
Fundamenta Informaticae 158 (2018) 297–326 297

DOI 10.3233/FI-2018-1650

IOS Press

Reference Abstract Domains and Applications to String Analysis

Roberto Amadini
School of Computing and Information Systems
The University of Melbourne, Australia
roberto.amadini@unimelb.edu.au

Graeme Gange
School of Computing and Information Systems
The University of Melbourne, Australia
gkgange@unimelb.edu.au

François Gauthier
Oracle Labs
Brisbane, Australia
francois.gauthier@oracle.com

Alexander Jordan
Oracle Labs
Brisbane, Australia
alexander.jordan@oracle.com

Peter Schachte
School of Computing and Information Systems
The University of Melbourne, Australia
schachte@unimelb.edu.au

Harald Søndergaard∗

School of Computing and Information Systems
The University of Melbourne, Australia
harald@unimelb.edu.au

Peter J. Stuckey
School of Computing and Information Systems
The University of Melbourne, Australia
pstuckey@unimelb.edu.au

Chenyi Zhang†

College of Information Science and Technology
Jinan University, Guangzhou, China
chenyi zhang@jnu.edu.cn

Abstract. Abstract interpretation is a well established theory that supports reasoning about the
run-time behaviour of programs. It achieves tractable reasoning by considering abstractions of
run-time states, rather than the states themselves. The chosen set of abstractions is referred to
as the abstract domain. We develop a novel framework for combining (a possibly large number
of) abstract domains. It achieves the effect of the so-called reduced product without requiring a
quadratic number of functions to translate information among abstract domains. A central no-
tion is a reference domain, a medium for information exchange. Our approach suggests a novel
and simpler way to manage the integration of large numbers of abstract domains. We instanti-
ate our framework in the context of string analysis. Browser-embedded dynamic programming
languages such as JavaScript and PHP encourage the use of strings as a universal data type for
both code and data values. The ensuing vulnerabilities have made string analysis a focus of much
recent research. String analysis tends to combine many elementary string abstract domains, each

∗Address for correspondence: School of Computing and Information Systems, The University of Melbourne, Victoria 3010,
Australia.
†Work performed while at Oracle Labs.

Received December 2016; revised October 2017.

298 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

designed to capture a specific aspect of strings. For this instance the set of regular languages,
while too expensive to use directly for analysis, provides an attractive reference domain, enabling
the efficient simulation of reduced products of multiple string abstract domains.

1. Introduction

Strings are extensively used in modern programming languages, and the interest in string analyses is
active and growing in many fields, ranging from model checking to automated testing and web security
[3, 4, 12, 19, 21, 27, 30]. Scripting languages such as JavaScript and PHP make extensive use of dy-
namic string expressions to be evaluated at runtime. Reasoning about the runtime behaviour of scripts
written in these languages usually requires non-trivial analysis of the string operations that can be per-
formed at run-time. In fact, precise reasoning about strings takes a prominent role in these languages,
owing to the dynamic features such as reflection and dynamic field access; even the construction of
reliable call graphs may depend on precise string analysis.

The task of the analysis is to determine, for each program point, the set of values a given string
variable or expression can take. For reasons of undecidability, the statements that can be extracted
from such string values are necessarily approximate. Abstract interpretation [13] is a well-established
theory of reasoning with approximations, or abstractions. The language that is available to an analysis
(in our case, the set of descriptions that can be used to denote string sets) is an abstract domain. In the
following we shall refer to it as a string abstract domain, or just string domain.

Numerous string domains have been proposed [11, 12, 27, 30, 33]. Practical string analysis tools
[24, 26, 29] tend to apply combinations of string domains, often involving a considerable number of
component domains. The reason is that many different aspects of a string are relevant for precise reas-
oning: how long the string may or must be, which characters it may or must contain, whether it may/
must represent a numerical entity, and so on. Thus implementors are faced with the practical problem
of how to approximate string operations, such as concatenation and substring selection, in analyses
that involve combinations of a large number of domains, without undue cost or loss of precision.

Abstract interpretation provides the tools needed to model this practical problem mathematically.
In this paper, we apply the well-known concept of reduced product [7, 14] to capture the notion of
optimal string analysis over combinations of string domains. Informally, we can see the reduced
product as the most abstract domain among those that preserve combinations of properties from all
component domains.

Operations on the reduced product can easily be defined mathematically, but for practical use,
implementation-oriented definitions are needed. In practice, designers often settle for an approach
in which operations are performed component-wise, followed or interspersed with inter-component
information exchange, by “paraphrasing” information deduced in one component domain to the lan-
guages of the other domains. The result is commonly an analysis which is coarser than the ideal, that
is, less precise than the one that uses the reduced product proper. Moreover, where many domains are
involved, this way of realising (or approximating) the reduced product quickly becomes cumbersome,
and the runtime cost of information exchange can become prohibitive. As pointed out by Cousot et
al. [17], a direct implementation of the reduced product is difficult to extend, as

the implementation of the most precise reduction (if it exists) can hardly be modular since
in general adding a new abstract domain to increase precision implies that the reduced
product must be completely redesigned.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 299

In this paper, we propose a general and modular framework for the systematic design and implemen-
tation of certain reduced product abstract domains, based around a suitably chosen reference domain.
We see this primarily as a contribution to theory, but to demonstrate its utility, we instantiate it for
sophisticated string analysis.

We assume that the component domains are (order isomorphic to) upper closure operators on the
lattice of regular languages (for some fixed alphabet Σ). This is not an onerous requirement; certainly
it appears to be satisfied by most string abstract domains used in practice, albeit not by all.

C

R

P =
⊗

iAi

A2

A1 An

Figure 1. A reference domain R and the reduced product P in the space of abstract domains (lower means
coarser)

Before we build the formal machinery, let us outline the idea. The diagram in Figure 1 should
help the reader who is already familiar with the idea of the reduced product. Towards the bottom of
the diagram are n incomparable abstract domains A1, . . . ,An. At the top is the concrete domain C.
The latter could be, for example, the set of all languages over some alphabet, and the abstract domains
could be the collection of string abstract domains used for this paper’s examples. In the center of the
diagram is the reduced product P of A1, . . . ,An. Its location in the diagram indicates that it is, in a
precise sense, an abstraction of C, as are A1, . . . ,An. P is, however, the most abstract domain that
still manages to match the expressiveness of each Ai.

The dark grey area below P contains abstract domains P ′ that are abstractions (that is, approxi-
mations) of the reduced product. A variety of “products” have been proposed previously; these are
different approximations of the reduced product P and we discuss them in more detail towards the
end of the paper. For now it suffices to note that, in the diagram, they all live in the dark grey area.

We, on the other hand, approach the reduced product “from above”. A reference domain R is
any suitable domain from the light grey area (we later elaborate “suitable”). We show how the full
effect of using P can be obtained through the use of R as a medium in which A1, . . . ,An exchange
information.

For a simple example, consider the reduced product of two incomparable numeric abstract do-
mains, the well-known interval (or Box) domain and Karr’s domain of affine equations [25]. An
element of the former may tell us that x ∈ [5,∞], y ∈ [−∞,∞], z ∈ [1, 10]. An element of the latter
may tell us that 2x − y = 8 and x + 2z = 7. It is not obvious how, in general, one component can
inform the other; certainly a direct implementation of the necessary operators for optimal information

300 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

exchange seems a considerable undertaking. That is, a realisation of the reduced product seems hard.
But we can take inspiration from the experience in mathematics that a hard problem can often be
made easier by generalisation—solving instead a more general problem (Polya [34] refers to this as
the Inventor’s Paradox). Information from each abstract domain is easily turned into an element of
the more expressive convex polyhedron domain [18], where a “meet” (or conjunction) of the elements
can easily be calculated. For the example, the result is x = 5, y = 2, z = 1, information which is
readily translated back to the component domains. It is generally agreed that in practice, the convex
polyhedron domain is too expensive to use in abstract interpretation, but that need not stop it from
serving as a powerful medium for information exchange, that is, as a reference domain.

The ultimate utility of a reference domain, however, is when a substantial number (say, n > 3)
of incomparable abstract domains are in use. Then the reference-based approach that we propose has
these advantages:

• Simplicity of implementation, as our approach requires 2n translation functions rather than a
quadratic number.

• Modular implementation; incorporating yet another domain An+1 is mostly straight-forward.

• Potentially lower computational cost at runtime.

Whether these advantages in fact ensue depends on the context, including the choice of reference
domain—D must be chosen judiciously. We do not have a general recipe for this choice but we
hope to demonstrate, through an example, what can be gained by approaching the “reduced product
problem” from a new angle.

In short summary, the contributions of this paper are:

• A review of popular string abstract domains and their properties, with particular reference to
their composition;

• A general framework, based on a notion of reference domain, for simulating the reduced prod-
uct, that is, obtaining the same effect as the reduced product of a collection of abstract domains;

• An instantiation of this framework for string analyses, by using the lattice of regular languages
as the reference domain.

Paper structure. Section 2 recapitulates some basic abstract interpretation concepts. The focus of
Section 3 is on string abstract domains. Section 4 discusses the problem of combining such domains.
Section 5 introduces the notion of a reference domain, while Section 6 exemplifies it, using the class of
regular languages as reference domain, that is, a lingua franca for string abstract domains. Section 7
discusses some subtleties involved in widening for reduced product domains. Section 8 discusses
related work, and Section 9 concludes.

2. Preliminaries

Abstract interpretation [13] is a well established theory supporting all types of reasoning about soft-
ware’s run-time behaviour. We assume the reader is familiar with basic concepts from abstract inter-
pretation; this section merely sets the stage for what follows, fixing notation and terminology. Sec-
tion 4 addresses the problem of how to combine abstract domains.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 301

A poset is a set, equipped with a partial order. A binary relation v, defined on a set D, is a partial
order iff it is

1. reflexive: ∀x ∈ D : xv x

2. transitive: ∀x, y, z ∈ D : xv y ∧ y v z → xv z

3. antisymmetric: ∀x, y ∈ D : xv y ∧ y v x→ x = y

As usual, x @ y means x v y ∧ x 6= y.
Two elements x, y ∈ D are comparable iff xv y or y v x. A poset D is a chain iff, for each pair

x, y ∈ D, x and y are comparable.
Let 〈D,v〉 be a poset. An element x ∈ D is a upper bound for the set D′ ⊆ D iff x′ v x for all

x′ ∈ D′. Dually we may define a lower bound for D′. An upper bound x for D′ is the least upper
bound for D′ iff, for every upper bound x′ for D′, x v x′. When it exists we denote this least upper
bound by

⊔
D′. Dually we may define the greatest upper bound and denote it by

d
D′. We write xty

for
⊔
{x, y} and x u y for

d
{x, y}.

