0

kiαi. (5.4.8)

This defines the colour data of the Burge multipartition to be k = (k0, k1, . . . , kn−1) and

using this we can calculate the δk’s for the right-hand side of our correspondence. Note that

as described in section 1.3, we can perform this process by multiplying the column vector of

((ζ− ξ)†− τ j(η†)) by the inverse Cartan matrix A−1. When N and n are coprime we cannot

fix j using this argument, as we describe below.

5.4.3 The Non-Coprime Case

As explained in proposition 5.3.2.2, in the case of gcd(N,n) > 1 we have more than one such

choice j that satisfies (5.4.6), so that there exists multiple solutions j, j′ = 0, . . . , n− 1 such

that

cls
(
τ j(η†)

)
= cls

(
τ j

′
(η†)

)
, j ̸= j′. (5.4.9)

If we let τ j(η†) = [d0, . . . , dn−1] this means that for some k ∈ Z

n−1∑
i=0

idi = kn+
n−1∑
i=0

idj′−j+i, (5.4.10)

where we have defined dn+i = di. This ambiguity is solved by fixing the ambiguity of the

equation

cls(ζ − ξ) = cls(η). (5.4.11)

If we ignore the modular behaviour in this equation for classes we have

N−1∑
i=0

i(ζi − ξi) = kN +
N−1∑
i=0

iηi, (5.4.12)

where k is the last natural integer parameter on the left-hand side. To formalise this we

introduce a generalized notion of class, which ignores the modular behaviour. We define the
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class star of a weight η = [η0, η1, . . . , ηN−1] to be

cls∗(η) =
N−1∑
i=0

iηi, (5.4.13)

so that the class star is the usual class of a weight defined with no modular arithmetic. Then

the correct choice for the weight is τ−j(η†), where

j =
1

N
cls∗(ζ − ξ − η). (5.4.14)

In fact this relationship does not apply only to the weights with non-coprime level and rank,

it describes the coprime case as well, as we will show in examples below. It is not immediately

clear that (ζ − ξ)† and τ−j(η†) are in the same class, which leads us to prove the following

proposition.

Proposition 5.4.3.1. Let ζ ∈ P+
N,n+p, ξ ∈ P

+
N,p, and η ∈ P

+
N,n be three dominant integral

ŝl(n) weights. If cls(ζ − ξ) = cls(η) then for

j =
1

N
cls∗(ζ − ξ − η), (5.4.15)

the dual weights (ζ − ξ)†, τ−j(η†) ∈ P+
n,N satisfy

cls
(
(ζ − ξ)†

)
= cls

(
τ−j(η†)

)
. (5.4.16)

Proof. For this we can treat the weight (ζ − ξ) as one weight µ = ζ − ξ since only the

difference of ζ and ξ is relevant. We therefore have two weights µ, η ∈ P+
N,n such that

cls(µ) = cls(η). (5.4.17)

We wish to show that for

j =
1

N
cls∗(µ− η), (5.4.18)

we have that

cls(µ†) = cls(τ−j(η†)) ⇐⇒ cls(µ†)− cls(τ−j(η†)) ≡ 0 mod n. (5.4.19)

We note that (5.4.17) is equivalent to

N−1∑
i=0

i(µi − ηi) = jN. (5.4.20)
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We can calculate the dual weights µ† and η† explicitly and give their Dynkin labels by

µ† = [1, 0, . . . , 0︸ ︷︷ ︸
µ0

, 1, 0, . . . , 0︸ ︷︷ ︸
µ1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
µN−2

, 1, 0, . . . , 0︸ ︷︷ ︸
µN−1

], (5.4.21)

η† = [1, 0, . . . , 0︸ ︷︷ ︸
η0

, 1, 0, . . . , 0︸ ︷︷ ︸
η1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
ηN−2

, 1, 0, . . . , 0︸ ︷︷ ︸
ηN−1

]. (5.4.22)

Alternatively, we can characterize these by sums of ŝl(N) fundamental weights by

µ† =
N−1∑
i=0

Λ(
∑i

j=0 µj)
(5.4.23)

η† =

N−1∑
i=0

Λ(
∑i

j=0 ηj)
. (5.4.24)

We can calculate the classes of the dual weights by

cls(µ†) =
n−1∑
i=1

iµ†i mod n (5.4.25)

= µ0 · 1 + (µ0 + µ1) · 1 + · · ·+ (µ0 + · · ·+ µN−2) · 1 mod n (5.4.26)

≡
N∑
i=1

(N − i)µi−1 mod n, (5.4.27)

and similarly

cls(η†) =

N∑
i=1

(N − i)ηi−1 mod n. (5.4.28)

We now apply lemma 5.3.2.1 to calculate the class of τ−j(η†) as

cls(τ−j(η†)) =

N∑
i=1

(N − i)ηi−1 − jN mod n. (5.4.29)

We can now calculate

cls(µ)− cls(τ−j(η†)) =
N∑
i=1

(N − i)(µi − ηi) + jN mod n (5.4.30)

=

N∑
i=1

(N − i)(µi − ηi) +
N−1∑
i=0

i(µi − ηi) mod n (5.4.31)

= N
N−1∑
i=0

(µi − ηi) mod n (5.4.32)

= N(n− n) mod n, (5.4.33)

which vanishes. Thus µ† and τ−j(η†) are in the same class.
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5.4.4 Checks of the Coset Character Conjecture

In this subsection, we check the Coset Character Conjecture in the two cases where n = 1

with p ∈ Z>0 and n ∈ Z with p = 0. In both cases, we verify the conjecture by reducing it

to the known results in [47] and [43].

5.4.4.1 The case: n = 1 with p ∈ Z>0

The simplest such check is to let p be arbitrary and non-zero and let n = 1, so that we are

considering AGT-W for gauge theories on C2 as in chapter 2. In this case, we show below

that we obtain the WN -minimal model characters χN,N+p,N+p+1
ξ,ζ .

