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The size and shape of ice pieces floating in the sea, known as floes, play a critical role

in understanding the dynamics of ice-covered oceans. These characteristics significantly

affect albedo, sea ice concentrations, energy exchanges between the ocean and the atmo-

sphere, and the spreading of waves through ice-infested waters. Despite the availability

of diverse image recognition techniques suitable for analyzing ice-covered water imagery,

accurately detecting and measuring floes presents a considerable challenge.

This study explores floe size estimation by tackling the difficulties of detection using con-

ventional image processing methods in a controlled laboratory setting. This preliminary

step lays the groundwork for further field observations, where a precise methodology

for image acquisition is established, including camera calibration to correct perspective

distortion. Image segmentation techniques are then applied to in-situ sea ice imagery,

comparing traditional methods with modern ones: a snake-based algorithm and the

Segment Anything Model (SAM), an advanced deep learning model from Meta. To

overcome the limitations of each approach, a combined technique leveraging the advan-

tages of both is proposed. The efficacy of this integrated method is validated through an

in-depth analysis of floe size statistics, highlighting significant differences in outcomes

across the methods. Finally, this hybrid methodology is applied to an extensive dataset

of images from multiple Antarctic winter expeditions, providing a practical framework

for the analysis of sea ice properties.
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Preface

This thesis presents the research carried out during my Ph.D. candidature at The Uni-

versity of Melbourne. It comprises 8 main chapters. The first chapter provides an

introduction to the thesis as a whole. Chapter 2 offers a theoretical background, while

Chapter 4 discusses field image acquisition. The final chapter presents the conclusions

of the work.

■ Chapter 3 presents the paper:

Giulio Passerotti, Luke G. Bennetts, Franz von Bock und Polach, Alberto Al-

berello, Otto Puolakka, Azam Dolatshah, Jaak Monbaliu, and Alessandro Toffoli.

Interactions between irregular wave fields and sea ice: A physical model for wave

attenuation and ice breakup in an ice tank. Journal of Physical Oceanography, 52

(7):1431–1446, July 2022. ISSN 1520-0485. doi: 10.1175/jpo-d-21-0238.1

■ Chapters 5-7 present the development of an image segmentation method based on

the acquisition of winter Antarctic expeditions in 2017, 2019, and 2022. It is note-

worthy that the content within these chapters constitutes unpublished material

and has not been submitted for publication at this juncture.
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Chapter 1

Introduction

1.1 Image Processing for Antarctic Science

Sea ice is a vital component of Earth’s cryosphere, which encompasses all of its frozen

water, and plays a critical role in regulating the global climate system. Understanding

the dynamics of sea ice is crucial for predicting and comprehending Earth’s responses

to climate change and its broader climatic impacts. The Southern Ocean is particularly

pivotal for Earth’s climate. Across its vast expanses of uninterrupted water, interactions

between strong winds, large waves, intense currents, and the seasonal sea ice cycle fuel

the exchange of heat and gas between the air and sea. This confers on the Southern

Ocean the capacity to store more energy than any other latitude band on the planet and

absorb notable masses of the extra heat and carbon dioxide from human activities.

Air-sea interaction processes in the sea ice region of the Southern Ocean [3, 4], and

in particular in the marginal ice zone – the band of movable sea ice cover between

the open ocean and more compact sea ice conditions – are still elusive but essential

for refining retrieval algorithms for satellite remote sensing, enhancing climate models,

and improving predictions [5]. The remoteness and extreme weather conditions of the

region complicate in-situ observational efforts, contributing to a significant knowledge

and technological gap. By closely observing changes over time in the sea ice region,

scientists can gain insights into the processes that regulate sea ice formation and melting,

as well as the overall stability of the ice cover [6, 7].

Collecting sea ice data is challenging due to the limitations of existing observational

methods and the inhospitable, remote nature of polar regions. The harsh conditions of

Antarctica, along with logistical challenges and high costs associated with extensive field

campaigns, have historically restricted the quantity and quality of observational data

1



2 Chapter 1 Introduction

available. Additionally, the inherently dynamic nature of sea ice, which continuously

responds to atmospheric and oceanic conditions, complicates efforts to achieve consistent

and continuous measurements [8].

Most of the data available in the sea ice region, especially in Antarctica, rely on visual

observations acquired through the ASPeCT protocol during voyages to high latitudes

[9, 10]. However accurate, visual observations are subject to human errors and interpre-

tation, which introduce inconsistent sets of uncertainties into a general database. For

example, if the same portion of sea ice is assessed by three observers, it is likely they

would return three different observations. I personally encountered this challenge while

contributing to sea ice visual observations aboard the S.A. Agulhas II in 2022, particu-

larly when attempting to assess the size and concentration of ice floes from a distance

without any available reference points.

Advancements in image processing techniques have begun to address these data gaps in

a more objective manner. Cameras and sensors enable continuous monitoring of large

sea ice areas with high precision, providing spatially and temporally continuous data.

This technology delivers detailed insights into ice concentration, floe size distribution,

and other critical parameters.

This automated approach significantly reduces the uncertainties and errors associated

with manual methods and provides more reliable and comprehensive data for researchers

and operations in polar regions. It is worth noting, however, that uncertainties can-

not be entirely eliminated; a digitized observation protocol based on computer vision

would standardize observation errors. Compared to traditional methods, such as manual

counting from ships – a labor-intensive process that offers limited spatial and tempo-

ral resolution – image processing techniques provide a more thorough and continuous

dataset. This is crucial for evaluating and enhancing the accuracy of sea ice models,

especially in terms of floe size distribution. Such methods not only broaden the scope

of geographical and temporal observations but also improve the precision with which

changes in the Antarctic sea ice landscape are assessed.

1.2 Research objectives

This research aims to address the data scarcity in polar regions by leveraging images

from Antarctic expeditions to develop an algorithm capable of effectively identifying

ice floes under the challenging conditions typical of Antarctica. The identification of

ice floes in digital images facilitates the estimation of key parameters, such as floe size

distribution and sea ice concentration, which are essential for understanding the high
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spatial and temporal variability of oceanic, atmospheric, and ecological conditions in the

marginal ice zone.

The thesis employs high-resolution, close-range digital images and advanced image pro-

cessing techniques to achieve the following objectives:

• Evaluate ice identification challenges, including the detection of floe edges and the

estimation of floe shapes, in a controlled laboratory setting where an ice sheet is

fragmented by artificially generated waves.

• Develop a robust image acquisition technique to operate aboard an icebreaker ves-

sel that mitigates wave-induced perspective distortions and incorporates a method

for converting image data into metric measurements.

• Generalize and automate the application of object segmentation to images with

varying levels of clarity and assess both traditional segmentation techniques and

modern methods that use artificial intelligence.

• Develop a hybrid algorithm that combines the strengths of traditional and AI-

based approaches.

• Conduct a statistical comparison to determine the most effective segmentation

method for accuracy and efficiency in identifying ice floes and estimating floe size

and ice concentration.

1.3 Thesis structure

The structure of the thesis follows a logical progression, starting with an analysis of sea

ice images in a laboratory setting to understand the challenges of image segmentation.

This initial work helped identify key obstacles and refine the methodology, which was

then extended to real-world scenarios. The research progressed through evaluating seg-

mentation methods for detecting sea ice from in-situ imagery. Chapter 3 of the thesis

includes a manuscript that has been published in the Journal of Physical Oceanography

(JPO), and the format of the publication has been maintained.

Chapter 2 provides a brief review of computer vision methods to measure sea ice. The

chapter starts with a brief overview of sea ice in the marginal ice zone. It then reviews

methods for detecting sea ice characteristics from images acquired from ships, aerial

vehicles, and satellites. These methods range from classical edge detection filtering

to advanced artificial intelligence systems. Additionally, methods for extracting ice

properties from images taken in a laboratory are analyzed. These experiments serve to
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recreate the dynamic processes occurring in the marginal ice zone in a controlled scale

and setting. They are used for both advancing knowledge of complex coupled processes

in the sea ice regions and acquiring images for training AI-based algorithms for sea ice

data retrieval.

Chapter 3 details an experiment that investigates the challenges of image segmentation

in detecting sea ice floes within a controlled laboratory setting, where conditions can

be precisely managed, unlike in natural environments. The study focuses on how dif-

ferent steepness levels of incident wave fields influence the breakup and transition of

sea ice from a continuous to a fragmented state. This physical modeling approach aids

in understanding the dynamics of sea ice in response to wave energy, and the mecha-

nisms underlying ice breakup. It also discusses analogies between wave and sea ice floe

statistics.

Chapter 4 outlines the process of capturing sea ice images during three winter expedi-

tions in the Antarctic Marginal Ice Zone (MIZ). It establishes a precise methodology for

image acquisition, including the correction of geometric distortions in images based on

the camera’s internal parameters. This technique, known as objective orthorectification,

converts pixels to meters without relying on known reference objects within the camera’s

field of view. The chapter also examines how the ship motion due to wave action affects

this orthorectification process. A set of images representing a broad spectrum of field

conditions encountered in the Southern Ocean is selected and manually segmented to

create a high-quality reference for evaluating subsequent image segmentation methods.