A poset 〈D,v〉 is a lattice iff every finite subset D′ ⊆ D has a least upper bound and a greatest
lower bound. It is a complete lattice iff this condition applies to every subset, finite or not. The lattice
D is bounded iff it has a unique least element (often written ⊥) and a unique greatest element (often
written >). When we want to name its characteristic operations, we write the bounded lattice D as
〈D,v,⊥,>,u,t〉. Note that a complete lattice is necessarily bounded.

Let 〈D,v〉 and 〈D′,≤〉 be posets. A function f : D → D′ is monotone iff ∀x, y ∈ D : xv y ⇒
f(x) ≤ f(y). A function f : D → D is idempotent iff ∀x ∈ D : f(f(x)) = f(x). It is reductive
iff ∀x ∈ D : f(x) v x, and extensive iff ∀x ∈ D : x v f(x). A function which is monotone and
idempotent is a closure operator. A lower closure operator is a reductive closure operator, whereas
an upper closure operator is extensive.

We shall use different symbols for partial order relations, such asv and≤. SometimesvD is used
to denote the partial order associated with domain D. We use P as the powerset operator; ⊆, ∩ and ∪
have their usual set-theoretic meanings.

In this paper a “concrete” domain is assumed to be a complete lattice. In fact, since we shall be
primarily interested in a concrete domain whose elements are sets (of strings), we consider bounded
lattices 〈P(S),⊆, ∅, S,∩,∪〉. An abstract domain is a set A, each element a of which denotes a set
in P(S); we write this set as γ(a). We assume that γ(a) = S for some a ∈ A. A partial order v is
induced on A by defining a v a′ iff γ(a) ⊆ γ(a′). The resulting structure A may or may not have a
unique least element, it may or may not be a lattice (many non-lattice abstract domains are found in
the literature [20]) and, if it is a lattice, it may or may not be complete [15]. The function γ is referred
to as the concretisation function. It is easy to generalise to the case where the codomain 〈D,≤〉 of γ
is not a powerset, as long as it is a partial order.

Many desirable properties are obtained when γ has a (lower) adjoint α : D → A, referred to as
the abstraction function. We then have a Galois connection: α(C) v a ⇐⇒ C ≤ γ(a). In this case,
α and γ are necessarily monotone functions, α ◦ γ is a lower closure operator, and γ ◦ α is an upper
closure operator. Moreover, α and γ uniquely determine each other and every function ϕ : D → D
has a unique optimal counterpart on A, namely α ◦ ϕ ◦ γ. In a program analysis context it is often the
case that α is surjective, and we talk about a Galois insertion (aka Galois surjection). In that case, γ
is injective and α ◦ γ is the identity function.

302 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

>

Num NotNum

42 . . . NaN foo . . . bar

⊥

Figure 2. A simple lattice used for JavaScript string analysis

3. String abstract domains

A string abstract domain approximates concrete domain 〈P(Σ∗),⊆, ∅,Σ∗,∩,∪〉 where Σ∗ is the set
of finite strings over finite alphabet Σ. We assume that |Σ| > 1.

The literature on string analysis contains a great variety of string abstract domains. For exam-
ple, Costantini et al. [12] discuss four different domains, Madsen and Andreasen [30] twelve. Those
abstract domains are language-agnostic, but we also find (combinations of) domains designed to cap-
ture information relevant to specific languages such as JavaScript [26, 29]. An example is the set of
JavaScript “numeric strings”—strings that are acceptable in a context where a number literal is ex-
pected. This includes not only integer and float literals like 42 and 0.05, but also special literals like
NaN or Infinity. The Hasse diagram in Figure 2 shows an abstract domain used to discriminate
between numeric and not-numeric strings in JavaScript. Its combination with a bounded-size “string
set” domain is used in the SAFE analyzer [29]. A version that also identifies strings that name builtin
methods such as valueOf is the default string domain in the JSAI analyzer [26].

In this section, we discuss a few language-agnostic string domains in some detail. We first consider
the class of regular languages as an abstract domain. Then we turn attention to four more elementary
string domains which have been used in previous works. The elementary domains offer fast implemen-
tations but suffer individually from limited expressiveness. Section 4 is concerned with the question
of how to combine analyses that use a number of component string domains.

3.1. The regular language domain

One natural abstraction of a set of strings is a regular language. The class RL of regular languages
is closed under concatenation, union, intersection, Kleene star, complement, and many other opera-
tions. Common string operations (concatenation, substring selection/test, substitution, . . .) are readily
expressed either as primitive automaton operations or finite state transducers. This domain and its
variants have been applied to a range of practical problems [21, 32, 37].

A finite-state automaton is a tuple R = 〈Q,Σ, δ, q0, F 〉, where Σ is the alphabet of symbols, Q
is the set of states, δ : Q × (Σ ∪ {ε}) × Q is a transition relation (where ε denotes a non-consuming
transition), q0 ∈ Q is the initial state, and F ⊆ Q the set of accept states. The size of the automatonR,
denoted |R|, is the size of δ. The regular language recognised byR is written L(R). An automaton is a
deterministic finite-state automaton (DFA) iff δ is a deterministic function onQ×Σ. Let q → q′ stand
for ∃x ∈ Σ(δ(q, x) = q′). The DFA 〈Q,Σ, δ, q0, F 〉 is trim iff δ is a partial deterministic function on
Q× Σ, and for all q ∈ Q \ {q0}, there is a q′ ∈ F such that q0 →+ q ∧ q →∗ q′.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 303

Concretely, δ can be represented as a transition table or adjacency lists (symbolic automata [37] use
a more general “move” relation that captures sets of transitions, utilising intensional representations
such as binary decision diagrams (BDDs) or character ranges). In Section 6 we will assume that
regular languages are represented as trim DFAs.

The regular string domain is the bounded lattice 〈RL,⊆, ∅,Σ∗,∩,∪〉. WhileRL is a lattice, it is
not complete:

Proposition 3.1. RL is a lattice but not a complete lattice.

Proof:
Closure under union and intersection means RL is a lattice. However, there are chains of regular
languages that have no regular least upper bound. Note that Σ∗ is an upper bound of every set of
regular languages. Hence the chain [Lj]j∈N of regular languages Lj = {aibi | 0 ≤ i < j} has an
upper bound. Assume the regular language L is its least upper bound. Since L is an upper bound,
every string of form aibi is in L, that is, L′ = {aibi | i ∈ N} ⊆ L. But L′ is not regular, so L′ ⊂ L.
Hence there is a string s ∈ L \ L′. Given this string s we have L′ ⊂ L \ {s} ⊂ L, since L \ {s} is
also regular. Thus we have a contradiction and we conclude thatRL is not a complete lattice. ut

This lack of completeness is not a concern. It is not uncommon for lattices used as abstract domains
to lack completeness; an example is the set of convex polyhedra used in the linear restraints analysis
of Cousot and Halbwachs [18].

Rather, the main disadvantage of RL is the computational cost of its operations. Apart from the
complement L(R) computable in O(|R|), other operations face a risk of explosion. An automaton R
can have arbitrarily large size |R|, and the size of a DFA for L(R) ∩ L(R′) (as for L(R) ∪ L(R′)) is,
in the worst case, |R||R′|.

3.2. Elementary string domains

In the following we provide an overview of four simple string domains, often used in previous work
on practical string analysis. For domain D, we shall illustrate the abstraction and lattice operations,
plus transformers for abstract concatenation (x · y) and substring (x[i..j], for constants 0 ≤ i ≤ j).

3.2.1. Constant string (CS)

This domain is a baseline to exactly represent a single, concrete string. It is the flat lattice 〈CS,vCS ,
⊥CS ,>CS ,uCS ,tCS〉 where

CS = {⊥CS} ∪ Σ∗ ∪ {>CS}
and ⊥CS vCS w vCS >CS for each w ∈ Σ∗. uCS and tCS are defined accordingly. The abstraction
and concretisation functions are respectively:

αCS(W) =

⊥CS if W = ∅
w if W = {w}
>CS otherwise

γCS(w) =

∅ if w = ⊥CS
Σ∗ if w = >CS
{w} otherwise

304 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

Among the basic domains listed in this section, this is the only one which is able to keep track of a
single concrete string w. >CS and ⊥CS are annihilators for the abstract concatenation and substring
operations, which otherwise mimic their concrete counterparts.

Despite a limited expressive power, this domain is commonly used in practice [30]. A more precise
extension of CS consists in representing at most k concrete strings, where k ≥ 1 is a fixed parameter.
This parametric generalisation is often referred to as String Set (SS) [30]—a bounded-size variant is
the main component of SAFE’s default domain [29].

3.2.2. String length (SL)

This domain keeps track of the minimum and the maximum length of strings. It is 〈SL,vSL,⊥SL,>SL,
uSL,tSL〉 where

SL = {⊥SL} ∪ {[l, u] | l ∈ N, u ∈ N ∪ {∞}, l ≤ u}

and [l, u] vSL [l′, u′] ⇐⇒ l′ ≤ l∧u ≤ u′. The greatest element is>SL = [0,∞]. The meet and join
preserve ⊥SL, and for non-⊥SL elements they are defined as follows: The meet [l, u] uSL [l′, u′] =
[max(l, l′),min(u, u′)] if max(l, l′) ≤ min(u, u′), ⊥SL otherwise. The join [l, u] tSL [l′, u′] =
[min(l, l′),max(u, u′)].

The abstraction and concretisation functions are respectively:

αSL(W) =

{
⊥SL if W = ∅
[min(LW),max (LW)] where LW = {|w| | w ∈W} if W 6= ∅

γSL(a) =

{
∅ if a = ⊥SL
{w ∈ Σ∗ | l ≤ |w| ≤ u} if a = [l, u]

Abstract concatenation is defined by [l, u]�SL [l′, u′] = [l + l′, u+ u′] while the substring operation
x[i..j] is abstracted by x[i..j]SL = [k, k] where k = j − i + 1. Precise handling of the substring
operation requires integer bounds analysis.

This abstraction uses natural numbers for abstracting strings. It is very simple and efficient to
implement (all operations takeO(1)). On the other hand, the precision is low: no character information
is recorded. Also, the intervals abstraction is “convex”: only the length bounds are considered.