Under the assumption n = 1, we see that (ζ − ξ)† − τ j(η†) is a one dimensional vector and

δk is therefore trivial. We are therefore considering uncoloured Young diagrams.

For n = 1, we consider the hatted product B̂
(p+1;p)
Λi

= (q; q)−1
∞ B

(N,p)
Λi

for i = 0, . . . , N −1. We

recall the definition of B-matrices (5.2.20) to see that(
B̂

(p+1;p)
Λi

(q)
)
ξζ

=
1

(q; q)∞

(
B

(N,p)
Λi

(q)
)
ξζ

(5.4.34)

=


q
1
2(|ζ−ξ|2−|Λi|

2)
(q;q)∞

χN,N+p,N+p+1
ξ,ζ (q) if cls(ζ − ξ − Λi) = 0,

0 else,
(5.4.35)

where ξ ∈ P+
N,p and ζ ∈ P+

N,p+1. The right-hand side is the q-generating function of un-

coloured (ξ, ζ)-Burge multipartitions Xξ,ζ(q). In [47], it was shown that

q−∆(q; q)∞Xξ,ζ(q) = χN,N+p,N+p′

ξ,ζ , (5.4.36)

for the ŝl(N) weights ξ ∈ P+
N,p and ζ ∈ P+

N,p′ and ∆ is some constant (cf. [47, 3.4]). By

choosing p′ = p + 1 in (5.4.36) we can see that hatted B-matrix elements are equal to the

Burge q-generating functions up to an overall factor of q, which supports our conjecture.

5.4.4.2 The case: n ∈ Z>0 with p = 0

The next simplest case is p = 0 with arbitrary n ∈ Z>0, so that we are considering a full

(non-truncated) product of B-matrices on the left-hand side. In this case, the coset algebra is

isomorphic to A(N,n;n) and we obtain ŝl(n)N characters as described in chapter 4. We will

now go a step further and show that the coloured (0, ζ)-Burge multipartitions as explained

in this chapter are in bijection with cylindric partitions, which provide a model for ŝl(n)N

characters.
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Consider a coloured (0, ζ)-Burge multipartition λ = (λ(0), . . . , λ(N−1)) such that the level of

ζ is the number of colours n. In this case we see that (5.3.1) simplifies to

σj =

j−1∑
i=0

ζi, (5.4.37)

and that σj+1 − σj = ζj for 0 ≤ j < N , which we use this to define the weight

Λ =
N−1∑
j=0

Λσj . (5.4.38)

Recall from section 1.4.1, an element of CΛ consists of an N -tuple of Young diagrams λ̄ =

(λ̄(0), . . . , λ̄(N−1)) and a vector σ̄ = (σ̄0, . . . , σ̄N−1) ordered by σ̄0 ≤ · · · ≤ σ̄N−1 with σ̄N−1 =

n, where all subscripts are defined modulo N , which defines the Burge inequalities on λ̄.

We now construct a bijection between the n-coloured (0, ζ)-Burge multipartitions and CΛ via

(λ, σ) 7→ (λ̄, σ̄).

We begin by defining the vector σ̄, which is very similar to the vector of charges σ =

(σ1, . . . , σN ) defined by (5.4.37). By definition, a cylindric partition must have σ̄N−1 = n,

whereas we have σj < n for 0 < j < N . Thus, to obtain a vector σ̄ defining a cylindric

partition λ̄ using the vector of charges σ, we fix j′ = max{j = 1, . . . , N |σj < n} and then

define

σ̄j =

0, 0 ≤ j ≤ j′,

σj−j′+1, j′ < j ≤ N.
(5.4.39)

Here we have taken advantage of the invariance of the Burge and cylindric inequalities under

cyclic permutation of their labels. We then use this idea to define λ̄ in the same fashion, so

that

λ̄(j) =

λ(N−j′+j+1), 0 ≤ j < j′,

λ(j−j
′+1), j′ ≤ j ≤ N − 1.

(5.4.40)

One can easily check that the Burge inequalities on λ imply the cylindric inequalities on

λ̄. This process uniquely identifies every cylindric partition with a coloured (0, ζ)-Burge

multipartition. This shows that the instanton generating function when p = 0 and n ∈ Z>0

is equal to the characters of ŝl(n)N .

5.5 New ŝl(n) String Function Identities

In this section, using the p = 0 case of conjecture 5.4.0.1, we obtain the following new

conjectural forms for ŝl(n)N string functions involving minimal model characters using the

matrix elements of B̂
(0;n)
η (q) for η ∈ P+

N,n.
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Conjecture 5.5.0.1. For ζ ∈ P+
N,n and η ∈ P+

N,n, we have the following equality, up to a

factor of a power of q, of matrix elements B̂
(0;n)
η and ŝl(n)N string functions

(
B̂(0;n)
η

)
0ζ

=


1

(q;q)∞
σζ

†

τ−j(η†)
, cls(ζ) = cls(η),

0, else
(5.5.1)

for

j =
1

N
cls∗(ζ − η). (5.5.2)

Example 5.5.0.2. When N = 1, we can only have an empty weight label η and ζ. In this

case, the left-hand side is simply (q; q)−1
∞ multiplied by an empty product. On the right-hand

side the string function is trivial, which leaves only the factor of (q; q)−1
∞ . In this trivial case,

the conjecture 5.5.0.1 is clearly true.

We now explain how to obtain the new identities in conjecture 5.5.0.1 from conjecture 5.4.0.1.

Since we are taking p = 0, the matrix B̂
(0;n)
η (q) has only one row and has matrix elements

labelled by ξ = 0 and ζ ∈ P+
N,n. In terms of q-characters, this situation corresponds to the

following product formula of ŝl(n) characters for η =
∑N

i=1 Λρ(i) ∈ P
+
N,n:

n∏
i=1

χ
ŝl(N)
Λρ(i)

(q) =
∑

ζ∈P+
N,n

cls(ζ)=cls(η)

b
⊗iΛρ(i)

τ−j(ζ†)
(q)χ

ŝl(n)

τ−j(ζ†)
(q), (5.5.3)

where j = 1
N cls

∗(ζ − η) ∈ Z is as in conjecture 5.4.0.1, 0 ≤ ρ(i) ≤ N − 1 is a sequence

of integers defining the order of tensor products of level 1 irreducible representations, and

b
⊗iΛρ(i)

ζ (q) are branching functions from Lρ(1) ⊗ · · · ⊗ Lρ(N) to Lζ . We notate the branching

of this tensor product in terms of the dual weight ζ† to match the form of the coset-Burge

conjecture (5.4.1).