Chapter 5 introduces the adaptation of an active contours model, specifically the Gradi-

ent Vector Flow (GVF) snake algorithm, for detecting sea ice floes in digital images. This

algorithm segments floes that appear connected, using a dynamic curve that adjusts to

fit the precise boundaries of the floes. An automated initial contour generator, designed

to adapt to various ice floe shapes, is proposed. The chapter also discusses pre-processing

techniques that enhance image sharpness and smoothness to address challenges with un-

even grayscale distribution, which can affect segmentation accuracy. The results from

this snake-based method are compared with those from manual segmentation.

Chapter 6 explores new techniques in image segmentation derived from deep learning

models, particularly assessing the suitability of vision foundation models for ice anal-

ysis. These models, which do not require training, are ideal for polar regions where

fresh, relevant training data is scarce. The Segment Anything Model (SAM), a type

of foundation model adept at segmenting every object within an image, is applied to

the same subset of benchmark images. Adjustments are made to enable this model to

process images acquired under conditions that reflect the complexity of the Antarctic
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environment. The results are visually compared with those obtained through manual

segmentation.

Chapter 7 proposed a new segmentation algorithm that combines the GVF algorithm

and SAM. This hybrid approach utilizes the strengths of both segmentation methods and

is applied to the same subset of images used by other techniques for direct comparison

with the manual benchmark. A more robust subset of images is then used to estimate

floe size statistics across the various segmentation methods proposed in this dissertation.

Variations in floe size statistics arising from the GVF, SAM, and combined SAM-GVF

methods are discussed. The best-performing method is applied to the entire database

from winter expeditions to the Antarctic MIZ in 2017, 2019, and 2022, with parameters

such as floe area, diameter, and ice concentration determined for each image and their

statistical properties discussed.

Chapter 8 presents the overall conclusions of the thesis.





Chapter 2

Computer Vision for Sea Ice

Measurements

2.1 Introduction

Sea ice imagery is essential for observing and analyzing sea ice for scientific purposes

as well as key to underpinning navigation at high latitudes. Various remote sensing

technologies and digital imaging techniques are used to monitor fundamental aspects of

sea ice, such as concentration, floe size distribution, thickness, and types. The dynamic

nature of sea ice means that its size, shape, and distribution can vary significantly (e.g.

[11]), influenced by environmental factors such as wind, temperature, and water currents

[12]. Ice floes may also be densely packed or overlapping (see Figure 2.1), complicating

the task of distinguishing their boundaries in images, especially from a distance or when

they are partially covered by snow. This complexity is exacerbated by the harsh and

variable lighting conditions typical of polar regions, including low light levels, sun glare,

and reflections off the ice surface that can obscure visibility [13].

Computer vision is employed to address these challenges by automating the detection

and measurement processes, which are typically labour-intensive and subjective when

performed manually [14–16]. Through advanced image processing techniques and ma-

chine learning algorithms, computer vision systems can consistently analyze visual data

from cameras and sensors, even in difficult conditions. These systems are designed to

adapt to the various appearances and formations of ice [17], providing accurate, repeat-

able, and scalable measurements. They significantly enhance the capability to monitor

sea ice by processing large volumes of data quickly, reducing human error, and enabling

real-time measurements [18, 19].

7
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Figure 2.1: Image captured aboard a ship showing densely packed and overlapping
ice floes.

In this chapter, a description of the marginal ice zone – the area between the continuous

ice cover and the ocean where ice is formed and transformed, and the focus of this dis-

sertation – is first presented. Methods to extract properties of ice floes in this zone are

discussed. Images from satellites, shipborne cameras, and aerial vehicles are utilized to

develop an automatic recognition system for sea ice. These images are often combined to

create a more comprehensive detection algorithm using deep learning models. Addition-

ally, experiments and images taken in laboratory settings are used to study the behavior

of ice under external forces in a controlled environment. These images contribute to

understanding the challenges of detecting sea ice and serve as a basis for building more

generalized models.

2.2 The marginal ice zone

Sea ice plays a crucial role in Earth’s climate system, performing multiple crucial func-

tions that influence both global and regional climates. It reflects sunlight back into space,

significantly increasing the planet’s albedo, which is vital for regulating global temper-

atures [20]. Sea ice insulates the warmer ocean waters from the colder atmospheric

temperatures, moderating oceanic heat exchange with the atmosphere and influencing

atmospheric circulation patterns. When sea ice forms it releases salt, increasing water

density and driving ocean currents, which, in turn, are essential for global heat distri-

bution. The growth and melt of sea ice impact the Earth’s carbon cycle by influencing

biological productivity in polar regions [21]. Furthermore, sea ice provides essential habi-

tats and hunting grounds for a variety of marine species, from microorganisms to large

mammals, supporting diverse ecosystems. The presence, distribution, and changes in
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sea ice cover are critical indicators of climate change and are vital for climate modeling

and environmental forecasting.

The Marginal Ice Zone (MIZ) is a critical and dynamic area within the sea ice envi-

ronment where sea ice and open water interact, comprised of ice floes ranging from

centimeters to tens of kilometers in size. Ice floes are floating pieces of sea ice that vary

from small fragments (a few meters) to vast sheets (a few hundred meters) [22]. This

zone is particularly sensitive to climate and ocean conditions as it sets the edge between

the continuous ice cover and the ocean. Characterized by sea ice concentrations between

15% and 80%, the MIZ’s semi-enclosed nature creates a dynamic environment where ice

floes of various sizes and shapes are continuously formed and altered [23]. It is more

susceptible to wave action and temperature fluctuations than the stable consolidated ice

(see e.g. [11, 24]). The processes occurring in the MIZ, including the breakup of ice due

to wave interactions and the melting patterns influenced by oceanic heat, are vital for

understanding how changes in sea ice cover may impact global climate patterns.

The size distribution of ice floes is crucial in understanding sea ice dynamics inside the

MIZ. Their distribution affects the melting processes around the edges of the ice floes,

which is where most melting occurs due to the direct contact with warmer ocean waters

[25]. Secondly, the size and shape of these floes influence the ocean surface energy

budget [26, 27] by modifying the albedo effect – the reflection of solar energy back into

space. Larger floes have a different albedo and heat absorption capacity compared to

smaller ones. Moreover, the distribution impacts sea ice rheology [28] – the deformation

and movement of sea ice under external forces – which in turn affects the overall ice

dynamics, including the formation of ice ridges and leads (openings in sea ice).

The MIZ’s dynamic environment is further complicated by its exposure to oceanic waves

and swells, which can break up ice floes, creating smaller fragments [29]. This fragmen-

tation process is influenced by the floe size, which dictates how waves transmit energy

through the ice (cf. [30]). Smaller floes might lead to increased wave energy dissipa-

tion, while larger floes could scatter wave energy [31, 32]. Therefore, understanding how

different sizes of floes distribute in the MIZ is crucial for predicting changes in sea ice

dynamics and their broader climatic impacts.

Traditional sea ice models have struggled with adequately incorporating processes re-

lated to the floe size distribution due to limited observational data, which is necessary

for validating these models [33]. Observations of sea ice have traditionally been sparse,

especially high-resolution data that can accurately capture the details of floe size and

shape across different resolutions and under various conditions.
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2.3 In-situ sea ice imagery

Camera systems have become widely employed due to their affordability, reliability,

and the ability to offer temporally and spatially continuous field observations of sea ice

conditions (e.g. [34, 35]). Numerous studies [14, 16, 34, 36–41] have been undertaken

to detect ice floes from digital images obtained aboard ships or from aerial perspectives.

Unlike aerial cameras, ship-mounted cameras provide continuous recording, enabling a

more comprehensive and dynamic understanding of sea ice behavior.

The principal challenge in processing sea ice images resides in associating each indi-

vidual pixel with its corresponding floe. A classical approach focuses on the threshold

segmentation algorithm. Sea ice images are transformed into 2D grayscale images and

the histogram of the pixel intensities is calculated. A threshold value is then selected

based on this histogram to separate the intensity range of the ice floes from the back-

ground water. However, this threshold is normally a subjective user-dependent value

[34, 42, 43]. Efforts to automate the process of ice identification have resulted in the

development of more sophisticated techniques, such as the k-means algorithm [37, 39],

gradient vector flow (GVF) snake algorithm [16] and watershed segmentation [36, 44].

Nevertheless, none of these studies execute a proper calibration of the camera [45] to

obtain a top-view projection of the images and, consequently, an accurate pixel-to-meter

conversion. As a result, no size-related statistics of the floes can be extracted. Further-

more, these methods often require user intervention to extract the boundaries of the

floes.

To the best of the authors’ knowledge, the sole complete and automated method pro-

posed for detecting ice floes from close-range optical images is by Sandru et al. [14].

After perspective correction, this method employs a revised version of the k-means al-

gorithm to categorize pixel intensities into four groups: two for different types of ice,

one for open water, and the last for everything else. The k-means algorithm partitions

a set of data into k distinct groups so that the data in each group are as similar to each

other as possible [46]. The principal problem with this technique when applied to sea ice

is that the number of clusters must be formulated in advance and cannot be changed.

Therefore, this method is only effective if the selected ice groups are all present in the

image. In reality, close-range ice imagery is irregular, as the illumination within them

is neither homogeneous nor constant among images taken at different times of the day,

due to weather conditions (see Figure 2.2) and other external factors. If the grayscale

values of pixels within a single floe vary considerably, these could be associated with

two distinct clusters. Consequently, forcing the detection of four groups in any case [14]

could lead to misleading results.
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Figure 2.2: Sample images captured under varying weather conditions: (a) partially
sunny skies and (b) low visibility due to snowfall.

