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Summary:

Non-invasive wearable devices have great potential to aid the management of epilepsy, but these 

devices must have robust signal quality, and patients must be willing to wear them for long periods of 

time. Automated machine learning classification of wearable biosensor signals requires quantitative 

measures of signal quality to automatically reject poor quality or corrupt data segments. In this study 

commercially available wearable sensors were placed on patients with epilepsy undergoing in-hospital 

or in-home electroencephalography (EEG) monitoring, and healthy volunteers. Empatica E4 and 

Biovotion Everion were used to record accelerometry (ACC), photoplethysmography (PPG), and 

electrodermal activity (EDA). Byteflies Sensor Dots were used to record ACC and PPG, the 

Activinsights GENEActiv watch to record ACC, and Epitel Epilog to record EEG data. PPG and EDA 

signals were recorded for multiple days, then epochs of high quality, marginal quality, or poor quality 

data were visually identified by reviewers, and reviewer annotations were compared to automated signal 

quality measures.  For ACC, the ratio of spectral power from 0.8 to 5 Hz to broadband power was used 

to separate good quality signals from noise. For EDA, the rate of amplitude change and prevalence of 

sharp peaks significantly differentiated between good quality data and noise. Spectral entropy was used 

to assess PPG, and showed significant differences between good, marginal, and poor quality signals. 

EEG data were evaluated using methods to identify a spectral noise cutoff frequency.  Patients were 

asked to rate the usability and comfort of each device in several categories. Patients showed a significant 

preference for the wrist-worn devices, and the Empatica E4 device was preferred most often. Current 

wearable devices can provide high quality data and are acceptable for routine use, but continued 

development is needed to improve data quality, consistency, and management, and acceptability to 

patients. 

Key Points:
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 Automated measures of signal quality are important for chronic monitoring with wearable 

biosensors

 Signal quality metrics for ACC, EDA PPG and EEG can discriminate good from marginal 

quality data and noise

 People with epilepsy on average have a positive overall response to the use of wearable devices 

and report a preference for wristbands

 Continued development of devices is needed to improve data quality and consistency, and 

subject comfort and acceptability

1 Introduction

Wearable devices are increasingly common tools for seizure counting and management in clinical 

epilepsy, among other health applications1. This provides tools to help people with epilepsy and their 

physicians better understand, and ultimately treat their seizures, and track treatment outcomes. Patient 

under-reporting of seizures is a well-recognized problem in epilepsy1,2, and objective seizure counting 

based on wearable devices may result in more effective management of medications and 

neuromodulation therapy, and may help in assessing candidacy for surgery. Despite extensive efforts 

in the field of seizure prediction3, the unpredictability of seizures remains a significant difficulty for 

people with epilepsy regardless of seizure frequency4. Non-invasive prediction of seizures through the 

tracking of temporal cycles5–8, physiological signals9,10, or their combination could prove transformative 

for many patients. 

A key concern with wearable devices is the quality of the data recorded11. This becomes 

increasingly important in long-term device use, both for use in clinical trials and ongoing epilepsy 

management. Automated analysis of signals with algorithms requires the ability to exclude data epochs 

corrupted by artifacts or without physiological content. Comparison between devices often focuses on 

seizure detection performance rather than objective and fundamental signal quality measures12,13. Signal 

quality measures are simple to compute and allow for direct comparison of similar sensors from data 

recorded with or without seizures. Signal quality indexes (SQIs) are useful to validate the quality of 

devices before the commencement of trials, and to compare across trials at different centers or with 

different endpoints. Furthermore, longitudinal analysis of signal quality from individual devices is 

useful to assess device adherence and maintenance requirements. The use of these methods along with 

automated data transfer and analysis can provide reports to physicians, people with epilepsy, and 

researchers to improve clinical care and advance epilepsy research.

Another important aspect of wearable technologies use is device design. Although various 

studies have surveyed people with epilepsy and their caregivers about their views on various aspects of 

wearable devices14–16, these studies have not always focused on people with an experience of using 
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wearable devices for epilepsy management. People with epilepsy who have personal experience with 

wearable devices may be able to provide more insightful feedback on preferences and concerns of long-

term device use.