From the right-hand side of the conjecture 5.4.0.1, we see that the matrix element labelled

(0, ζ) of
(
B̂

(0;n)
η (q)

)
is equal to the branching functions b

⊗iΛρ(i)

τ−j(ζ†)
(q) and the generating func-

tions Xδk
0,ζ;n(q) of n-coloured cylindric partitions. To see that we should be comparing this

element to generating functions of n-coloured Burge multipartitions, we note that the level

of ζ and η is n so that their dual weights ζ† and η† are both of rank n.

As explained in section 1.4, the (0, ζ)-Burge multipartitions are cylindric multipartitions

and provide a model for states in ŝl(n)N irreducible modules. We can now go one step

further and use the identification for the generating functions of cylindric partitions and

ŝl(n)N characters (1.4.9), to identify the matrix elements of B̂
(0;n)
η with the string functions

of ŝl(n) characters. When performing this we will need to account for an additional factor

of (q; q)∞, which comes from the relationship between the generating function of FLOTW
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multipartitions and cylindric partitions (equation (1.4.8), that we reproduce here)

Xk
Λ(q; z) =

1

(q; q)∞
(Xk

Λ)
∗(q; z). (5.5.4)

Note that the matching between a specific string function σζ
†

τ−j(η†)
and cylindric generating

function X for δk = A−1
(
ζ† − η†

)
is from the identification of coloured boxes as correspond-

ing to the action of lowering operators on fi. We recall the discussion of section 5.4.1 and

equation (5.4.4) which we reproduce here in form of

τ−j(η†) = ζ† −
n−1∑
i=0

ki(λ)αi, (5.5.5)

where λ is a (0, ζ)-Burge multipartition (equivalently, cylindric plane partition). We are then

free to subtract
∑N−1

i=0 k0(λ)α = k0(λ)δ from both sides to obtain

τ−j(η†) = ζ† + k0(λ)δ −
n−1∑
i=1

δki(λ)αi. (5.5.6)

All cylindric partitions with prescribed differences δk are obtained from the n-core defined

by δk by adding lots of n blocks coloured 0 through n − 1 at a time and keeping only

multipartitions that again satisfy the cylindric inequalities. As we can see from (5.5.6) this

process is equivalent to counting weights with Dynkin labels τ−j(η†) at each grade, and by

(1.4.8) this gives us precisely 1
(q;q)∞

σζ
†

τ−j(η†)
. We thus have the identity (5.4.1) obtained from

conjecture 5.5.0.1.

Below, we will compute both sides of the identities in conjecture 5.5.0.1 in some examples

for n = 2 and N = 3 and show that their q-expansion coincide up to3 O(q8). This gives a

strong evidence of conjecture 5.5.0.1. In these, we are comparing series expansions of string

functions 1
(q;q)∞

σζ
†

τ−j(η†)
which can be found in [48] with the series expansions of B̂

(0;n)
η (q)

matrix elements obtained using (1.5.144).

5.5.1 Examples for ŝl(2)3

As n = 2, there are only two distinct classes of weights. We will only show computation here

for one η ∈ P+
2,3 of each class, namely η = 3Λ0 and η = 2Λ0 + Λ1. This corresponds to the

product of 3 B-matrices

B̂(0;3)
η (q) =

1

(q; q)3∞

2∏
l=0

B
(2,l)
Λσl

(q), (5.5.7)

3Note that we have checked that these examples agree up to O(q10), although for the sake of formatting
we have chosen to show only up to O(q8).
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where η =
∑2

l=0 Λσl . When matching with string functions we note that we can eliminate

the extra (q; q)∞ factor by considering the matrix elements of B̂
(1;3)
2Λ0

instead of B̂
(0;3)
Λ , where

Λ = 3Λ0, 2Λ0 + Λ1, as these matrices have the same matrix elements up to this factor.

By taking the first B-matrix to correspond to Λ0 or Λ1, which translates to considering either

the first or second row of the matrix B̂
(1;3)
2Λ0

= 1
(q;q)2∞

B
(2,0)
Λσ0

(q)B
(3,1)
Λσ0

(q), we only need consider

the matrix elements of one B̂-matrix, namely

B̂
(1;3)
2Λ0

(q) =
1

(q; q)2∞

(
q2χ3,4

1,3χ
4,5
3,1 + χ3,4

1,1χ
4,5
1,1 0 qχ3,4

1,1χ
4,5
1,3 + qχ3,4

1,3χ
4,5
3,3 0

0 χ3,4
2,2χ

4,5
2,2 0 qχ3,4

2,2χ
4,5
2,4

)
.

(5.5.8)

Note that in this notation, a subscript integer label r on a minimal model character χ∗,∗
r,∗

or χ∗,∗
∗,r corresponds to a weight [k − r + 1, r − 1], where k is the level of the weight4. This

is standard notation from 2D CFT, and using it ensures that the subscripts of minimal

model characters coincide with the usual labels for matrix elements. Thus, we have that

χn,k1+n,k2+nr1,r2 = χ[k1−r1+1,r1−1],[k2−r2+1,r2−1]. For example, the top left entry (usually labelled

as (1,1) in a matrix) is labelled by χξ,ζ in our notation, where ξ = [2, 0] and ζ = [4, 0].

To compute the string function for ŝl(3)2, we note that for µ,Λ ∈ P+(ŝl(3)2) with cls(Λ) =

cls(µ) we have that

σ
τd(Λ)

τd(µ)
(q) = σΛµ (q), d ∈ Z. (5.5.9)

We can then check the tables in [48, §31], which we will refer to by their root system, class,

and level. As discussed in chapter 4, we can also compute these string functions using the

expressions from [57].

