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SUMMARY

Objective: Seizure unpredictability is rated as one of the most challenging aspects of living 

with epilepsy. Seizure likelihood can be influenced by a range of environmental and 

physiological factors that are difficult to measure and quantify. However, some generalizable 

patterns have been demonstrated in seizure onset. A majority of people with epilepsy exhibit 

circadian rhythms in their seizure times and many also show slower, multiday patterns. 

Seizure cycles can be measured using a range of recording modalities, including self-reported 

electronic seizure diaries. This study aimed to develop personalized forecasts from a mobile 

seizure diary app. 

Methods:  Forecasts based on circadian and multiday seizure cycles were tested pseudo-

prospectively using data from 50 app users (mean of 109 seizures per subject). Individual’s 

strongest cycles were estimated from their reported seizure times and used to derive the 

likelihood of future seizures. The forecasting approach was validated using self-reported 

events and electrographic seizures from the Neurovista dataset, an existing database of long-

term electroencephalography that has been widely used to develop forecasting algorithms.

Results: The validation dataset showed that forecasts of seizure likelihood based on self-

reported cycles were predictive of electrographic seizures for approximately half the cohort. 

Forecasts using only mobile app diaries allowed users to spend an average of 67.1% of their 

time in a low-risk state, with 14.8% of their time in a high-risk warning state. On average, 
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69.1% of seizures occurred during high-risk states and 10.5% of seizures occurred in low-risk 

states. 

Significance: Seizure diary apps can provide personalized forecasts of seizure likelihood that 

are accurate and clinically relevant for electrographic seizures. These results have immediate 

potential for translation to a prospective seizure forecasting trial using a mobile diary app. It 

is our hope that seizure forecasting apps will one day give people with epilepsy greater 

confidence in managing their daily activities.

KEYWORDS: epilepsy, seizure forecasting, seizure cycles, circadian rhythms, multiday 

rhythms, mobile health

INTRODUCTION

Medically refractory epilepsy is a condition associated with persistent uncertainty. Most 

people with epilepsy report that, regardless of seizure frequency, it is the unpredictability of 

when seizures will occur that is the most debilitating aspect of their condition 1. A forecast of 

seizure likelihood could provide immense benefits to people with epilepsy, especially for 

those with refractory seizures. Over 30% of all people with epilepsy cannot control their 

seizures with medication 2 and, for decades, new drugs have mostly failed to improve overall 

rates of seizure freedom 3. Surveys have shown that seizure forecasting is considered a highly 

attractive management option by people with uncontrolled seizures 1. At the same time, 

epilepsy research has uncovered numerous factors affecting seizure likelihood from long-

term trends in behavioural, environmental and physiological data. For example, some people 

are more prone to seizures due to stress 4, poor sleep 5, exercise 6, diet 7, weather 8, alcohol 

use 9, poor drug adherence 10 and a multitude of other factors. Investigating the utility of 

these seizure risk factors and developing personalised forecasting devices is now a key goal 

for clinical epilepsy management 1.

The first prospective clinical trial of seizure forecasting in humans used an intracranial 

implant to record long-term, continuous electroencephalography (EEG) 11. Using the same 

data, subsequent studies have improved the accuracy of seizure forecasts 12,13. A key 

development has been the understanding that seizure onset is modulated by patient-specific, 

cyclic patterns 14–16. The rhythmic nature of epilepsy has been well documented for centuries; 

however, it has only recently become clear that an individual’s seizure cycles can be used to 

develop personalized forecasts of future seizure likelihood 13,14,17,18. Although changes in 
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EEG signal characteristics provide the clearest biomarker to track cycles of seizure likelihood 

16,18,19, it is possible to measure individual cycles using only self-reported seizure diaries 15. 

Therefore, for some people, seizure diaries alone may provide a clinically useful forecast of 

future high or low seizure risk periods.

It is now recognised that estimating the probability of someone having a seizure in the near 

future is more feasible than trying to predict the exact timing of their next seizure 12,17,20. 

There are increasing efforts to develop a clinical seizure forecasting device 1 and understand 

user requirements 21–23. Patient surveys have confirmed that probabilistic forecasts are 

considered useful and that perfect accuracy is not a requirement of such devices 21,23. For 

practical reasons, externally worn devices are rated more desirable than implanted recording 

devices in surveys 23. There is increasing availability of wearable technology for seizure 

detection and forecasting 24–26. Furthermore, many seizure triggers that have been shown to 

be useful biomarkers of seizure likelihood can be measured non-invasively. For instance, 

self-reported stress is predictive of seizures 27,28. Heart rate 29,30 and other physiological 

signals monitored from a smartwatch device 31 have also been used to forecast seizure 

likelihood. It is possible that these non-cerebral biomarkers of seizure likelihood are useful 

because the same fundamental rhythms that modulate many aspects of human physiology 

also drive seizure risk.