The present study addresses both of these problems of measuring device signal quality and 

assessing the preferences of people with epilepsy while using wearable devices.  These results will 

guide future work on the long-term use of wearable devices for seizure detection and forecasting.

2 Methods

2.1 Study Design

Commercially available research-grade wearable devices were used by patients undergoing video-EEG 

monitoring in both in-patient and at-home environments for durations of up to 10 days. Physiological 

signals utilized were: accelerometry (ACC) to evaluate limb acceleration in 3-axes, electrodermal 

activity (EDA) to measure skin conductance (which varies with perspiration, reflecting sympathetic 

tone and psychological arousal), photoplethysmography (PPG) to evaluate microvascular blood volume 

changes, and EEG to measure cerebral electrical activity.  Four commercially available, research-grade 

wearable biosensors with the ability to record ACC, EDA, and PPG, along with one sensor capable of 

recording scalp EEG were assessed with patients with epilepsy undergoing EEG monitoring and healthy 

volunteer subjects.  Patients were recruited at Mayo clinic, King’s College Hospital, Freiburg hospital, 

and Seer Medical (Melbourne, Australia). Consecutive patients undergoing 

stereoelectroencephalography (SEEG) surgery, and those who were admitted to Epilepsy Monitoring 

Units (EMU) or were scheduled for at-home ambulatory monitoring were recruited for the study unless 

there were clinical reasons to omit patients, and patients with a range of seizure types (focal, generalized 

and electrographic) were included. From ACC, EDA, PPG and EEG data, signal quality metrics were 

assessed retrospectively, and benchmarked against data recorded while not being worn. At the end of 

the recording period, patients were provided with a survey to assess their preferences and comfort with 

using wearable devices for seizure prediction.

2.2 Physiological Data Collection

ACC data were recorded by the Empatica E4, Byteflies Sensor Dot, Biovotion Everion and 

Activinsights GENEActiv devices, which were placed on the wrist, chest, arm and wrist respectively. 

For each device, several days of visually-assessed good quality ACC data from at least 4 patients was 

identified and compared with data recorded while the device was not worn by the subject. EDA was 

recorded by the Biovotion and Empatica devices, each from 5 patients.  A few hours of data were 

recorded with each device placed on the subject over a cloth wrap, not in contact with the subject's skin, 

to represent poor quality data. PPG data was collected from patients wearing the Empatica, Byteflies, 

and Biovotion devices. Segments representing noise with the absence of physiological activity for each 
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device were obtained by a device not worn by a subject, but at rest on a stable surface.  EEG data was 

recorded by the Epitel device. This device is attached to the patient’s forehead, close to the hairline, 

using a provided adhesive sticker with saline gel cutouts over the electrodes, and records a bipolar EEG 

channel from two electrodes.

2.3 Data Labeling 

Ten-minute, non-overlapping segments of ACC data were scored using a binary scale, identifying 

segments as good quality data (on patient) or noise (not on patient). Ten-minute epochs were chosen 

for ACC to accommodate sleep or sedentary periods, where movements may be infrequent. PPG data 

were scored over 1-minute non-overlapping segments by reviewers using a three-point scale, 

identifying segments as good quality (physiology easily visible with limited noise or artifact content), 

marginal quality (some physiology apparent but frequently obscured by noise or artifacts), or poor 

quality (no physiology apparent and signal dominated by noise or artifact). For both ACC and PPG, 

segments were reviewed and labeled using a custom software written in Matlab (Natick, MA). The 

Byteflies and Biovotion devices provide PPG data with red, green, and infrared (IR) light  sources.  To 

minimize reviewer burden, the IR and green channels for ByteFlies and Biovotion devices respectively 

were scored by the reviewers, and these scores were applied to all three PPG signals to calculate SQIs 

. The IR PPG signal for the Byteflies device and green PPG for the Biovotion device each showed the 

greatest physiological signal component on visual inspection17–19. The Empatica does not provide raw 

PPG values but rather provides a Blood Volume Pulse (BVP), a derived signal calculated from the red 

and green raw PPG signals. The BVP shows pulsatile blood flow features but is similar to the PPG 

signal as the slowly-varying respiratory component are removed.  Therefore BVP was analyzed using 

the PPG metrics. For EDA, data segments with less than 4 seconds of artifact were labeled good quality. 