3.2.3. Character inclusion (CI)

This domain tracks the set of characters that must and may occur in a string. Each element of this
domain is a “set interval” of characters [L,U] = {X ∈ P(Σ) | L ⊆ X ⊆ U}. The lower bound
L contains the characters of Σ that must occur in the concrete string(s), while the upper bound U
represents the characters that may appear. Note that the latter is not void of information, unless
U = Σ: the information provided by U is that no character in Σ \ U appears in the string.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 305

Formally, the domain is 〈CI,vCI ,⊥CI ,>CI ,uCI ,tCI〉 where

CI = {⊥CI} ∪ {[L,U] | L,U ∈ P(Σ), L ⊆ U}

and [L,U] vCI [L′, U ′] ⇐⇒ L′ ⊆ L ∧ U ⊆ U ′. The greatest element is >CI = [∅,Σ]. The meet
operation is [L,U] uCI [L′, U ′] = [L ∪ L′, U ∩ U ′] except when L ∪ L′ 6⊆ U ∩ U ′ in which case it
returns ⊥CI , while the join is [L,U] tCI [L′, U ′] = [L ∩ L′, U ∪ U ′].

Let chars : Σ∗ → P(Σ) return the set of characters occurring in a given string. The abstraction
function is defined by

αCI(W) =

{
⊥CI if W = ∅
[
⋂
CW ,

⋃
CW],where CW = {chars(w) | w ∈W} if W 6= ∅

The concretisation function is defined by

γCI(a) =

{
∅ if a = ⊥CI
{w ∈ Σ∗ | L ⊆ chars(w) ⊆ U} if a = [L,U]

Abstract concatenation is given by [L,U]�CI [L′, U ′] = [L∪L′, U∪U ′], while the substring operation
x[i..j]CI always returns [∅, U] unless x = [{a}, {a}] (in which case x is returned).

This abstract domain is not computationally expensive (except when |U | is big) and can provide
useful information. However, it is not able to track a single, concrete string except for the empty
string: α({ε}) = [∅, ∅]. In all other cases, abstraction completely loses the structure of the concrete
strings.

3.2.4. Prefix/suffix (PS)

An element of the prefix/suffix domain is a pair of strings 〈p, s〉 ∈ Σ∗ × Σ∗, corresponding to all the
concrete strings that start with p and end with s. The domain is 〈PS,vPS ,⊥PS ,>PS ,uPS ,tPS〉
where

PS = {⊥PS} ∪ (Σ∗ × Σ∗).

Let lcp(W) (respectively lcs(W)) be the longest common prefix (suffix) of a set of strings W . Then
〈p, s〉 vPS 〈p′, s′〉 ⇐⇒ lcp({p, p′}) = p′ ∧ lcs({s, s′}) = s′. The top element is >PS = 〈ε, ε〉 The
join is 〈p, s〉 tPS 〈p′, s′〉 = 〈lcp{p, p′}, lcs{s, s′}〉. The meet is naturally induced by vPS . We refer
to Costantini et al. [12] for details. Abstraction is defined by

αPS(W) =

{
⊥PS if W = ∅
〈lcp(W), lcs(W)〉 if W 6= ∅

Concretisation is defined by

γPS(a) =

{
∅ if a = ⊥PS
{p · w | w ∈ Σ∗} ∩ {w · s | w ∈ Σ∗} if a = 〈p, s〉

The abstract concatenation is 〈p, s〉 �PS 〈p′, s′〉 = 〈p, s′〉 while the substring selection is

〈p, s〉[i..j]PS =

〈p[i..j], p[i..j]〉 if j ≤ |p|
〈p[i..|p|], ε〉 if i ≤ |p| ≤ j
>PS otherwise

Most of the operations of this domain cost O(|p|+ |s|).

306 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

3.3. Galois connections

The previous section provided abstraction and concretisation functions for four elementary string ab-
stract domains. In each case we have a Galois insertion:

Proposition 3.2. For i ∈ {CS,SL, CI,PS}, (αi, γi) is a Galois insertion.

Proof:
The four proofs follow the same simple pattern, so we cover only two of the cases, namely (αSL, γSL)
and (αPS , γPS). First assume αSL(W) vSL a. If W = ∅ then W ⊆ γSL(a) holds trivially, so
assume W 6= ∅. In this case a = [l, u] where l and u are the min and max, respectively, of the set
{|w| | w ∈W}. So for each w ∈W , we have l ≤ |w| ≤ u, that is, W ⊆ γSL([l, u]).

Now assume W ⊆ γSL(a). If a = ⊥SL then W = ∅, so αSL(W)vSL a by definition. So assume
a = [l, u]. Then γSL(a) = {w ∈ Σ∗ | l ≤ |w| ≤ u}. Let LW = {|w| | w ∈ W}. As W ⊆ γSL(a),
we have LW ⊆ {|w| | w ∈ γSL(a)} = {l, . . . , u}. Hence min(LW) ≥ l and max (LW) ≤ u. That
is, αSL(W)vSL [l, u].

Hence (αSL, γSL) form a Galois connection. Moreover, αSL is clearly surjective. To produce
αSL(W) = ⊥SL, choose W = ∅. To produce αSL(W) = [l, u] for arbitrary non-negative integers l
and u, choose W = {wl, wu} where wl is any string of length l and wu is any string of length u.

For the case (αPS , γPS), first assume that αPS(W) vPS a. If W = ∅ then W ⊆ γSL(a) holds,
so assume W 6= ∅. Then a = 〈p, s〉 = 〈lcp(W), lcs(W)〉. So each w ∈ W is of the form p · w′ and
also of the form w′′ · s, for some w′, w′′ ∈ Σ∗. It follows that W ⊆ {p · w′ | w′ ∈ Σ∗} ∩ {w′′ · s |
w′′ ∈ Σ∗} = γPS(〈p, s〉).

Now assume W ⊆ γPS(a). If a = ⊥PS then W = ∅, so αPS(W)vPS a. So assume a = 〈p, s〉.
Then γPS(a) = {p · w′ | w′ ∈ Σ∗} ∩ {w′′ · s | w′′ ∈ Σ∗}. As W ⊆ γPS(a), we have W ⊆ {p · w′ |
w′ ∈ Σ∗} and also W ⊆ {w′′ · s | w′′ ∈ Σ∗}. That is, for each w ∈ W , p is a prefix of w and s is a
suffix. It follows that p is a prefix of lcp(W) and s is a suffix of lcs(W). That is, αPS(W)vPS 〈p, s〉.

Again, αPS is surjective: To produce αPS(W) = ⊥PS , choose W = ∅. To produce αPS(W) =
〈p, s〉, choose x, y ∈ Σ, with x 6= y and let W = {p · x · s, p · y · s}. ut

Inspection shows that, for each i ∈ {CS,SL, CI,PS}, and for each element a of abstraction i,
γi(a) is a regular language. So we can equally consider (α̂i, γ̂i), defined exactly like (αi, γi), except
that the domain of α̂i (the co-domain of γ̂i) is RL rather than P(Σ∗). Proposition 3.2 then carries
over straight-forwardly:

Corollary 3.3. For i ∈ {CS,SL, CI,PS}, (α̂i, γ̂i) is a Galois insertion.

In the case of PS it is worth pointing out that we chose γPS with care. The definition γ′(〈p, s〉) =
{p ·w ·s | w ∈ Σ∗}might seem like a plausible alternative, but it would not admit a Galois connection.
For example, consider some x ∈ Σ. The use of γ′ allows for 〈x, ε〉 and 〈ε, x〉 as minimal abstractions
of the set {x}, and therefore offers no unique best abstraction. Note that αPS({x}) = 〈x, x〉 is the
unique best abstraction under γPS .

4. Combining abstract domains

The simplest way of obtaining an analysis that combines several different abstract domains is through
their so-called direct product. Intuitively, the component domains are treated independently. This

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 307

means that the analysis can be systematically defined and performed in parallel. Suppose the n abstract
domains 〈Ai,vi,⊥i,>i,ui,ti〉, i = 1, . . . , n, all abstract a concrete domain C. We can define their
direct product as a structure 〈A,v,⊥,>,u,t, 〉 such that:

• A = A1 × · · · × An

• (a1, . . . , an) v (a′1, . . . , a
′
n) ⇐⇒ ai vi a

′
i for all i ∈ [1..n]

• ⊥ = (⊥1, . . . ,⊥n) and > = (>1, . . . ,>n)

• (a1, . . . , an) u (a′1, . . . , a
′
n) = (a1 u1 a′1, . . . , an un a′n)

• (a1, . . . , an) t (a′1, . . . , a
′
n) = (a1 t1 a′1, . . . , an tn a′n)

• γ(a1, . . . , an) =
⋂n

i=1 γi(ai) and α(C) = (α1(C), . . . , αn(C))

In this approach, there is no exchange of information between the component domains. Performing a
program analysis P withA is equivalent to performing n program analyses P1, . . . , Pn where Pi uses
abstract domainAi only. A main drawback of the direct product is that γ may not be injective, which,
from a practical perspective, suggests a loss of precision.

Example 4.1. Consider string analysis using the combined domain SL×CI. The description ([0, 3],
[{a, b, c}, {a, b, c, d}]) represents the same concrete string set as ([3, 3], [{a, b, c}, {a, b, c}]) since
any string that contains all of a, b and c must have a length of 3 or more. By the component-wise
ordering of the direct product,

([3, 3], [{a, b, c}, {a, b, c}]) @ ([0, 3], [{a, b, c}, {a, b, c, d}]).

So the components of the latter are unnecessarily imprecise. �

This shows that inability to exchange information between the components of a product domain can
lead to a severe loss of precision. Ideally the combination should be more precise than the sum of its
parts. The reduced product achieves this by forcing an injective γ. Consider the equivalence relation≡
defined by (a1, . . . , an) ≡ (a′1, . . . , a

′
n) ⇐⇒ γ(a1, . . . , an) = γ(a′1, . . . , a

′
n). The reduced product

A′ = A1 ⊗ . . .⊗An is the quotient set of ≡, that is:

A1 ⊗ · · · ⊗ An = {[(a1, . . . , an)]≡ | a1 ∈ A1, . . . , an ∈ An}

and we define (the injective) γ : A′ → C and α : C → A′ by

γ([(a1, . . . , an)]≡) =
⋂n

i=1 γi(ai)

α(C) = [(α1(C), . . . , αn(C))]≡

If a greatest lower bound exists (for example, A1, . . . ,An are complete lattices) then [(a1, . . . , an)]≡
may be identified with its minimal representative:

d
[a1, . . . , an]≡.