This study used long-term, self-reported data from a mobile seizure diary to determine 

whether seizure cycles can provide a useful forecast of future seizure likelihood. The results 

provide a proof-of-concept that forecasting seizure cycles is practical and accurate and has 

the potential to be used as a clinical management tool. Mobile tools to forecast seizure cycles 

have wide-ranging applications including for improved clinical trial design, treatment 

titration and long-term management for people with epilepsy.

METHODS

Data

This study used long-term data from a mobile seizure diary app (Seer Medical) to develop 

and test seizure forecasts. Forecasts were also generated using only the self-reported events 

from the Neurovista dataset, an existing set of long-term, continuous EEG and seizure 

annotations that has been widely used to develop forecasting algorithms 11. The Neurovista 
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dataset enabled forecasts based on self-reported seizures to be evaluated against 

electrographic seizures, and also provided a comparison of non-invasive forecasting 

performance to state-of-the-art seizure prediction.

Mobile app data

The Seer app is a freely available mobile diary for reporting seizures and medications. 

Currently, there are over 500 active users. This study used a subset of 50 users with a clinical 

epilepsy diagnosis, at least 30 reported seizures (mean 109 seizures), and at least 2-months 

recording duration (mean 48 weeks). Although users can report information such as seizure 

type and duration, this study only used the times of reported seizures. This study was 

approved by the St Vincent’s Hospital Human Research Ethics Committee (HREC LRR 

165/19).

Continuous EEG data

The Neurovista study collected continuous intracranial EEG data from 15 subjects for a 

period of 6 months to 2 years. Further information on data collection and participants are 

reported by Cook et al (2013). This study only used the seizure times reported during the 6 

month – 2 year recording periods. Electrographic seizures were automatically annotated by 

an onboard EEG-based detection algorithm. All seizure detections were confirmed by trained 

epileptologists. Self-reported events were based on diaries kept by participants and 

caregivers, which were subsequently combined with EEG annotations and stored as 

electronic records. In addition to diary data, the Neurovista device included an audio 

recording feature that was automatically activated when suspect epileptiform EEG activity 

was detected by the onboard algorithm. The audio recordings were used to aid confirmation 

of clinical seizures; and, for some subjects, audio recordings provided substantial assistance 

in seizure detection. However, to provide a direct comparison with mobile app data, the 

current study primarily considered events based on participants’ diaries. The human research 

ethics committees of the participating institutes approved the Neurovista study and 

subsequent amendments. All patients gave written informed consent before participation.

Forecasting seizure cycles

An overview of the forecasting method is shown in Fig. 1. An individual’s strongest 

circadian (“fast”) and multiday (“slow”) cycles were estimated from their reported seizure 
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times using the magnitude of the resultant vector, or synchronisation index (SI), measured 

over a range of potential cycle periods. The synchronisation index is given by:

SI =
1

N
 | 

N∑
n = 1

e
iθn |, #(1)

where N is the total number of seizures and each seizure is represented as a vector on the unit 

circle, , where  represents the imaginary number. The angle, , ranges from 0 to the e
iθn i θn

period of the cycle being estimated; i.e., 24 hours for a circadian cycle. For this study, fast 

cycle periods were assumed to be between 6 hours and 48 hours, with a 6-hour increment; i.e. 

the strongest cycle for each individual, defined as the period with maximum SI, was selected 

from 8 candidate periods (6,12,18, 24, 36, 42 and 48 hours). This range of fast cycle periods 

enabled the detection of approximate daily cycles rather than true circadian rhythms. Slow 

cycles were assumed to have periods of greater than 3 days, with a maximum allowed period 

of 2 months or 1/5 of the recording duration (whichever was lowest). For instance, a person 

with 10 weeks of data could have a maximum slow cycle of 2 weeks, whereas someone with 

1 year of data could have a slow cycle of up to 2 months. The increment for slow cycles was 

1 day; i.e. the strongest cycle for an individual, defined as the period with maximum SI, was 

selected from candidate periods of [3 days, 4 days, 5 days, …] up to the maximum allowed 

period. Only significant cycles were used to develop seizure forecasts. Significance was 

assessed using the Rayleigh test for non-uniformity of circular distributions (p < 0.05) 32. 