Marginal quality data segments had both tonic and phasic EDA components, but each segment 

contained at least 4 seconds of artifacts (sharp changes17). The Empatica E4 device returns values less 

than 0.05 µS when not in contact with skin (for example, with a garment under the device), and zero 

when entirely off the subject. The Biovotion Everion returns 0.047 mS when it is not in contact with 

skin and not on the patient. Data segments with amplitude at or below these values, and segments with 

amplitude changes less than 0.01 µS (0.01 mS for Biovotion) within one minute, were classified as bad. 

EEG data were scored using a threshold method. All data with a maximum bandwidth (defined below) 

of over above 75 Hz were considered good quality20, and data above 35 Hz acceptable for recording 

epileptiform activity21. 

2.4 Signal Quality Indices

2.4.1 Accelerometry 

Prior studies have classified subject activities such as rest, walk and run based on the frequency 

components of the ACC data acquired from wireless sensors 22. They showed the highest amplitude of 

the frequency spectrum of ACC data for these movements is in frequencies below 5 Hz. In order to 
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exclude low frequency noise components, the power spectrum is calculated for frequencies above 0.8 

Hz. To avoid ambiguity regarding the directional orientation of movement the signal quality metrics 

were calculated on the root mean square (RMS) of the acceleration components of the three axes (ACCx, 

ACCy, ACCz):

 (1)���=
1

3
(���2� + ���2� + ���2�)

The signal quality metric for human movement in RMS accelerometry was defined by the ratio of the 

narrow spectral band covering the normal physiological range (0.8 - 5 Hz) to broadband spectral power 

(Power Ratio):

 (2)����� =
�[0.8 5]�[0.8 ��]

Where Fn is the Nyquist limit frequency for the device. The power ratio of the signal was estimated as 

the power in the frequency range between [0.8 5] Hz divided by the broadband power from 0.8 Hz to 

the Nyquist frequency. The Empatica E4 records acceleration with a sampling frequency of 32 Hz. 

Since the sampling frequency of the Byteflies, Biovotion and GENEActiv devices (48, 51.2 and 1000 

respectively) are higher than the Empatica E4, the Empatica E4 Nyquist frequency limit (16 Hz) was 

used for all devices in order to allow direct comparison between devices. This power ratio should peak 

when physiological movements dominate the power spectrum, and should take on low values when 

there is little physiological movement present. The power spectrum was calculated for non-overlapping 

4 second segments, and average values over consecutive 10-minute segments are reported. Figure 1. (a) 

shows the scaled RMS ACC signal in blue and the quality metric in red. The power spectrum of the 

RMS signal shows higher power in the range of [0 - 5] Hz (Fig 1. (b)). 

2.4.2 Electrodermal Activity 

EDA provides time series recording of skin conductance, which is characterized by a slow 

varying tonic component (skin conductance level, SCL) and a fast-varying phasic component (skin 

conductance response, SCR). SCR has abrupt phasic increases in the conductance of the skin and 

usually has a faster rise time than decay time23. The SCR amplitude is defined as the difference between 

the SC values at peak and the preceding trough. Here a minimum SCR amplitude of 0.01 μS is used to 

distinguish between physiological data and noise24. Also, the frequency of nonspecific SCR (NS-SCR) 

has been suggested to measure tonic activity25. Typically the NS-SCR rate per minute is at least one 

(1-3 during rest and more than 20 in high arousal situations)25,26. 

