
Vision-based Automated Crack

Detection using Convolutional Neural

Networks for Condition Assessment of

Infrastructure

Journal Title

XX(X):1–13

©The Author(s) 2020

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

SAGE

Aravinda S. Rao1, Tuan Nguyen2, Marimuthu Palaniswami1 and Tuan Ngo2

Abstract

With the growing number of aging infrastructure across the world, there is a high demand for a more effective inspection

method to assess its conditions. Routine assessment of structural conditions is a necessity to ensure the safety and

operation of critical infrastructure. However, the current practice to detect structural damages such as cracks depends

on human visual observation methods, which are prone to efficiency, cost and safety concerns. In this article, we

present an automated detection method, which is based on Convolutional Neural Network (CNN) models and a non-

overlapping window-based approach, to detect crack/non-crack conditions of concrete structures from images. To this

end, we construct a dataset of crack/non-crack concrete structures, comprising 32,704 training patches, 2,074 validation

patches and 6,032 test patches. We evaluate the performance of our approach using 15 state-of-the-art CNN models

in terms of number of parameters required to train the models, Area Under the Curve (AUC), and inference time. Our

approach provides over 95% accuracy, over 87% precision in detecting the cracks for most of the CNN models. We

also show that our approach outperforms existing models in literature in terms of accuracy and inference time. The

best performance in terms of AUC was achieved by Visual Geometry Group’s VGG-16 model (AUC=0.9805) and best

inference time was provided by AlexNet (0.32 seconds per image of size 256 x 256 x 3). Our evaluation shows that

deeper CNN models have higher detection accuracies, however, they also require more parameters and have higher

inference time. We believe this study would act as a benchmark for real-time, automated crack detection for condition

assessment of infrastructure.

Keywords

Structural Health Monitoring, Automated Assessment, Crack Detection, Deep Learning, Convolutional Neural Network

(CNN)

1 Introduction

The growing number of aging critical infrastructure (e.g.

bridges, roads) around the world has increased concerns for

the operational efficiency and safety of these structures. The

capacity of infrastructure can be deteriorated during their

service life due to the presence and development of structural

damages such as cracks. Current mainstream methods

of infrastructure assessment involve performing visual

inspection periodically to inform management agencies the

current stage of infrastructure. Hence maintenance and

strengthening works can be carried out timely to assure the

operational efficiency and safety of critical infrastructure.

For example, the current level-1 and level-2 inspection

guidelines heavily rely on visual inspection carried out

by qualified inspectors to detect visible cracks on the

surface of structures1. However, the current visual inspection

practice has been identified as a costly, time-consuming

and subjective method2,3. Manual inspection of large

infrastructure such as long-span bridges requires inspectors

to enter hazardous areas or inaccessible to physical location

limits, which not only affects the reliability and efficiency of

the inspection but is also a safety concern for inspector4.

1Department of Electrical and Electronic Engineering, The University of

Melbourne, Melbourne, Australia
2Department of Infrastructure Engineering, The University of Melbourne,

Melbourne, Australia

Corresponding author:

Tuan Ngo, Department of Infrastructure Engineering, The University of

Melbourne, Melbourne, Australia.

Email: dtngo@unimelb.edu.au

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

2 Journal Title XX(X)

With rapid advancements in automation technologies,

there is an increasing trend in managing critical infrastruc-

ture using autonomous and intelligent inspection systems5,6.

An autonomous inspection system is usually equipped with

a visual camera for taking high resolution images, and

therefore, it requires an automated detection for structural

damages to maximize the benefits of the automated inspec-

tion system6. Recently vision-based systems appear to be a

promising solution for an autonomous inspection system to

analyze images and detect cracks on structures. Applications

of vision-based systems could be found in detecting cracks

in: dams7, bridges8, road surfaces9, concrete surfaces10,

concrete bridges11 and also detecting potholes12. The term

“automated detection” or “autonomous” refers to the process

in which, whenever the system is provide with an image or

a video, the system will then highlight the defective surfaces

without any human intervention or human input other than

the input data (images or videos). In other words, the trained

system automatically detects the defects (such as cracks)

from images or videos without any additional input.

The advantages of vision-based methods is that they

capture 2D/3D information of the structures. This will enable

automated systems to detect superficial defects (cracks,

corrosion) as well as add comprehensive information about

the structures. In addition, vision-based systems provide

accurate information compared to manual inspection and

crack detection using contact-based sensors13. Recently,

deep learning (DL) algorithms have accelerated many vision-

based systems to provide better detection accuracy. DL

algorithms utilize neural networks to build a deeper network

architecture to hierarchically extract important features

automatically. DL14 has been extensively used in object

detection and classification tasks, human action recognition,

face recognition, natural language processing, medical image

processing, pedestrian detection and tracking15, safety of

construction works16 and also in the detection of cracks17.

Broadly, vision-based methods can be classified into

four categories: (1) image processing methods use signal

processing tools to detect cracks, including edge filters

and then extract features manually to detect cracks using

machine learning; (2) region-based classification methods

aim to detect cracks by localizing the cracks in the image

regions—this is done by creating patches of images and

then classifying (using traditional machine learning or

the recent deep learning approaches) whether or not a

patch contains a crack; (3) object-detection methods using

generic objection schemes to detect cracks along with other

objects, usually use deep learning object detectors; and (4)

segmentation methods detect cracks by classifying whether

each pixel belongs to a crack or any other object—this

approach requires more computational power. Each method

has its own advantages and disadvantages, but region-

based crack detection is highly sought-after to localize

the cracked regions, especially on concrete surfaces for

automated inspection. Existing region-based methods use

Convolutional Neural Networks (CNNs)18 incorporating

image patches (of sizes 256 x 256, 520 x 520) such that

they can detect cracks from large images (5888 × 3584,

4096 x 4800) with the similar patch size used for training.

However, one of the drawbacks of these approaches is that

they are designed to identify cracks in a coarse manner–

cracks are assumed to be of the same size as that of patch.

To elaborate, suppose we have a crack of only 16 x 16 in

an image of size 256 x 256, then the entire image will be

classified as containing crack. Identification of patches by

such coarse methods is not suitable if we want to detect

cracks at finer levels, say 16 x 16. The existing methods

also need to be retrained and would be computationally more

expensive because of multiple scans required to detect cracks

on the edges of scanning windows.

To address these issues, in this article, we present a

non-overlapping window-based approach to detect concrete

cracks from images at finer level (windows size of 64 x

64) on smaller images mainly targeted toward real-time

applications. The proposed approach can be extended to

larger images as well (keeping the same window size)

without re-training or scanning the images multiple times.

We do performance evaluation of our approach using 15

state-of-the-art CNN models and any of these models can be

used to detect cracks on concrete surfaces depending on the

user needs while balancing accuracy vs. inference time.

The article is organized as follows: Section 2 provides

a detailed review of the existing works; Section 3 presents

our approach using 15 CNN models and explains each

of the models; Section 4 includes details of dataset,

implementation, handling imbalanced data, loss function,

network optimization, online learning and training the

models. Section 5 includes results of the CNN models in

terms of Area Under the Curve (AUC), optimal operating

thresholds and inference time, and also comparison of the

results with discussion; and Section 6 concludes the work.

2 Related Work

In this section, we review the existing work related to crack

detection in Structural Health Monitoring (SHM) under four

subsections: (1) Image Processing Methods, (2) Region-

based Classification Methods, (3) Object Detection Methods,

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 3

and (4) Semantic Segmentation Methods. The following

subsection reviews each approach in detail.

2.1 Image Processing Methods

Image processing techniques are quite attractive to visually

inspect critical infrastructure. For example, histogram of

pixels were employed to detect cracks using an expert system

to automatically detect spalling and transverse cracks19.

Sobel, Canny, Fourier Transform and Fast Haar Transform,

which are some of the classical signal processing techniques,

were also used to detect edges, and subsequently cracks

in the images20. Region growing methods21, which rely

on the connectivity of pixels in the cracked regsions, first

convert the images to binary images (0 or 1 values of each

pixel) using a threshold, set the initial seed for percolation

of crack using the edge information in the local windows

and then grow the crack regions for detecting the cracks. A

combination of edge detection and region filling techniques

by connecting the 8-neighborhood pixels with Dijkstra’s

shortest path search algorithm10 were also used to detect

cracks in concrete structures. Furthermore, edge detection

and morphological dilation was used to detect cracks using

Unmanned Aerial Vehicles (UAVs)22.

With the advancements in machine learning, such as

the superior performance of Support Vector Machines

(SVMs)23 and Neural Networks (NN)24 for classification

tasks in the early 2000s, SVMs were employed to

classify image patches containing cracks by extracting

features from Hough Transform25. Texture features, such as

Gray Level Coefficient Matrix (GLCM) features with NN

classifiers were also employed26. Furthermore, Laplacian

of Gaussian (LoG) weighted Haar-like (edge) features were

extracted and fed to Adaptive Boosting (AdaBoost) learning

algorithm, which will keep the best predictive features to

detect cracks27. To handle illuminations, a semi-automated

approach was proposed by manually cropping crack regions,

filtering noise based on wavelet filters and then segmenting

the image using energy functionals into background and

crack28. A heuristics approach was proposed to localize the

cracks in images using hierarchical clustering29. Spatially

tuned multifeature (STRUM) uses localized line segments to

detect cracks and provides an accuracy of 95%11. We find

that manually extracting features from images (or patches)

and then training a classifier is often not on par with deep

learning models.

2.2 Region-based Classification Methods

The main challenges in detecting cracks from images (or

videos) are that the features must be invariant to scale,

translation, noise, lighting conditions and shadows. The

manual feature extraction methods, which uses handcrafted

features are suitable for a specific case and often fail

to perform well when tested in real-world conditions.

Recently, DL algorithms, such as the convolution neural

networks (CNNs) have shown promising results for real

world applications30. With the availability of large amounts

of training data, the CNN-based architectures usually

outperform their shallow counterparts due to generalization

of features through hierarchical learning of features at

different abstract levels.

In this aspect, detecting cracks/non-cracks is an important

problem in SHM research. For this, both SURF-based

and CNN-based classification approaches were tested18.