Individuals’ strongest cycles were iteratively updated with each new seizure based on an 

exponentially weighted history of past seizure times; i.e., the sum for the weighted 

synchronisation index of N seizures,  became:SIw,

SIw =
1∑w� | 

N∑
n = 1

wne
iθn |,#(2)

where  is the weight applied to the  seizure and . The value of  wn = 1― (1― α)� nth α= 0.8 �
was chosen somewhat arbitrarily; however, in this study,  had only minor effects on �
forecasting performance. In a longer-term, prospective study, the weighting on past events 

may be more important and future work will focus on evaluating alternative weighting 

schemes. To estimate seizure likelihood, the phases of the fast and slow cycles,  and ϕslow

, were derived for each one hour sliding window (with 5 minute overlap) over the ϕfast

recording duration:
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ϕ�[t] =  2π⟦t― t0

T� ⟧,#(3)

where is the period of the strongest cycle (i.e. or  and  indicates the modulo Ti Tfast Tslow) ⟦ ∙ ⟧
operator (the remainder after division). The phase,  is a function of time,  (hours), and  ϕi t t0

represents the time of the most recent seizure (as the estimated fast and slow cycle periods, Ti

, were updated after each seizure). The phase was then quantized into 20 equally spaced bins, 

from 0 to . The probability of seizure occurrence with respect to each phase,  and 2π P[ϕslow]

, was calculated from the histogram of previous seizure times.P[ϕfast]

The final probability of seizure occurrence at each time, , was obtained as the product of P[t]

the log-odds of each probability,  and  33.P[ϕslow] P[ϕfast]

P[t] =
p

1 + p

p =  a(
P[ϕfast[t]]

1― P[ϕfast[t]])
a

2

(
P[ϕslow[t]]

1― P[ϕslow[t]])
a

2

,#(4)

Where  is a systematic bias term reflecting the accuracy of the forecast (a < 1 � ∈ [0, ∞)
indicates overconfidence and a > 1 indicates under-confidence). In this study, we have set 

, which is an unbiased forecast. However, in eventual real-world applications, a can be �= 1

used to iteratively calibrate the forecast based on past performance. High and low risk 

warning thresholds were computed using a pseudoprospective brute force optimization that 

maximized the time spent in low risk periods and number of seizures classified in high risk 

periods 18. 

Forecasts were updated every hour and evaluated pseudoprospectively, using only the 

historical seizure record to compute the likelihood of future seizure occurrence (P[T] in Eqn. 

4). At least 10 seizures were required to initiate the seizure forecast, which was then 

iteratively updated after each seizure. Only the lead seizure within each 1 hour window was 

used, subsequent seizures within the same hour were removed before calculating and 

evaluating forecasts. Performance was evaluated based on the percentage of seizures in high 

(low) risk and the total duration spent in high (low) risk, after setting optimal thresholds for 

high and low risk warnings. Thresholds were also optimised pseudoprospectively using only 

previous seizures, i.e. high and low thresholds were iteratively updated after each new seizure 

occurrence. Times where neither the high nor low risk thresholds were exceeded (i.e. the 

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



This article is protected by copyright. All rights reserved

forecast seizure likelihood was below the high risk threshold and above the low risk 

threshold) were considered moderate risk.

A 5 minute intervention period was used for evaluation; i.e., seizures were only considered to 

be correctly predicted if the high risk warning was on for at least 5 minutes before onset. 

Note that because seizure likelihood was calculated using a one-hour sliding window with 5-

minute overlap, this effectively meant that the minimum intervention period was between 5 

to 10 minutes. Sensitivity improvement over chance was calculated based on the proportion 

of seizures and time in high risk to assess whether the high risk forecast sensitivity was 

significantly better than chance performance 34.

Performance was also measured using the receiver-operating characteristic (area under the 

curve, AUC). The AUC addresses the ability of a classifier to discriminate between inter-ictal 

and pre-ictal data and is the preferred measure for many studies benchmarking multiple 

seizure forecasting algorithms 34. The AUC was also used to assess forecasting performance 

compared to chance level forecasting. The 95% confidence intervals of the AUC were 

calculated according to the procedure outlined by Hanley and McNeil (1982)36. These AUC 

confidence intervals were then compared to the chance level AUC. Chance level AUCs were 

approximated by computing the forecasting performance from shuffled seizure times (note 

that the theoretical chance level AUC is 0.5).    