The EDA signal was recorded using the Empatica E4 and Biovotion Everion in micro Siemens 

(µS) and kilo Ohms (kΩ), respectively. The EDA in µS is related to resistance in kΩ as its reciprocal

(EDA(µS)=1/R(MΩ)=1000/R(kΩ) ). For analysis the Biovotion Everion data was converted to mS to 

have its data in a same dynamic range as the Empatica E4 data. The sampling frequencies for the 

Empatica E4 and Biovotion Everion are 4 Hz and 1 Hz, respectively. The quality metric for EDA was 

called Rate of Amplitude Change (SQIRAC), and is the percent amplitude change calculated in 
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concurrent one-second windows. Sharp changes in signal amplitude of more than a 20% increase or 

10% decrease per second are often correlated with subject motion and poor electrical contact with the 

skin,27,28 and these values are interpreted as artifact, or poor quality data. If the amplitude of EDA 

changes less than 0.01 µS for the E4 signal and 0.01 mS for the Biovotion signal over a one minute 

epoch, the device is likely not recording physiological signals, and the SQI of that minute of data was 

set to be zero. Fig. 1 (c) shows the scaled EDA signals from an E4 recording of a healthy subject, with 

the calculated SQIRAC. During the day when the subject is moving, the EDA signal has many sharp 

increases and decreases in amplitude, which represent motion artifacts. During the night while the 

subject is relatively still, the SQIRAC stays within the normal range due to consistent contact between 

the EDA electrodes and the skin. 

2.4.3 Photoplethysmography 

Signal quality of PPG was assessed by calculating spectral entropy which measures the 

‘peakedness’ of the frequency spectrum29,30. Due to its oscillating nature, a good quality PPG signal 

exhibits a peaked power spectrum and has lower spectral entropy than a PPG signal corrupted by noise, 

which exhibits a more flat spectrum with less pronounced spectral peaks, and correspondingly higher 

spectral entropy. Because most of the physiological PPG signal power lies within f1 = 1 Hz and f2 = 3 

Hz (see Figure 2) it is possible to limit the spectrum for calculating the spectral entropy (SE) to the 

frequency range of 1 – 3 Hz:

(3)�����(�1,�2) =― ∑�2�1
�(�) ∙ log2 �(�)

log2 (�)
where    is an estimate of the power spectral density at frequency f and N is the number of frequency �(�)
bins in [f1,f2]. Note that   is normalized such that it sums to one in the frequency band [f1 f2] and, �(�)
in order to get a smooth estimate, we took the average of  over 15 non-overlapping 4-second �(�)
windows (resulting in 1-minute segments) before calculating SQISE. Fig. 2 shows a typical Empatica 

E4 on-patient PPG signal with corresponding spectrogram and calculated metric. Values of SQISE close 

to one indicate noise segments (e.g., day 2, 10:01 AM to 5:59 PM). Low values of SQISE   correspond 

to high quality data (e.g. day 1, between 9.54 PM and 11:14 PM). PPG signals corrupted by e.g. motion 

artifacts show values of SQISE close to 0.8 (e.g. day 1, 10:09 AM to 7.29 PM).     

2.4.4 Electroencephalography 

Signal quality of EEG was assessed by calculating the maximum bandwidth, a measure that 

estimates the highest frequency at which the recorded signal power is significantly different from 

background noise31,32. It was calculated as the highest frequency with power greater than a threshold,

    (4)�� = 1.5 × (�75(������)― �25(������)) + �75(������)
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where  is the h quantile of  and  is the mean of the frequency power in the 200-255 Hz ��(�) �� � ������
band calculated every 10 seconds in a 10 minute window. The power spectrum was calculated from the 

squared amplitude of the Fourier transform. Noise was defined in this way as it was the highest spectral 

band below the Nyquist frequency (256 Hz) which can be assumed to have minimal scalp EEG power. 

Although  could contain a small amount of physiological information, we have approximated the ������
noise in this way in lieu of hardware based testing of the device.