Compared with traditional edge detection methods in

classifying each image patch as “crack” or “intact”, a CNN-

based sliding-window architecture with 8 layers trained

using 40k images of 256× 256 pixels has shown superior

performance of 98% accuracy17.

CNN-based Residual Neural Network (ResNet), which

tries to address the problem of vanishing gradient in deeper

networks by making use of skip connections, showed a

slightly lower performance (of 87.5% accuracy with 35

parameter layers) when classifying cracks, deposit and water

leakage31.

To reduce false positives, we also see the utilization of

infrared images in conjunction with visual images to train

a CNN model [GoogleNet32 with 22 layers]33. Bayesian

data fusion has also been explored for detecting cracks.

For example, crack detection using Local Binary Pattern

(LBP), SVM and Bayesian fusion delivered an accuracy of

85%. An improvement in the performance (with a sensitivity

of 98.3%) was achieved with Naive Bayes (NB)-CNN

architecture34. NB-CNN uses 11-layer with overlapping

image patches (120× 120) to detect cracks in different video

frames.

2.3 Object Detection Methods Applied to

Crack Detection

Object detection methods use region proposal methods35

and region-based CNN (R-CNN)36 to detect objects.

Region proposal methods are computationally expensive

and uses Selective Search35 greedily to generate possible

locations of objects. However, the R-CNN36 approach had

higher accuracy, but computationally expensive as R-CNN

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

4 Journal Title XX(X)

architecture performs ConvNet for each object proposal in

the forward pass. Later, Fast R-CNN37 was introduced to

address the drawbacks of R-CNN by training end-to-end

and showing higher accuracy. However, Fast R-CNN has

limitations in generating object proposals as it is dependent

on selective search35 object proposals, which is time-

consuming and acts as a bottleneck. To take advantages of

both region proposals and Fast R-CNN, Region Proposal

Network (RPN) was introduced. Faster R-CNN38 combines

RPN and Fast R-CNN to achieve state-of-the-art object

detection results.

In structural assessments, Faster R-CNN (region-based

CNN)38 was utilized to classify multiple types of structural

damage from images, such as concrete crack, steel corrosion

(medium and high), bolt corrosion, and steel delamination

with a mean average precision (mAP) of 89.7% and average

precision (AP) of 94.7% for detecting concrete cracks39. It

is to be noted that object detection methods such as Faster

R-CNN perform well when detecting objects of different

classes, but it performs poorly when one wants to only detect

cracks - we show this in Section 5. In39, the good AP score

is because there were other distinguishing objects other than

cracks, which helped to develop feature maps that made

it possible to detect cracks. Faster R-CNN is also used to

detect concrete spalling with a mAP of 90.79%40. Faster R-

CNN with ResNet-101 provided a mAP of 90% for detecting

spalling on historic masonry buildings. A modified version of

the faster R-CNN, called CrackDN 41, integrates sensitivity

detection network and Region Proposal Refinement Network

(RPRN) to detect sealed and unsealed cracks. CrackDN

provides a mAP of 0.9, better than Faster R-CNN and Single

Shot Detector (SSD).

2.4 Semantic Segmentation Methods

Semantic segmentation approaches endeavor to classify each

pixel into one of the pre-determined classes (for example, the

pixels could either belong to “crack” or “no crack” class).

In other words, semantic segmentation is a natural progress

from coarser inference (such as, patch-based, region-based,

object-detection) to finer inference. A study consisting of

six edge detectors (Roberts, Prewitt, Sobel, Laplacian of

Gaussian, Butterworth, and Gaussian) and CNN [AlexNet42]

to classify pixels into “crack” and “non-crack” showed that

the edge-based techniques for classifying pixels is sub-

optimal when compared with CNN approaches43. This result

reinforces our previous view that edge-based methods are

sub-optimal in detecting cracks. CrackNet 44 is a CNN-

based 5-layer architecture designed for automated pavement

crack detection on 3D asphalt surfaces with a precision of

90.13% and recall of 87.63%. The results are superior when

compared with the Pixel-SVM45, which extracts features

from non-overlapping pavement image patches and uses

SVM to classify the patches.

Alternatively, Fully Convolutional Network (FCN) has

shown remarkable progress in classifying pixels46. FCN has

encoder-decoder network to encode (extract features from

input images along with one of the backbone architectures,

such as VGG16, VGG-19, ResNet, etc to classify, but

without the final output layer) and decode (deconvolve and

upsample layers to reconstruct segmented images). FCN

with VGG-16 as encoder architecture47 trained on 40k

images with 227× 227 pixels and tested on 500 images

provided an accuracy of 90% in classifying pixels. In

addition, FCN with DenseNet-121 as encoder provides

pixel accuracy of 98.61%48. However, FCN with VGG-

19 as backbone49, did not improve the maximum accuracy

(81.73%), with precision and recall of 78.97% and 79.95%,

respectively), but FCN reduced the training time required for

training from several days (CrackNet) to hours. We also see

the variants of CNN such as Mask R-CNN50 being used for

crack detection. DeepCrack51 extends FCN by combining

FCN and Deeply-Supervised Nets (DSN)52, and applies both

Conditional Random Fields (CRFs) and guided filtering to

improve prediction of pixel-wise semantic segmentation of

crack with a mean Intersection of Union (IoU) of 0.86.

More recently, U-Net trained network was proposed to

detect concrete cracks53. Like FCN, U-Net uses encoder-

decoder network but with modifications, including: (1)

U-Net is symmetric in network structure consisting of

contracting and expansive paths (i.e., the shape of the

network from input to output look “U”, hence the name “U-

Net”), (2) U-Net uses skip connections between upsampling

and downsampling paths, and (3) the pooling operators in

the expansive path are replaced by upsampling operators.

One of the key features of U-Net is its ability to learn from

limited training data. In53, only 57 images were used to train

and it provided an F1-score of 90%. Depending on the end-

user application, semantic segmentation approaches can be

useful. For example, U-Net is agnostic to input image size,

whereas it requires considerable amount of training time for

relatively larger image sizes.

Table 1 provides a summary of image processing and

region-based classification methods with their advantages

and disadvantages. Likewise, Table 2 provides a summary of

object detection and semantic segmentation methods applied

for crack detection.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 5

3 Our Approach

In this work, we present a patch-based approach using 15

deep learning classification models to identify the image

patches with cracks. We use the existing state-of-the-art

CNN models to compare their effectiveness in detecting

the cracked regions. We approach this by creating non-

overlapping patches of images and then classifying whether

a given image patch contains a crack or otherwise.

3.1 Overview of the proposed approach

Figure 1 shows the overview of the crack detection approach

used in this work. Figure 1 (a) shows the training phase and

Figure 1 (b) shows the testing (or the inference) phase. In

both phases, input image of size 256× 256 and 24-bit depth

(three channels) is divided into 16 patches (each patch of

size 64× 64 - the number of channels remain the same).

Then, the image patch in fed into one of the CNN models

by resizing the patch and normalizing each patch). Resizing

of patch is done such that it matches the specific CNN model

input size. Please refer to Table 3 for more information about

the input size for each of the models used in this work.

During training, we use image patches belonging to “crack”

and “no crack”, and test the model against validation image

patches. During testing, the test image is first divided into

patches, normalized and then the trained model is used for

inference (to predict) whether or not there is a crack in each

patch. We highlight the patch depending on whether or not

there was a crack.

In the following subsections, we briefly discuss each of the

15 CNN architectures as these are the current state-of-the-

art models. Interested readers are encouraged to refer to the

references for more detailed description of the CNN models.

Later in the Section 4, we provide details of how we trained

the models and evaluated the performance of each of these

models in detecting cracks.

3.2 AlexNet

AlexNet42 was trained on Imagenet data consisting of 1.2

million images with 1000 classes. It won the ImageNet

Large-Scale Visual Recognition Challenge (ILSVRC)-2010

and ILSVRC 2012, with the best ever reported results. In this

network, the authors used Rectified Linear Units (ReLUs) as

activation functions. We use this network architecture and

modify the final fully connected (FC) layer to have only two

classes (“crack” or “no crack”), resulting in approximately

57M parameters (Table 3). Figure 2(a) shows the modified

network architecture.

3.3 Visual Geometry Group (VGG) Networks

Visual Geometry Group (VGG) from Oxford University

proposed CNN networks with 16 and 19 layers, popularly

known as VGG-16 and VGG-19 architectures54. We used

these networks with the output layer changed to two classes

(instead of 1000 in the original VGG architecture) as shown

in Figure 2 (b) and Figure 2 (c), respectively. VGG-16 and

VGG-19 with two output classes have close to 134.2 million

and 139.5 million, respectively (Table 3). In both the cases,

the networks use 3× 3 convolution layers stacked on one

another, increasing the depth of the networks.

3.4 Residual Networks (ResNets)

Increasing the depth of the networks i.e., adding more

layers to the network, such as in VGG-16 and VGG-19,

it was shown that networks could learn well. However, it

also exposed one of the important problems in training

deeper networks: degradation of training accuracy—it is not

easy and also not the same to optimize deeper networks55.

To overcome this problem of degradation, deep residual

learning framework was introduced. The residual networks

add identity mapping between a group of stacked layers,

which do not add any extra parameter for learning. The

blocks of network layers along with identity mappings form

residual mapping and is easier to optimize the learning

with deeper networks. Let x and y represent input and

output vectors of layers. Suppose, if we have H(x) as

the mapping to be fit by a few stacked layers, then the

residual function is given by F(x) : H(x)− x. With this

formulation, if the identity mappings are optimal, then the

weights of the multiple non-linear weights will be driven

towards zero, to approximate identity mappings. Residual

networks (ResNets) are inspired by VGG networks, but have

lower complexities. ResNet-50, ResNet-101 and Resnet-152

have 50, 101 and 152 layers, and 23.5, 58.1 and 235.1 million

parameters, respectively (Table 3). Figures 2 (c)–(e) show the

network architectures of ResNet-50, ResNet-101 and Resnet-

152 used in this work, with the last FC layer modified to two

outputs for detecting cracks.