5.5.1.1 η = [3, 0]

In this case we consider the first row of B̂
(1;3)
2Λ0

. The (1, 1) entry corresponds to ζ − Λ0 =

[3, 0] = η. Expanding the q-series (note the appearance of the (q; q)−2
∞ factor instead of a

(q; q)−3
∞ in line with our discussion above) we obtain

1

(q; q)2∞

(
q2χ3,4

1,3χ
4,5
3,1 + χ3,4

1,1χ
4,5
1,1

)
= 1+2q+8q2+20q3+52q4+116q5+256q6+522q7+1045q8+. . .

(5.5.10)

Taking [3, 0]† = [2, 0, 0] we can see that this matches the series expansion of σ
[200]
[200] in the

table for A2, level 3, class 0 as expected.

4This connects the r and s parameters for V ir-minimal models from section 1.5.5 with that of the more
general description as cosets and W-algebras in sections 1.5.12 and 1.5.13.
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The (3, 1) entry corresponds to ζ − Λ0 = [1, 2]. Expanding the q-series gives

1

(q; q)2∞

(
qχ3,4

1,1χ
4,5
1,3 + qχ3,4

1,3χ
4,5
3,3

)
= 2q+7q2+22q3+56q4+136q5+300q6+636q7+1280q8+ . . .

(5.5.11)

In this case we have that τ([1, 2]†) = [0, 1, 1], and the series expansion of the hatted B-matrix

elements matches τ−1(σ
[011]
[200]) in the table for A2, level 2, class 0 as expected.

5.5.1.2 η = [1, 2]

In this case we are considering the second row of B̂
(0;3)
2Λ0

. The (2, 2) entry corresponds to

ζ − Λ1 = [3, 0]. We expand the q-series to obtain

1

(q; q)2∞

(
χ3,4
2,2χ

4,5
2,2

)
= 1+4q+13q2+36q3+89q4+204q5+441q6+908q7+1798q8+. . . (5.5.12)

As expected this matches the string function σ
[200]
[011] in the table for A2, level 2, class 0. Here

we note that although [3, 0]† = [0, 0, 2] and [1, 2]† = [1, 1, 0], we are free to use σ
[200]
[011], as by

(5.5.9) the string function σ
[002]
[110] is equivalent to σ

[200]
[011].

Finally the (2, 4) entry corresponds to ζ − Λ = [1, 2], and we obtain the q-series

1

(q; q)2∞
qχ3,4

2,2χ
4,5
2,4 = 1+4q+12q2+32q3+77q4+172q5+365q6+740q7+1445q8+ . . . (5.5.13)

This series matches σ
[011]
[011] also found in the table for A2, level 2, class 0. Note that η† = ζ† =

[1, 1, 0], and σ
[110]
[110] = σ

[011]
[011].

5.5.2 New Combinatorial ŝl(n) String Function Identities

In the previous section, we used a truncated product B̂
(3;1)
η to calculate the matrix elements

of the full product of B̂
(3;0)
η+Λi

. This approach generalizes for arbitrary n. If we consider the

right-hand side of coset-Burge conjecture for B̂
(n;1)
η , we see that we can calculate the ŝl(n)

string functions using a (Λi, ζ)-Burge multipartition generating function Xδk
Λi,ζ

instead of a

(0, ζ)-Burge multipartition with an additional Heisenberg factor. We formalize this idea with

the following corollary to 5.4.0.1.

Conjecture 5.5.2.1. For ζ ∈ P+
N,n and η ∈ P+

N,n−1, we have the following equality, up to a

factor of q, between the generating functions of (Λi, ζ)-Burge multipartitions, matrix elements
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B̂
(n;1)
η+Λi

, and ŝl(n) string functions

Xδk
Λi,ζ

(q) =
(
B̂(n;1)
η

)
Λiζ

=

σ
(ζ−Λi)

†

τ−j(η†)
, cls(ζ − Λi) = cls(η),

0, else
(5.5.14)

for

j =
1

N
cls∗(ζ − Λi − η). (5.5.15)

The above identity 5.5.14 gives a new combinatorial interpretation of ŝl(n)N string functions

using (n+1) coloured Burge generating functions This is in contrast to the previously known

expressions for ŝl(n)N string functions, which are in terms of n coloured Burge generating

functions as in conjecture 5.5.0.1.

Importantly, we have found a combinatorial model for ŝl(n) characters defined only in terms

of the Burge inequalities and colourings of Young diagrams, without having to introduce

the FLOTW conditions. Viewed another way, we can use the coloured Burge multipartition

framework to calculate ŝl(n) characters without having to put in either an additional factor

of (q; q)−1
∞ as seen in [47] or enforcing the highest-lift condition (1.4.2.3).

Interestingly, if we equate the two possible Burge generating functions for the matrix elements

of B̂
(0;n)
η+Λi

and B̂
(1;n)
η we find

1

(q; q)∞
X0ζ(q) = X∗

Λ(q) = Xδk
Λiζ

(q), (5.5.16)

which suggests there may be a map between FLOTW multipartitions, which are naturally

coloured in n colours, and (n−1) coloured (Λi, ζ)-Burge multipartitions. As of now, we have

not been able to find such a map.

The FLOTW multipartitions are cylindric partitions which only satisfy inequalities along one

axis. They are therefore analogous to plane partitions. The (Λi, ζ)-Burge multipartitions

have inequalities along two axes and are analogous to skew plane partitions. We find it

interesting that there may be some equivalence between these two types of objects.