Moreover, if each (γi, αi) is a Galois connection then so is (γ, α).

308 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

4.1. Paraphrasing and combinatorial excess

Example 4.1 suggests the use of some kind of information exchange to translate insight from one com-
ponent to other components, in order to calculate minimal representatives of equivalence classes. We
call this improvement of one component using information from another paraphrasing. For example,
the CI element [{a, b, c}, {a, b, c, d}] can be seen as a “string length paraphraser” λv. v uSL [3,∞]
which tightens an SL component appropriately. More generally, the SL paraphraser corresponding to
[L,U] ∈ CI is λv. v uSL [|L|,∞]. Similarly, a PS element 〈p, s〉 can be viewed as a CI paraphraser,
as follows. The paraphraser P CIPS is defined

P CIPS〈p, s〉(v) =

{
[L ∪X,U] if v = [L,U] and L ∪X ⊆ U , where X = chars(p · s)
⊥CI otherwise

Generally, if we have n abstract domains, we can have n(n− 1) such paraphrasers P j
i : Ai → Aj →

Aj , so even for small n, a large number of paraphrasers may be needed. The strain of juggling many
different kinds of information, delivered through different abstract domains, becomes prohibitive. This
is very much the case in string analysis, since in this type of program analysis, so many abstract
domains get applied in promiscuous combinations. If paraphrasers of type (A1× · · · ×Ak)→ Aj →
Aj are allowed (for k > 1), the number of possible paraphrasers is well beyond quadratic.

Even if each one-on-one paraphraser P j
i (ai) is a lower closure operator, it may have to be ap-

plied repeatedly. In fact, the combined effect of paraphrasing until no more tightening is possible
corresponds to computing the greatest fixed point of the operation P defined by

P (a1, . . . , an) =

a1 u l

i∈[1..n]

P 1
i (ai)(a1), . . . , an u

l

i∈[1..n]

Pn
i (ai)(an)

 (1)

In common practice, a limited selection of such paraphrasers, or approximations to them, are con-
structed by hand. Cost considerations may dictate that they are not applied exhaustively, leading to
more or less ad hoc realisations of “not quite reduced” products.

Worse, one-on-one paraphrasing among the components of a direct product does not necessarily
amount to an implementation of the reduced product, even if the individual paraphrasers are optimal.
This is still true if we allow repeated use of paraphrasing, until a fixed point is reached:

Example 4.2. Let us fix the alphabet Σ to {a, b, c, d}. Consider the combination of three abstractions

x = [5, 6] ∈ SL y = [Σ,Σ] ∈ CI z = 〈ab, aba〉 ∈ PS

The system of paraphrasers for this example leads to an equation system whose solution is simply
(x, y, z). That is, P , as defined in Equation 1, can provide no improvement (in this case it acts as the
identity function). To see this, note that the knowledge (in y) that a string s uses the whole alphabet
does not allow us to improve on x, nor on z. Conversely, neither x nor z can improve on y, since y is
as precise as CI allows. Finally, it is easy to see that x and z cannot improve on each other.

In the reduced product P = SL ⊗ CI ⊗ PS , however, the element (x, y, z) denotes ∅, that is, no
concrete string is described by all of the three abstractions. Any string that is described by y and z
is of the form abΣ∗cΣ∗dΣ∗aba or abΣ∗dΣ∗cΣ∗aba, since it must contain all of Σ, and hence must
have length at least 7.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 309

Thus no amount of paraphrasing can lead to the correct reduction. For a similar reason, no amount
of paraphrasing will suffice, in general, to implement optimal transfer functions. �

It is worth pointing out that the SL, CI, and PS , domains themselves are reduced products of simpler
domains which capture “minimum length”, “maximum length”, “definite inclusion”, “possible inclu-
sion”, “prefix”, and “suffix” information. However, in the literature, the domains SL, CI, and PS ,
are almost always presented as we have done in this paper, that is, as three monolithic domains. Given
the prominence of the “one-on-one paraphrasing” approach, that is a perfectly sensible choice, as we
now show.

Example 4.3. Let Σ be as in Example 4.2, and consider these four pieces of information about a string
s: (1) s has prefix aba, (2) s has suffix aba, (3) s has length 3 or more, and (4) s has length 4 or less.
No amount of two-way information exchange will yield stronger information. However, given the PS
information 〈aba, aba〉 and the SL information [3, 4], one-on-one paraphrasing can yield the tighter
length information [3, 3]. �

5. Reference abstract domains

Section 4’s definition of reduced product is not constructive. In this section we propose a generic,
simple, and modular way to achieve the effect of using a reduced product, through what we call a
reference domain.

From a mathematical point of view, the reduced product of the n abstract domains A1, . . . ,An

is straight-forward. However, a practical realisation, in the form of appropriate data structures and
algorithms for its implementation, is often elusive. As we saw in Section 4, the common approach
of using the Cartesian product and “paraphrasing” information between components falls short. What
we propose is a way of overcoming the difficulty of realising a reduced product, in particular where
a large number of abstract domains need to be combined. The idea behind the reference domain is
that it will act as a mediator amongst all of the involved abstract domains. It is chosen so as to be as
expressive as each Ai. This way it is, if anything, “closer” to the concrete domain than the reduced
product is.

In this section we provide a general framework for reference domains. Section 6 exemplifies the
idea through one particular instantiation, in the context of string abstract domains. In fact it may seem
that a reference domain annuls the need for a reduced product. If a reference domain is available, why
not simply use it for program analysis in lieu of the reduced product? The answer is that the reference
domain is likely to be too expensive to use as an abstract domain (otherwise surely we would have
used it in the first place). Also, a highly expressive domain will often incorporate quite a coarse
widening operation, so paradoxically, analysis with such an expressive domain can be less precise. In
our proposal, the role of the reference domain is mediation, not exertion. Most of the work is left to
be performed in the (cheap and simple) abstract domainsA1, . . . ,An. Apart from efficient translation
to and from the reference domain, all that we require is an inexpensive meet operation in that domain.

Definition 5.1. (Reference domain)
Let the bounded lattices A1, . . . , An and R be sound abstractions, of a concrete domain C, defined
by concretisation functions {γi}i=1,...,n and γR respectively. The domainR is a reference domain for
A1, . . . , An if there is a family of functions {α̂i, γ̂i}i=1,...,n such that, for i = 1, . . . , n:

310 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

a

a′
r

C

Ak R C

γ̂k
γR

γk

vk

α̂k

A1 An

R

a1

a′1

an

a′n

r1 rn

. . .

. . .

. . .

r

S vnv1

uR

γ̂1 γ̂n

α̂1 α̂n

Figure 3. Left: Role of the reference domainR (αR and αk might not be defined for some elements, as there
may not be a best abstraction). Right: Role of the S operator.

(i) α̂i : R → Ai and γ̂i : Ai → R are computable functions and (α̂i, γ̂i) forms a Galois connection;

(ii) γR is injective and γR(γ̂i(a)) = γi(a) for each a ∈ Ai.

The functions α̂i will be calledR-abstractions, while the functions γ̂i will be calledR-concretisations.
The joint effort by {α̂i, γ̂i}i=1,...,n is captured by α̂ and γ̂ (without subscripts), defined as follows:

α̂(r) = (α̂1(r), . . . , α̂n(r))

γ̂(a1, . . . , an) =
d

i γ̂i(ai)

The definition of reference domain is generic in the sense that it is not bound to any specific concrete
domain C. Note that γi and γR are not required to have corresponding lower adjoints. Figure 3 (left)
depicts the interactions between the abstract domains Ak, the reference domain R, and the concrete
domain C. We see a reference domain as a middleware layer between a collection of abstract domains
and the corresponding concrete domain.

Since {α̂i, γ̂i}i=1,...,n are monotone, so are α̂ and γ̂. In fact, (α̂, γ̂) is a Galois connection between
the direct product and the reference domain:

Proposition 5.2. LetA1, . . . ,An,R, α̂ and γ̂ be defined as in Definition 5.1. Then α̂(r) v (a1, . . . , an)
iff r vR γ̂(a1, . . . , an).

Proof:

α̂(r) v (a1, . . . , an)

iff α̂i(r) v ai for all i ∈ {1, . . . , n} (by definition of α̂)
iff r vR γ̂i(ai) for all i ∈ {1, . . . , n} ((α̂i, γ̂i) being a Galois connection)
iff r vR

d
{γ̂i(ai) | 1 ≤ i ≤ n} (by properties of

d
)

iff r vR γ̂(a1, . . . , an) (by definition of γ̂)

ut

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 311

Given some function f : Cn 7→ C and best abstraction FR : Rn 7→ R, we can then derive the
corresponding optimal transformer F̂ over the reduced product:

F̂ (a1, . . . , an) = (α̂1(r), . . . , α̂n(r))

where r = FR(γ̂(a1) uR . . . uR γ̂(an)).

Essentially, we execute f in the reference domain, and retrieve the most precise representation
under the reduced product. This retrieval is critical: it restricts the size of the abstract state by “clamp-
ing” it down to the sub-domains between operations. However, applying transformers in the reference
domain may be more expensive than we can tolerate. Next we discuss ways of approximating these
optimal transformers.

5.1. Strengthening

Intuitively, R is a sound C-approximation which is never less precise than any combination of prop-
erties from A1, . . . ,An. The idea is to capture any information expressible in each of the abstract
domains. Rather than applying the transformer for F underR, we can instead useR as a medium for
systematically transferring information from each domain to the others.

Definition 5.3. (Strengthening function)
Let R be a reference domain for A1, . . . , An with adjoint pairs {α̂i, γ̂i}i=1,...,n. The corresponding
strengthening function S : A1 × · · · × An is defined as follows:

S(a1, . . . , an) = (α̂1(r), . . . , α̂n(r))

where r = γ̂(a1, . . . , an) = γ̂1(a1) uR · · · uR γ̂n(an).

Definition 5.3 captures how we intend to use a reference domain. As Figure 3 (right) shows, the
operator S transforms a tuple (a1, . . . , an) into a tuple (a′1, . . . , a

′
n) via the reference domain R. The

input tuple is “multiplexed” into element r ∈ R via the R-concretisations γ̂i and the meet operator
uR. Then, r is “de-multiplexed” into the tuple (a′1, . . . , a

′
n) thanks to theR-abstractions α̂i.

We say that S is a strengthening since it is a closure operator returning an tuple, each component
of which is as least as precise as the corresponding input components:

Proposition 5.4. A strengthening function S : (A1× . . .×An)→ (A1× . . .×An) is a lower closure
operator.