In recent years, deep learning (DL) has significantly transformed image processing by

achieving unprecedented levels of accuracy and performance in object detection, image

classification, and semantic image segmentation. Convolutional neural networks (CNN)

can automatically learn features from images and extract high-level semantic informa-

tion. By learning from a vast array of training data, CNNs can identify and categorize

pixels in new images based on the patterns they have learned.

In the context of sea ice recognition, CNNs have been applied in several studies [40,

41, 47] to analyze digital images acquired from sensors installed on ships to differentiate

between various elements surrounding the vessel such as ice, water, and sky. These mod-

els demonstrate strong generalization abilities across various unseen datasets, making

them robust for real-time application in different ice conditions. These studies perform

semantic segmentation which involves classifying each pixel in an image into predefined

categories, effectively partitioning the image into segments that share semantic prop-

erties. Thus, they do not differentiate between individual ice entities. Additionally, in

most studies, the semantic segmentation does not address perspective distortion or per-

form camera calibration, which is necessary for accurately measuring the dimensions of

identified ice features [40]. This omission limits the practical application of these models

in tasks that require precise size estimations of ice formations [15].

Deep learning models demand significant computational resources for building the train-

ing dataset. This burden can restrict their implementation on systems with limited pro-

cessing power, making them less suitable for potential real-time applications. Moreover,

the effectiveness of these models is greatly influenced by the quality and diversity of the

training data they are exposed to. Insufficient representation of diverse ice conditions

can limit its effectiveness. Without this diversity in training data, the model’s practi-

cal utility and accuracy in real-world scenarios may be severely compromised (this is a
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common problem in other research fields that rely on computer vision; see e.g. [48]).

2.4 Satellite

Remote sensing techniques, especially satellite sensors, have become increasingly popu-

lar for studying sea ice [49]. Satellite images provide a reliable and extensive source of

data, particularly in remote polar regions where conducting direct observations is chal-

lenging. One of the primary benefits of using satellite imagery for monitoring sea ice

is their ability to consistently and regularly cover vast areas that are otherwise hardly

accessible. Although satellite images may have a limited temporal resolution, they pro-

vide continuous observation all-the-year-round. This is in contrast to images taken from

ships and aircraft, which, while high in resolution, are only available during the short

duration of polar expeditions. It should be noted that satellite imagery is constrained by

clouds, which is a critical problem, especially in the Southern Ocean [50]. However, the

technical advancements in Synthetic Aperture Radar (SAR) have significantly enhanced

the quality and reliability of sea ice detection. SAR is particularly valuable due to its

ability to penetrate through clouds and operate independently of daylight, delivering

data with a resolution ranging from meters to tens of meters across large areas [51].

This capability makes satellite images suitable for studying medium-sized floes (10-100

m) [15, 29]. However, they are less effective for examining pancake ice floes, which typ-

ically measure between 4 and 6 m and constitute a critical sea ice form in the marginal

ice zone during winter. [34].

Despite these limitations, the ease of accessing satellite data has led the scientific commu-

nity to develop new techniques for identifying ice and other glaciological features from

these images. These methods range from manual interpretations by experts to more

sophisticated automated systems that utilize deep learning and advanced algorithms

[52]. One of the key techniques for identifying ice floes and their boundaries is dynamic

thresholding [53, 54]. This method adapts to the specific characteristics of the image

to differentiate between ice and open water. It adjusts the threshold values according

to the local statistics of the image, which allows for more accurate differentiation. The

detailed surface characteristics of ice are also crucial for distinguishing between different

types of ice and segmenting the ice floes. Texture features, extracted from SAR images,

play a significant role in this process, offering a statistical representation that reflects

the distribution of pixel values and their spatial relationships within the image. By

capturing the spatial variation of pixel intensities, these texture features significantly

enhance the accuracy of ice classification [55].
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Segmentation techniques, which are essential for analyzing close-range images captured

in situ, can also be adapted for use with satellite imagery. This adaptability demon-

strates that segmentation algorithms are largely independent of image resolution, making

them versatile across different imaging contexts. Common techniques such as k-means

clustering [29] and watershed algorithms [56] provide examples of how these methods

can be adjusted to work effectively with the distinct characteristics of satellite images.

The development of deep learning models has further reduced the gap between the

segmentation techniques used for satellite imagery and those used for in situ images.

This advancement has been particularly influential in enabling the use of close-range

images to train neural networks that are then applied to more broadly captured satellite

images. For instance, Zhang and Hughes [15] has utilized a dataset of images captured

from aircraft to train a CNN. To overcome the challenge of costly and time-consuming

data annotation required for training these models, Zhang and Hughes [15] implemented

a GVF snake algorithm to automatically label ice floes in the local-scale marginal ice

zone images. The trained CNN is subsequently applied to segment larger-scale satellite

images, which are typically more numerous and available. This approach allows the

trained neural networks to apply the knowledge and patterns learned from in situ images

to effectively segment and analyze satellite imagery, despite the inherent differences in

detail and resolution.

Deep learning models, however, require substantial amounts of labeled data to learn

from. Specifically, these models need extensive datasets with each floe distinctly labeled

to accurately identify and segment individual ice floes. Obtaining detailed images of sea

ice, particularly from remote polar regions, is inherently difficult. Moreover, the process

of accurately labeling these images is not only crucial for the success of the models

but also highly labor-intensive. This substantial requirement for detailed, labeled data

creates a major barrier to entry, which could restrict the broader adoption of advanced

artificial intelligence (AI) techniques in remote sensing applications.

To ease the requirements of data annotation and model training, vision foundation mod-

els have been developed [57]. These are large, pre-trained deep learning models that have

been initially trained on vast, diverse datasets. Essentially, foundation models transfer

the knowledge they have acquired from their comprehensive initial training to new and

less familiar tasks. This adaptability reduces the necessity for creating and labeling

extensive new datasets for each specific application. Consequently, researchers can use

these models for tasks like segmenting sea ice in satellite imagery with considerably less

initial data.

An example of this is the first vision foundation model, known as the Segment Anything

Model (SAM), which was studied by Shankar et al. [58] for its ability to perform semantic
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segmentation of large icebergs in satellite images. Remarkably, without any additional

training data, SAM achieved accuracy levels comparable to those of highly specialized

CNNs. This development significantly reduces the need to build deep learning models

from scratch, thereby making it more practical to apply sophisticated AI techniques in

the challenging conditions of polar ice research.

2.5 Experiments

Laboratory experiments in ice facilities are crucial for studying complex environmental

interactions because they allow for precise control over conditions that are difficult to

manage in natural settings. In the context of ice research, conducting experiments in a

lab setting enables scientists to manipulate and standardize variables like environment

illumination, ice texture, gradient, and shape (see details in Chapter 3). This controlled

environment results in digital images of consistently high clarity.

Typically, these images are captured using a camera positioned to look directly down-

ward at the ice. This setup ensures a clear, unobstructed view of the ice surface below

without perspective distortion. Additionally, the size of the ice tank – where the (model)

ice is contained and examined – provides a scale reference that is crucial for geomet-

ric adjustments in the imaging process. These adjustments are necessary to ensure

that the digital images accurately represent the true sizes of the ice floes. By enabling

such precise control and measurement, laboratory experiments facilitate detailed and

accurate studies of ice behaviors and properties under various simulated environmental

conditions.

Several experiments have been conducted in controlled settings to explore parameters

that are difficult to isolate in natural environments due to the unpredictable and extreme

conditions of polar regions. For instance, Herman et al. [59] focused on the behavior

of sea ice under wave-induced stress. This experiment involved artificially generating

wave patterns to break a continuous, uniform sheet of ice and then analyzing the sizes

of the ice floes produced. Other studies, such as those by Zhang et al. [60] and Byun

and Nam [61], involved cutting level ice into square pieces and distributing them within

the ice tank. These experiments aimed to assess how ice impacts the integrity and

operational capabilities of structures in cold regions, thereby aiding the planning and

safety of marine operations.

In laboratory settings, where variables can be meticulously controlled, traditional image

processing techniques such as image binarization and morphological operations prove

particularly effective for detecting sea ice [60, 61]. The process of binarization converts
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the original image into a binary image, often referred to as a mask. In this binary

image, pixels representing ice are assigned a value of one, while those representing the

background water are assigned a value of zero. This straightforward approach gener-

ally allows for the clear separation of individual ice floes within the camera’s field of

view. However, in crowded scenes where floes are densely packed, these basic techniques

might not suffice to accurately delineate the boundaries of each floe without manual

adjustments. To address this issue, more advanced image processing methods have been

developed and applied, as noted in Zhang et al. [60]. These advanced techniques enhance

the precision of the segmentation process, reducing the need for manual corrections.

Images captured in laboratory settings are not only instrumental in examining how ice

responds to external forces but also serve as valuable resources for building high-quality

datasets of segmented ice floes. These datasets can be exploited to train deep learning

models intended for field use. Although these images represent a more idealized version

of ice conditions, as opposed to the broad diversity found in natural environments, they

help mitigate the common issue of data scarcity in polar regions by providing a rich

source of consistent and controlled data.