RESULTS

Can people self-report their seizure cycles?

We had previously demonstrated that seizure cycles can be measured from self-reported 

seizure times 15. The current study presents a retrospective validation that self-reported cycles 

correspond to true underlying epileptic rhythms, rather than just forecasting behavioural 

cycles governing when individuals are more or less likely to report their seizures. The 

Neurovista dataset was used to determine whether self-reported seizure cycles aligned with 

cycles derived from electrographic seizures. Fig. 2 shows that 11 out of 15 Neurovista 

subjects (73%) had circadian cycles that were not significantly different using self-reported 

(diary) events compared to electrographic seizures (p > 0.05 using Kuiper’s test for circular 

distributions). Three subjects (S2, S3, and S5) did not have enough diary events to make a 

comparison. Nine subjects (60%) had multiday cycles that were not significantly different 
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using diaries compared to electrographic seizures (see supplementary Fig. S1). This suggests 

that although participants vastly underreported the total number of seizures, the underlying 

circadian and multiday trends can still be determined. There was a preference for individuals 

to report less seizures at night (supplementary Fig. S2). In comparison, audio confirmations 

were higher at night and lower during the day, perhaps reflecting less background noise 

during the night. In general audio confirmations improved the alignment of circadian rhythms 

(supplementary Fig. S3). Overall, these data suggest that self-reported seizures identified 

clinically relevant cycles for most people with epilepsy, albeit based on a relatively small 

validation cohort with refractory, focal epilepsy.

Fig. 3 shows a comparison of forecasting performance using either self-reported (diary) or 

electrographic seizures from the Neurovista cohort. Both forecast models were evaluated 

using electrographic seizures. This comparison provided a unique opportunity to benchmark 

the performance of forecasts based on self-reported seizures against confirmed electrographic 

seizures, ensuring that forecasts were not merely useful at predicting users’ reporting habits. 

This benchmarking is critical to provide confidence in the clinical utility of forecasts based 

on mobile diaries alone.

Forecasts were developed for subjects with at least 30 seizures (11 subjects had >30 

electrographic seizures, eight subjects had >30 self-reported seizures). Using electrographic 

seizures to develop forecasts resulted in a mean time in high risk of 20.5%, with 59.5% of 

seizures occurring in this state. The mean time in low risk was 55.6%, with 13.0% of 

seizures. The mean time in moderate risk was 23.9% with 27.5% of seizures. However, when 

just self-reported seizures were used to develop forecasts, several individuals showed a 

marked decline in forecasting performance. Based on self-reported forecasts, four of the eight 

Neurovista subjects showed performance not significantly different from random 

performance (p > 0.05 using the sensitivity improvement over chance metric) for high risk 

warning states. The other half of the subjects fell solidly within the low or high risk clusters. 

There was no significant correlation between reporting accuracy and forecasting accuracy 

(see supplementary Fig. S4). This result shows that forecasts based on self-reported events 

may provide an accurate forecast of the likelihood of clinical electrographic seizures for 

approximately half of the cohort, while the other half of this group would produce inaccurate 

self-report forecasts.
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Forecasting accuracy

We tested whether a seizure forecasting model developed from self-reported seizures could 

be used to forecast future self-reported events using the mobile app diary data.  Fig. 4 shows 

an example of what forecasting seizure likelihood looked like using data recorded via the 

mobile app. The individual shown had an average of 2.8 seizures per week. Over the year of 

pseudo-prospective evaluation, their forecast showed 18.7% of the time in high risk, with 

most seizures (59.3%) reported in this state. The individual’s forecast showed 55.1% of the 

time in low risk and 10 of their seizures (8.9%) occurred during low-risk periods. The rest of 

the time (26.2%) was spent in the moderate risk state. Supplementary Fig. S5 shows two 

other examples of subjects with different forecasting outcomes. The supplementary examples 

show that diary forecasts can provide useful information for individuals with a range of 

seizure rates, including an individual with a lower reported rate of 1.4 seizures per week who 

had no seizures occurring during low risk periods, as well as a subject with a high rate of 24.2 

seizures per week.