2.5 Survey Collection

Patients with epilepsy undergoing clinical EEG monitoring were recruited to use wearable devices for 

the duration of their monitoring. Some patients were willing to wear multiple devices, wearing up to 

four devices at a time. Monitoring lasted at least three days in all cases. Some healthy controls were 

recruited as well to wear devices for a similar duration. At the end of the recording period subjects 

completed a survey on a tablet device, answering questions about basic demographics, device 

preference (if multiple devices were worn) and impression of comfort. In the case where multiple 

devices were worn, device impression was only completed for the preferred device. Questions were 

answered on a 7-point Likert scale. 

2.6 Statistical Methods

A t-test was used to evaluate metric performances for ACC, PPG and EDA data. Survey results were 

assessed by computing the mean response for each question and for each device.  A 2-way ANOVA 

was conducted to assess the effects of age and gender for each question. For each response, interaction 

between gender and age group was not found to be significant (p<0.05). Hence, gender and age groups 

were analyzed as independent factors. No significant difference was found between recruitment sites 

hence these were aggregated for analysis.

3 Results

3.1 Accelerometry Data Analysis

Data from 19 patients with epilepsy were included in the analysis of ACC data extracted from Empatica 

E4, Byteflies, Biovotion and GENEActiv devices. Normal data was recorded with the device on the 

patient, while noise segments represent data recorded by a device resting on a stable surface (not worn). 

The SQIPR (eq. 2) has higher values when the subject is physically active.  The mean and standard 

deviations of the power ratio across 10-minute segments from patients wearing the device are reported 

in Table 1. Both average and standard deviation together could be considered as a metric to distinguish 

noise from acceptable data, as well as classifying the physical activities. During sleep however, the 
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metric may falsely classify the signal as noise when the subject shows no movement. In this case, 

tracking the metric over a longer time period is suggested (Fig 1. (a) 22:43 to 12:00, second day, avg ± 

std (SQIPR): 0.29±0.003). Shorter time periods may be used during sleep if other signals, such as EDA 

and temperature, can be associated with ACC data to confirm the device is being worn. For example, 

in Fig 1. (a) from 0:44 to 1:19 am (first day), data is classified as noise based on ACC metric, and zero 

EDA signal in Fig 1. (c) supports that. However, from 1:34 to 1:54 am on the first day, which is 

classified as noise (not on patient) using the proposed ACC SQI, the EDA signal has high-quality data 

suggesting the device is being worn while the subject is still.  All four devices reported in Table 1 show 

similar quality of ACC data and are able to capture movement with comparable ability.

3.2 Electrodermal Data Analysis

Data from 10 patients were selected for EDA analysis.   The average and standard deviation of 

the SQIRAC, the amplitude change per second, for positive (amplitude increasing) and negative 

(amplitude decreasing) SQIs separately, were reported for both devices in Table 2. The SQIs were 

compared with the reviewer labels and showed an average agreement of 86% and 90% between the 

labels and SQIs for the Empatica and Biovotion, respectively. A t-test showed a significant difference 

in the SQIRAC for data labeled as good quality compared to low quality (bad and marginal) classes with 

p<0.001. Moreover, the SQIs of the data collected with the electrodes not in touch with the skin was 

compared with normal data including good and marginal (p<0.05 for Empatica and p<0.001 for 

Biovotion, reported in Table 2). For the Empatica device, the EDA signal is zero when it is not on the 

patient's wrist, and the Biovotion device records a constant value of 21 kΩ (0.047 mS) in our 

experiments, where the device was on patient but not in contact with skin. As measured by the marginal 

and noise percentage of data reported in Table 2, the Empatica E4 recorded EDA data with highest 

quality on average in our cohort.

3.3 Photoplethysmography Data Analysis

PPG data was analyzed from 15 patients. BVP data from Empatica E4 and PPG data with 3 

light sources from Byteflies and Biovotion devices were analyzed. Table 3 summarizes the mean and 

standard deviation of the spectral entropy SQISE for good, marginal and noise data, respectively. As 

expected, good quality data exhibit the lowest spectral entropy of all classes. Noise has the highest 

spectral entropy with values close to one, in correspondence with a flat spectrum in the 1-3 Hz frequency 

band. Marginal quality data epochs show values in between good and noise SQISE values. The green 

PPG for Biovotion and IR light PPG for Byteflies devices were scored by reviewers, and these scores 

were used to classify the remaining PPG signals. Although the Empatica BVP data is preprocessed, 

Bytflies and Biovotion devices also provide good quality data for at least one light source.