For example, Zhou et al. [62] discussed the development and application of a neural

network designed to identify sea ice floes and calculate their concentration from images

captured by ship-based cameras. The model was trained on laboratory images show-

casing various floe shapes and sizes, under a range of lighting conditions and viewing

angles. The controlled and consistently replicated laboratory conditions were essential

for developing a robust deep learning model. This setting enabled the algorithm to

learn from clear, well-documented examples, reducing the inconsistencies often found in

segmented field data. This example highlights the applicability of well-segmented labo-

ratory images in developing and refining AI models for practical use in the demanding

conditions of polar regions.

2.6 Conclusions

The size and distribution of ice floes within the MIZ crucially impact the melting pro-

cesses and the ocean surface energy budget, influencing sea ice dynamics and broader

climatic impacts. Understanding these dynamics is vital for climate modeling and fore-

casting, emphasizing the need for high-resolution observations to improve sea ice models.

A variety of image processing techniques have been utilized to detect sea ice and measure

floe properties using data from satellites, shipborne cameras, and aerial vehicles. These

approaches range from traditional image processing methods to advanced deep learning



16 Chapter 2 Computer Vision for Sea Ice Measurements

techniques. Deep learning models, in particular, have proven to be highly effective,

providing quick and accurate classifications of ice in images. However, most of these

techniques focus on semantic segmentation, which classifies different areas of images

but is not able to identify individual instances of ice floes. Distinguishing between

overlapping floes in crowded scenes remains a significant challenge, requiring training

datasets that capture the inherent variability and dynamic nature of sea ice within the

MIZ.

The need for techniques capable of processing images under less than ideal conditions

– such as unclear boundaries between floes and inconsistent lighting and weather – is

recognized as fundamental for accurately handling field ice imagery. In subsequent chap-

ters, it will be explored how image processing techniques can be applied in a controlled

laboratory environment to study the characteristics of ice floes. This exploration is es-

sential for the development of generalized segmentation algorithms capable of detecting

individual ice floes amidst the constantly changing conditions of the MIZ.

Furthermore, the process of correcting perspective distortions and establishing an ob-

jective conversion between pixels and meters for accurately measuring floe sizes will be

discussed. This issue, often overlooked in the literature, is critical for accurately studying

parameters like floe size distribution. By addressing these challenges, an enhancement

in our understanding and modeling of sea ice dynamics can be achieved, contributing

significantly to our knowledge of climate systems.
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Abstract

Irregular, unidirectional surface water waves incident on model ice in an ice tank are

used as a physical model of ocean surface wave interactions with sea ice. Results are

given for an experiment consisting of three tests, starting with a continuous ice cover

and in which the incident wave steepness increases between tests. The incident waves

range from causing no breakup of the ice cover to breakup of the full length of ice cover.

Temporal evolution of the ice edge, breaking front and mean floe sizes are reported.

Floe size distributions in the different tests are analysed. The evolution of the wave

spectrum with distance into the ice-covered water is analysed in terms of changes of

energy content, mean wave period and spectral bandwidth relative to their incident

counterparts, and pronounced differences are found between the tests. Further, an

empirical attenuation coefficient is derived from the measurements and shown to have

1This chapter has been published as: Giulio Passerotti, Luke G. Bennetts, Franz von Bock und
Polach, Alberto Alberello, Otto Puolakka, Azam Dolatshah, Jaak Monbaliu, and Alessandro Toffoli.
Interactions between irregular wave fields and sea ice: A physical model for wave attenuation and ice
breakup in an ice tank. Journal of Physical Oceanography, 52(7):1431–1446, July 2022. ISSN 1520-0485.
doi: 10.1175/jpo-d-21-0238.1
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for Wave Attenuation and Ice Breakup in an Ice Tank

a power-law dependence on frequency comparable to that found in field measurements.

Links between wave properties and ice breakup are discussed.

3.1 Introduction

Over the past decade, interactions between surface gravity waves and sea ice have become

more broadly recognised as important for wave and sea ice processes [63–65]. Major

international research programs have focused on wave–ice interactions and the marginal

ice zone where wave–ice interactions occur [66–69]. A central theme of the research

advances is integration of wave–ice interactions into numerical wave models [70–73] and

sea ice models [74–77] used for operational forecasts, climate studies and other scientific

investigations. Following the framework set by [78] and Williams et al. [79, 80], wave–

ice interaction models tend to couple the two key processes of (i) wave attenuation over

distance travelled due to ice cover, and (ii) wave-induced breakup of continuous ice covers

(very large ice floes) into collections of smaller floes, notwithstanding other potentially

important wave–ice interaction processes, such as wave-induced ice drift [81, 82], wave-

driven floe–floe collisions [83, 84] and wave overwash of floes [85, 86]. Rapid progress

has been made in understanding and modelling wave–ice interactions, but conspicuous

knowledge gaps still exist, particularly for wave-induced ice breakup.

Wave attenuation in the ice-covered ocean is measured using wave-buoy arrays [67, 87],

synthetic aperture radar [88, 89] and stereo-imaging techniques [24, 90]. Analysis of

the data collected suggests each frequency component of the wave spectrum attenuates

exponentially with distance travelled, and that the rate of attenuation increases with

increasing frequency, so that the spectrum skews towards low frequencies [87, 91]. The

observations of frequency-dependent exponential wave attenuation are consistent with

prevailing theories, which are broadly divided into two categories: (a) scattering theory,

in which attenuation results from an accumulation of partial wave reflections by each

individual floe; and (b) viscous theories, in which the ice cover is typically treated as a

continuum and wave energy is dissipated by some (often unspecified) mechanism in the

ice or underlying water. Scattering theory is applicable when wavelengths are compara-

ble to floe sizes, and predictions show pleasing agreement with historical data from the

Arctic basin where the scattering regime is generally valid [92–94]. Viscous continuum

models are applicable when wavelengths are much greater than floe sizes, which is the

relevant regime for most recent observations, and the viscous parameters are typically

chosen to give agreement with the observations [95, 96]. Wave measurements are usually

not accompanied by detailed measurements of the ice conditions, and the relationship

between wave attenuation rates and ice conditions is largely unknown. However, there
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are consistent reports of wave blocking by continuous ice cover transitioning to relatively

weak attenuation following ice breakup [97, 98].

Reports of wave-induced ice breakup exist in the literature, based on visual observations

from ships [97, 99–101] or inferred from satellite imagery [29, 98]. Local measurements

of wave and ice properties during breakup events are rare, which makes it challenging to

assess the relative wave and ice conditions that lead to breakup, the resulting floe size

distribution and breakup effects on waves [2]. Additional complications are presented

by unknowns associated to wave attenuation [102]. Wave-induced ice breakup theories

are typically based on stresses and/or strains imposed by a passing wave exceeding some

critical value(s) [92, 103, 104], with variants that include ice fatigue [105], probabilistic

treatment of wave amplitudes [79], irregular wave spectra [78, 106], three-dimensional

effects [107], breakup memory [77] and viscoelastic ice [108].

Laboratory-scale physical modelling is generating understanding of wave–ice interac-

tions to complement field observations and theory. Wave basin experiments are used to

investigate wave attenuation (and related wave transmission/reflection) due to plastic

or wooden floes [109–112], freshwater ice and model ice (saline or doped), with most

up to 2020 listed by Parra et al. [113] and others since then [35, 114]. Few wave-basin

experiments investigate wave-induced breakup. Herman et al. [59] study the floe size

distribution resulting from wave-induced breakup of continuous model ice, but do not

include measurements of waves in the ice-covered water. Therefore, they do not relate

the extent of breakup to wave attenuation, and, moreover, they report breakup unex-

pectedly starting halfway along the length of the ice cover due to spurious waves reflected

by the beach. Dolatshah et al. [30] conduct the only study [to our knowledge; noting it

is overlooked by 113], in which both attenuation and breakup are measured simultane-

ously, although using freshwater ice (much stiffer than model ice) and in an essentially

one-dimensional setting in a narrow wave basin. They report a transition from wave

blocking by continuous ice to relatively weak attenuation by broken ice, similar to field

observations [97, 98]. Cheng et al. [115] report breakup in their attenuation experiments

using model ice, but exclude the corresponding wave measurements from their analysis.

To date, almost all physical models of wave–ice interactions use regular incident waves,

thus obscuring nonlinear processes for irregular sea-states, such as ice breakup, floe–floe

collisions and overwash. The only exception is Klein et al. [114], who use transient wave

packets, in part to avoid ice breakup.

In this article, we report a laboratory experiment in which (unidirectional) irregular wave

fields are incident on model (doped) ice in a large ice tank (Aalto University, Finland).

We study the transition from a continuous ice cover to a broken ice cover using a series of

tests with increasingly energetic (steep) incident wave fields, which range from causing
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no breakup to breaking up the entire ice-cover length. A camera mounted above the

basin monitors the ice cover during the tests, and image analysis is applied to extract the

ice edge, breaking front and individual floe properties. Wave motion in the ice-covered

water is inferred from an array of bottom-mounted pressure sensors and we analyse the

evolution of the wave spectrum and attenuation of the spectral frequency. Correlations

between wave properties and ice breakup, during its transition from compact to broken,

are discussed.