3.5 Inception Networks

The Inception architecture (also called as “GoogLeNet”)

is based on the idea of representing dense components

by optimal local sparse structure in a convolutional

network. It also applies dimensionality reduction (i.e.,

low-dimensional embeddings) and projections wherever

computational resources are limited. In other words,

Inception network combines the two ideas using stacked

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

6 Journal Title XX(X)

layers with occasional max pooling layers32. Inception

networks use 12x fewer parameters than AlexNet, while

maintaining high accuracies. One of the advantages of

Inception networks is that it allows to increase the

number of hidden units at each stage without significantly

increasing the computational complexity of the network.

With dimensionality reduction at each layer, practically

it allows to use the improved computational resources to

increase the width and depth at each stage.

Inception-v356 uses (1) the idea of factorizing larger

spatial filter into smaller ones, and (2) replacing a symmetric

spatial convolutional filter with multiple asymmetric filters.

For example, (1) instead of using 5× 5 filter, one could

use two 3× 3 filter, which would reduce the computational

load and also increase the non-linearity; and (2) instead

of using a single 3 x 3 convolutional layer, one could

go for two layers with 3 x 1 followed by 1 x 3 layers.

This approach could be generalized to replace any n× n

convolution by a 1× n convolution, followed by a n× 1

convolution, which would increase the computational cost

savings as n increases. Inception-v3 has 42 layers and costs

about 2.5x GoogLeNet, but less than VGG networks. Figure

3 (a) shows the Inception-v3 network architecture used for

detecting cracks. Inception-v3 for crack detection has 25.1

million parameters (Table 3).

Inception-v457 improves on the architecture of Inception-

v3 by adding more layers and a more simplified and

uniform architecture. Figure 3 (b) shows the Inception-

v4 architecture with simplified architecture. The “stem”

block in the Inception-v4 (Figure 3 (b)) describes the early

stage convolution, pooling and normalization operations. To

answer the question of whether adding residual connections

would improve the performance of inception networks,

Inception-ResNets, such as the Inception-ResNet-v1 and

Inception-ResNet-v2, were introduced57. Inception-ResNet-

v1 has similar computational cost as Inception-v3. On the

other hand, Inception-ResNet-v2 combines Inception-v4 and

ResNet, which is hybrid and has costlier computational cost,

but with improved recognition performance. In this work,

we have used Inception-ResNet-v2 for detecting cracks and

Figure 3 (c) shows the network architecture. Inception-

v4 and Inception-Resnet-v2 have 41.1 and 54.3 million

parameters, respectively (see Table 3).

3.6 Dense Convolutional Networks

(DenseNets)

Traditional convolutional networks with L layers have

L connections, whereas Dense Convolutional Network

(DenseNet) connects each layer to every layer in a

feed-forward approach58. Thus, DenseNets have
L(L+1)

2

connections, resulting in fewer parameters than traditional

convolutional networks. ResNets do not combine feature

through summations before being passed into the next

layer, whereas DenseNets combine them by concatenating

the inputs from the preceding layers as well as its own

feature-maps. As a result, there is also an improved flow

of information and gradients throughout the network, which

helps in training deeper networks. In addition, DenseNet

network architectures have regularization effects on small

training sets, reducing overfitting during training. Figures 3

(d) and (e) show the DenseNet with a depth of 121 and 169

layers, respectively. From Table 3, we see that DenseNet-

121 and DenseNet-169 require only 6.9 and 12.4 million

parameters for detecting cracks, which are significantly

fewer than the rest of the networks.

3.7 Aggregated Residual Transformations

In the previous subsections, we saw that Inception

models56,57 have a common property of split-transform-

merge strategy, wherein the input is split into a few lower-

dimensional embeddings, transformed by specialized filter

and merged by concatenating them. However, it will be

challenging to adapt this strategy to new data sets. To

address this issue, aggregated residual transformations59

were introduced by adopting VGG/ResNets’ scheme of

repeating layers and utilizing split-transform-merge of

Inception modules within the same topology. This re-

design results in a homogenous, multi-branch architecture

with a fewer set of parameters. It also enables a new

dimension called “cardinality,” which represents the size

of transformations. This new dimension is an additional

dimension that enables to describe the networks along with

size and width. In this work, we have included ResNeXt-

50 (32x4d) and ResNeXt-101 (32x8d) as shown in Figures

4 (a) and (b). In the ResNeXt-50 (32x4d), 50 indicates

the network with a depth of 50 layers, 32 represents

the cardinality of transformations and 4d represents the

bottleneck width, which is part of ResNet. Similar expansion

applies to ResNeXt-101 (32x8d). ResNeXt-50 (32x4d) has

22.9 million parameters (see Table 3), which is slightly lesser

than ResNet-50, whereas ResNeXt-101 (32x8d) has 86.7

million parameters (an additional 28.6 million parameters

when compared with ResNet-101).

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 7

3.8 Wide Residual Networks (Wide ResNets)

As we have seen in the previous subsections, ResNets use

identity mappings to train very deep networks. However,

this also has a disadvantage: there is no guarantee that

the network would make the gradient flow through the

residual weights. So, only some of the blocks could learn

representation or very little information could be shared

among blocks. To increase a fraction of accuracy requires

nearly doubling the number of layers, indicating the problem

of diminishing feature re-use. To address this issue, Wide

Residual Networks (Wide ResNets)60 were introduced. Wide

ResNets decrease the depth of network while increasing

the width of residual networks. In this work, we have

included Wide-ResNet-50-2 and Wide-ResNet-101-2 for

comparison with other models and the network architectures

for detecting cracks are shown in Figures 4 (c) and (d). In

the naming convention, Wide-ResNet-50-2 represents a wide

ResNet with 50 layers deep and 2x width of the original

ResNet-50 architecture (similar naming convention applies

to Wide-ResNet-101-2). In comparison to the original

ResNet-50 network, the Wide-ResNet-50-2 has almost 3x

the parameters (i.e., ≈ 66.8 million), whereas Wide-ResNet-

101-2 has 2x the parameters of the original ResNet-101 (i.e.,

Wide-ResNet-101-2 has nearly 124.8 million parameters).

4 Training and Evaluation

4.1 Dataset

The dataset gathered consists of 2,173 training images (2044

train + 129 validation) and 377 test images of size 256×

256 and 24-bit depth (three channels). The cracks in the

training and test dataset were annotated manually using

LabelImg*. Further, each image was divided into 64× 64

non-overlapping image patches, resulting in 16 patches per

image. Using the annotation information for each image,

labels were generated for each patch based on whether there

was a “crack” or “no crack”, and manually verified for each

patch. Table 4 provides the details of number of patches used

for training, validation and testing the models. Our dataset,

trained models and codes are available publicly for future

development in this research area †.

4.2 Implementation

All the models were implemented using Python 3.6 and

PyTorch 1.1. We used a cloud-based service consisting of

Nvidia K80 Graphics Processing Unit (GPU) card with 11

GB graphics memory and Intel Xeon® (with 2 cores) Central

Processing Unit (CPU) to train the models. To test the

performance of the trained models, we used a laptop with

64-bit Ubuntu Operating System (OS), 16 GB RAM and 8th

generation Intel® Core™ i7-8550 CPU with a clock speed of

1.80 GHz.

4.3 Handling Data Imbalance

As can be seen from Table 4, the number of training patches

for class 0 is significantly higher (i.e., the “no crack” training

patches accounts for about 72.76% of the entire training

data), whereas the number of training patches for class 1

(“crack”) is only 27.24%, a highly skewed dataset which

forces CNN models to be biased towards majority class. As a

result, if we do not manage this data imbalance, we are likely

to have incorrect classification results on the test samples.

However, the data imbalance is a common phenomenon

that we observe in everyday practical applications. To

ensure that the CNN models learn meaningful discriminating

representations of both the classes (0 and 1), we provide a

weight tensor during training as:

w = [weight for class 0,weight for class 1] (1)

= #of training samples in class 1

Total # of training samples
, # of training samples in class 0

Total # of training samples
(2)

= [0.27, 0.73] (3)

The expression (3) indicates that the classifier learns the

thresholding boundary between two classes such that it

counteracts the majority class by adding more weight (0.73)

to class 1 (“crack”) samples and less weight (0.27) to class

0 (“no crack”). This ensures that the CNN models learn

a balanced threshold in the sample space and provide an

unbiased prediction in test cases.

4.4 Loss Function

In this work, the problem of detecting cracks in an image

has been formulated as a binary (two-class) classification

problem by dividing the images into patches, classifying

each patch depending on whether or not there is a crack

and subsequently labeling the patch containing crack. For

this binary classification problem, the negative log likelihood

(NLL) function is given by:

l(y, ŷ) = −
1

n

n∑

i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (4)

∗https://github.com/tzutalin/labelImg

†https://drive.google.com/open?

id=1m3AE_sghjfSb7SkzygVKHUqzABpUtr7m

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

https://github.com/tzutalin/labelImg
https://drive.google.com/open?id=1m3AE_sghjfSb7SkzygVKHUqzABpUtr7m
https://drive.google.com/open?id=1m3AE_sghjfSb7SkzygVKHUqzABpUtr7m

8 Journal Title XX(X)

where y is the actual label, ŷ is the predicted label and

n is the number of samples. This function is also called

as the binary cross entropy loss as it is a special case of

cross entropy (measure of distance between two probabilistic

distributions y and ŷ) function. It is to be noted that as NLL

is a convex function, it provides a unique minimum. Here,

y can be treated as the distribution of input class provided

to the model and ŷ is the distribution of class predicted by

the model. From information theory standpoint, entropy is

referred to the randomness in an event and it is represented

in terms of information bits. Then, the binary cross entropy

is representing the additional bits required to represent the

target class because of randomness in the data in place of true

class. In the equation (4), we can consider the term yi log(ŷi)

referring to the cross entropy of “crack” class and the second

term (1− yi) log(1− ŷi) referring to the cross entropy of

“no-crack” class. These terms are summed and averaged

over the input datapoints (images in our case). A value of

l(y, ŷ) = 0 represents zero loss, implying the model was

able to predict perfectly. A value greater than zero indicates

that there is a room for improving the model’s performance

by tuning model parameters. The Bias-Variance is a well-

known trade-off in machine learning that aims balance the

model underfitting or overfitting whenever we try to train

and test the model61. Considering this trade-off, the goal in

our approach is to drive the loss function error l(y, ŷ) to

as low as possible while ensuring that the model does not

underfit or overfit for the input data. To improve the model’s

performance by reducing this error in each target class, we

use optimization algorithms, such as, the stochastic gradient

descent (SGD) algorithm described in the next subsection.