5.6 Some Coset Character Examples

Here we discuss the evidence we have found for the validity of the coset-Burge character

conjecture 5.4.0.1. We will also discuss a selection of simple worked examples explicitly

showing the details involved in calculating (5.4.1). The examples are of increasing order of

complexity, beginning with the simplest case (N,n) = (2, 3) before moving onto (N,n) =

(3, 4) and finally having a non-coprime case for (N,n) = (3, 6).
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5.6.1 Evidence For the Coset Burge Character Conjecture

To develop the parameter matching for the coset Burge character conjecture (5.4.1), we only

used a selection of weights η ∈ P+
N,n for the level-rank pairs (N,n) = (2, 3), (2, 4), (3, 2), (3, 4),

(3, 6), (3, 7), (4, 3), (4, 6). Of these pairs we used all possible weights for (N,n) = (2, 3), (2, 4),

(3, 2), where series expansions of B̂-matrix elements and coloured Burge q-generating func-

tions were found to agree up to O(q10). As seen in the examples below, this involved counting

up to thousands of Burge multipartitions.

Having then developed the precise form (5.4.1) of the coset Burge character conjecture we

tested our proposed correspondence against all possible weights η ∈ P+
N,n for (N,n) =

(3, 4), (3, 6), (3, 7), (4, 3), (2, 7), (2, 8) in Mathematica and Maple, where the series expansions

of B̂-matrix elements and coloured Burge q-generating functions were seen to agree in every

case. We were able to check the cases5 of (N,n) = (2, 3), (3, 2) up to O(q12), (N,n) = (2, 4)

to O(q10), (N,n) = (3, 4), (4, 3) to O(q6), (N,n) = (3, 6), (3, 7) to O(q5), (N,n) = (2, 7) to

O(q4), and (N,n) = (2, 8) to O(q3).

These checks provide strong evidence for the validity of (5.4.1). Below we will show a

selection of the examples, that are computed using the machinery developed in this chapter,

that demonstrate some of these checks we have described explicitly.

5.6.2 ŝl(2)3

We will check a case for the values η = [3, 0] and [2, 1] with p = 1, where these matrix entries

are equal to ŝl(3)2 string functions. This expands on the examples presented in section 5.5.1

In this case we explicitly show that conjectures 5.5.1, and 5.5.14 hold, and their corresponding

identities between string functions and Burge generating functions. As previously described,

we obtain the string function q-series from [49].

First, let η = [3, 0] which gives Ω(η) = {4, 5}. The Dynkin rings of η and η† are shown in

figure 5.1.

1

2

3

4

5

1

2

3

4

5

Figure 5.1: The Dynkin ring for η = [3, 0] its dual η† on the left and right respectively.

5Note, we state here the order of the series expansions when factorizing out the additional q factor,
undetermined in the conjecture.
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There are 3 possible choices for τ−j(η†), and since gcd(2, 3) = 1 there is one of each rank 3

class, we have:

τ−j(η†) =


[2, 0, 0] class = 0, j = 0,

[0, 0, 2] class = 1, j = 1,

[0, 2, 0] class = 2, j = 2.

(5.6.1)

1
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2

3
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5

Figure 5.2: For η = [3, 0], the Dynkin rings of each τ−j(η†) for j = 0, 1, 2 respectively.

Next we consider specific matrix elements for the hatted B-matrix, which satisfy the equation(
B̂

(3;1)
[3,0]

)
ξ,ζ

= Xδk
(ξ,ζ;3)(q). (5.6.2)

Consider the entry labelled by (ξ, ζ) = ([1, 0], [4, 0]). Following (5.3.1), we obtain

σ0 = 0 (5.6.3)

σ1 = 0 + 4− 1 = 3 ≡ 0 mod 3 (5.6.4)

σ2 = σ0, (5.6.5)

and our weight vector of Burge charges is σ = [2, 0, 0]. We have cls(σ) = 0, so we choose

τ0(η†) = [2, 0, 0] and have

σ − η† = [0, 0, 0] =
2∑
i=0

0 · αi, (5.6.6)

thus k = (0, 0, 0) and δk = (0, 0). On the left-hand side of (5.4.1) we have(
B̂

(3;1)
[3,0]

)
[1,0],[4,0]

=
1

(q; q)2∞

(
χ
(3;5,6)
[3,0],[4,0]

(
q2χ

(3;3,4)
[1,0],[0,2]χ

(3;4,5)
[0,2],[3,0] + χ

(3;3,4)
[1,0],[2,0]χ

(3;4,5)
[2,0],[3,0]

)
(5.6.7)

+ qχ
(3;5,6)
[1,2],[4,0]

(
qχ

(3;3,4)
[1,0],[0,2]χ

(3;4,5)
[0,2],[1,2] + qχ

(3;3,4)
[1,0],[2,0]χ

(3;4,5)
[2,0],[1,2]

))
(5.6.8)

= 1 + 3q + 15q2 + 50q3 + 162q4 + 457q5 + . . . , (5.6.9)

and the right-hand side we have

X
(0,0)
([1,0],[4,0];3)(q) = 1 + 3q + 15q2 + 50q3 + 162q4 + 457q5 + . . . , (5.6.10)
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and our conjectured correspondence is satisfied up to O
(
q6
)
.

Our next example is the entry labelled by (ξ, ζ) = ([0, 1], [1, 3]). We have

σ0 = 0 (5.6.11)

σ1 = 0 + 1− 0 = 1 mod 3, (5.6.12)

and σ = [1, 1, 0]. We have cls(σ) = 1 so we choose τ−1(η†) = [0, 0, 2]. We have

σ − τ−1(η†) = [1, 1,−2] = −α2, (5.6.13)

so that k = (0, 0,−1) and δk = (0,−1) and(
B̂

(3;1)
[3,0]

)
[0,1],[1,3]

=
1

(q; q)2∞

(
qχ

(2;3,4)
[0,1],[1,1]χ

(2;4,5)
[1,1],[0,3]χ

(2;5,6)
[0,3],[1,3] + qχ

(2;3,4)
[0,1],[1,1]χ

(2;4,5)
[1,1],[2,1]χ

(2;5,6)
[2,1],[1,3]

)
(5.6.14)

= 2q + 12q2 + 50q3 + 172q4 + 522q5 + . . . , (5.6.15)

and

X
(0,−1)
[0,1],[1,3];3(q) = 2q2/3 + 12q5/3 + 50q8/3 + 172q11/3 + 522q14/3 + . . . (5.6.16)

= q−1/3
(
2q + 12q2 + 50q3 + 172q4 + 522q5 + . . .