Proof:
All three parts of the proof utilise the monotonicity of α̂i and γ̂i.

(i) [S is reductive.] To prove S(a1, . . . , an) v (a1, . . . , an) we show that α̂i(r) vAi ai for
each i = 1, . . . , n, where r is given by Definition 5.3. Consider arbitrary k ∈ {1, . . . , n}. Since
r =

dn
i=1 γ̂i(ai), we have r vR γ̂k(ak) and therefore α̂k(r) vAk

α̂k(γ̂k(ak)) vk ak.

(ii) [S is monotone.] Let us assume (a1, . . . , an) v (a′1, . . . , a
′
n). We wish to prove that, for

each i ∈ {1, . . . , n}, α̂i(r) vAi α̂i(r
′), where r =

dn
i=1 γ̂i(ai) and r′ =

dn
i=1 γ̂i(a

′
i). Consider

and arbitrary k ∈ {1, . . . , n}. From the hypothesis ak vAk
a′k we derive that γ̂k(ak) vAk

γ̂k(a′k)
and thus

dn
i=1 γ̂i(ai) vR

dn
i=1 γ̂i(a

′
i), that is, r vR r′. It follows that, for each i ∈ {1, . . . , n},

α̂i(r) vAi α̂i(r
′).

312 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

(iii) [S is idempotent.] We immediately have S(S(a1, . . . , an)) v S(a1, . . . , an), since S is re-
ductive (i). It remains to show that S(a1, . . . , an) v S(S(a1, . . . , an)). That is, we need to show
that α̂i(r) vAi α̂i(r

′) for i = 1, . . . , n where r =
dn

j=1 γ̂j(aj) and r′ =
dn

j=1 γ̂j(α̂j(r)). But
for each k ∈ {1, . . . , n}, we have r vR γ̂k(α̂k(r)). Hence r vR

dn
j=1 γ̂j(α̂j(r)) = r′, and so

α̂i(r) vAi α̂i(r
′), as required. ut

Lemma 5.5 lists some properties of S vis-à-vis the concretisation function γ, including soundness:
the concrete counterparts of each abstract element are always preserved by S.

Lemma 5.5. Let S be a strengthening function for A1 × · · · × An. We have:

(i) γ(a) = γ(S(a)) for a ∈ A1 × · · · × An

(ii) γi(a) = γi(a
′) ⇐⇒ γ̂i(a) = γ̂i(a

′) for i = 1, . . . , n and a, a′ ∈ Ai.

Proof:
(i) The inclusion γ(S(a)) v γ(a) is immediate from the monotonicity of γ and reductiveness of S.

We prove that γ(a) v γ(S(a)). Note that γ(a) = γR(γ̂(a)) since γ(ai) = γR(γ̂i(ai)) by definition.
So γ(a) = γR(γ̂(a)) v γR(γ̂(S(a))) = γ(S(a)).

(ii) Consider ai, a′i ∈ Ai, with γi(ai) = γi(a
′
i). Let r = γ̂i(ai), r

′ = γ̂i(a
′
i). By Definition 5.1(ii),

γR(r) = γi(ai) = γi(a
′
i) = γR(r′). But γR is injective, so r = r′. Therefore γ̂i(ai) = γ̂i(a

′
i).

Conversely, assume γ̂i(ai) = γ̂i(a
′
i). By Definition 5.1(ii), γi(ai) = γR(γ̂i(ai)) = γR(γ̂i(a

′
i)) =

γi(a
′
i). ut

Theorem 5.6. Let S be a strengthening function. Given a ∈ A1 × . . .×An, S(a) is the least element
of [a]≡, that is, S(a) = minv{a′ | γ(a′) = γ(a)}.

Proof:
Let a = (a1, . . . , an) ∈ A1 × . . . × An, and r = γ̂(a). Then S(a) = (α̂1(r), . . . , α̂n(r)) (by
Definition 5.3).

Now let a′ = (a′1, . . . , a
′
n) ∈ [a]≡. Then γ(a) = γ(a′), so by Lemma 5.5 we have S(a) ∈ [a]≡,

since γ(a) = γ(S(a)), γ̂(a) = γ̂(a′) = r.
Consider some a′i. We have r v γ̂i(a

′
i). As (α̂i, γ̂i) is a Galois connection, α̂i(r) v a′i. As for

each i we have α̂i(r) v a′i, we conclude S(a) v a′. Thus, S(a) is the least element of [a]≡. ut

Theorem 5.6 states the equivalence between the reduced productA1⊗· · ·⊗An and the product induced
by the strengthening S on A1 × · · · × An. It tells us that a strengthening operator S is sufficient to
systematically mimic the reduced product of an arbitrary number of abstract domains.

This gives us a cheaper approximation of F̂ : we apply the transformer for f in each sub-domain,
and use S to transfer information between domains:

F̂S(a1, . . . , an) = S(F1(a1), . . . , Fn(an)).

This sacrifices precision relative to the optimal F̂ , but reduces the computation we must do inR.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 313

5.2. Pros and cons

There have been other proposals for the combination of abstract domains. Section 8 discusses related
work, but at this point we briefly reflect on benefits obtained with the reference domain approach.

First, the approach is generic; it is entirely transparent to the underlying domains and applicable
to any type of abstract domain, including numerical abstract domains.

Second, it is simple in the sense that it is not parameterised by families of mediating functions, as
seen in other approaches.

Third, it achieves a certain scalability and modularity: it is easier to realise than methods that
rest upon a quadratic number of paraphrasing functions between abstract domains A1, . . . ,An. We
require only 2n translators {α̂i, γ̂i}i=1,...,n, not a quadratic number. To add a new domainAn+1 to the
product, we do not require knowledge of the other n domains for computing A1 ⊗ · · · ⊗ An ⊗An+1.
A pivotal property of S is computability: while systematically computing the reduced product is not
possible in general by definition of γ, it is always possible to compute S in a finite time.

A drawback of S is that uR can be arbitrarily costly depending on the considered domains. When
uR is too expensive to compute, particularly for products of many domains, it may be too costly to
compute S(a1, . . . , an). In such cases we may prefer to adopt the ‘conventional’ approach of using
each abstraction to strengthen the others, by defining a relaxed strengthening function S̃ from n(n−1)
pairwise strengthening functions Sij : Ai × Aj → Ai such that Sij(ai, aj) vi ai possibly refines
element ai with respect to the information provided by element aj . The resulting ‘weak’ strengthening
function S̃ is:

S̃(a1, . . . , an) = (a1 u1 a1,2 u1 · · · u1 a1,n, . . . , an,1 un · · · un an,n−1 un an).

where ai,j = Sij(ai, aj) for 1 ≤ i 6= j ≤ n. As discussed in Section 4, this approach may not produce
the most precise results, even if S̃ is repeated to a fixed point. It is worth pointing out that, even
with this weaker approach, using a reference domain simplifies matters. Indeed, the reference domain
allows us to derive all (optimal) Sji functions systematically from the appropriate α̂ and γ̂:

Sji (ai, aj) = α̂i(γ̂i(ai) uR γ̂j(aj))

6. RL as a reference domain for string analysis

We now instantiate the framework just presented. String analysis is one relevant setting for this, be-
cause of the large number of meaningful (but incomparable) string abstract domains in use. Each
individual domain may capture an aspect of strings that is considered relevant for a given applica-
tion, but the sheer number of domains involved can make a traditional approach to reduced products
unworkable.1

Here a suitable reference domain could be the set of regular languages, RL. In this section,
that is exactly the reference domain we choose. We describe efficient algorithms for abstraction and
concretisation relations between RL and the four elementary string abstract domains from Section 3.
The definitions and algorithms amount to constructive proofs that RL can be a reference domain for

1For example, the collection CS, SL, CI, PS, JS, SF , T J of seven string abstract domains are pairwise incomparable
(the last three are the default domains of the JavaScript analysis tools JSAI, SAFE, and TAJS, respectively), but each captures
a useful kind of string property [1].

314 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

those domains, as we provide the corresponding RL-functions {α̂i, γ̂i} for i ∈ {CS,SL, CI,PS}.
Elements ofRL are assumed to be represented as trim deterministic finite-state automata. Note that a
non-trim DFA R can be trimmed in linear time O(|R|). In all cases where it is less than obvious how
to implement a (sub-)operation, or the implementation can make essential use of the fact that input is
trimmed, we provide detailed pseudo-code descriptions of algorithms.

6.1. Constant string

Algorithms 1 and 2 show how γ̂CS and α̂CS can be implemented when sets of string are represented
as trim automata.

Algorithm 1 Converting a CS element to a trim DFA
1: function CSTORL(a)
2: Input: A CS element a
3: Output: A trim DFA R with L(R) = γ̂CS(a)
4: if a = ⊥CS then
5: return ({q0},Σ, ∅, q0, ∅)
6: if a = >CS then
7: return ({q0},Σ, {(q0, x, q0) | x ∈ Σ}, q0, {q0})
8: let x1 · · ·xn = a
9: return ({q0, . . . , qn},Σ, {(qi−1, xi, qi) | 0 < i ≤ n}, q0, {qn})

Algorithm 2 Abstracting a trim DFA in CS
1: function RLTOCS(R)
2: Input: A trim DFA R = (Q,Σ, δ, q0, F)
3: Output: α̂CS(R)
4: if F = ∅ then
5: return ⊥CS
6: return RLTOCS(R, q0, ε)
7:

8: function RLTOCS(R, q, w)
9: Input: A productive trim DFA R = (Q,Σ, δ, q0, F),

10: current state q, and word w accumulated so far
11: Output: αCS(R)
12: successors ← {q′ | (q, x, q′) ∈ δ}
13: if |successors| > 1 then
14: return >CS
15: if q ∈ F then
16: if |successors| = 0 then
17: return w
18: return >CS
19: let {(q, x, q′)} = successors
20: return RLTOCS(R, q′, w · x)

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 315

6.2. String length

Algorithm 3 Converting an SL element to a trim DFA
1: function SLTORL(a)
2: Input: An SL element a
3: Output: A trim DFA R with L(R) = γ̂SL(a)
4: if a = ⊥SL then
5: return ({q0},Σ, ∅, q0, ∅)
6: let [l, u] = a
7: if u 6=∞ then
8: return ({q0, . . . , qu},Σ, {(qi−1, x, qi) | 0 < i ≤ u}, q0, {ql, . . . , qu})
9: let δ = {(qi−1, x, qi) | 0 < i ≤ l ∧ x ∈ Σ} ∪ {(ql, x, ql) | x ∈ Σ}