Fig. 5 shows forecasting performance based on mobile app data. It can be seen that using 

mobile diaries, the mean high risk accuracy was 69.1% with users spending a mean of 14.8% 

of their time in high risk. The mean time in low risk was 67.1% with an average of 10.5% of 

seizures occurring during low risk states. The mean time in moderate risk was 18.1% with an 

average of 20.4% of seizures occurring during moderate risk states. The times and 

proportions of seizures occurring in low, moderate, and high risk states were significantly 

different (p < 0.01 using the Wilcoxon rank-sum test), as shown in supplementary Fig. S6. 

Six of the 50 app users (12%) had zero reported seizures during their low risk periods. All 

forecasts were significantly better than chance (p < 0.01 using the sensitivity improvement 

over chance metric). It is important to note that these results were evaluated based on self-

reported seizures and may not reflect the performance if all electrographic seizures were 

recorded. However, the results suggest that clinically useful forecasts can be developed from 

mobile data alone, although it is anticipated that, for approximately half of people, mobile 

forecasts will not be accurate for predicting electrographic seizures, as shown from the 

Neurovista validation cohort (Fig. 3).

Fig. 6 shows the rate of true positive compared to false positive predictions for different 

thresholds of high risk warnings using mobile app data. Area under the curve (AUC) provides 

a measure of forecasting performance without explicitly setting a warning threshold, where 
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AUC greater than 0.5 indicates performance is better than chance level. Across the cohort, 

the mean AUC was 0.85 (range of 0.69 to 0.94). The 95% confidence intervals were 

computed for each AUC and compared to the AUC for chance performance. All individuals 

had AUCs that were significantly better than chance (95% confidence intervals were non-

overlapping).

DISCUSSION

It is well known that seizure diaries are inaccurate and not well correlated to true seizure rates 

11,37. The presented results showed that, although diaries are an unreliable estimate of true 

seizure counts, they can be used to measure underlying epileptic rhythms (Fig. 2). Because 

seizure cycles are repetitive, diary data can be treated as a noisy, undersampled representation 

of these underlying patterns. In this way, many people’s seizure rhythms were reliably 

measured from their diaries and could be used to forecast clinical electrographic seizures 

(Fig. 3). Underreporting and a slight bias towards daytime reporting did not abolish overall 

cyclic trends, and the use of audio confirmation increased the number of recorded seizures 

and improved the estimation of seizure cycles (supplementary Figs. S2 and S3). Interestingly, 

there was no correlation between seizure underreporting and forecasting performance 

(supplementary Fig. S4), suggesting that poor diary compliance was not necessarily a barrier 

to developing seizure forecasts. This finding may be because other factors (i.e. cycle 

strength) are more relevant to determine forecasting accuracy; however, a larger cohort 

would be needed to robustly assess which factors affect performance. On the other hand, 

when a minimum number of seizures is required, underreporting can prevent or delay 

forecast development. Some subjects reported almost no seizures, which could reflect many 

possible factors, including post-ictal memory impairment, the available social support, or the 

subject’s level of engagement and attention to detail during the study. On the whole, the 

retrospective validation of self-reported forecasting performance against electrographic 

seizures (Fig. 3) suggested that seizure forecasting apps will be accurate and may be a 

clinically useful method for some people. Future work will focus on incorporating objective 

biomarkers of seizures from wearable devices and validating the clinical utility of the 

proposed seizure forecasting app in a prospective clinical trial.

Overall the presented results showed that seizure diary apps have the potential to provide 

accurate, clinically useful, personalized forecasts of seizure likelihood. Forecasting results 
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using seizure diaries showed state-of-the-art performance, with an average AUC of 0.85 (Fig. 

6). A recent Kaggle competition for seizure prediction using continuous intracranial EEG 

recorded from three subjects in the Neurovista cohort reported winning AUC results of 0.81 

for the competition and 0.75 on the held-out dataset 13. Of course, these scores are not 

directly comparable to app forecasts, as they were derived from continuous intracranial EEG 

data with highly accurate seizure labelling; however, the comparison serves to highlight what 

is considered top range performance in seizure prediction using advanced machine learning. 

The current study showed forecasting accuracy of 69%, with app users spending, on average, 

less than one fifth of their time with a high risk warning (14.8%). A study using deep learning 

with the Neurovista data reported an average sensitivity of 69% and time in warning of 27% 

38. Moreover, forecasts based on seizure cycles naturally provide insight into times of low 

seizure likelihood. In this study, users were able to spend, on average, over half their time in 

a low risk state. Less than 10% of reported seizures occurred during the low risk state and 

12% of users had no seizures in this state. Of course, it should be reiterated that this study 

only evaluated performance from users’ self-reported events. It is anticipated that around half 

of the cohort would only show chance level performance for their electrographic seizures 

(Fig. 3). However, the same forecasting strategy showed similar forecasting performance for 

both diary data and electrographic seizures (Figs. 3 and 5). Therefore, performance is 

expected to improve as more accurate records of individuals’ seizures becomes available, for 

instance through new wearable or implantable technologies. Furthermore, there are 

applications for forecasts of self-reported events, such as scheduling EEG monitoring, or 

improving analysis of clinical trial diaries 39.