4.5 Network Optimization and Online Learning

The objective of neural network optimization is to update the

(weight of) parameters of the neurons in conjunction with

activation functions such that the neural network achieves the

global minimum loss, resulting in a reduced generalization

error with optimized network for a particular application. In

other words, the optimization problem is to try to find the

global minimum on the surface of loss function. For this we

need large amounts of data and as the size of the (image)

dataset grows, we are limited by the capacity of data that can

be processed at a time. This calls for online learning in which

we consider a batch of B samples and update our parameter

estimates as the new batch of input data arrives rather than

updating the parameters once after all the samples have been

observed. This is also applicable to streaming data such

as video and one-dimensional sensor data. We can define

the loss L(z, θ) incurred on sample z when the parameter

takes on θ, where the gradient associated with the sample is
∂L(z,θ)

∂θ
. For a mini-batch of size B, the gradients at time t

using stochastic mini-batch gradient descent is given by62:

θt ← θt−1 − ǫt
1

|B|

∑

t′

∂L(zt′, θ)

∂θ
(5)

θt ← θt−1 − ǫt
1

|B|
▽F (θt) (6)

where zt′ is the sample in a batch of size B, ǫt is the learning

rate, | · | is the cardinality of the set and ▽F (θt) is the short-

form notation of the gradient vector. We use a mini-batch

size of 32 and SGD was used as it has been shown that

SGD finds a flatter minima than other optimizers. With a

constant learning rate, SGD may not always be able to find

the global minimum. Hence, momentum-based approaches

consider also the velocity of gradients, which have shown

to perform better in training deeper networks. This can be

formally defined as63:

vt+1 = µv − ǫt
1

|B|
▽F (θt) (7)

θt+1 = θt + vt+1, (8)

where µ ∈ [0, 1] is the momentum decay coefficient. We

use Step Learning Rate scheduler with a learning rate ǫt =

0.001 and µ = 0.9. Further, our implementation considers

step learning decay of 4 epochs, and learning rate decay (γ)

of 0.1. During training, all layers were allowed to update

gradients and we have used 50 epochs for comparing the

efficacy of the 15 CNN models. Although we ran 50 epochs

for each models, only the best network weights were stored

and used as trained models for evaluating the performance on

the test images. The total number of training iterations with

a mini-batch of size of 32 and 32,704 patches, is 1,022 and

the total number of iterations for 50 epochs is 51100. Our

implementation of the 15 CNN models considers patches of

“no-crack” as class 0 and “crack” patches as class 1.

4.6 Classifier Performance Metrics

We define a prediction function δ : X 7→ Y (where x ∈ X

is the input and y ∈ Y is the target) and the cost function

L(y, ŷ) as given in (4). Suppose we have a decision function

δ(x) = I(f(x) > τ), where f(x) measures the confidence

that y = 1 and τ is the threshold parameter64, then for the

binary classification problem of detecting the presence of

cracks in a given image patch, the performance metrics are

defined65 by varying the threshold (τ) and calculating the

confusion matrix is defined in Table 5.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 9

From Table 5, we can define the following performance

metrics:

True Positive Rate (TPR) =
TP

TP + FN
(9)

False Positive Rate (FPR) =
FP

FP + TN
(10)

Specificity =
TN

FP + TN
(11)

Accuracy =
TP + TN

TP + FN + TN + FP
(12)

Precision =
TP

TP + FP
(13)

We use the above metrics to measure the performance of

each model and compare them objectively to understand the

suitability of each model for real-time applications.

4.7 Training CNN Models

For training the models to classify each patch, we use

ImageNet pre-trained models as our initial model weights

and then train our models through transfer learning to detect

cracks. Figure 5 shows the sample training and validation

loss curves along with model accuracies for AlexNet [(a)

and (b)], and VGG-16 [(c) and (d)], respectively. Being

mindful of the space and readability of the article, we do

not present the loss and accuracy graphs for the remaining

13 models in this paper; however, these can be accessed

from the public folder‡. From the graphs, we observe that

the training loss is lower and the validation accuracy is also

lower, indicating this small error is common in practical

applications (as expected). Figure 6 shows the sample results

of VGG-16 from the training step. In Figure 6, (a)–(h)

represent the manually annotated ground truths, and (i)–(p)

show the corresponding predicted output of VGG-16 model

with a probability (decision, τ) threshold of 0.6. We see

that the VGG-16 model was able to correctly predict all 16

patches containing cracks in all images.

5 Results and Discussion

5.1 Receiver Operating Characteristics (ROC)

We compare the efficacy of the 15 models using ROC-

AUC. AUC is a well-known metric used in machine learning

to evaluate the performance of classifiers with the highest

being 1. The ROC AUC are generated by varying the

threshold parameter τ (see Section 4.6). Figure 7 shows the

comparison of all 15 models. We notice that VGG-16 has the

highest AUC (0.9805), followed by ResNet-152 (0.9788) and

AlexNet (0.9780). The AUC results reinforce the established

fact that deeper networks (such as VGG and ResNet) provide

better classification results. The result also indicates that

despite AlexNet being comparatively shallower network, it

provides comparable results in detecting cracks of concrete

structures. Table 6 lists the best operating threshold (τ)

that were found from the ROC analysis. In addition,

Table 6 also lists the performance metrics (sensitivity,

specificity and accuracy) achieved by the CNN models for

the corresponding threshold. The operating threshold listed

was chosen such that the CNN model provides the best

specificity, followed by sensitivity. In many cases, we see the

models are optimized for both.

It can be observed from Table 6 that VGG-16 and VGG-

19 both have higher sensitivity (0.95) and specificity (0.95).

In addition, VGG-19 has higher precision (0.90) along with

ResNet-152, Inception-v3, Inception-v4 and Wide-ResNet-

50-2; and VGG-19 achieved the highest accuracy (of 0.96).

It is important to notice that Cha et al.17 obtained about 98%

accuracy for detecting concrete cracks using CNN. However,

their approach would cause misclassification if the edges

were to be present on the edge of the sliding windows and

hence they used overlapping windows to detect cracks17. In

this work, we have used non-overlapping windows (in other

words, we use patches), which are not only computationally

efficient than overlapping widows, but also our approach

was able to detect cracks that were present on the edges

of patches. Moreover, Feng et al.31 used ResNet model and

achieved about 87.5% accuracy. However, the results show

that we could reach over 95% accuracy with ResNet model

from Table 6. Another study conducted by Jang et al.33

used GoogLeNet model and reported the precision value of

59.84%, which is far below when compared to our patch-

based approach as can be seen in Table 6 – our approach

achieves higher precision for the two GoogLeNet models

(0.90 for Inception-v3 and 0.89 for Inception-v4).

From Figure 6, we also note that our proposed approach

is robust to different concrete texture surfaces. The results

of our approach remain unchanged even if the concrete

surface texture have varied textures and complex cracks

because of the inherent nature of the layered approaches of

CNN wherein the lower layers capture edges, orientations,

and higher layers capture shapes and texture. Our training

examples include a variety of concrete images with different

texture and hence the CNN models automatically learn

these features over training time. Furthermore, our approach

is invariant to translation and rotation of input images

as observed during testing. These key observations of

‡https://drive.google.com/open?

id=1m3AE_sghjfSb7SkzygVKHUqzABpUtr7m

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

https://drive.google.com/open?id=1m3AE_sghjfSb7SkzygVKHUqzABpUtr7m
https://drive.google.com/open?id=1m3AE_sghjfSb7SkzygVKHUqzABpUtr7m

10 Journal Title XX(X)

our approach are primarily attributed to the fundamental

properties of CNN. More detailed invariant properties of

the CNN, such as translation and rotation are available

here66. Our proposed approach is also invariant to scale

and texture to an extent as our models are trained by

randomly cropping and flipping the patches from input

images during training67. However, if the scale of the

image is such that, for example, a crack in a patch covers

almost 80% of the patch, then the models may struggle to

classify the patch correctly. We recommend using image

scales such that the cracks in each patch do not exceed

over 60-70% of the patch size. To achieve this, one can

create a larger patch size (greater than 64 x 64) and

then resize the patch when feeding to the CNN models,

ensuring the scale of the cracks are accounted for. However,

one can also look at scale invariant CNNs, such as the

RetinaNet68, where pyramidal CNN architecture considers

different image scales. The RetinaNet68 was designed

primarily towards handling multiple scales in general object

detection scenarios. Nevertheless, our experience shows

that cracks generally do not suffer from scaling issues;

however, these can be solved by including pyramidal CNN

architecture.

5.2 Inference time

Inference time is also an important factor to be considered in

addition to the model accuracy and number of parameters

when choosing the models for real-time applications. For

example, Kim et al.69 reported that automated crack-

detection using UAVs took 1.6 seconds to detect cracks in an

image of concrete structures. Figure 8 shows the comparison

of inference time and ROC AUC for all the 15 models.

To ascertain the performance of our approach with regard

to detection accuracy and inference time, we compare our

results with those presented in Chen and Jahanshahi34 using

a CNN model and a Naive Bayes data fusion scheme (NB-

CNN). NB-CNN approach had a sensitivity of 98.3%, while

the AUC was around 96%34 and took about 2.55 seconds to

detect cracks on a 750 x 540 image. From Table 6, we see

that our approach provides a comparable sensitivity of 95-

96% while also providing 97-98% AUC. Also, our AlexNet-

based approach (which requires 0.0205 seconds to process

a patch - see Inference time Figure 8) is 1.3x faster (takes

0.328 seconds for 256 x 256 and accordingly 0.328 x 6 =

1.96 seconds to process 750 x 540) than NB-CNN34.