3.4 EEG Data Analysis

A total of 405 days of Epitel Epilog EEG data from 21 patients were analyzed by calculating 

the signal’s maximum bandwidth, which is an estimate of the highest frequency at which the recorded 



This article is protected by copyright. All rights reserved

signal is significantly different from noise. The results show that 21.4% of EEG data were classified as 

good (maximum bandwidth above 75 Hz),  33.3% classified as acceptable (maximum bandwidth 

between 35 Hz and 75 Hz), and 45.3% of data were marginal (maximum bandwidth bellow 35 Hz).

3.5 Data Validation  

The proposed SQIs were computed over a larger set of acquired data including ACC, EDA and 

PGG signals. The analysis showed 71% of Empatica EDA data (34 patients, 89 days) and 13% of  

Biovotion EDA data (10 patients, 7 days) was classified as acceptable quality (rate of amplitude change 

stays within [-10% 20%] limit).  90% of Empatica ACC data (39 patients, 117 days) was classified as 

acceptable quality, and 91% of Empatica BVP data (28 patients, 71 days) was classified as acceptable 

quality. 94% of Biovotion ACC data (1 patient, 1 day) had acceptable quality. Results of analysis of 

Biovotion PPG data shows that 95%, 91% and 58% of green, IR and red lights were classified as 

acceptable data.

3.6 Patient survey analysis

Patients were provided with a survey at the end of data recording to evaluate wearable device 

acceptability. Table 4 presents the demographics of the patient cohort that completed device 

acceptability surveys. All respondents completed the entire survey. The majority of respondents 

identified as female, and the most represented age cohorts are 20-29 and 30-39 years of age.

Survey results are summarized in Table 5. Patients who wore multiple devices were asked 

which device they preferred, and only responded to the survey for the preferred device. The Empatica 

E4 was the preferred device more often than other devices. The Biovotion device had the most positive 

results for both ease of manipulation and usability, followed by the two wrist-worn devices, the 

Empatica E4 and GENEActiv. GENEActive had the most positive results for both long-term comfort 

and comfort during sleep. The Byteflies sensor dots were most preferred for potential seizure prediction. 

However, all devices generally had positive responses.

Being in the 60-69 year old age group was significantly correlated with more negative usability 

responses (p<0.05). Being in the 30-39 year old age group was significantly correlated with more 

positive long-term comfort responses (p<0.01). No significant effect was found with gender for 

response to any question.

4 Discussion

Automated, objective measures of signal quality are important for large-scale data acquisition and 

management systems, such as are needed for epilepsy monitoring and management systems. Here we 
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describe and validate quantitative signal quality metrics for ACC, PPG, EDA and EEG. As a quality 

metric for ACC data the power ratio of the signal in the frequency range between [0.8 - 5] Hz over [0.8 

- 16(Fn)] Hz, was estimated. According to the results reported in Table 1, the average and standard 

deviation of the proposed SQIPR (eq. 2) can be used as a metric to decide if the device is on the patient 

or not. However, for short segments classified as noise, observing other signals like EDA and PPG (and 

many devices also record temperature) is suggested to identify times when subjects may be physically 

still (for example, during sleep). All devices tested showed significant differences in SQIPR between 

normal use and device removal, and any of the devices tested would perform well. The rate of amplitude 

change (%) was defined as a quality metric for EDA data, which for good data is between 20% increase 

and a 10% decrease, discarding data with amplitude smaller than 0.05 µS (equal to 0.047 mS for 

Biovotion) and 1-minute segments with amplitude changes less than 0.01 µS for the Empatica E4 (0.01 

mS for Biovotion). In some special cases, this range would be slightly different25. Note that in our study 

cohort the arm-worn Biovotion device recorded a greater proportion of marginal and poor quality EDA 

data (and a lower proportion of good quality data) compared to the wrist-worn Empatica device. It is 

unclear whether this is due to the difference in sensor placement, differences in sensor design, or other 

factors. 