3.2 Experimental model

3.2.1 Facility and model ice

The Aalto ice tank is 40m long, 40m wide and was filled with 0.3%-ethanol doped water

up to 2.8m depth (Figure 3.1a). It is bounded at one end by a computer-controlled wave-

maker with 16 triangular plungers (2.5m wide) and by a linear beach at the opposite

end to absorb incoming wave energy (95% energy-effective for incident waves tested).

The tank is equipped with a cooling system to control the ambient temperature.

(a)

(b)

(c)

(d)

(e) (f)

Figure 3.1: The physical model conducted at the Aalto ice tank: (a) schematic of the
experimental setup (not to scale) indicating the wave maker (left-hand end), adjacent
open water region of length 10m, followed by region covered by model ice of length
30m (initially continuous), and instrumentation (three wave gauges in open water,
five pressure sensors below ice cover, sixteen markers on the ice surface, and a video
camera); (b) image from video camera showing its field of view and the initial ice cover;
(c) photo taken from tank side during spray of ice crystal; (d) photo taken from behind
the wave maker showing wire wave gauges in open water; (e) photo showing a pressure
sensor before creation of model ice cover; and (f) photo showing cantilever beam test.
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Table 3.1: Pierson–Moskowitz incident wave spectra for three tests (Equation 3.1),
plus initial and final ice conditions.

HS,0 [m] TP ,0 [s] ε LP ,0 [m] Initial ice Final ice
condition condition

0.03 1.6 0.02 4 unbroken unbroken
0.06 1.6 0.04 4 unbroken partially broken
0.08 1.6 0.06 4 partially broken fully broken

A model ice sheet with near uniform properties, and realistic thickness and flexural

strength for a target scaling factor of ≈ 30, is produced over the entire water surface

by first lowering the air temperature below freezing until a thin film of ice forms on the

water surface. After this, layers of sub-cooled water are sprayed, forming ice crystals with

diameter 1mm (Figure 3.1c). The ambient temperature is then lowered to −15◦C, which

initiates crystal bonding and consolidation into an ice sheet of fine-grained structure

[116, 117], until the desired strength is achieved. The ambient temperature is then

increased slightly above freezing to adjust the flexural strength to its final value [e.g.

118]. The flexural strength can be tuned to a target value, but achieving a target stiffness

is challenging [e.g 118–120]. The mechanical properties of the ice are measured with

destructive cantilever beam tests in the ice sheet (Figure 3.1f) in accordance with the

International Towing Tank Conference (ITTC) guidelines. The mechanical properties

are preserved during the test by keeping the temperature close to the freezing point.

The cantilever tests are carried out on a 10m strip next to the beach, and the strip is

removed upon completion. The remaining 30m length of ice cover is cut free from the

side walls, and carefully (to avoid cracking and modifications in the ice sheet) pushed

towards the beach to form an initial region of open water for waves to be generated

without ice interference (Figure 3.1b).

The freezing–warming cycle achieves the flexural strength σ = 20.1 kPa, which corre-

sponds to the realistic field-scale flexural strength 550 kPa at scaling factor 27.3. The

model ice thickness is h = 30mm, which corresponds to a realistic field-scale thickness

of 0.82m. The Young’s modulus of the model ice is E = 5MPa, which corresponds to

0.14GPa at field scale, i.e. one to two orders of magnitudes smaller than that of natural

sea ice [cf. 121]. Model ice is typically too compliant [119], as it behaves nonlinearly

in downward bending, exhibiting a significant plastic regime [118, 120]. Therefore, the

model ice is expected to show weak elastic restoring forces when deflected by waves.
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3.2.2 Initial conditions and instrumentation

Starting from the continuous ice cover, the experiment consists of monitoring the prop-

agation of unidirectional, irregular incident waves through the ice cover and ice breakup

and drift in response to wave forcing. Three incident wave conditions are tested, with the

test for each condition lasting 20 minutes, which is the maximum time possible before

reflection contaminates measurements in the middle of the tank in ice free conditions,

and, therefore, considered conservative for the tests with ice. The input spectra are

defined by the Pierson–Moskowitz fully developed sea state [122]

S0(f) =
αJg

2

f5
exp

[
−5

4

(
f

fP,0

)−4
]
, (3.1)

where g ≈ 9.81m s−2 is the constant of gravitational acceleration, f the wave frequency,

fP,0 the frequency at the spectral peak and αJ is Phillip’s constant. The peak frequency

is fP,0 = 0.625Hz in all three tests, which corresponds to a peak period TP,0 = 1.6 s and

dominant wavelength LP,0 = 4m [based on the open water linear dispersion relation,

123]. Therefore, the field-scale wavelength is approximately 110m. The Phillip’s con-

stant αJ was chosen to define different values of significant wave height (HS,0 = 4
√
m0,0,

wherem0,0 is the zeroth-order moment of the spectral density function), thereby defining

different levels of wave steepness (ε = kP,0HS,0/2, where kP,0 = 2π/LP,0 is the wavenum-

ber at the spectral peak). The latter is a measure of the degree of nonlinearity of the

wave field [e.g. 124, 125] and an indicator of the strength of wave–ice interactions [e.g.

109, 111]. The three tests use the steepness values ε = 0.02, 0.04 and 0.06 in order of

increasing magnitude, so that the broken ice cover increases in length over the duration

of the experiment (Table 3.1). Motion at the wave maker is determined by imposing

complex Fourier amplitudes with moduli randomly chosen from a Rayleigh distribution

around the target wave spectrum, and with phases randomly chosen from a uniform

distribution over [0, 2π) [this is a standard practice to produce random waves in the

laboratory, see e.g. 124, 126]. Benchmark tests without the ice sheet are conducted to

verify the incident wave field.

The water surface elevation along the tank is monitored with a combination of resistive

wire wave gauges and pressure sensors, deployed 2.5m from the side wall (Figure 3.1a),

recording at a sampling rate of 300Hz. Three wire gauges (Figure 3.1d) are installed in

the open water at distances of 4.6m, 5.0m and 5.6m from the wave maker (5.4m, 5.0m

and 4.4m from the ice edge) to monitor the incident wave field. The array configuration

facilitates detection and removal of waves reflected by the ice cover [see method in 127].

Five pressure sensors (Figure 3.1e) were mounted on tripods 0.2m below the water

surface at 5m intervals, with the first probe 15m from the wave maker (5m from the
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ice edge). A video camera is installed on the gantry above the beach, 5m from the ice

surface and inclined of 45◦ to monitor ice conditions (Figure 3.1a). The field of view

(Figure 3.1b) captures the ice cover up to 22m from the ice edge. Videos are recorded

at a rate of 30 frames per second and at a resolution of 1920 × 1440 pixels. Sixteen

markers are positioned on the ice cover every 0.54m with the first one 12m from the ice

edge (Figure 3.1b), in order to provide reference distances and allow reconstruction of

dimensions during image analysis.

3.3 Ice breakup

3.3.1 Image processing

During the tests, the continuous ice breaks up into floes and the ice edge (the bound-

ary separating open and ice-covered water) moves. For one video frame per second,

an algorithm is applied to extract the individual ice floe geometries, the ice breaking

front (the farthest line of breakup) and the ice edge. Image processing begins with the

raw image (Figure 3.2a), which is orthorectified to impose a constant scale, where fea-

tures are represented in their true positions (Figure 3.2b). The physical dimensions of

the individual picture elements (pixels) are extrapolated from known distances between

markers and a Gaussian filter is used to reduce white noise and improve image clarity.

A Sobel operator is used to capture high spatial gradients of image colour [128] and

identify transverse edges, which correspond to ice breakup lines parallel to the wave

front and ice edge. Distances from the wave maker to the edges are calculated based on

the number of pixels. An average distance is computed for each breakup line to smooth

irregularities. The upper edge separating the dark water surface from the brighter ice

is associated to the ice edge (top red line in Figure 3.2b) and the bottom edge dividing

the area of broken ice from the compact sheet is identified as the breaking front (bottom

red line).

Figure 3.2: Stages of image processing for ε = 0.06 at t ≈ 300 s: (a) raw frame;
(b) orthorectified frame with ice edge (upper red line) and breaking front (bottom
red line) indicated; (c) binary frame separating ice (white) from water (black); and
(d) elliptical approximations for identified floes (excluding floes smaller than image
resolution and large aggregate floes; red lines) superimposed on orthorectified frame.
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To capture individual floe geometries, the images are converted into their binary coun-

terparts (Figure 3.2c), thus separating the ice from water more sharply than using the

Sobel operator. Transverse and longitudinal edges are identified using the Canny edge

detector [128]. Motivated by the elongated forms of the floes (Figure 3.2c), floe shapes

are approximate by ellipses (Figure 3.2d) with the same second moment of the covari-

ance matrix [129]. Away from the ice edge, the ellipses are oriented so that the minor

axes are roughly aligned with the incident wave direction and the major axes with the

wave-front direction.

The properties of floes with areas smaller than ≈ 0.03m2 (equivalent to a circle of

diameter 0.2m) are uncertain due to the resolution of the images. Therefore, these

small floes are excluded from further analysis. Further, visual assessments of processed

images against their raw counterparts reveals that floes with area greater than ≈ 20m2

(equivalent to a circle of diameter 5m) are aggregates of smaller floes, and, hence, are

not analysed. Overall, ≈ 85% of the floes within the field of view are captured and

correctly identified (e.g. Figure 3.2d).