Table 7 shows the comparison of 15 CNN models

investigated in this paper in terms of model size (i.e.,

numbers of parameters), AUC and inference time. It is

evident that although AlexNet was third in AUC (from

highest to lowest), it requires the least inference time (about

20 ms) per patch. This is followed by DenseNet-121 and

ResNet-50 with 86ms and 90ms, respectively. VGG-16,

which had the highest AUC, comes at 10th place in inference

time (0.22 s per patch). These results indicate that as the

networks get deeper, the inference time also increases. So,

we have to choose models that fit the applications in hand not

only based on accuracy, but also considering the inference

time. If the inference time is too high, then those models

may not be suited for real-time crack detection of concrete

structures, but they can be used for offline assessments. Real-

time crack detection for infrastructure inspection require

models to be light-weight as the devices used will usually

have limited processing time, such as the Edge Computing

devices.

6 Conclusion

Detecting cracks on concrete surfaces is crucial for the

inspection and management of infrastructure as they indicate

the possibility of underlying structural damage due to

defect or aging, and may affect the safety, durability and

serviceability of infrastructure. Automatic crack detection

models are imperative to address the drawbacks of manual

inspections such as labor and time-intensity, high cost and

safety. Existing methods that use window-based scanning

use larger window size, resulting coarsely identified patches

of cracks, with less precise localization of cracks in

smaller images. In addition, window-based methods use

multiple scans (at least 50% overlap in patches) to detect

the cracks that appear on the edges of the scanning

windows. In this paper, we presented an automated crack

detection approach using Convolutional Neural Networks

(CNN) and non-overlapping windows to detect crack/non-

crack conditions of concrete structures from images. We

constructed a publicly available dataset of crack/non-crack

concrete images, consisting of 32,704 training patches, 2,074

validation patches and 6,032 test patches. We evaluated the

performance of our approach using 15 state-of-the-art CNN

models. The performance of these models were evaluated

based on the number of parameters required to train the

models, ROC AUC metric and inference time. The results

showed that our approach outperformed existing models in

literature for both accuracy and efficiency (i.e., inference

time). Our evaluation also shows that deeper models have

higher detection accuracies, however, they also require more

parameters and have higher inference time. Therefore, for

real-time applications, one has to choose models which

provide a balance between accuracy and inference time.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 11

Our proposed approach is suitable for SHM applications

involving drones for real-time inspections.

Acknowledgments

This work was supported by the CRC-P for Advanced

Manufacturing of High Performance Building Envelope

project, funded by the CRC-P program of the Department

of Industry, Innovation and Science, Australia, and the

Asia Pacific Research Network for Resilient and Affordable

Housing (APRAH) grant, funded by the Australian Academy

of Science, Australia.

References

1. VicRoads. Road structures inspection manual, 2018.

2. Kim H, Ahn E, Cho S et al. Comparative analysis of

image binarization methods for crack identification in concrete

structures. Cement and Concrete Research 2017; 99: 53–61.

3. Lynch JP, Farrar CR and Michaels JE. Structural health mon-

itoring: technological advances to practical implementations.

Proceedings of the IEEE 2016; 104(8): 1508–1512.

4. Peter C, Alison F and Liu S. Review paper: health monitoring

of civil infrastructure. Structural health monitoring 2003; 2(3):

0257–267.

5. Rakha T and Gorodetsky A. Review of unmanned aerial system

(uas) applications in the built environment: Towards automated

building inspection procedures using drones. Automation in

Construction 2018; 93: 252–264.

6. Dorafshan S and Maguire M. Bridge inspection: human

performance, unmanned aerial systems and automation.

Journal of Civil Structural Health Monitoring 2018; 8(3): 443–

476.

7. Shi P, Fan X, Ni J et al. A detection and classification approach

for underwater dam cracks. Structural Health Monitoring

2016; 15(5): 541–554.

8. Oh JK, Jang G, Oh S et al. Bridge inspection robot system

with machine vision. Automation in Construction 2009; 18(7):

929–941.

9. Gavilán M, Balcones D, Marcos O et al. Adaptive road crack

detection system by pavement classification. Sensors 2011;

11(10): 9628–9657.

10. Yu SN, Jang JH and Han CS. Auto inspection system using

a mobile robot for detecting concrete cracks in a tunnel.

Automation in Construction 2007; 16(3): 255–261.

11. Prasanna P, Dana KJ, Gucunski N et al. Automated

crack detection on concrete bridges. IEEE Transactions on

automation science and engineering 2014; 13(2): 591–599.

12. Rao AS, Gubbi J, Palaniswami M et al. A vision-based

system to detect potholes and uneven surfaces for assisting

blind people. In 2016 IEEE International Conference on

Communications (ICC). IEEE, pp. 1–6.

13. Broberg P. Surface crack detection in welds using

thermography. NDT & E International 2013; 57: 69–73.

14. LeCun Y, Bengio Y and Hinton G. Deep learning. nature 2015;

521(7553): 436.

15. Rao AS, Gubbi J, Marusic S et al. Crowd event detection on

optical flow manifolds. IEEE transactions on cybernetics 2015;

46(7): 1524–1537.

16. Mneymneh BE, Abbas M and Khoury H. Evaluation of

computer vision techniques for automated hardhat detection

in indoor construction safety applications. Frontiers of

Engineering Management 2018; 5(2): 227–239.

17. Cha YJ, Choi W and Büyüköztürk O. Deep learning-based

crack damage detection using convolutional neural networks.

Computer-Aided Civil and Infrastructure Engineering 2017;

32(5): 361–378.

18. Kim H, Ahn E, Shin M et al. Crack and noncrack

classification from concrete surface images using machine

learning. Structural Health Monitoring 2019; 18(3): 725–738.

19. Tsao S, Kehtarnavaz N, Chan P et al. Image-based expert-

system approach to distress detection on crc pavement. Journal

of Transportation Engineering 1994; 120(1): 52–64.

20. Abdel-Qader I, Abudayyeh O and Kelly ME. Analysis of edge-

detection techniques for crack identification in bridges. Journal

of Computing in Civil Engineering 2003; 17(4): 255–263. DOI:

doi:10.1061/(ASCE)0887-3801(2003)17:4(255).

21. Yamaguchi T and Hashimoto S. Improved percolation-based

method for crack detection in concrete surface images. In 2008

19th International Conference on Pattern Recognition. ISBN

1051-4651, pp. 1–4. DOI:10.1109/ICPR.2008.4761627.

22. Zhong X, Peng X, Yan S et al. Assessment of the feasibility

of detecting concrete cracks in images acquired by unmanned

aerial vehicles. Automation in Construction 2018; 89: 49–57.

DOI:https://doi.org/10.1016/j.autcon.2018.01.005.

23. Shilton A, Palaniswami M, Ralph D et al. Incremental training

of support vector machines. IEEE transactions on neural

networks 2005; 16(1): 114–131.

24. Moselhi O and Shehab-Eldeen T. Automated detection of

surface defects in water and sewer pipes. Automation in

Construction 1999; 8(5): 581–588.

25. Hu H, Gu Q and Zhou J. Htf: a novel feature for general

crack detection. In 2010 IEEE International Conference on

Image Processing. ISBN 2381-8549, pp. 1633–1636. DOI:

10.1109/ICIP.2010.5653171.

26. Chen Z, Derakhshani R, Halmen C et al. A texture-based

method for classifying cracked concrete surfaces from digital

images using neural networks. In The 2011 International Joint

Conference on Neural Networks. IEEE. ISBN 1424496373, pp.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

12 Journal Title XX(X)

2632–2637.

27. Ruan C and Ruan Q. An effective feature for crack detection

on train wheel surface. In 2012 IEEE 11th International

Conference on Signal Processing, volume 2. ISBN 2164-523X,

pp. 865–868. DOI:10.1109/ICoSP.2012.6491717.

28. Li G, He S, Ju Y et al. Long-distance precision inspection

method for bridge cracks with image processing. Automation

in Construction 2014; 41: 83–95.

29. Rimkus A, Podviezko A and Gribniak V. Processing digital

images for crack localization in reinforced concrete members.

Procedia Engineering 2015; 122: 239–243.

30. Nguyen T, Kashani A, Ngo T et al. Deep neural

network with high-order neuron for the prediction of foamed

concrete strength. Computer-Aided Civil and Infrastructure

Engineering 2019; 34(4): 316–332.

31. Feng C, Liu MY, Kao CC et al. Deep active learning for

civil infrastructure defect detection and classification. In

Computing in Civil Engineering 2017. American Society

of Civil Engineers, 2017. pp. 298–306. DOI:10.1061/

9780784480823.036.

32. Szegedy C, Liu W, Jia Y et al. Going deeper with convolutions.

In Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 1–9.

33. Jang K, Kim N and An YK. Deep learning–based autonomous

concrete crack evaluation through hybrid image scanning.

Structural Health Monitoring 2018; : 1475921718821719.

34. Chen FC and Jahanshahi MR. Nb-cnn: deep learning-based

crack detection using convolutional neural network and naı̈ve

bayes data fusion. IEEE Transactions on Industrial Electronics

2017; 65(5): 4392–4400.

35. Uijlings JR, Van De Sande KE, Gevers T et al. Selective search

for object recognition. International journal of computer vision

2013; 104(2): 154–171.

36. Girshick R, Donahue J, Darrell T et al. Rich feature hierarchies

for accurate object detection and semantic segmentation. In

Proceedings of the IEEE conference on computer vision and

pattern recognition. pp. 580–587.

37. Girshick R. Fast r-cnn. In Proceedings of the IEEE

international conference on computer vision. pp. 1440–1448.

38. Ren S, He K, Girshick R et al. Faster R-CNN: Towards Real-

time Object Detection with Region Proposal Networks. In

Advances in neural information processing systems. pp. 91–99.

39. Cha Y, Choi W, Suh G et al. Autonomous structural

visual inspection using region-based deep learning for

detecting multiple damage types. Computer-Aided Civil and

Infrastructure Engineering 2018; 33(9): 731–747.