10: return ({q0, . . . , ql}, δ, q0, {ql})

Algorithm 4 Extracting length of longest string from a productive trim DFA
1: function EXTRACTMAXLENGTH(R)
2: Input: A trim DFA R = (Q,Σ, δ, q0, F) with L(R) 6= ∅
3: Output: Length of the longest string accepted by R
4: for q ∈ Q do
5: dist[q]← ⊥
6: return LONGESTDFS(R, q0, dist)
7:

8: function LONGESTDFS(R, q, dist)
9: Input: A trim DFA R = (Q,Σ, δ, q0, F),

10: current state q, and cache dist of computed results
11: Output: Length of the longest string accepted by R starting from q
12: if dist [q] = (Closed , len) then
13: return len

14: if dist [q] = Open then
15: return∞
16: dist [q]← Open
17: successors ← {q′ | (q, x, q′) ∈ δ}
18: if successors = ∅ then
19: len ← 0
20: else
21: len ← 1 + max({LONGESTDFS(R, q′, dist) | q′ ∈ successors})
22: dist [q]← (Closed , len)
23: return len

Algorithm 3 shows the implementation of γ̂SL. The abstraction α̂SL from a trim DFA finds the shortest
path from the start state to any end state to create l and the longest path to create u. The upper bound l
may be retrieved in O(|R|) time by a breadth-first traversal. If there is a cycle in the (trim) automaton,

316 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

the longest path is +∞; thus u may be retrieved by a depth-first traversal which runs in O(|R|) time.
Algorithm 4 shows in detail how to extract the longest string accepted by a given trim DFA. This is
done by determining dist(q) for each automaton state q. During processing, a value of ⊥ indicates
that q has not yet been considered. A value of Open indicates that q has been visited, but it has not yet
been determined whether q is part of some cycle of transitions—if q is ever re-visited, a length of∞
will be deduced. Finally, a value of (Closed , len) indicates that the length of the longest path starting
from q has been determined; it is len . Note that the correctness of this algorithm rests on the fact that
input DFAs are assumed to be trim.

6.3. Character inclusion

An element [L,U] of the character inclusion domain denotes U∗ ∩
⋂

x∈L U
∗xU∗. The automaton for

γ̂CI([L,U]) is the 2|L|-state trim automaton (P(L),Σ, δ, ∅, {L}), where

δ = {(q, c, q ∪ {c}) | q ∈ P(L), c ∈ L} ∪ {(q, c, q) | q ∈ P(L), c ∈ U \ L}.

TheRL-abstraction α̂CI is more efficient. The upper set U is the union of all characters appearing in
transitions of the trim automaton. The lower set L can be computed in O(|R||Σ|) time by, for each
x ∈ Σ, performing a depth first traversal (similar to that in Algorithm 4) searching for an accepting
run not containing x (see Algorithm 5). Figure 4 shows the automaton γ̂CI([{a, b}, {a, b, c}]), as an
example.

Algorithm 5 Character extraction from a trim DFA
1: function CHARACTEREXTRACT(R)
2: Input: A trim DFA R = (Q,Σ, δ, q0, F)
3: Output: Sets of characters that must/may occur in all strings accepted by R
4: U ← {x | (q, x, q′) ∈ δ}
5: for q ∈ Q do
6: c[q]← Σ

7: c[q0]← ∅
8: P ← {q0}
9: while ∃q ∈ P do

10: P ← P\{q}
11: for (q, x, q′) ∈ δ do
12: S ← c[q′] ∩ (c[q] ∪ {x})
13: if c[q′] 6= S then
14: c[q′]← S
15: P ← P ∪ {q′}
16: L←

⋂
{c[q] | q ∈ F}

17: return [L,U]

As computation of γ̂CI is expensive and CI provides little strengthening to other domains, it may
be preferable to use pairwise strengtheners for interactions with CI alone.

6.4. Prefix/suffix

An element 〈p, s〉 ∈ PS represents the language pΣ∗ ∩ Σ∗s. The corresponding automaton could
be constructed using the well-known product automaton construction, which however has complexity

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 317

∅

{a}

{b}

{a, b}c

a

b

b

a, c

b, c

a

a, b, c

Figure 4. Automaton produced for γ̂CI([{a, b}, {a, b, c}])

O(|p| · |s|). We can do better by directly constructing a minimal trim DFA with only |p| + |s| + 1
states. The construction follows these steps:

1. Construct the Knuth-Morris-Pratt automaton for Σ∗s, which has |s| + 1 states. The detailed
algorithm for its construction is well-known [35]. Let the resulting DFA be d = (Q,Σ, δ, q0, F).

2. If p = ε, return d as the final result. Otherwise, run d on input p and note the state q′ ∈ Q which
is reached as p is exhausted.

3. Generate n = |p| > 0 states q1, q2, . . . qn where p = x1x2 · · ·xn.

4. Return the automaton (Q ∪ {q1, q2, . . . qn},Σ, δ′, q1, F) as the final result, where

δ′(q, x) =

δ(q, x) if q ∈ Q
qi+1 if q = qi, i < n, and x = xi

q′ if q = qn and x = xn

Example 6.1. Let the alphabet Σ = {a, b, c}. Consider 〈ab, ba〉 ∈ PS. The Knuth-Morris-Pratt
automaton for Σ∗ba is shown below (on the left). When this DFA processes ab, it ends up in its
middle state. Hence the (trim) automaton shown below (on the right) results.

0 1 2

a, c

b

b

a

c

a, c

b

0 1

32 4

a

ba, c

b

b

a

c

a, c

b

�

318 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

Given an automaton for R ∈ RL, we can extract the longest prefix by following transitions from the
start state so long as a unique successor exists, stopping if and when an accept state is reached, or
multiple transitions apply (assuming the automaton is trim and deterministic). This may be done in
O(|Q|) time. The longest suffix is collected similarly, by traversing from all accept states backwards
while all entering transitions to all states use the same symbol, stopping if we reach the start state. The
process is O(|δ||Q|), as can observed from Algorithm 6.

Algorithm 6 Suffix extraction from a trim DFA
1: function SUFFIXEXTRACT(R)
2: Input: A trim DFA R = (Q,Σ, δ, q0, F)
3: Output: The longest suffix common to all strings accepted by R
4: suffix ← ε
5: layer ← F
6: while q0 /∈ layer do
7: trans ← {(q, x, q′) ∈ δ | q′ ∈ layer}
8: syms ← {x | (q, x, r) ∈ trans}
9: if |syms| = 1 then

10: let {x} = syms
11: else
12: return suffix

13: suffix ← x · suffix
14: layer ← {q | (q, x, r) ∈ trans}
15: return suffix

Example 6.2. Consider this automaton:

0 1 2 3 4 5
b a a b

b

a

a

The forwards process yields longest prefix ba. The backwards process starts with accept state(s) {5}
obtaining a, and new set of states {4}, then obtaining b and states {2, 3}, then obtaining a and states
{1, 2, 5}. At this point the process halts since there are arcs labelled a and b entering. The (longest)
suffix collected in this process is aba. �

6.5. Meet and join

We have described how to translate various elementary string abstractions to and from trim DFAs.
To complete the description of how to use this in an exact simulation of the reduced product, we
need to explain how to calculate the meet operation uRL, that is, intersection of regular languages
represented as trim DFAs. This, however, is well understood and involves the usual product automaton
construction [36]. The only difference, when this idea is applied to trim automata, is that an extra
implicit “failure” state must be accounted for, both in input and output; however, the algorithm is the

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 319

same. As in the non-trim case, the product automaton may not be minimal, so an implementor would
be advised to apply a standard DFA minimisation algorithm, suitably adapted to trim DFAs.

Moreover, the product automaton may not be trim. As noted, a DFA can be trimmed in linear time.
The join operation tRL, that is, union of regular languages represented as trim DFAs, is a simple

variant of the meet, as in the case of standard DFAs. Although not strictly required for the reference
domain to serve its purpose, the join can potentially be more precise than the reduced product’s join.

Example 6.3. Having shown howRL-abstractions α̂i andRL-concretisation γ̂i can be implemented
for i ∈ {CS,SL, CI,PS}, we now show how the corresponding strengthening function S works.
Consider the tuple:

a = (>CS , [0, 3], [{a, b}, {a, b, c}], 〈ab, ba〉) ∈ CS × SL × CI × PS.

TheRL-concretisation for 〈ab, ba〉 and [{a, b}, {a, b, c}] have already been shown previously, while
γSL([0, 3]) and γCS(>CS) are trivial. The corresponding trim DFA r = γ̂(a) is:

0 1 2 3
a b a

This actually corresponds to the concrete string aba, indeed γ(s) = {aba}. This refined infor-
mation is then sent back via α̂ to the elementary domains: α̂CS(r) = {aba}, α̂SL(r) = [3, 3],
α̂CI([{a, b}, {a, b}]), and α̂PS(r) = 〈aba, aba〉. The resulting tuple α̂(γ̂(a)) is much more pre-
cise than a, and in particular allows CS to greatly improve its precision from Σ∗ to the singleton
{aba}. �

7. Widening

Where an abstract domain has infinite ascending chains (e.g., SL), Kleene iteration is not guaranteed
to reach a fixed point. Termination is recovered by defining a widening operator O [13], such that for
any sequence {a1, a2, . . .}, the sequence b1 = a1, bi+1 = biOai+1 stabilizes after finitely many steps.
For a direct product of domains, we may obtain a widening by combining the component widenings:

(x1, . . . , xn)O(y1, . . . , yn) = (x1O1 y1, . . . , xnOn yn)

One could attempt to do the same for reduced products, choosing some (ideally minimal) represen-
tative from the equivalence class of each operand, then apply the individual widenings pointwise.
Unfortunately, this does not in general define a valid widening. This may be side-stepped by sep-
arating the results of widening, which are maintained non-reduced, from other computations in the
analysis [7].

It can be challenging to define widening operators for expressive domains which balance conver-
gence rate with preserving precision. A typical widening R1ORLR2 for RL [2] defines an equiva-
lence relation between two states s1 ∼ s2 in the automata for R1 and R2 if there exists a string w
where either (a) w reaches s1 from the start state of R1 and s2 from the start state of R2, or w reaches
an accept state in R1 from s1 and an accept state in R2 from s2. This defines an equivalence relation
≡ on states s, s′ is R1 as s ≡ s′ iff exists s2 ∈ R2, s ∼ s2 ∧ s′ ∼ s2. The result of widening is the
quotient R1/≡.