Delivering seizure forecasts in a prospective trial is itself non-interventional in the sense that 

no direct therapy is given. Instead, users are only given information about their personalized 

seizure likelihood. However, reliable information may be a powerful antidote to the 

uncertainty of living with uncontrolled seizures. Furthermore, information about seizure 

likelihood can be used in conjunction with behavioural strategies to reduce seizure rates. For 

instance, it has recently been shown that stress management techniques could be targeted to 

days of heightened seizure risk to reduce seizure rates 40. Forecasts may also be used to 

modulate medication or stimulation levels based on seizure likelihood. Such modulating 

chronotherapy has been used to time dosage of anti-seizure medication, successfully reducing 

seizure rates 41. However, modulation of drug levels has not been investigated for 

individually tailored cycles or over longer timescales to account for multiday cycles of 
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seizure likelihood. Seizure forecasting systems may also improve seizure detection and 

prediction accuracy by incorporating data from wearable or implantable monitoring devices.

Wearable devices have long been heralded as the next frontier in epilepsy management, both 

for their potential as automated seizure detectors and to provide advance warning of seizure 

onset 24. However, wearable seizure monitors have faced several challenges, including their 

relevance for more subtle seizure types, high false alarm rates and poor user experience 22,42. 

A forecasting app could potentially improve the detection performance of wearable devices 

by providing a prior probability of seizure likelihood. Similarly, physiological signals 

recorded from wearable devices could improve forecasts of seizure cycles by providing a 

continuous measure of underlying rhythms, rather than discrete samples (seizure times). We 

have shown that fast and slow cycles of brain activity can be measured from continuous EEG 

across diverse frequencies and regions of cortex 18. These continuous cycles provided the 

most accurate estimate of seizure likelihood to date. More recently, cycles of interictal 

epileptiform were also used to provide a forecast of seizure risk over days 19. It is possible 

that cycles of epileptic brain activity can also be derived from auxiliary systems modulated 

by the brain, such as cardiac and pulmonary output or even mood and sleep. It is well known 

that both circadian and multiday cycles modulate many aspects of human health and disease 

43–45, including heart disease 46,47, immune response 48 and neurological and psychiatric 

disorders 49,50. However, a long-term study to identify cyclic rhythms of physiological signals 

in conjunction with cycles of seizure risk has not yet been undertaken. Ultimately, the ability 

to measure cycles from almost every biological process underscores the power of a simple, 

cyclic seizure forecast.

There is still no consensus on how accurate a seizure forecast must be in order to be clinically 

useful, nor for which epilepsy characteristics and patterns forecasting methods may prove 

most useful. Several studies have surveyed the views of people with epilepsy and caregivers 

on the subject of seizure forecasting. In one survey, participants reported that missed seizures 

were considered worse than false alarms, and that perfect accuracy was not considered a 

requirement for a forecasting device 21. Recently, Janse et al. (2019) showed that seizure 

forecasting devices were acceptable despite the potential for inaccuracy (up to “inaccurate 

30% of the time”). Ultimately, post-hoc studies and surveys can only provide an indicative 

measure of the utility and benefits of a seizure forecasting device. In a prospective setting, 

some people may find knowing times of safety to be more important than high risk warnings. 
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Some people are likely to tolerate false alarms poorly, whereas others would find a 

forecasting device very helpful. It is also unclear how many warning states users will find 

desirable. This study used three seizure likelihood states (low, medium and high), based on 

the warning lights used in the original Neurovista study. We found that the times and 

proportions of seizures occurring in low, moderate, and high risk states were significantly 

different (Fig. S6), suggesting the division into three risk states can provide statistically 

meaningful information. However, in a prospective setting, users may prefer to be able to set 

their own warning states. As with many aspects of epilepsy treatment, the usefulness of 

seizure forecasting is likely to be patient specific. 