The signal quality of PPG was evaluated by spectral entropy to measure the peakedness of a 

spectrum. Good PPG signals have lower spectral entropy than a noisy PPG signal. The t-test was used 

to evaluate the metric’s performance and it showed metrics can classify data into good and noise (or 

not on the patient) classes with a p<0.05 for all signals. A direct comparison of the individual green, 

red, and IR PPG channels from the Byteflies and Biovotion devices to the aggregated PPG signal from 

the Empatica device is perhaps unclear, although the spectral entropy ranges observed for the green and 

infrared signals from the Biovotion and Byteflies devices gave similar results, suggesting a similar 

aggregated measure from these devices may be quite similar to the Empatica BVP. The Biovotion 

device’s IR channel showed less change in SQISE amplitude and the red channel showed almost no 

change between good, marginal, and poor data compared to the other devices.  In general, EDA and 

PPG together can be used to robustly detect if a device is worn or not with the individual quality metrics. 

The SQI of ACC data could be used to distinguish between periods of device on vs. off body, however 

special care needs to be put towards not misclassifying sleep as device not worn. Signal quality in a 

modular, ambulatory EEG device has somewhat different characteristics than a typical wired EEG 

setup, where line noise may dominate as an indicator of poor signal quality. The SQI reported here has 

been used widely in intracranial EEG 31–33 and showed good ability to differentiate signal quality in this 

study.

There is a large number of devices commercially available for epilepsy management, and an 

increasing number is receiving regulatory approval for detection of specific seizure types8. Automated 

monitoring of data quality in long-term use, will be of great importance for clinical and research 

applications. Long-term use of wearable devices will also necessitate robust online data transfer to 

https://www.zotero.org/google-docs/?pZA1tB
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minimize the need for manual data management. Such systems exist for many consumer grade wearable 

devices, and will minimize compliance and technically related errors. Online connectivity can also 

provide the opportunity to give direct feedback to users about their compliance and data quality. This 

in turn may have a positive effect on increasing compliance. However many devices currently available 

have deficiencies in design that limit their acceptability to the user, negatively impacting adherence. It 

is necessary that people with epilepsy and their caregivers are integrated into the development process 

of wearable devices, such that interest in the device is not solely based on medical benefits. It is 

encouraging that all average survey responses were positive to the tested devices, although not reflected 

in these results were occasional refusals by subjects to use devices. Surveys of larger populations will 

be required in order to appropriately power such studies. 
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Figures

Fig 1. (a) Scaled accelerometer data of Empatica E4 from a control subject in blue, and average power 

ratio quality metric over 10-minute segments in red. The Mean  Variance of power ratio SQIPR is 

shown in black. Subject performed multiple activities including walking, running, and biking.  (b) The 

corresponding power spectrum of the raw accelerometer data. (c) The corresponding scaled EDA signal 

(red) and SQIRAC (black). Zero SQIRAC shows segments where the amplitude of the EDA signal is less 

than 0.05 µS (no skin contact) or the amplitude change is less than 0.01 µS in a 1-minute segment. (d) 

An 80 second segment of EDA signal from the recording, likely illustrating non-specific SCR periodic 

changes consistent with high physical activity25.

Fig. 2 Typical on-patient PPG spectrogram depicted in the upper panel recorded with Empatica E4. 

Note that most of the signal power distributes among frequencies below 5 Hz and that the signal was 

not recorded continuously (white spaces in upper and lower panel). The corresponding raw PPG signal 

is depicted in the lower panel (black line) with the calculated SQISE on top (red line).  
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Tables

Table 1. Signal quality index (Power Ratio), SQIPR for accelerometer data from 3 devices; 

Empatica E4, Byteflies, Biovotion and GENEActive. Acceptable data compared with recorded 

noise. 