3.3.2 Ice edge and breaking front

Figure 3.3 shows the temporal evolution of the ice edge and breaking front over the

three tests, denoted iw(t) and ib(t), respectively. The small steepness incident wave field

in the first test (ε = 0.02; Figure 3.3a) is a lower bound for expected sea states in the

Arctic Ocean [130] and rarely experienced in the Southern Ocean [3]. It propagates

through the continuous ice cover without generating any visible fractures. The waves

force overwash at the ice edge [131], which reaches up to 1.5m onto the ice cover, and

appears to accelerate ice edge melt and crumbling (although thermal properties were

not measured), likely contributing to small variations in the location of the ice edge and

breaking front (Figure 3.3a; also videos 1 and 2 in the supplementary material). This

generates the initial difference between ice edge and breaking front in the subsequent

test (ε = 0.04; Figure 3.3b).

The intermediate steepness incident field (ε = 0.04) is common in the Arctic Ocean

[130] and a lower bound in the Southern Ocean [3]. The ice edge breaks up as soon

as the incident field reaches it, with breakup both longitudinal (parallel to the wave

crests) and transverse (along the direction of wave propagation). The breaking front

advances ≈ 8m (two wavelengths) deep into the ice cover for t < 360 s. The average

speed of the breaking front is ≈ 0.02m s−1, which is two orders of magnitude smaller

than the incident group velocity (CP,0 = 1.25m s−1, i.e. the velocity of the incident wave

front, calculated as 0.5LP,0/TP,0 under the assumption of deep water). More generally,
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Figure 3.3: Spatio-temporal evolution of the ice cover during (a) ε = 0.02, (b) ε = 0.04
and (c) ε = 0.06 tests, indicating unbroken ice cover (white), open water (dark blue)
and broken ice cover (light blue), which is bounded by the ice edge (iw, solid red line)
and the breaking front (ib, dashed red line). The portion of the ice cover outside the

camera field of view (last ≈ 8m of the tank) is hatched.

it means that about 62 incident wave crests penetrate into the ice in order to break one

linear metre of the ice cover. For t > 360 s, the breaking front slows down by an order

of magnitude, advancing at a speed of only ≈ 0.003m s−1.

During the second phase (t > 360 s), the ice edge retreats away from the wave maker

due to gradual drift of the floes and ice-edge crumbling (see videos 3 and 4 in the

supplementary material), and at approximately the same speed as the breaking front

advances, so that the broken floe field length is almost constant, ib− iw ≈ 8m. Once the

wave maker stops at the end of the test, the broken floes spread back upstream, slightly

beyond the location of the initial ice edge, as indicated by iw ≈ 9m at t = 0 for the final

test (ε = 0.06; Figure 3.3c).

The steepest incident field (ε = 0.06) is an upper bound for the Arctic Ocean [130] and

an average condition in the Southern Ocean [3]. Starting from a partially broken ice

cover, the steep incident field breaks up the remaining continuous ice cover. Figure 3.3c

only shows breakup to 32m from the wave maker, but visual observations confirm full

breakup, such that the breaking front reaches the beach, ≈ 20 m from its position at

the beginning of this test, at t ≈ 600 s. The average speed of the breaking front is

≈ 0.03m s−1, which is a factor 1.5 greater than the speed of the breaking front in the

intermediate steepness test for t < 360 s (considering that the incident group velocity is

unchanged, the increase of breaking front velocity means that about 40 incident wave

crests are sufficient to break a metre of ice cover). The steep incident field also causes

strong drift of the broken floes, with the ice edge moving > 15m downstream over the

test (videos 5 and 6 in supplementary material). The rate of drift slows as the test

progresses and floes accumulate towards the beach.
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3.3.3 Floe size and size distribution

Figure 3.4 shows evolution of the average minor axis (D1) and major axis (D2) of

the broken floes, normalised by the dominant incident wavelength (LP,0 = 4m), for the

intermediate steepness (ε = 0.04; Figure 3.4a) and large steepness (ε = 0.06; Figure 3.4b)

tests. Averages are computed using floes in the strip of the tank between 15 and 30m

from the wave maker, thereby eliminating the ice cover beyond the field of view towards

the beach and the small floes with uncertain properties close to the ice edge, for 30 s

time windows with 25% overlaps to smooth trends. For the intermediate steepness, well

defined floes are evident in the strip for t > 400 s only (videos 3 and 4 in supplementary

material), and floe sizes are calculated from this point till the end of the test. The minor

and major axes are almost constant from t = 400 s until the end of the test, with the

minor axis ≈ 9% of the incident wavelength (D1 ≈ 0.36m) and the major axis 35%

(D2 ≈ 1.4m). The large steepness incident field breaks up all of the ice in the strip,

including breaking up already broken floes, causing the average minor and major axes

to steadily decrease. At the end of the test, the minor axis is reduced to around 7% of

the incident wavelength (D1 ≈ 0.28m) and the major axis 15% (D2 ≈ 0.6m).

Figure 3.4: Temporal evolution of average minor axis (D1; blue lines; left-hand axes)
and major axis (D2; red lines; right-hand axes) of ice floes 15–30m from the wave maker,
and normalised with respect to the incident wavelength, LP,0 = 4m: (a) ε = 0.04,
(b) ε = 0.06 tests. Note the different ordinate axis limits used for the minor and major

axes.

Figure 3.5 shows the floe size distributions for the intermediate (top) and large steepness

(bottom), as major vs. minor axis scatter diagrams (left panels) and probability density

functions (right). The data include all floes detected from the image processing over

the full 1200 s of the tests, i.e. all floes detected (within the quality filter) from every

image taken. For both the intermediate and large steepness, the linear fits on the

scatter diagrams reveal the aspect ratio is approximately D1:D2 = 1:3 (eccentricity

e = 2c/D2 ≈ 0.5, where c =
√
(D2/2)2 − (D1/2)2), confirming the elongated floe shapes.

The minor axes have narrow, bell-shaped probability density functions, with a mode of

6%, and 50% of the floes in the 5–11% range. In contrast, the probability density
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Figure 3.5: (a,c) Scatter diagrams of normalised major (D2) versus minor (D1) axes,
with linear fits (solid red lines) and 1:1 correlations (dashed black lines), for (a) ε = 0.04
and (c) ε = 0.06. (b,d) Floe size distributions expressed as probability density functions
ofD1 (solid blue lines) andD2 (solid red lines), with corresponding fitted two-parameter

Weibull distributions (dashed lines), for (b) ε = 0.04 and (d) ε = 0.06.

functions for the major axes are broad,with 50% of floes in the range 14–47% of the

incident wavelength for ε = 0.04 and 11–27% for ε = 0.06, and with a mode ≈ 12% of

LP,0.

The empirical probability density functions of floe sizes are linked with wave statistics

via the Weibull distribution

f(Dj) =
β

Dj

(
Dj

γ

)β

e
−
(

Dj
γ

)β

, j = 1, 2, (3.2)

where γ is the scale and β is the shape parameter. The Weibull distribution degenerates

to a Rayleigh distribution for β = 2 [132], which is the statistical distribution of the

incident wave amplitudes (applied at the wave maker) and, to some extent, the incident

wavelengths [see discussion on distribution of wave periods and wavelengths in e.g. 133].

The Weibull function is fitted to the empirical distributions using values of β and γ

derived from the maximum likelihood method [e.g. 134]. For the minor axes, β = 1.6
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for ε = 0.04 and β = 1.9 for ε = 0.06, indicating the floe size in the wave direction tends

to the same statistical distribution as the incident wave field as the steepness increases.

Fitting of β-values is used instead of a standard goodness-of-fit test to the Rayleigh

distribution, which would only confirm fitting or rejecting of the null hypothesis. For

the major axes, β = 1.3 for ε = 0.04 and β = 1.5 for ε = 0.06, making the link between

the floe size in the transverse direction and the wave statistics inconclusive.

3.4 Wave evolution

3.4.1 Waves-in-ice measurements

The evolution of the wave field through model ice is measured indirectly by tracking the

variation of pressure below the water surface at different distances from the wave maker.

In open water, pressure variations are typically converted into water surface elevations

by assuming a constant (atmospheric) pressure above the water and the linear (open

water) dispersion relation [e.g. 123]. The presence of ice at the water surface introduces

uncertainties on both surface pressure and wave dispersion, which compromises recon-

struction of the wave amplitude. To bypass the issue, the recorded pressure time series

are normalised with the pressure standard deviation as recorded in open water, rather

than attempting to convert them into surface elevations. The approach provides time

series that measure changes of the wave field in the ice-covered water relative to the

incident field. Links between wave properties and ice breakup based on using the open

water dispersion relation to convert the pressure measurements into surface elevations

are discussed in Section 3.5.

Figure 3.6 shows examples of normalised pressure time series at the five different pressure

sensor measurement locations and for each of the three tests conducted. The evolution

of the series with distance into the ice-covered water are characterised by mean ampli-

tudes decreasing, which implies reduced energy content, mean wave periods increasing,

which indicates longer wavelengths, and groupiness increasing, which implies spectral

narrowing [e.g. 123]. Moreover, differences are evident in the evolution of the three in-

cident fields. The evolution of the different incident fields are quantified and compared

in Section 3.4.2 and Section 3.4.3.