40. Beckman GH, Polyzois D and Cha YJ. Deep learning-

based automatic volumetric damage quantification using depth

camera. Automation in Construction 2019; 99: 114–124. DOI:

https://doi.org/10.1016/j.autcon.2018.12.006.

41. Huyan J, Li W, Tighe S et al. Detection of sealed and unsealed

cracks with complex backgrounds using deep convolutional

neural network. Automation in Construction 2019; 107:

102946. DOI:https://doi.org/10.1016/j.autcon.2019.102946.

42. Krizhevsky A, Sutskever I and Hinton GE. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems. pp. 1097–

1105.

43. Dorafshan S, Thomas RJ and Maguire M. Comparison of deep

convolutional neural networks and edge detectors for image-

based crack detection in concrete. Construction and Building

Materials 2018; 186: 1031–1045. DOI:https://doi.org/10.1016/

j.conbuildmat.2018.08.011.

44. Zhang A, Wang KC, Li B et al. Automated pixel-level

pavement crack detection on 3d asphalt surfaces using a deep-

learning network. Computer-Aided Civil and Infrastructure

Engineering 2017; 32(10): 805–819.

45. Marques AGCS. Automatic road pavement crack detection

using SVM. Master of science degree dissertation, Electrical

and Computer Engineering, Instituto Superior Técnico, Lisbon,

Portugal, 2012.

46. Long J, Shelhamer E and Darrell T. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recognition.

pp. 3431–3440.

47. Dung CV and Anh LD. Autonomous concrete crack detection

using deep fully convolutional neural network. Automation in

Construction 2019; 99: 52–58. DOI:https://doi.org/10.1016/j.

autcon.2018.11.028.

48. Li S, Zhao X and Zhou G. Automatic pixel-level

multiple damage detection of concrete structure using

fully convolutional network. Computer-Aided Civil and

Infrastructure Engineering 2019; 34(7): 616–634. DOI:10.

1111/mice.12433.

49. Yang X, Li H, Yu Y et al. Automatic pixel-level crack

detection and measurement using fully convolutional network.

Computer-Aided Civil and Infrastructure Engineering 2018;

33(12): 1090–1109.

50. Kim B and Cho S. Image-based concrete crack assessment

using mask and region-based convolutional neural network.

Structural Control and Health Monitoring 2019; 26(8): e2381.

DOI:10.1002/stc.2381.

51. Liu Y, Yao J, Lu X et al. Deepcrack: A deep hierarchical feature

learning architecture for crack segmentation. Neurocomputing

2019; 338: 139–153. DOI:https://doi.org/10.1016/j.neucom.

2019.01.036.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 13

52. Lee CY, Xie S, Gallagher P et al. Deeply-supervised nets. In

Artificial intelligence and statistics. pp. 562–570.

53. Liu Z, Cao Y, Wang Y et al. Computer vision-based concrete

crack detection using u-net fully convolutional networks.

Automation in Construction 2019; 104: 129–139. DOI:https:

//doi.org/10.1016/j.autcon.2019.04.005.

54. Simonyan K and Zisserman A. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations. pp. 1–10.

55. He K, Zhang X, Ren S et al. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition. pp. 770–778.

56. Szegedy C, Vanhoucke V, Ioffe S et al. Rethinking the

inception architecture for computer vision. In Proceedings

of the IEEE conference on computer vision and pattern

recognition. pp. 2818–2826.

57. Szegedy C, Ioffe S, Vanhoucke V et al. Inception-v4, inception-

resnet and the impact of residual connections on learning. In

Thirty-First AAAI Conference on Artificial Intelligence. pp.

4278–4284.

58. Huang G, Liu Z, Van Der Maaten L et al. Densely connected

convolutional networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition. pp. 4700–4708.

59. Xie S, Girshick R, Dollár P et al. Aggregated residual

transformations for deep neural networks. In Proceedings

of the IEEE conference on computer vision and pattern

recognition. pp. 1492–1500.

60. Zagoruyko S and Komodakis N. Wide residual networks. In

Richard C Wilson ERH and Smith WAP (eds.) Proceedings of

the British Machine Vision Conference (BMVC). BMVA Press.

ISBN 1-901725-59-6, pp. 87.1–87.12. DOI:10.5244/C.30.87.

URL https://dx.doi.org/10.5244/C.30.87.

61. Belkin M, Hsu D, Ma S et al. Reconciling modern machine-

learning practice and the classical bias–variance trade-off.

Proceedings of the National Academy of Sciences 2019;

116(32): 15849–15854.

62. Bengio Y. Practical recommendations for gradient-based

training of deep architectures. In Neural networks: Tricks of

the trade. Springer, 2012. pp. 437–478.

63. Sutskever I. Training recurrent neural networks. PhD Thesis,

University of Toronto Toronto, Ontario, Canada, 2013.

64. Murphy KP. Machine learning: a probabilistic perspective.

MIT press, 2012.

65. Fawcett T. An introduction to roc analysis. Pattern recognition

letters 2006; 27(8): 861–874.

66. LeCun Y, Bengio Y et al. Convolutional networks for images,

speech, and time series. The handbook of brain theory and

neural networks 1995; 3361(10): 1995.

67. Marcos D, Volpi M and Tuia D. Learning rotation invariant

convolutional filters for texture classification. In 2016 23rd

International Conference on Pattern Recognition (ICPR).

IEEE, pp. 2012–2017.

68. Lin TY, Goyal P, Girshick R et al. Focal loss for dense object

detection. In Proceedings of the IEEE international conference

on computer vision. pp. 2980–2988.

69. Kim B and Cho S. Automated vision-based detection of cracks

on concrete surfaces using a deep learning technique. Sensors

2018; 18(10): 3452.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

https://dx.doi.org/10.5244/C.30.87

14 Journal Title XX(X)

,QSXW�LPDJH

���� [����[���

3DWFKHV�RI�����[����[����

IURP�WKH�LQSXW�LPDJH

(DFK SDWFK

LV�IHG LQWR

&11 0RGHO

IRU�WUDLQLQJ DQG

YDOLGDWLRQ
&11�0RGHO

ZLWK�EDFNSURSDJDWLRQ

FUDFN

QR�FUDFN

'HHS�/HDUQLQJ�7UDLQLQJ

5HVL]H�SDWFK�

WR�ILW

WKH�PRGHO

(a) Training phase

,QSXW��LPDJH

���� [����[���

3DWFKHV�RI�����[����[����

IURP�WKH�LQSXW�LPDJH

(DFK SDWFK

LV�IHG LQWR

&11 0RGHO

IRU�WHVWLQJ

&11�0RGHO

3UHGLFW

7HVWLQJ�

5HVL]H�SDWFK�

WR�ILW

WKH�PRGHO

3DWFKHV�SUHGLFWHG�DV�

FUDFN�DUH�KLJKOLJKWHG

(b) Testing phase

Figure 1. Overview of the crack detection approach used in this work.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 15

)&��

&RQY�����

0D[�SRRO���[��

&RQY�����

0D[�SRRO���[��

&RQY�����

&RQY�����

&RQY�����

0D[�SRRO���[��

)&�����

)&�����

,QSXW�LPDJH�

�����[�����[���

(a)

SRRO���[��

SRRO���[��

SRRO���[��

[�����[���

)&��

&RQY����

&RQY����

0D[�SRRO���[��

&RQY�����

&RQY�����

0D[�SRRO���[��

&RQY�����

&RQY�����

&RQY�����

)&�����

)&�����

,QSXW�LPDJH�

�����[����[���

0D[�SRRO���[��

&RQY�����

&RQY�����

&RQY�����

0D[�SRRO���[��

&RQY�����

&RQY�����

&RQY�����

0D[�SRRO���[��

(b)

)&��

&RQY����

&RQY����

0D[�SRRO���[��

&RQY�����

&RQY�����

0D[�SRRO���[��

&RQY�����

&RQY�����

&RQY�����

&RQY�����

)&�����

)&�����

,QSXW�LPDJH�

�����[����[���

0D[�SRRO���[��

&RQY�����

&RQY�����

&RQY�����

&RQY�����

0D[�SRRO���[��

&RQY�����

&RQY�����

&RQY�����

&RQY�����

0D[�SRRO���[��

(c)

,QSXW�LPDJH�

�����[�����[���

&RQY����

0D[�SRRO���[��

&RQY����

&RQY�������

&RQY�����
[�

[�
&RQY�����

&RQY��������

&RQY�����

[�

[�
&RQY�����

&RQY��������

&RQY������

[�

[�
&RQY�����

&RQY��������

&RQY������

[�

$YJ�3RRO�����

��[��

)&��

(d)

[�����[���

[�

[�[�

[�[�

[�[�

,QSXW�LPDJH�

�����[�����[���

&RQY����

0D[�SRRO���[��

&RQY����

&RQY�������

&RQY�����
[�

[�
&RQY�����

&RQY��������

&RQY�����

[�

[�
&RQY�����

&RQY��������

&RQY������

[��

[�
&RQY�����

&RQY��������

&RQY������

[�

$YJ�3RRO�����

��[��

)&��

(e)

[�����[���

SRRO���[��

[�

[�[�

[�[��

[�[�

,QSXW�LPDJH�

�����[�����[���

&RQY����

0D[�SRRO���[��

&RQY����

&RQY�������

&RQY�����

[�

[�
&RQY�����

&RQY��������

&RQY�����

[�

[�
&RQY�����

&RQY��������

&RQY������

[��

[�
&RQY�����

&RQY��������

&RQY������

[�

$YJ�3RRO�����

���[���

)&��

(f)

Figure 2. CNN architectures of (a) AlexNet, (b) VGG-16, (c) VGG-19, (d) ResNet-50, (e) ResNet-101 and (f) ResNet-152. In this

work, we represent convolution layers as “Conv〈receptive field size〉–number of channels”. For example, Conv5-256 in (a)

represents a convolution layer with a receptive field size of 5 x 5 and 256 channels. FC: Fully Connected layer. FC-2 is abbreviation

for fully connected layer with two outputs. Max pool (3 x 3) is a short notation for max pooling operation with 3 x 3 kernel. Avg Pool:

average pooling. Similar analogies apply to other operations. Readers are recommended to read the original papers for more

detailed information about each layer.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