Device Location
No. of 

patients

Duration 

(days)

SQIPR

avg±std(normal)

SQIPR

avg±std(noise)
P-value

 

Empatica

E4
wrist 6 18 0.35±0.086 0.29±0.005 <0.001

Byteflies 

Sensor Dot
chest 4 10 0.32±0.09 0.27±0.006 <0.001

Biovotion 

Everion
arm 5 12 0.37±0.10 0.29± 0.0017 <0.001

Activinsights 

GENEActive
wrist 4 12 0.38±0.09 0.30±0.007 <0.001

Table 2. Signal quality index (Rate of Amplitude Change), SQIRAC for EDA data from 2 devices; 

Empatica E4, and Biovotion. Acceptable quality data compared with recorded noise. The SQIRAC 

is between –10% and 20% for good data.  Amplitude change of more than a 20% increase 

(positive values) or 10% decrease (negative values) per second, are caused by artifacts and are 

often correlated with subject motion

Device Location

No. of 

patients

Duration 

(days)

Amplitude 

threshold

(normal)

SQIRAC

avg ±std %

(good)

SQIRAC

avg ±std %

(marginal)

Average 

percentage 

of marginal 

+ noise 

segments 

per minute

P-value

Empatica 

E4
wrist 5 16 SC>0.05µS

2.05±3.18

-1.28±1.67

124.9±458.2

-30.9±22.7
35.77 <0.05

Biovotion 

Everion
arm 5 6 SC> 0.047mS

1.17±1.47

-1.08±1.1

56.11±50.34

-26.18±15.58
87 <0.001
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Table 3: Spectral Entropy for PPG data (SQISE) from Empatica E4, Biovotion and Byteflies

Device Location
No. of 

patients

Duration 

(days)

SQISE

avg ±std

(good)

SQISE

avg ±std 

(marginal)

SQISE

avg ±std

(noise)

P-value

Empatica E4 wrist 5 14 0.56 ± 0.16 0.82 ± 0.10 0.98 ± 0.02 <0.001

Biovotion 

Everion
arm 5 2

Green* 0.53± 0.13 0.76± 0.2 0.97± 0.01 <0.001

Infrared 0.79±0.12 0.85±0.06 0.97± 0.01

Red 0.92±0.09 0.91±0.06 0.97± 0.01

ByteFlies 

Sensor Dot
chest 5 4.5

Infrared* 0.59±0.14 0.77±0.11 0.98 ± 0.02 <0.001

Green 0.58±0.13 0.74±0.12 0.98 ± 0.02

Red 0.64±0.13 0.80±0.09 0.98 ± 0.02

  

*Data quality was scored by reviewers for one PPG channel, and scores were applied to the remaining 

channels.

Table 4: Demographics of patients’ survey respondents.

Total patients N = 70

N (%) using one device 25 (35.7%)

N (%) using >1 devices 45 (64.3%)

Female (%) 41 (58.6%)

Age group - N, (%)

<20 11 (15.7%)

20-29 22 (31.4%)

30-39 15 (21.4%)

40-49 9 (12.9%)
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50-59 8 (11.4%)

60-69 5 (7.14%)

Table 5: Patient survey results. Values are mean results from 7-point Likert scale: 1- Strongly 

Agree, 4-Neutral, 7-Strongly Disagree. Bold indicates best result per column.

Device
Times used 

(N)

Preferred 

Device (N)

Preferred 

Device (%)

Easy to 

Manipulate
Usable

Long-term 

comfort

Comfort 

During 

Sleep

Would use for 

seizure 

prediction

Biovotion Everion 9 1 11% 1.00 1.00 3.00 1.33 1.67

Empatica E4 40 19 48% 1.82 2.25 1.89 2.14 1.75

ByteFlies Sensor 

Dots
14 3 21% 2.67 2.67 2.33 2.33 1.33

Activinsights 

GENEActiv 
15 4 27% 1.20 1.20 1.00 1.20 1.80

Epitel Epilog 18 2 11% 1.50 2.25 2.00 1.75 3.50
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