This study provided a proof-of-concept that seizure diary apps can provide a personalized 

forecasts of seizure likelihood. We hypothesise that mobile apps to forecast cycles of seizure 

likelihood have the power to improve quality of life for people with epilepsy, even without 

delivering direct intervention. In support of this hypothesis, we note that unpredictability is 

the primary disability of epilepsy 1 and, for people with refractory seizures, quality of life is 

far more strongly determined by the degree of drug-related side effects or depressive 

symptoms than by seizure frequency 51. Reliable seizure forecasting has the potential to 

improve quality of life by reducing uncertainty and improving mood. There is also scope for 

forecasting to reduce drug related side effects through intelligent titration of medication. 

Ultimately, it is our hope that seizure forecasting apps provide another clinical tool to manage 

epilepsy.

KEY POINTS

 Personalized forecasts based on circadian and multiday seizure cycles were tested 

pseudo-prospectively using data from a mobile seizure diary app (50 users) 

 Forecasts of seizure likelihood based on self-reported cycles were predictive of 

electrographic seizures for approximately half the validation cohort (n = 8)

 Forecasts using only mobile app diaries had average accuracy of 69.1%, (14.8% 

time in warning) and allowed users to spend an average of 67.1% of their time in a 

low-risk state.

 Seizure diary apps can provide personalized forecasts of seizure likelihood that 

are accurate and clinically relevant for electrographic seizures.

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



This article is protected by copyright. All rights reserved

ACKNOWLEDGEMENTS

This project was funded by the National Health and Medical Research Council Project Grant 

(APP 1130468). This project was also supported by the Epilepsy Foundation of America’s 

Epilepsy Innovation Institute “My Seizure Gauge” grant. 

MPR is funded in part by the MRC Centre for Neurodevelopmental Disorders, the EPSRC 

Centre for Predictive Modelling in Healthcare, and the NIHR Biomedical Research Centre at 

the South London and Maudsley NHS Foundation Trust.

ASB receives study-related funding from My Seizure Gauge and from the RADAR-CNS 

project.

COMPETING INTERESTS

DRF, MJC, PJK each have a financial interest in Seer Medical. DRF, PJK, MM, ESN, DP 

receive a salary from Seer Medical.

The remaining authors have no conflicts of interest.

ETHICAL PUBLICATION STATEMENT 

We confirm that we have read the Journal’s position on issues involved in ethical publication 

and affirm that this report is consistent with those guidelines.

FIGURE LEGENDS

Figure 1. Schematic of seizure forecasting method. A. Development of forecasts initially 

required at least 30 seizure times to be reported in the mobile app. B. Self-reported seizure 

times were represented as cyclic histograms with different periods. The strongest fast and 

slow cycles were estimated based on the synchronisation index of seizure histograms. In the 

example, a 24 hour and 7 day cycle are shown. C. The estimated seizure likelihood was 

calculated by combining the fast and slow cycles. High and low risk forecasts (dashed red 

and green lines) were optimised based on historical data.

Figure 2. Alignment of seizure cycles based on self-report and EEG for the Neurovista 

cohort. Each circular histogram shows the circadian distribution of seizure cycles based on 

self-reported events (light blue) and electrographic seizures confirmed by expert reviewers 

(black line). Total seizure numbers for each subject are given above each plot (with self-

reported event counts in brackets). Subject 7, had significantly different cycle distributions 
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using Kuiper’s test for circular distributions (* p < 0.05, ** p < 0.01). Subjects 2, 3 and 5 did 

not have enough self-reported events for a comparison to be made.

Figure 3. Validation of forecasting performance based on self-reported seizure cycles. A 

comparison of forecasting accuracy using self-reported events (black) and electrographic 

seizures (white) from the Neurovista cohort. Note that only individuals with at least 30 

seizures were included. Forecasting performance was evaluated for electrographic seizures. 

A. Percentage of time in high risk (x-axis) compared to accuracy, or proportion of seizures 

reported during high risk states (y-axis). A good forecast is near the top left corner (100% 

accuracy, with the minimum number of hours in high risk). B. Percentage of time in low risk 

(x-axis) compared to the proportion of seizures in low risk states (y-axis) reported. A good 

forecast is near the lower right corner, indicating maximal time in low risk without any 

seizures occurring.