)
, (5.6.17)

and the conjecture (5.4.0.1) is satisfied up to a factor of q−1/3 (this comes from the number

of boxes in the 3-cores divided by the number of colours).

Remark 5.6.2.1. We can also easily see that this fits the generic class star structure. In this

case, for η = [3, 0] we have η† = [2, 0, 0] and taking (ξ, ζ) = ([1, 0], [4, 0]) gives

cls∗(ζ − ξ − η) = 0, (5.6.18)

so that j = 0 as above. For (ξ, ζ) = ([0, 1], [1, 3]) we have

cls∗(ζ − ξ − η) = 2, (5.6.19)

and j = 2/2 = 1 as above.

5.6.3 ŝl(3)4

We begin by noting that gcd(3, 4) = 1, so that we can use the coprime structure. We will

first consider the η = [4, 0, 0] case. We have Ω(η) = {5, 6, 7}, where the relevant Dynkin

rings are depicted figure 5.4
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1
2

3

4

5
6

7

1
2

3

4

5
6

7

Figure 5.3: The Dynkin rings for η = [3, 0, 0, 0] and its dual η† on the left and right
respectively.

We have the 4 possible choices for τ−j(η†)

τ−j(η†) =



[3, 0, 0, 0] class = 0, j = 0,

[0, 0, 0, 3] class = 1, j = 1,

[0, 0, 3, 0] class = 2, j = 2,

[0, 3, 0, 0] class = 3, j = 3.

(5.6.20)

Similarly to above, the entry labelled by (ξ, ζ) = ([5, 0, 0], [1, 0, 0]) has σ = [3, 0, 0, 0] with

cls(σ) = 0 so that we choose τ0(η† = [3, 0, 0, 0]). This gives δk = (0, 0, 0) and we have(
B̂

(4;1)
[4,0,0]

)
[1,0,0],[5,0,0]

= 1 + 4q + 24q2 + 120q3 + 545q4 + . . . , (5.6.21)

and

X
(0,0,0)
[1,0,0],[5,0,0];4 = 1 + 4q + 24q2 + 120q3 + 545q4 + . . . , (5.6.22)

as expected. We can then easily see that

cls∗(ζ − ξ − η) = cls∗([0, 0, 0]), (5.6.23)

giving j = 0.

Next, we consider the entry (ξ, ζ) = ([0, 1, 0], [2, 2, 1]). We have ζ − ξ = [2, 1, 1] so that

σ = [1, 0, 1, 1] and we choose η† = [0, 0, 0, 3]. Then σ − η† = −α3 and δk = (0, 0,−1)6. We

have (
B̂

(4;1)
[4,0,0]

)
[0,1,0],[2,2,1]

= 3q + 36q2 + 264q3 + 1485q4 +O
(
q5
)
, (5.6.24)

and

X
(0,0,−1)
[0,1,0],[2,2,1];4 = q−1/4

(
3q + 36q2 + 264q3 + 1485q4 + . . .

)
, (5.6.25)

The class star in this case is

cls∗(ζ − ξ − η) = cls∗([−2, 1, 1]) = 3, (5.6.26)

6As one moves to higher rank and levels, you can easily calculate the necessary δk values by using the
inverse finite Cartan matrix

(
A−1

)
ij

= min{i, j} − ij
n
. This will directly give you the δk values.
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and we see that j = 1 as expected.

5.6.4 ŝl(3)6

We have gcd(6, 3) = 3, so we are in the non-coprime case and we have an ambiguity due to

the rotation invariance of the Dynkin ring for the dual weight (η†). This is the only example

we provide that we cannot determine τ−j(η†) purely from class considerations.

1
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1
23

4
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9

Figure 5.4: The Dynkin ring for η = [6, 0, 0, 0] and its dual η† on the left and right
respectively.

We will only consider the case where η = [6, 0, 0]. For this case, we fix ξ = [1, 0, 0] and choose

three values for ζ to obtain different values of j and hence δk in the conjecture. We have

Ω(η) = {7, 8, 9} so that Ω(η†) = {1, 2, 3, 4, 5, 6} which gives

τ−j(η†) =



[3, 0, 0, 0, 0, 0] class = 0, j = 0,

[0, 0, 3, 0, 0, 0] class = 0, j = 4,

[0, 0, 0, 0, 3, 0] class = 0, j = 2,

[0, 3, 0, 0, 0, 0] class = 3, j = 5,

[0, 0, 0, 3, 0, 0] class = 3, j = 3,

[0, 0, 0, 0, 0, 3] class = 3, j = 1.

(5.6.27)

Consider the matrix element
(
B̂

(7;1)
[6,0,0]

)
[1,0,0],[7,0,0]

. We note that cls∗(η−ξ−ζ) = cls∗([0, 0, 0]) =

0, so that j = 0. Then (ζ − ξ)† − η† = [0, 0, 0, 0, 0, 0] so that δk = (0, 0, 0, 0, 0). We now

check the matrix element against the generating function of coloured Burge multipartitions.

We have (
B̂

(7;1)
[6,0,0]

)
[1,0,0],[7,0,0]

= 1 + 6q + 48q2 + 336q3 + 2142q4 + . . . , (5.6.28)

and the coloured Burge generating function

X
(0,0,0,0,0)
[1,0,0],[7,0,0];6 = 1 + 6q + 48q2 + 336q3 + 2142q4 + . . . , (5.6.29)

which match as expected.
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Next, we consider the entry corresponding to (ξ, ζ) = ([4, 3, 0], [1, 0, 0]). In this case, we have

that cls∗(η − ξ − ζ) = cls∗([3, 3, 0]) = 3 so that j = 1. Now, we also have that

([4, 3, 0]− [1, 0, 0])† − τ−1(η†) = [2, 0, 0, 1, 0,−3] = −α4 − 2α5 (5.6.30)

and we see that δk = (0, 0, 0,−1,−2). The matrix element(
B̂

(7;1)
[6,0,0]

)
[1,0,0],[4,3,0]

= 15q2 + 230q3 + 2190q4 + . . . , (5.6.31)

and corresponding generating function

X
(0,0,0,−1,−2)
[1,0,0],[4,3,0];6 = 15q3/2 + 230q5/2 + 2190q7/2 + . . . (5.6.32)

= q1/2
(
15q2 + 230q3 + 2190q4 + . . .