16 Journal Title XX(X)

)&��

&RQY����

&RQY����

&RQY����

0D[�SRRO���[��

&RQY����

&RQY�����

0D[�SRRO���[��

'URSRXW�

,QSXW�LPDJH�

�����[�����[���

,QFHSWLRQ$�����

,QFHSWLRQ$�����

,QFHSWLRQ$����

$GDSWLYH�$YJ

0D[�SRRO���[��

,QFHSWLRQ%����

,QFHSWLRQ&����

,QFHSWLRQ&����

,QFHSWLRQ&����

,QFHSWLRQ&����

,QFHSWLRQ'����

,QFHSWLRQ(�����

,QFHSWLRQ(�����

(a)

)&��

'URSRXW��NHHS������

,QSXW�LPDJH�

�����[�����[���

��[�,QFHSWLRQ$����

$YJ�3RRO�����

��[��

��[�,QFHSWLRQ%�����

��[�,QFHSWLRQ&�����

6WHP����

5HGXFWLRQ�$

5HGXFWLRQ�%

(b)

)&��

'URSRXW��NHHS������

,QSXW�LPDJH�

�����[�����[���

��[�,QFHSWLRQ�

5HVQHW$����

$YJ�3RRO�����

��[��

���[�,QFHSWLRQ�

5HVQHW%����

��[�,QFHSWLRQ�

5HVQHW&�����

6WHP����

5HGXFWLRQ�$����

5HGXFWLRQ�%�����

(c)

,QSXW�LPDJH�

�����[�����[���

&RQY�����

0D[�SRRO���[��

&RQY����

&RQY����
[�

)&��

&RQY����

[��

[��

[��

&RQY����

&RQY����

&RQY����

$YJ�3RRO���[���� ��

$YJ�3RRO���[���� ��

&RQY����

&RQY����

&RQY���

$YJ�3RRO���[���� �

[��

[��

&RQY���

&RQY���
[��

*OREDO�$YJ�3RRO

��[��

(d)

,QSXW�LPDJH�

�����[�����[���

&RQY�����

0D[�SRRO���[��

&RQY����

&RQY����
[�

)&��

&RQY����

[��

[��

[��

&RQY����

&RQY����

&RQY����

$YJ�3RRO���[���� ��

$YJ�3RRO���[���� ��

&RQY����

&RQY����

&RQY���

$YJ�3RRO���[���� �

[��

[��

&RQY���

&RQY���
[��

*OREDO�$YJ�3RRO

��[��

(e)

Figure 3. CNN architectures of (a) Inception-v3, (b) Inception-v4, (c) Inception-ResNet-v2, (d) DenseNet-121 and (e)

DenseNet-169. The “stem” block in the (b) and (c) describes the early stage convolution, pooling and normalization operations. FC:

Fully Connected layer. FC-2 is abbreviation for fully connected layer with two outputs. Max pool (3 x 3) is a short notation for max

pooling operation with 3 x 3 kernel. Avg Pool: average pooling. Similar analogies apply to other operations. Readers are

recommended to read the original papers for more detailed information about each layer.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 17

,QSXW�LPDJH�

�����[�����[���

&RQY����

0D[�SRRO���[��

&RQY�����

&RQY�������& ������

&RQY�����
[�

[�
&RQY�����

&RQY�������& �����

&RQY�����

[�

[�&RQY�����

&RQY�������& �����

&RQY������

[�

[�

&RQY������

&RQY��������& �����

&RQY������

[�

*OREDO�$YJ�3RRO�����

���[���

)&��

(a)

,QSXW�LPDJH�

�����[�����[���

&RQY����

0D[�SRRO���[��

&RQY�����

&RQY�������& ������

&RQY�����
[�

[�
&RQY�����

&RQY�������& �����

&RQY�����

[�

[�&RQY������

&RQY��������& �����

&RQY������

[��

[�

&RQY������

&RQY��������& �����

&RQY������

[�

*OREDO�$YJ�3RRO�����

���[���

)&��

(b)

,QSXW�LPDJH�

�����[�����[���

&RQY����

0D[�SRRO���[��

&RQY�����[��

&RQY�����[���

&RQY������

[�

[�
&RQY�����[��

&RQY�����[����

&RQY������

[�

[�&RQY������[��

&RQY������[��

&RQY������

[�

[�

&RQY������[��

&RQY������[��

&RQY�������

[�

$YJ�3RRO���������[���

)&��

(c)

,QSXW�LPDJH�

�����[�����[���

&RQY����

0D[�SRRO���[��

&RQY�����[��

&RQY�����[������

&RQY�����
[�

[�
&RQY������[��

&RQY������[�����

&RQY�����

[�

[�&RQY������[��

&RQY������[�����

&RQY������

[��

[�

&RQY������[��

&RQY������[�����

&RQY������

[�

$YJ�3RRO���������[���

)&��

(d)

Figure 4. (a) ResNeXt-50-32x4d, (b) ResNeXt-101-32x8d, (c) Wide-ResNet-50-2 and (d) Wide-ResNet-101-2. In the ResNeXt-50

(32x4d), 50 indicates the network with a depth of 50 layers, 32 represents the cardinality of transformations and 4d represents the

bottleneck width, which is part of ResNet. Wide-ResNet-50-2 represents a wide ResNet with 50 layers deep and 2x with of the

original ResNet-50 architecture (similar naming convention applies to Wide-ResNet-101-2). FC: Fully Connected layer. FC-2 is

abbreviation for fully connected layer with two outputs. Max pool (3 x 3) is a short notation for max pooling operation with 3 x 3

kernel. Avg Pool: average pooling. Similar analogies apply to other operations. Readers are recommended to read the original

papers for more detailed information about each layer.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

18 Journal Title XX(X)

0 10 20 30 40 50
Epochs

0.26

0.28

0.30

0.32

0.34

0.36

Lo
ss

Model loss - AlexNet
Train loss
Val loss

(a)

0 10 20 30 40 50
Epochs

0.885

0.890

0.895

0.900

0.905

0.910

0.915

0.920

Ac
cu

ra
cy

Model accuracy - AlexNet

Train accuracy
Val accuracy

(b)

0 10 20 30 40 50
Epochs

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Lo
ss

Model loss - vgg16
Train loss
Val loss

(c)

0 10 20 30 40 50
Epochs

0.895

0.900

0.905

0.910

0.915

0.920

0.925

Ac
cu

ra
cy

Model accuracy - vgg16

Train accuracy
Val accuracy

(d)

Figure 5. Shows (a) training and validation loss of AlexNet training for detecting cracks; (b) accuracy of AlexNet during training and

validation; (c) training and validation loss of VGG-16 training; (d) accuracy of VGG-16 during training and validation.

(a) IMG 0006 (b) IMG 0026 (c) IMG 0088 (d) IMG 0123 (e) IMG 0321 (f) IMG 0323 (g) IMG 0324 (h) IMG 0341

(i) IMG 0006 (j) IMG 0026 (k) IMG 0088 (l) IMG 0123 (m) IMG 0321 (n) IMG 0324 (o) IMG 0335 (p) IMG 0341

Figure 6. Shows the sample results of VGG-16: (a)–(h) represent the manually annotated ground truths (marked in purple color),

and (i)–(p) show the corresponding predicted output (marked in red color) of VGG-16 model with a prediction threshold (τ) of 0.6.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 19

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ue
 P
os
iti
ve
 R
at
e

Reciever Operating Characateristic (ROC) Curve

AlexNet (area = 0.9780)
vgg16 (area = 0.9805)
vgg19 (area = 0.9774)
resnet50 (area = 0.9728)
resnet101 (area = 0.9775)
resnet152 (area = 0.9788)
inceptionv3 (area = 0.9756)
inceptionv4 (area = 0.9648)
inceptionresnetv2 (area = 0.9714)
densenet121 (area = 0.9759)
densenet169 (area = 0.9749)
resnext50_32x4d (area = 0.9735)
resnext101_32x8d (area = 0.9768)
wide_resnet50_2 (area = 0.9762)
wide_resnet101_2 (area = 0.9673)

Figure 7. Comparison of ROC AUC curves for the 15 CNN models. The models were tested on 377 test images, where each

image was of the size 256 x 256 (RGB). Each image was divided into 16 64 x 64 patches (total 16 patches per image). The ROC

AUC results were generated based on the number of patches that matched the ground truth from all the test images.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

20 Journal Title XX(X)

Al
ex

Ne
t

de
ns

en
et

12
1

de
ns

en
et

16
9

in
ce

pt
io

nr
es

ne
tv

2

in
ce

pt
io

nv
3

in
ce

pt
io

nv
4

re
sn

et
10

1

re
sn

et
15

2

re
sn

et
50

re
sn

ex
t1

01
_3

2x
8d

re
sn

ex
t5

0_
32

x4
d

vg
g1

6

vg
g1

9

wi
de

_r
es

ne
t1

01
_2

wi
de

_r
es

ne
t5

0_
2

CNN models

0.9648
0.9673
0.9714
0.9728
0.9735
0.9749
0.9756
0.9759
0.9762
0.9768
0.9774
0.9775
0.978

0.9788
0.9805

AU
C

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
g

in
fe

re
nc

e
tim

e
(in

 se
co

nd
s)

 p
er

 p
at

ch

Figure 8. Shows the comparison of inference time (per patch) and AUC for all the 15 models.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 21

Table 1. Summary of image processing and region-based classification methods applied for crack detection along with their

advantages and disadvantages.

Image Processing Methods

Approach Advantages Disadvantages

Histogram of pixels19 Adapts simple rule-based hierarchical

image processing system to detect

concrete distress from subimages

One needs to know the rules and

hierarchy. Requires rule update if input

domain is different.

Edge detection20 Automatically localize edges for

detecting cracks in concrete structures

Uses image heuristics and lacks

robustness to surface changes.