The probability density functions of the crest-to-trough amplitude (A) of individual

oscillations of the pressure signal (normalised by the concurrent standard deviation) are

presented in Figure 3.7 as a function of the distance from the wave-maker, with the

Rayleigh distribution included as benchmark. The bottom panels in the figures report

the statistics of the incident wave field. The amplitude distribution in open water agrees
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Figure 3.6: Time series of normalised water pressure oscillations at progressive dis-
tances from the ice edge, for (a) ε = 0.02, (b) ε = 0.04 and (c) ε = 0.06.

with the Rayleigh distribution, confirming it satisfies the statistics imposed at the wave

maker. Statistics remain consistent with the Rayleigh probability density function as

waves propagate into the ice cover, denoting the absence of any significant nonlinear

wave dynamics developing within the tank [cf. 124, 126] and hence confirming linear

wave physics as the relevant driver for wave evolution in the tests.

3.4.2 Wave spectrum evolution

Figure 3.8 shows the wave spectrum, S(f), at each of the measurement locations and

for each test, as a function of normalised frequency, f/fP,0. The incident spectra, S0(f),

from the benchmark tests (without ice), are shown for reference. The spectra are calcu-

lated as ensemble averages of the Fourier transform of 13.7 s intervals (4096 data points)

of the normalised pressure time series with 50% overlap. Therefore, the spectrum at a

specific location represents the change of pressure energy relative to the incident coun-

terpart [noting that the relative pressure energy is proportional to the relative wave

energy, see 123]. Evolution of the spectra over distance into the ice-covered water is

quantified in terms of their spectral variance (m0, i.e. spectra integrated with respect to

frequency or zeroth-order moment; due to the normalisation of the pressure time series,



30
Chapter 3 Interactions between Irregular Wave Fields and Sea Ice: A Physical Model

for Wave Attenuation and Ice Breakup in an Ice Tank

Figure 3.7: Empirical probability density function of the crest-to-trough amplitude
(A) of individual oscillations of the pressure signal at different measurement locations
normalised by the concurrent standard deviation σ (full circles), and the Rayleigh
distribution (blue solid line). The distributions in the bottom row are for the incident

wave field in open water.

m0 is relative to the incident counterpart and thus takes unit value in open water), the

mean wave period (T01 = m0/m1, where m1 is the first order moment of the spectrum),

and the frequency bandwidth (BW , corresponding to the spectral width at one-tenth of

energy content) in Figure 3.9, where each quantity is normalised by its incident wave

field counterpart.

The continuous ice cover has a major effect on the energy evolution of the mild incident

spectrum (ε = 0.02), as indicated by the corresponding time series (Figure 3.6a). The

unbroken ice edge partially blocks the incident wave field, such that only ≈50% of

the incident energy remains at the first measurement location (5m from the ice edge;

Figure 3.8a and Figure 3.9a) and energy then reduces at a steady rate, with only ≈20%

of the incident energy remaining at the farthest measurement location (25m from the

ice edge). The sharp drop in energy at the first measurement location is attributed to

reflection by the ice edge, with the reflected energy found to be ≈33% of the incident

energy, i.e. accounting for two-thirds of the energy removed by the first measurement

location, and energy loss due to overwash at the ice edge [see 131, 135]. A relatively

sharp energy drop at the first measurement location is also visible for the intermediate
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Figure 3.8: Wave spectra of normalised water pressure at progressive distances from
the ice edge (S; dark blue shade) and corresponding incident spectra (S0; from open
water benchmark tests; light blue shaded), versus normalised frequency, for (a) ε = 0.02,

(b) ε = 0.04 and (c) ε = 0.06.

steepness (ε = 0.04; Figure 3.8b and Figure 3.9b), although the drop is weaker and

≈70% of the incident energy remains. The smaller drop compared to the mild incident

steepness is primarily attributed to weaker ice-edge reflection by broken ice cover (≈20%

of the incident wave). The energy drops to ≈50% at the second measurement location

(10m from the initial ice edge), which is likely due to a combination of reflection by

the edge of the continuous ice cover (on the wave maker side of the sensor for > 50% of

the test), and wave energy dissipation during ice breakup between the first and second

measurement locations. The third to fifth sensors are below continuous ice cover for

the entire intermediate steepness test and the rate of energy reduction from the second

to the fifth sensor is relative small, with ≈45% of the incident energy remaining at the

last sensor. In contrast, for the large steepness (ε = 0.06; Figure 3.8c and Figure 3.9c),

almost all of the incident energy is detected at the first sensor, which is unsurprising as

the ice edge retreats beyond the sensor after only ≈ 300 s (the first quarter) of the test.

Similarly, over 85% of the incident energy is recorded at the second sensor where the

ice edge crosses around half way through the test. Wave energy drops steadily and with

relatively large gradient between the second and fifth measurement locations, where the

waves are propagating through broken ice for the majority of the test, with ≈35% of the
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Figure 3.9: Wave spectrum (a–c; blue squares) zeroth-order moments, (d–f; red
bullets) mean wave periods, and (h–i; yellow triangles) frequency bandwidths, ver-
sus distance from ice edge, normalised by corresponding incident wave field values, for

(a,d,g) ε = 0.02, (b,e,h) ε = 0.04 and (c,f,i) ε = 0.06.

incident energy remaining at the farthest location.

The skewing of the spectra towards lower frequencies over distance (Figure 3.8) is at-

tributed to ice edge reflection [136], energy loss due to overwash [135] and attenuation

through continuous [137] and broken [138] ice covers being stronger for higher frequency

components of the spectrum. It follows that the mean period increases with distance into

the ice-covered water (Figure 3.9d–f) and the spectral width decreases (Figure 3.9g–i).

Similar to the wave energy (zeroth-order moment), there are large differences between

the mean period and spectral bandwidth at the first measurement location and their

open water counterparts for ε = 0.02, and to a lesser extent for ε = 0.04. The mean

periods then steadily increase with distance. The spectral bandwidths decrease from the

first to the second measurement location, and then show only a modest decrease. For

ε = 0.06, the mean period and spectral bandwidth are indistinguishable from their open

water counterparts at the first measurement location, and then increase (mean period)

and decrease (spectral bandwidth) with larger gradients than in the smaller steepness
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tests. For all three tests, at the farthest measurement location, the mean periods are

T01 = (125%± 3%)T01,0 and spectral bandwidths BW = (67%± 4%)BW,0.

3.4.3 Attenuation rate

Assuming each frequency component of the wave spectrum attenuates exponentially [91]

in continuous and broken ice, the attenuation coefficient (exponential attenuation rate)

is

α(f ; d) = − log[S(f)/S0(f)]

d
, (3.3)

where d is the distance from the initial location of the ice edge (i.e. 10m from the

wave maker). For each test, a single value of α per frequency is estimated using least

squares regression [e.g. 134] on data from all probes. Figure 3.10 shows α versus nor-

malised frequency over an interval covering the most energetic part of the spectrum

(0.5 ≤ f/fP,0 ≤ 1.8). The 95% confidence intervals indicate the attenuation coeffi-

cient values are, in general, robust for approximately 0.8 ≤ f/fP,0 ≤ 1.4, over which

the attenuation coefficients increase monotonically with frequency, and become uncer-

tain towards the spectral tails, where the mean values of the attenuation coefficient are

relatively insensitive to frequency.

Field measurements (assumed to be mainly in broken on unconsolidated ice conditions)

suggest a power-law dependence of the form [137]

α(f) ∝ fn, where 1.9 ≤ n ≤ 3.6, (3.4)

although theoretical scattering models suggest larger exponents [n ≥ 8; 32]. Based on

(Equation 3.4), reference slopes α(f) ∝ f2 (yellow dashed lines), α(f) ∝ f3 (red) and

α(f) ∝ f4 (green) are included in Figure 3.10, and set to coincide with the empirical

attenuation coefficients at the spectral peaks (f/fP,0 = 1). Over the interval in which

the empirical measurements are robust (0.8 ≤ f/fP,0 ≤ 1.4), they are, in general,

bounded by the reference slopes, indicating consistency between the attenuation rate in

the physical model and in field measurements. For each incident steepness, the empirical

attenuation is visibly closer to references slope α(f) ∝ f3 and f4 than f2. Based on the

root mean square error over 0.8 ≤ f/fP,0 ≤ 1.4, the empirical attenuation is marginally

closer to α(f) ∝ f4 than f3 for the mild and large incident steepness tests (0.0117

vs. 0.0162 for ε = 0.02 and 0.0046 vs. 0.0066 for ε = 0.06), and significantly closer

to α(f) ∝ f4 for the intermediate incident steepness test (0.0040 vs. 0.0185 for ε =

0.04). Therefore, the power-law dependencies of the empirical attenuation coefficients

on frequency are at the top end or just above the range derived from field measurements,

which is attributed to the influence of breakup in the tests (to the best of our knowledge
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breakup did not occur during the field measurements) or, possibly, due to the scaling of

the model ice (more compliant than natural sea ice at field scale).

Figure 3.10: Empirical wave energy attenuation coefficients (α) as functions of nor-
malised frequency (blue circles), with 95% confidence intervals (shaded area) and ref-
erence slopes α ∝ fn (dashed lines) that intersect the empirical data at f/fP,0 = 1, for

(a) ε = 0.02, (b) ε = 0.04 and (c) ε = 0.06.