)
, (5.6.33)

agree, as expected, up to a factor of q1/2.

Finally, we consider the entry ([1, 6, 0], [1, 0, 0]). In this case, we have that cls∗(ζ− ξ−η) = 6

so that j = 2. Then

([1, 6, 0]− [1, 0, 0])† − τ−2(η†) = [3, 0, 0,−3, 0, ] = −α1 − 2α2 − 3α3 − 4α4 − 2α5, (5.6.34)

so that δk = (−1,−2,−3,−4,−2). Then the matrix element(
B̂

(7;1)
[6,0,0]

)
[1,0,0],[1,6,0]

= 21q4 + 378q5 + 3767q6 + . . . , (5.6.35)

and corresponding generating function

X
(−1,−2,−3,−4,−2)
[1,0,0],[1,6,0];6 = 21q2 + 378q3 + 3767q4 + . . . (5.6.36)

= q−2
(
21q4 + 378q5 + 3767q6 + . . .

)
, (5.6.37)

agree, as expected, up to a factor of q−2.





Chapter 6

Conclusion and Outlook

In this thesis, we have provided two distinct approaches to studying coset AGT: First, by

providing new evidence for its existence using its connection to ŝl(n)N -WZW models, and

second, by calculating branching functions for coset CFTs with symmetry algebra A(N,n; p)
from the instanton generating functions for N = 2 SU(N) theories on C2/Zn. In both

approaches, we have utilized the combinatorics suggested by coset AGT for gauge theories

under a minimal model identification.

To obtain the necessary combinatorics for our study, we have shown thatN = 2 SU(N) gauge

theories on C2/Zn under a minimal model identification have ill-defined instanaton partition

functions due to the presence of non-physical poles. We then obtained the Burge conditions

in these theories, which we used to obtain a well-defined instanton partition function as a

sum over coloured Burge multipartitions. In doing so, we introduced the combinatorics of

coloured cylindric partitions to the AGT correspondences we considered, which was essential

for all results obtained thereafter.

Then, by fine-tuning the Ω-deformation parameters ϵ1 and ϵ2 used to calculate the instanton

partition function on C2/Zn and fixing the gauge theory parameters in a minimal model

fashion, we were able to conjecture an AGT duality involving ŝl(n)N -WZW models. We

have then provided evidence for this correspondence in two ways.

First, we have proved that it is possible to obtain WZW characters corresponding to inte-

grable highest weight ŝl(n)N -modules by applying the combinatorics implied by this corre-

spondence to the instanton generating function. To do this, we compared with expressions

for WZW characters using the concept of highest lift cylindric partitions, as developed by the

Kyoto school [60, 150, 39]. The evidence obtained in this manner applies to all ŝl(n)N -WZW

primary fields corresponding to arbitrary dominant integral ŝl(n)N -weights.

221



Conclusion and Outlook 222

The second set of evidence is from considering the correlation functions of WZW models

involving primary fields corresponding to the fundamental and anti-fundamental highest

weight irreducible ŝl(n)N -representations. Here we compared series expansions of Zinst to

known expressions for conformal blocks in ŝl(n)N -WZW theories involving hypergeometric

functions term-by-term, by way of the KZ differential equation [36], and showed they agreed

to small order for (N,n) = (2, 2), (2, 3), and (3, 2).

Further work could be done in this direction by extending this program to conformal blocks

involving other primary fields. This could then be used to obtain solutions, defined in terms

of coloured Burge multipartitions, to the KZ differential equation. Furthermore, any proof

of this subcase of AGT would link the partition function for this theory, and by extension

coloured Burge multipartitions, to hypergeometric functions.

Previous proofs of other AGT subcases from a CFT perspective make use of special bases of

states in the representation theory of CFT symmetry algebras. When considering Liouville

CFT and N = 2 SU(2) gauge theories on C2, bifundamental multiplet contributions can

be derived in the CFT using a basis of states corresponding to the Jack polynomials (which

themselves are associated to Young diagrams) [19]. In the case of the cosets A(1, 2; 1) and

A(2, 2; 2) and N = 2 SU(2) gauge theories on C2/Z2, a similar basis of states, defined in

terms of pairs of checkerboard (2 coloured) Young diagrams involving Ulgov polynomials

(first introduced in [151, 152]) has been obtained [27]. We can anticipate that to generalize

these results a similar basis of states involving n-coloured N -tuples of Young diagrams exists

for H ⊕ ŝl(n)N -modules whose matrix elements reproduce the bifundamental multiplets of

N = 2 SU(N) gauge theories on C2/Zn. We expect that in this basis, the singular vectors

will be described by N -tuples that do not satisfy the Burge conditions.

We then utilized our conjectured coset AGT correspondence involving minimal models to

calculate branching functions of the coset A(N,n; p) for generic values of the parameter

p. To do so we first introduced B-matrices, which allowed computation of the branching

functions efficiently from a representation theoretic viewpoint by utilizing the crystal graph

tools of Kyoto school and Littlemann [66, 61, 62]. We then related Burge multipartitions

coloured in n-colours to affine weights of level n (as apposed to the usual case of relating them

to weights of rank n) by introducing the new concept of dual weights and their corresponding

Dynkin rings.