320 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

Example 7.1. Consider the pseudo-code

x = "aaa"

while (*)

if (length(x) < 4) x = "a" + x

After the first iteration around the loop, the variable x gets the value aaaa. Assuming we widen at this
point, then widening the automaton R2 for aaaa with automaton R1 for aaa generates the automaton
for a∗, since each pair of adjacent states in R1 are made equivalent. �

Such aggressive widening means we can adopt a strictly more expressive domain, yet infer weaker
invariants.

Example 7.2. Recall the analysis from Example 7.1, but this time under PS . PS needs no separate
widening operator, as it contains no infinite ascending chains. The initial abstraction is 〈aaa, aaa〉 and
after the if statement we obtain the join with 〈aaaa, aaa〉, leading to the same description. The PS
description maintains the information that there are at least 3 as in the string x. �

This reveals an interesting possibility: having established R as a reference domain for A, we can use
A to strengthen the widening onR. Let us define an operator OR|A:

(R1, A1)OR|AR2 = (R1ORR2, A1OA α̂(R2))

Essentially, we compute the widening under the reduced product of R and A. We may then replace
Ri with Ri uR γ̂(Ai) in subsequent computations.

8. Related work

It appears that all previous approaches to combining several abstractions have been based on the idea
of information exchange between the components, by means of dedicated exchange functions. We
have referred to this as a paraphrasing approach and we illustrated it briefly in Section 4, in the setting
of string analysis. A distinguishing characteristic of one-on-one paraphrasing is that the information
exchange is incomplete, in the sense that there is no guarantee that it produces the same precision
as the ideal, that is, the reduced product. Any resulting notion of “product” is therefore, intuitively,
an abstraction of the reduced product; it is “further away” from the concrete domain, relative to the
reduced product. In contrast, a reference abstract domain is chosen so that the reduced product is an
abstraction of it. It is “closer” to the concrete domain.

The paraphrasing approach has many advantages, but in this paper we have argued against it where
many (say, n > 3) incomparable abstract domains are involved. We noted that, for analysis of string-
manipulating programs it is not uncommon to employ half a dozen relevant but incomparable string
abstract domains. In such cases the number of required functions dedicated to information exchange
becomes prohibitive. Even when the functions are restricted to providing one-on-one paraphrasing
(as is almost always the case), the number is quadratic in the number n of abstract domains to be
combined.

Since paraphrasing approaches are both common and important, let us briefly trace their history.
Iterated paraphrasing was proposed by Granger [22], under the name of “local decreasing iterations”.
It is used as a vehicle for various improvement techniques in abstract interpretation. For example,

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 321

the analysis of a complex predicate (from a conditional) can be improved by repeated application of
transfer functions for the components of the test. Granger also shows how the technique can be applied
to constraints involving more than two variables, after appropriate isolation of variables.

Of relevance to the present paper, Granger [22] also discusses2 a connection to abstract domain
combinations, or rather to refining elements of direct products. Given components A1 and A2 of a
Cartesian product, define operations ρ1 : (A1 ×A2)→ A1 and ρ2 : (A1 ×A2)→ A2 which tighten
the two components respectively. That is, ρ1(a1, a2) v a1 and γ(ρ1(a1, a2), a2) = γ(a1, a2), and
similarly for ρ2. A decreasing chain (an1 , a

n
2)n∈N is obtained as follows:

(a01, a
0
2) = (a1, a2)

(ai+1
1 , ai+1

2) = (ρ1(a
i
1, a

i
2), ρ2(a

i
1, a

i
2))

For example, to combine the classical abstract domain Intv of intervals with that of affine congruences
AffCong , Granger considers, in lieu of the latter, the non-relational and strictly less precise domain
ArithCong of arithmetic congruences (the domain Intv is incomparable with either of the two). Infor-
mation (d, e) ∈ Intv×AffCong is first weakened to the closest consistent (d, e′) ∈ Intv×ArithCong ;
this is a matter of calculating projections. The reason for this weakening is that it enables a straight-
forward paraphrasing—so that d is strengthened to some d′ ∈ Intv . The stronger d′ may in turn
allow strengthening of the original e, via paraphrasing; hence the overall result is a strengthening,
although not necessarily as strong as what the reduced product would allow. Granger’s techniques
thus correspond to products that are parameterised on paraphrasing functions and strategies, unlike
the reference domains proposed in this paper. Relative to the reduced product, Granger’s products
are further removed from the concrete domain, whereas a reference domain is closer to the concrete
domain.

Granger’s observations about the utility of repeating or iterating the application of a transfer func-
tion were also made (independently) in the context of logic program analysis [5, 28]. Le Charlier
and Van Hentenryck [28] refer to this as “reexecution” and define a “REFINE” operation that ensures
reexecution is in fact a strengthening, a requirement which was neglected elsewhere [31].

Cortesi, Le Charlier and Van Hentenryck [9] proposed another notion of product, namely the open
product. In this framework, abstract operations are made higher-order, parameterised on “queries”.
The idea is that an abstract operation can interrogate the various components of a Cartesian product,
using a fixed set of predicates. An abstract operation O : (A1 ×A2)→ (A1 ×A2) which makes use
of m queries Q1

1, . . . , Q
1
m on A1 and (say also) m queries Q2

1, . . . , Q
2
m on A2 is defined in terms of

the higher-order O1 and O2 as follows:

O(a1, a2) =

(
O1(〈Q1

1(a1) ∨Q2
1(a2), . . . , Q

1
m(a1) ∨Q2

m(a2)〉)(a1),
O2(〈Q1

1(a1) ∨Q2
1(a2), . . . , Q

1
m(a1) ∨Q2

m(a2)〉)(a2)

)

Again, relative to the reduced product, the open product is further removed from the concrete domain,
whereas a reference domain is closer to the concrete domain.

Techniques that are reminiscent of the open product idea are also found in the ASTRÉE approach
to combinations of abstractions [16]. ASTRÉE employs a one-way strengthening approach (compo-
nents can benefit from ones computed earlier, including on previous iterations), based on “communica-
tion channel” domains that are further abstractions of a number of component domains. Components

2Granger’s presentation is by example. We follow the presentation given by Cortesi et al. [9].

322 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

can then volunteer information to others that share the same communication channel, and can query
the information channel for previously computed information. This means that abstract domains are
organised in some hierarchical way, based on pragmatic considerations of “who can best inform who”,
and the resulting notion of product is not commutative. ASTRÉE does not insist on Galois connec-
tions, nor that abstract domains are lattices, so a reference domain approach would not necessarily
apply in the context of the abstract domains used by ASTRÉE.

A final notion of product is defined by Gulwani and Tiwari [23], namely the “logical product”.
Gulwani and Tiwari characterize an abstract state as a conjunction of atomic facts in some logical
theory, then use a Nelson-Oppen-style technique to derive a new lattice over the combination of two
such “logical lattices”. This is in general incomparable with the reduced product, though at least as
precise when the underlying theories are convex, stably infinite and disjoint.

To avoid a possible confusion we should point out also that Cortesi, Filé and Winsborough [8]
provide a framework for comparing abstract domains for their ability to express certain kinds of infor-
mation. The “kind of information” is itself given as an abstract domain, which is called a “reference
domain”. However, that domain plays a rather different role to the concept of reference domain that
we have proposed. Again, for Cortesi et al. [8], the reference domain is usually more abstract than the
domains D and D′ that are being compared, as it is intended to capture limited aspects of D and D′.

A seminal paper on practical string analysis was the description of the Java String Analyzer, JSA,
by Christensen, Møller and Schwartzbach [6]. JSA uses regular languages as approximations, and the
JSA tool has found wide application. Later work on tools such as TAJS [24], JSAI [26] and SAFE [29]
has drawn inspiration from JSA.

Apart from the regular language domain, the domains we use are domains (or are similar to do-
mains) discussed by Madsen and Andreasen [30]. It is difficult to make an exact comparison because
Madsen and Andreasen do not formally define their domains. Thus, for example, it is not clear what
the semantics of elements of their prefix-suffix domain would be. Their definition of the character
inclusion domain is also rather different from this paper’s. Costantini et al. [10, 12] discuss a prefix
domain, and a suffix domain, the reduced product of which yields PS . They also discuss CI and
propose two additional (more complex) string domains.

Amadini et al. [1] describe the implementation, in the SAFE framework, of a dozen string abstract
domains. The implementation enables easy combination of domains, and this allows a systematic
exploration of combinations, using a fixed suite of benchmarks. However, “combination” here means
direct product—there is no attempt to let the individual domains interact.

9. Conclusion

We have presented a modular framework for implementation of the reduced product of a number of
component abstract domains. The key concept in this framework is a reference domain whose role is
to mediate and translate information amongst the component domains. The reference domain needs
to be chosen so that it is at least as expressive as each of the component domains.

Normally, in abstract interpretation, the use of a highly expressive abstract domain has both advan-
tages and drawbacks. On the negative side, a high runtime cost is incurred, as basic abstract operations
can be expected to be relatively expensive. More importantly, the expected precision gains often fail
to materialise because (coarse) widening operations must be employed for the analysis to reach a
fixed point, and this can incur considerable loss of precision. Hence, combinations of simple abstract
domains are often preferred.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 323

Traditionally, a reduced product is computed by writing separate ad hoc “paraphrasing” functions
for each pair of domains, to facilitate one-on-one information exchange. For improved precision,
paraphrasing can be iterated until a fixed point is reached. When the number of abstract domains
involved is large, this paraphrasing approach becomes unmanageable. Moreover, we have shown that
this process of iterated paraphrasing, in spite of the massive labour it may involve, in general yields
results that are weaker than the ideal—the reduced product. Our framework replaces the n(n − 1)
paraphrasers by 2n conversion functions, to and from a suitably chosen reference domain. We have
shown that this approach is equivalent to using the reduced product.

In this paper we have applied the framework to the problem of string analysis, using the set of
regular languages as the reference domain. We have presented algorithms for converting between the
regular language domain and four commonly used string domains. This approach can be used for
both computing and testing the reduced product of string domains. Our work forms a basis for our
ongoing implementation of string abstract domains in the SAFE analysis framework [1, 29]. Because
it is common for string analyses to combine many separate string domains that capture overlapping
aspects of strings (and SAFE is no exception), our framework is attractive.