Region Growing21 Scalable local crack detection based on

neighborhood connectivity

Need to specify the window width and

not robust to illumination changes.

Edge and Region Filling10 Laplacian of Gaussian 2D filter in

detecting edges makes it rotationally

invariant to cracks

It is semi-autonomous, not fully robust to

small cracks.

Hough Transform25 Uses simple and effective Hough

Transform for detecting cracks

Assumes cracks are not complex and

mostly form straight lines.

Grey Level Coefficient

Matrix26

Uses textural features (invariant to

illumination) to detect cracks

May not work if surface texture is

uniformly spread across different

regions.

Laplacian of Gaussian

(LoG) weighted Haar27

Robust feature capturing edges,

orientations and textures of cracks

Highly sensitive to small cracks and

becomes complex with larger image

sizes.

The Chan-Vese (C–V)

model and Wavelet

Filters28

Robust to local image noises while

detecting cracks

Detection relies on differentiable crack

and intact texture.

Image Correction with

Hierarchical Clustering29

Provides hierarchical grouping of

clusters based on distance for localization

Assumes cracks are aligned in a single

direction and may fail in the case of

complex cracks.

Spatially tuned

multifeature (STRUM)11

Robust to spatial noise and invariant to

image scale

Highly dependent on the intensity of

pixels in crack and non-crack regions.

Region-based Classification Methods

Approach Advantages Disadvantages

Image Binarization and

Localization18

Two-stage approach to detect cracks.

First proposes candidate crack regions

(CCR) and then localizes the cracks

using CNN

CCR binarization uses pixel statistics

assuming certain properties of cracks.

This could fail if these properties change

because of varying pixel intensities.

CNN-based crack

detection17

Proposes CNN framework that learns

crack/non-crack regions automatically

Can misclassify the crack that are image

edges and requires twice scanning of

images to detect cracks during testing,

making this computationally expensive at

inference.

ResNet with Active

Learning31

Automatically learns to train from less

number of labeled samples where

annotated dataset is a problem

Requires re-training of the deep learning

model to accommodate newly identified

training samples when available.

GoogLeNet with Hybrid

Images33

Combines data from RGB camera and

infrared camera to detect micro- and

micro-cracks

Calibration of imaging systems and

alignment requires expert knowledge.

Computationally expensive to train

networks because of multiple modalities.

CNN with Naı̈ve Bayes

Learning34

Maintains spatiotemporal coherence of

detected cracks in videos

Computationally expensive for real-time

applications because of frame

registration and motion estimation

between frames.

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

22 Journal Title XX(X)

Table 2. Summary of object detection and semantic segmentation methods applied for crack detection along with their advantages

and disadvantages.

Object Detection Methods

Approach Advantages Disadvantages

Faster R-CNN39 Detects five types of damages including

concrete cracks in quasi real-time (1.4

frames per second)

Sensitive to light intensities. May not

perform well when designed for only two

classes (instead of five).

Faster R-CNN with depth

camera40

Provides volumetric quantification of

concrete spalling using depth information

Requires trial-and-error approach to

determine anchor points to detect

spalling even before training the model.

Faster R-CNN with

sensitivity detection

network41

Improves the detection of cracks by

using linear crack filters in addition to

localization using CNN

The addition of linear crack filters and

their features limit the generalization of

automation of crack detection.

Semantic Segmentation Methods

Approach Advantages Disadvantages

Multi-scale with SVM45 Robust to different image scales based on

crack neighborhood

Need to explicitly construct probability

maps of pixel-level cracks.

3D Crack Detection44 Provides pixel-level detection of cracks

using CNN

Need 3D data for this to be successful.

FCN with VGG-1647 End-to-end training and segmentation of

crack pixels

May not perform well when there are

multiple, complex cracks.

FCN with DenseNet-12148 Detects different damage types including

crack, spalling, efflorescence and hole

Requires large amounts of training data.

FCN with VGG-1949 Detects cracks at pixel-level with good

accuracy and speed

Accuracy deteriorates in the case of

insufficient training data and variety.

FCN with Deep

Supervised Net51

Integrates multi-level and multi-scale

features with direct supervision of CNN

features for improved detection of cracks

Fails to provide continuous and complete

thin crack segments.

U-Net for Crack

Detection53

Employs focal loss metric during training

that balances the ratio of crack and

non-crack pixels. Robust to illumination,

complex background and width of cracks

The depth of the U-Net can vary

depending on the dataset and hence the

inference time.

Table 3. Lists the CNN network architectures used in this work. In addition, we list the input image size for each network and the

number of parameters required to train each network for detecting cracks. Note: the final layer of the networks are modified to

output two probabilities corresponding to two classes (“crack” or “no crack”). In the parameters column, we see that the models

require millions of parameters to be tuned to detect cracks.

Model Input size No. of parameters

AlexNet 224 x 224 57,012,034

VGG-16 224 x 224 134,268,738

VGG-19 224 x 224 139,578,434

ResNet-50 224 x 224 23,512,130

ResNet-101 224 x 224 58,147,906

ResNet-152 224 x 224 235,121,30

Inception-v3 299 x 299 25,116,362

Inception-v4 299 x 299 41,145,890

Inception-ResNet-v2 299 x 299 54,309,538

DenseNet-121 224 x 224 6,955,906

DenseNet-169 224 x 224 12,487,810

ResNeXt-50-32x4d 224 x 224 22,984,002

ResNeXt-101-32x8d 224 x 224 86,746,434

Wide-ResNet-50-2 224 x 224 66,838,338

Wide-ResNet-101-2 224 x 224 124,841,794

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

Rao et al. 23

Table 4. Details of dataset used for training, validation and testing of deep learning models. Table shows the number of images (of

size 256 x 256) and the corresponding number of patches (of size 64 x 64) used for training, validation and testing. Crack and

non-crack are the number of patches of size 64 x 64.

Images no crack (patches) crack (patches) Total (patches)

(class 0) (class 1)

Train 2,044 23,797 8,907 32,704

Validation 129 1,032 1,032 2,074

Test 377 4,358 1,674 6,032

Table 5. Confusion matrix for a binary classifier. From this matrix, we derive True Positive Rate, False Positive Rate, Specificity and

Accuracy for measuring the performance of CNN models in identifying the cracks and classifying each patch.

True Class

Predicted True Positives (TP) False Positives (FP)

Class False Negatives (FN) True Negatives (TN)

Table 6. Shows the performance comparison of each CNN model in terms of performance metrics: classifying threshold, sensitivity

(= TPR = recall), specificity, and accuracy. Bolded text in each column indicate the best performance measured that metric.

Model Threshold Sensitivity Specificity Accuracy Precision

AlexNet 0.55 0.94 0.95 0.94 0.88

VGG-16 0.60 0.95 0.96 0.95 0.89

VGG-19 0.60 0.95 0.96 0.96 0.90

ResNet-50 0.55 0.93 0.95 0.95 0.89

ResNet-101 0.75 0.94 0.95 0.95 0.88

ResNet-152 0.70 0.92 0.96 0.95 0.90

Inception-v3 0.60 0.93 0.96 0.95 0.90

Inception-v4 0.65 0.92 0.95 0.95 0.89

Inception-ResNet-v2 0.60 0.92 0.95 0.94 0.87

DenseNet-121 0.65 0.94 0.95 0.95 0.89

DenseNet-169 0.65 0.94 0.95 0.95 0.88

ResNeXt-50-32x4d 0.60 0.93 0.95 0.95 0.88

ResNeXt-101-32x8d 0.65 0.93 0.95 0.94 0.87

Wide-ResNet-50-2 0.55 0.94 0.96 0.95 0.90

Wide-ResNet-101-2 0.70 0.95 0.95 0.95 0.89

Table 7. Shows the performance comparison of each CNN model in terms of number of parameters, AUC and inference time in

seconds (per patch). Bolded text in columns indicate the best performers in each aspect.

No. Model Parameters (millions) AUC Inference time

(in seconds)

1 AlexNet 57 M 0.9780 0.0205

2 VGG-16 134.2 M 0.9805 0.2229

3 VGG-19 139.5 M 0.9774 0.2782

4 ResNet-50 23.5 M 0.9728 0.0902

5 ResNet-101 58.1 M 0.9775 0.1534

6 ResNet-152 235.1 M 0.9788 0.2202

7 Inception-v3 25.1 M 0.9756 0.1278

8 Inception-v4 41.1 M 0.9648 0.2563

9 Inception-ResNet-v2 54.3 M 0.9714 0.2861

10 DenseNet-121 6.9 M 0.9759 0.0863

11 DenseNet-169 12.4 M 0.9749 0.1073

12 ResNeXt-50-32x4d 22.9 M 0.9735 0.1043

13 ResNeXt-101-32x8d 86.7 M 0.9768 0.2975

14 Wide-ResNet-50-2 66.8 M 0.9762 0.2020

15 Wide-ResNet-101-2 124.8 M 0.9673 0.3750

Prepared using sagej.cls

This article is accpted for publication. The final published version is available at https://doi.org/10.1177/1475921720965445.
Reuse of this article is restricted to non-commercial and no derivative uses.

	1 Introduction
	2 Related Work
	2.1 Image Processing Methods
	2.2 Region-based Classification Methods
	2.3 Object Detection Methods Applied to Crack Detection
	2.4 Semantic Segmentation Methods

	3 Our Approach
	3.1 Overview of the proposed approach
	3.2 AlexNet
	3.3 Visual Geometry Group (VGG) Networks
	3.4 Residual Networks (ResNets)
	3.5 Inception Networks
	3.6 Dense Convolutional Networks (DenseNets)
	3.7 Aggregated Residual Transformations
	3.8 Wide Residual Networks (Wide ResNets)

	4 Training and Evaluation
	4.1 Dataset
	4.2 Implementation
	4.3 Handling Data Imbalance
	4.4 Loss Function
	4.5 Network Optimization and Online Learning
	4.6 Classifier Performance Metrics
	4.7 Training CNN Models

	5 Results and Discussion
	5.1 Receiver Operating Characteristics (ROC)
	5.2 Inference time

	6 Conclusion