Having done so, we were able to identify the coloured boxes in Burge multipartitions with

affine simple weights (or equivalently, the action of lowering operators) and formed a dictio-

nary between the weights defining the branching functions and the colour data of coloured

Burge generating functions. Within this dictionary, we fixed the ambiguity implied by the

rotation symmetry of dual Dynkin rings (or equivalently, the existence of multiple candi-

dates for a natural dual weight) by introducing a new property of Dynkin weights, called the
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class-star. The class-star of a Dynkin weight is related to its usual class and fixes the cyclic

invariance inherent to dual weights, allowing us to explicitly write down the coset-Burge con-

jecture, which was an identification between coset branching functions and coloured Burge

generating functions.

By fixing p = N in this conjecture, which corresponds to coset AGT involving only the WZW

models, we then showed that, due to the form of the B-matrix formulation of branching

functions, we obtained new conjectural combinatorial expressions for ŝl(n)N -string functions

as a corollary to the coset-Burge conjecture. Previous expressions for these (again using the

crystal graph approach of the Kyoto school) involved generating functions of cylindric plane

partitions, or in our language (0, ζ)-Burge multipartitions, which are coloured in n colours,

with an additional factor of (q; q)−1
∞ (or in the language of AGT, a free boson or Heisenberg

factor). Our new conjectural expressions are instead a equality between generating functions

of (Λi, ζ)-Burge multipartitions coloured with (n− 1) colours and ŝl(n)N -string functions.

Since our expressions have no Heisenberg factor, it is natural to conjecture that the (Λi, ζ)-

Burge multipartitions coloured with (n− 1) colours may form a natural labelling of states in

highest weight ŝl(n)N -modules. Furthermore, as a corollary to our corollary, we obtain a new

conjectural combinatorial expression that states that the generating function of (Λi, ζ)-Burge

multipartitions coloured with (n− 1) colours is equal to a product of a Heisenberg character

and the generating function of (0, ζ + Λi)-Burge multipartitions coloured in n-colours.

To provide evidence for the coset-Burge conjecture and our two corollaries to it, we again

took two approaches. The first was to check that it is a genuine generalization of the results

in both AGT-W and coset AGT for p = N . By fixing n = 1, we showed that the coset-

Burge conjecture reduced to AGT-W results involving the uncoloured Burge generating

function (associated to SU(N) theories on C2) and characters ofWN -algebra minimal models

(associated to AN−1-Toda theories). Similarly, by taking p = N we reproduced our own

results identifying generating functions of cylindric Burge multipartitions coloured with n

colours with WZW characters.

We then provided further evidence by comparing explicit series expansions of coloured Burge

generating functions to known series expressions for ŝl(N)n-string functions (derived in [57],

but more easily obtained in the tables of [49]) and our own expressions for branching func-

tions using B-matrices to small order. We performed this on a computer, which allowed

us to check the coset-Burge conjecture for all pairs (N,n) = (2, 3), (2, 4), (3, 2), (3, 4), (3, 6),

(3, 7), (4, 3), (2, 7), (2, 8) of level and rank up to a given order. Furthermore, this data set was

also checked against all string functions and found to agree. This evidence is quite strong

and gives us strong belief that we have found the correct dictionary for the coset-Burge

conjecture.
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Currently we are optimistic that a proof of the conjecture is possible, and we are working

towards one. The natural obstruction is in a lack of closed form expression for the coloured

Burge generating functions, where a combination of both specified colouring and Burge style

conditions has not been obtained in the literature. Closed form expressions for cylindric

Burge multipartitions and coloured tuples of Young diagrams typically involve novel counting

methods which often take the form of yokes (in the case of cylindric Burge multiparitions

[41]) and abaci (in the case of coloured Young diagrams [45]). Work is ongoing in generalizing

these procedures to obtain a counting method suitable for coloured Burge multipartitions.

Once obtained, once could then in principle compare this closed form expression against

known forms for minimal model characters, such as (1.5.144).

Smaller steps towards a conclusive proof of the coset-Burge conjecture could involve a proof

of the (n − 1) to n coloured Burge relation purely from a combinatorial viewpoint. Similar

expressions have been obtained in the concept of FLOTW partitions [40], which also involved

novel counting operations to construct certain multipartitions from a smaller set. This pro-

cess also introduced the presence of a factor of (q; q)−1
∞ in their expressions. Finding such a

procedure may allow one to prove the coset-Burge conjecture without a need for a closed for

expression for the coloured Burge generating function.

The author is interested in linking this work to the broader literature in two main ways. In

a CFT setting, linking this computational structure to a study of non-integer level ŝl(N)-

modules is one (see [153, 154, 155] and the introductions [156, 157]). This study of AGT

would provide new computational tools for their characters, and by extension their characters

modular transformation properties, as well as facilitating conjectural expressions for their

conformal blocks. Along this line of reasoning, it would be interesting to compare the results

of chapter 4 with that of [158], where ŝl(2)-WZW conformal blocks were obtained for SU(2)

gauge theories on C2 (not the ALE space C2/Zn), and a conjecture was made that one could

similarly obtain ŝl(N)-WZW conformal blocks at level (−N − ϵ1/ϵ2) from SU(N) theories

on C2. We also note that when −N − ϵ1/ϵ2 ∈ Z>0, this conjecture would then obtain the

same ŝl(N)-WZW conformal blocks we computed in chapter 4. This method then suggests

an equality between partition functions of certain SU(N) gauge theories on C2 and C2/Zn,
while also allowing one to obtain conformal blocks which are not able to be computed using

our method on the orbifold.

In an algebraic combinatorial setting, the expressions for coloured Burge multipartitions are

similar to those obtained in the study of quantum toroidal algebras [30, 31], and their so-

called resonance modules. These algebras are known to relate (in a conformal limit) to AGT,

and hopefully our expressions make elucidating this link, and the role of these algebras in

AGT, clearer. In this second setting, utilizing these larger algebraic structures and their
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relationship to the results presented in this thesis should illuminate the connection between

both sides of coset AGT.
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2 ,” Nucl. Phys. B

848 (2011) 216–250, arXiv:1012.2905 [hep-th].
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