The main message to take from this paper is that a highly expressive abstract domain may well
be too expensive to use in abstract interpretation, in the traditional manner. However, if used as
a lingua franca, it can facilitate the exchange of information and enable the cooperation between
simpler abstract domains. That is the role of a reference domain. There is no recipe that we know
of, for how to best choose a reference domain. As with other abstract domains, somebody needs to
make the design choice, based on the requirements of an application. Natural choices, however, do
not appear difficult to come by, as we hope we have demonstrated by example.

Acknowledgements

We thank the anonymous reviewers for helpful comments on our initial manuscript. The work has
been supported by the Australian Research Council through Linkage Project Grant LP140100437 and
Discovery Early Career Researcher Award DE160100568.

References

[1] Amadini R, Jordan A, Gange G, Gauthier F, Schachte P, Søndergaard H, Stuckey PJ, and Zhang
Ch. Combining string abstract domains for JavaScript analysis: An evaluation. In A. Legay
and T. Margaria, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 10205 of Lecture Notes in Computer Science, pages 41–57. Springer, 2017. URL https:

//doi.org/10.1007/978-3-662-54577-5_3.

[2] Bartzis C, and Bultan T. Widening arithmetic automata. In R. Alur and D. A. Peled, editors,
Computer Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages 321–
333. Springer, 2004. URL https://doi.org/10.1007/978-3-540-27813-9_25.

[3] Bisht P, Hinrichs TL, Skrupsky N, and Venkatakrishnan VN. WAPTEC: Whitebox analysis of
web applications for parameter tampering exploit construction. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, pages 575–586. ACM Publ., 2011.

324 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

[4] Bjørner N, Tillmann N, and Voronkov A. Path feasibility analysis for string-manipulating pro-
grams. In S. Kowalewski and A. Philippou, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 5505 of Lecture Notes in Computer Science, pages 307–321.
Springer, 2009. URL https://doi.org/10.1007/978-3-642-00768-2_27.

[5] Bruynooghe M. A practical framework for the abstract interpretation of logic programs. Journal
of Logic Programming, 1991;10(2):91–124. doi:10.1016/0743-1066(91)80001-T.

[6] Christensen AS, Møller A, and Schwartzbach MI. Precise analysis of string expressions. In
R. Cousot, editor, Static Analysis, volume 2694 of Lecture Notes in Computer Science, pages
1–18. Springer, 2003. ISBN:3-540-40325-6.

[7] Cortesi A, Costantini G, and Ferrara P. A survey on product operators in abstract interpre-
tation. In Semantics, Abstract Interpretation, and Reasoning about Programs: Essays Ded-
icated to David A. Schmidt on the Occasion of his Sixtieth Birthday, pages 325–336, 2013.
doi:10.4204/EPTCS.129.19.

[8] Cortesi A, Filé G, and Winsborough W. Comparison of abstract interpretations. In W. Kuich, edi-
tor, Automata, Languages and Programming: Proceedings of the 19th International Colloquium
(ICALP’92), volume 623 of Lecture Notes in Computer Science, pages 521–532. Springer, 1992.
URL https://doi.org/10.1007/3-540-55719-9_101.

[9] Cortesi A, Le Charlier B, and Van Hentenryck P. Combinations of abstract domains for logic pro-
gramming: Open product and generic pattern construction. Science of Computer Programming,
2000;38(1-3):27–71. URL https://doi.org/10.1016/S0167-6423(99)00045-3.

[10] Costantini G. Lexical and numerical domains for abstract interpretation, PhD Thesis, Ca’ Foscari
University of Venice, 2014.

[11] Costantini G, Ferrara P, and Cortesi A. Static analysis of string values. In S. Qin and Z. Qiu,
editors, Formal Methods and Software Engineering, volume 6991 of Lecture Notes in Com-
puter Science, pages 505–521. Springer, 2011. URL https://doi.org/10.1007/978-3-

642-24559-6_34.

[12] Costantini G, Ferrara P, and Cortesi A. A suite of abstract domains for static analysis of string
values. Software Practice and Experience, 2015;45(2):245–287. doi:10.1002/spe.2218.

[13] Cousot P, and Cousot R. Abstract interpretation: A unified lattice model for static analy-
sis of programs by construction or approximation of fixpoints. In Proceedings of the Fourth
ACM Symposium on Principles of Programming Languages, pages 238–252. ACM Publ., 1977.
doi:10.1145/512950.512973.

[14] Cousot P, and Cousot R. Systematic design of program analysis frameworks. In Proceedings of
the Sixth Annual ACM Symposium on Principles of Programming Languages, pages 269–282.
ACM Publ., 1979. doi:10.1145/567752.567778.

[15] Cousot P, and Cousot R. Abstract interpretation frameworks. Journal of Logic and Computation,
1992;2(4):511–547. doi:10.1093/logcom/2.4.511.

R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis 325

[16] Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, and Rival X. Combination
of abstractions in the ASTRÉE static analyzer. In M. Okada and I. Satoh, editors, Advances in
Computer Science – ASIAN 2006. Secure Software and Related Issues, volume 4435 of Lec-
ture Notes in Computer Science, pages 272–300. Springer, 2006. URL https://doi.org/10.

1007/978-3-540-77505-8_23.

[17] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. A framework for combining alge-
braic and logical abstract interpretations. September 2010. URL https://hal.inria.fr/

inria-00543890.

[18] Cousot P, and Halbwachs N. Automatic discovery of linear restraints among variables of a pro-
gram. In Proceedings of the 5th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 84–96. ACM Publ., 1978. doi:10.1145/512760.512770.

[19] Emmi M, Majumdar R, and Sen K. Dynamic test input generation for database applications.
In Proceedings of the 2007 International Symposium on Software Testing and Analysis, pages
151–162. ACM Publ., 2007. ISBN:978-1-59593-734-6. doi:10.1145/1273463.1273484.

[20] Gange G, Navas JA, Schachte P, Søndergaard H, and Stuckey PJ. Abstract interpretation over
non-lattice abstract domains. In F. Logozzo and M. Fähndrich, editors, Static Analysis, volume
7935 of Lecture Notes in Computer Science, pages 6–24. Springer, 2013. URL https://doi.

org/10.1007/978-3-642-38856-9_3.

[21] Gange G, Navas JA, Stuckey PJ, Søndergaard H, and Schachte P. Unbounded model-checking
with interpolation for regular language constraints. In N. Piterman and S. Smolka, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume 7795 of Lecture Notes
in Computer Science, pages 277–291. Springer, 2013. URL https://doi.org/10.1007/

978-3-642-36742-7_20.

[22] Granger P. Improving the results of static analyses of programs by local decreasing iterations.
In R. Shyamasundar, editor, Foundations of Software Technology and Theoretical Computer Sci-
ence, volume 652 of Lecture Notes in Computer Science, pages 68–79. Springer, 1992. URL
https://doi.org/10.1007/3-540-56287-7_95.

[23] Gulwani S, and Tiwari A. Combining abstract interpreters. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 376–386.
ACM Publ., 2006. doi:10.1145/1133255.1134026.

[24] Jensen SH, Møller A, and Thiemann P. Type analysis for JavaScript. In J. Palsberg and Z. Su,
editors, Static Analysis, volume 5673 of Lecture Notes in Computer Science, pages 238–255.
Springer, 2009. ISBN: 978-3-642-03236-3. doi:10.1007/978-3-642-03237-0 17.

[25] Karr M. Affine relationships among variables of a program. Acta Informatica, 1976;6:133–151.
URL https://doi.org/10.1007/BF00268497.

[26] Kashyap V, Dewey K, Kuefner EA, Wagner J, Gibbons K, Sarracino J, Wiedermann B, and
Hardekopf B. JSAI: A static analysis platform for JavaScript. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 121–132.
ACM Publ., 2014. ISBN: 978-1-4503-3056-5. doi:10.1145/2635868.2635904.

326 R. Amadini et al. / Reference Abstract Domains and Applications to String Analysis

[27] Kim S-W, Chin W, Park J, Kim J, and Ryu S. Inferring grammatical summaries of string values.
In J. Garrigue, editor, Programming Languages and Systems: Proceedings of the 12th Asian
Symposium (APLAS’14), volume 8858 of Lecture Notes in Computer Science, pages 372–391.
Springer, 2014. URL https://doi.org/10.1007/978-3-319-12736-1_20.

[28] Le Charlier B, and Van Hentenryck P. Reexecution in abstract interpretation of Prolog. In K. Apt,
editor, Logic Programming: Proceedings of the Joint International Conference and Symposium,
pages 750–764. MIT Press, 1992.

[29] Lee H, Won S, Jin J, Cho J, and Ryu S. SAFE: Formal specification and implementation of a scal-
able analysis framework for ECMAScript. In Proceedings of the 19th International Workshop on
Foundations of Object-Oriented Languages (FOOL’12), 2012.

[30] Madsen M, and Andreasen E. String analysis for dynamic field access. In A. Cohen, editor,
Compiler Construction, volume 8409 of Lecture Notes in Computer Science, pages 197–217.
Springer, 2014. URL https://doi.org/10.1007/978-3-642-54807-9_12.

[31] Marriott K, and Søndergaard H. On propagation-based analysis of logic programs. In
S. Michaylov and W. Winsborough, editors, Proceedings of the ILPS 93 Workshop on Global
Compilation, pages 47–65, 1993.

[32] Minamide Y. Static approximation of dynamically generated web pages. In Proceedings of the
14th International Conference on World Wide Web, pages 432–441. ACM Publ., 2005. ISBN:1-
59593-046-9. doi:10.1145/1060745.1060809.

[33] Park Ch, Im H, and Ryu S. Precise and scalable static analysis of jQuery using a regular expres-
sion domain. In Proceedings of the 12th Symposium on Dynamic Languages, pages 25–36. ACM
Publ., 2016. ISBN: 978-1-4503-4445-6. doi:10.1145/2989225.2989228.

[34] Polya G. How to Solve It. Doubleday Anchor Books, second edition, 1957.

[35] Sedgewick R, and Wayne K. Algorithms. Addison-Wesley, fourth edition, 2011.

[36] Sipser M. Introduction to the Theory of Computation. Thomson Course Technology, third edi-
tion, 2012. ISBN-10:113318779X, 13:978-1133187790.

[37] Veanes M, de Halleux P, and Tillmann N. Rex: Symbolic regular expression explorer. In Pro-
ceedings of the Third International Conference on Software Testing, Verification and Validation,
pages 498–507. IEEE Comp. Soc., 2010. doi:10.1109/ICST.2010.15.