Figure 4. Output of a seizure forecast. Example data from an individual’s high and low risk 

forecasts over a 30-day period (y-axis). The panel shows the pseudoprospective forecast 

output each day (x-axis). Red indicates times when the high risk warning would be activated, 

green indicates time when the low-risk warning would be activated and white shows times 

when the warning was moderate. Reported seizures are marked in black, and seizures that 

occurred during the low risk state marked as red asterisks (in this data three seizures occurred 

during low risk periods). Note that individuals were not shown the output of their forecasts, 

and these data represent an example of pseudoprospective results only.

Figure 5. Forecasting performance using self-reported seizure cycles. Performance of 

high and low risk forecasts developed from mobile app data for 33 users. A. Percentage of 

time in high risk (x-axis) compared to accuracy, or proportion of seizures reported during 

high risk states (y-axis). A good forecast is near the top left corner (100% accuracy, with the 

minimum number of hours in high risk). B. Percentage of time in low risk (x-axis) compared 

to the proportion of seizures in low risk states (y-axis) reported. A good forecast is near the 

lower right corner, indicating maximal time in low risk without any seizures occurring.

Figure 6. Receiver operating characteristic curves for seizure forecasts. The curves show 

the true positive rate (y-axis) compared to the false positive rate (x-axis) for each individual 
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app user as the high risk threshold is varied. An ideal forecast has AUC = 1; chance level 

forecast has AUC = 0.5 (the diagonal line).
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SUPPLEMENTARY MATERIAL

Figure S1. Alignment of seizure cycles based on self-report and EEG. Each circular 

histogram shows the multiday distribution of seizure cycles based on self-reported events 

(light blue) and electrographic seizures confirmed by expert reviewers (black line). The 

period of the multiday cycle for each subject is given above the circular histogram subplots. 

Subjects 7, 11 and 15 had significantly different cycle distributions using Kuiper’s test for 

circular distributions (* p < 0.05, ** p < 0.01). Subjects 2, 3 and 5 did not have enough self-

reported events for a comparison to be made.

Figure S2. Total seizure rates with respect to time of day. Comparison of total seizure 

rates and circadian trends across all 15 subjects in the Neurovista cohort. Electrographic 

seizure rates (“EEG”) are compared to self-reported seizures (“Diary”) and seizures that were 

confirmed by audio recordings (“Audio”). A. Total count of seizures (y-axis) at different 

hours of day (x-axis). B. Circadian trends showing seizure likelihood (y-axis) with respect to 

time of day (x-axis).
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Figure S3. Alignment of seizure cycles based on self-reported + audio detections and 

EEG. Each circular histogram shows the circadian distribution of seizure cycles based on 

self-reported events combined with audio confirmed events (pink) and electrographic 

seizures confirmed by expert reviewers (black line). Total seizure numbers for each subject 

are given above each plot (with self-reported + audio events in brackets). Subject 7 had 

significantly different cycle distributions using Kuiper’s test for circular distributions (** p < 

0.01).

Figure S4. Relationship between self-reporting accuracy and forecasting accuracy. The 

scatter plot shows the proportion of self-reported seizures that were electrographic seizures 

(x-axis) compared to the forecasting accuracy (y-axis) for the Neurovista cohort. Forecasting 

accuracy was calculated as shown in Fig. 3. Pearson’s linear correlation was not significant (

, p-value = 0.54).�=  0.26

Figure S5. Examples of seizure forecast output. Example output of pseudoprospective 

seizure forecasts for two different individuals. High risk periods are shown in red, low risk 

periods are shown in green and moderate risk periods are shown in white. Black triangles 

represent reported lead seizures (first seizure in a given hour). Red asterisks represent 

reported seizures that occurred during low risk periods.  A. A person with a lower reported 

rate of 1.4 seizures per week; they had no seizures occur during low risk times (53.5% of the 

time spent in low risk) and 84.6% of seizures during high risk times (23% of the time). B. A 

person with a higher reported rate of 24.2 seizures per week; they had 33 seizures (16.8%) 

during low risk times (51.7% of the time spent in low risk) and 47.5% of seizures during high 

risk times (21.9% of the time).

Figure S6. Distribution of time spent in and proportion of seizures occurring in low, 

moderate, and high risk states. Box plots show the distribution across mobile app users. 

Whiskers show the 5th and 95th percentiles, boxes show the 25th and 75th percentiles, and 

markers show the median of each distribution. For each distribution the significance of the 

difference in medians was computed using the two-sided Wilcoxon rank sum test. Asterisks 

above each comparison show the significance level: * p < 0.05, ** p < 0.01. A. Proportion of 

seizures in low, moderate, and high risk states. B. Time spent in low, moderate and high risk 

states.
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