3.5 Discussion and conclusions

A physical model of interactions between irregular ocean waves and sea ice conducted in

an ice tank using a Pierson–Moskowitz incident spectrum and doped model ice has been

reported. Three tests were conducted, starting with a continuous ice cover, and with the
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wave incident steepness (ε) increased between tests. The impact of the incident waves

on the ice cover ranged from causing no breakup for the mildest incident field to breakup

of the entire length of the ice cover and retreat of the ice edge for the largest steepness.

Breakup occurred both in the longitudinal (wave propagation) and transverse directions,

and the resulting floes were shown to be well approximated by ellipses of aspect ratio

1:3. Evidence was found of the floe size distribution in the wave propagation direction

tending towards the Rayleigh distribution, similar to the distribution of incident wave

amplitudes. In contrast, the floe size distribution in the transverse direction was found

to be widely spread.

Wave evolution in the ice-covered water was monitored by tracking the transformation

of the subsurface pressure field with an array of bottom mounted pressure sensors. The

spatial wave evolution varied considerably between tests as inferred by wave-induced

pressure attenuation, mean period increase of pressure oscillations and narrowing of the

spectral bandwidth. However, statistical properties of the wave field did not change

appreciably over distance into the ice-covered water, fitting a Rayleigh distribution

throughout the tank, and indicating that nonlinear wave dynamics did not develop

during the tests. The edge of the continuous ice cover was found to have a major im-

pact on the properties of the wave-induced pressure field (amplitude, mean period and

spectral bandwidth), with differences relative to the incident condition being reduced

(or removed) when the ice at the edge was broken, likely due to weaker reflection of

the incident wave field. The (exponential) energy attenuation rate in the ice-covered

water showed a power-law dependence on frequency, similar to that found from field

measurements and with a comparable exponent.

Models for wave-induced ice breakup depend on the relationship between the wave

height and period [or wavelength; e.g. 71, 78–80], with breakup more likely for larger

wave heights and shorter periods, i.e. larger steepness values. Correlations between ice

breakup and wave heights and periods in the tests are investigated by assuming the open

water linear dispersion relation can be used to convert pressure into the surface elevation

in the presence of ice cover [see, e.g., 134, for details of the conversion]. A zero-crossing

analysis is applied to the time series of the surface elevation to extract individual wave

heights (H) and periods (T ) and hence steepness, which is calculated as kH/2, where k

is the wavenumber associated to the water period (T ). Both down- and up-crossing con-

ditions are considered to extract a sufficiently large population [see e.g. 134]. Figure 3.11

shows the joint distribution of individual wave heights and related periods recorded at

(a) locations where the ice remained unbroken throughout a test, which includes data

from the ε = 0.02 and 0.04 tests, and (b) locations where ice transitioned from unbroken

to broken in a test, which includes data from the ε = 0.04 and 0.06 tests. Lines of

constant steepness, representing the average and maximum steepness for each dataset
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Figure 3.11: Empirical joint distribution of individual crest-to-trough wave heights
and periods as a function of the ice configuration: (a) observations recorded in unbroken
ice during the entire experimental tests (merges data obtained with incident wave fields
with small and intermediate steepness, ε = 0.02 and 0.04, respectively); (b) observations
obtained during the transition from unbroken to broken ice (merges data obtained
with incident wave fields with intermediate and high steepness, ε = 0.04 and 0.06,
respectively). Lines of constant steepness (average and maximum for each distribution)

are reported as benchmarks.

(hence an indication of the strength of the the wave field), are included as benchmarks.

For unbroken ice, wave heights do not exceed ≈ 0.07m, which is about 1.5 times the sig-

nificant wave height in open water, and wave periods are up to ≈ 3 s, which corresponds

to about two times the peak period of the incident wave field. The wave height assumes

maximum values for periods comparable with the peak period of the incident field. Wave

heights tend to decrease for shorter and longer periods, with a greater decrease towards

shorter periods. Wave heights and periods distribute along a small average steepness of

≈ 0.01, which is half the characteristic steepness of the mildest incident wave field tested

(i.e. the joint distribution is flatter than its open waters counterpart), and are limited

by an upper bound corresponding to a maximum individual wave steepness of ≈ 0.08,

i.e. more than five times smaller the one of a breaking wave [cf. 125]. Less than 1% of

waves have steepness between 0.05 and 0.08, and, thus, wave-induced loads on the ice

cover are expected to be weak, preventing breakup. In contrast, when the ice transitions

from unbroken to broken, individual wave heights reach much larger values, with the

maximum ≈ 0.15m, which is about two times the incident significant wave height for

ε = 0.04. The shape of the distribution more closely resembles the joint distribution in

open water. The average steepness is ≈ 0.03, which is three times as large as for the

unbroken ice, and the maximum steepness is ≈ 0.2, which is greater than the maximum

for the unbroken ice by a factor of 2.5 and about half the steepness of a breaking wave.

More than 10% of waves exceed the maximum steepness for the unbroken ice, indicating
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a more substantial load on the ice cover and justifying the transition to broken ice.

Figure 3.12: Breaking parameter, I, normalised by proposed breaking threshold Ibr =
0.014 [2], versus distance from ice edge for ε = 0.02 (blue), ε = 0.04 (red) and ε = 0.06
(yellow), with locations where breakup occurs (bullets) and does not occur (circles)

indicated.

Results in Figure 3.11 only consider the state of the ice cover, and do not incorporate in-

formation on its mechanical properties. A wave-induced breakup parameter that merges

both wave and ice characteristics has been proposed as [2]

I =
HS hE

2σ L2
P

, (3.5)

where the significant wave height HS is calculated as four times the standard deviation

of the surface elevation time series at measurement locations, and the wavelength, LP ,

is calculated using the open water dispersion relation at the peak period [consistent

with 2]. Note that I depends on the ratio of Hs to LP , which is proportional to the

wave steepness (by a factor 2π). Figure 3.12 shows the values of I for each test and

each measurement location, normalised by the universal breaking threshold Ibr = 0.014

proposed by Voermans et al. [2], and indicating whether the ice is broken for the test

and location. In each test, the values of I decrease with distance, as the significant

wave height decreases and the wavelength (peak period) increases with distance. In the

small steepness test, the ice is unbroken at all locations and I < 0.55 Ibr. The interme-

diate steepness wave field breaks the ice at the first two measurement locations, but the

breaking parameter is less than the proposed threshold with 0.55 Ibr < I < 0.95 Ibr [low

values of the breaking parameter are also reported in 139, for experiments with model

ice of different characteristics]. The largest steepness breaks the ice cover at all locations

and the breakup parameter spans the range 0.55 Ibr < I < 1.47 Ibr, i.e. it takes values

less than and greater than the proposed threshold. Note that some test and location
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combinations at which broken ice is indicated, the ice cover is unbroken for part of the

test, and the measurements during the unbroken phases are included in the calcula-

tions of the significant wave heights and wavelengths, which adds some uncertainty to

the relationship between the breakup parameter values. Therefore, although the value

I = 0.552 Ibr at the deepest measurement location for the largest steepness test where

the waves break the ice, is slightly less than I = 0.555 Ibr at the middle location and

intermediate steepness test where the ice was unbroken, the results do not necessarily

contradict the existence of a threshold for waves to break the ice in terms of the breakup

parameter (for the particular experimental conditions).

In conclusion, the results and findings advance beyond previous physical models of cou-

pled wave attenuation due to sea ice and wave-induced breakup [particularly 30] by

using model ice, irregular unidirectional incident wave fields and the three-dimensional

nature of the facility, allowing transverse breakup. The dataset generated new insights

on (i) the spatial and temporal evolution of the ice breakup when waves are the only

forcing, and (ii) the wave evolution and attenuation through a ice cover that transitions

from a continuous to broken. This will empower assessments of combined attenuation

and breakup theories.



Chapter 4

Field Observations in the

Southern Ocean: Sea Ice Image

Acquisition and Preprocessing

4.1 Introduction

In the following chapters, segmentation techniques are applied to sea ice imagery ac-

quired in-situ. Understanding the differences between sea ice images taken in the field

and those created in controlled experiments is crucial for implementing ice floe segmen-

tation techniques that are suitable to assess in-situ data. In laboratory experiments,

variables such as illumination and the ice’s texture can be meticulously controlled. Fur-

thermore, the model ice breaks into predominantly rectangular floes (albeit with some

irregularity), leading to images with uniform clarity, as seen in Chapter 3. The ice tank’s

size also serves as a reference of known dimensions, used for geometric adjustments to

ensure the images accurately reflect the true sizes of the ice floes. Conversely, in-situ sea

ice imaging introduces unpredictability due to ever-changing field conditions. Variations

in illumination, the presence of diverse ice types, and irregular floe sizes and shapes re-

sult in a heterogeneous dataset of images. Therefore, only a minority of images display

ice under conditions that can be considered optimal, in stark contrast to the consistency

found in laboratory settings.

In this chapter, sea ice imagery acquired from an icebreaker is detailed, showcasing sea

ice images across a broad spectrum of field conditions. These vary from optimal to

challenging scenarios, including low ice gradient, non-uniform illumination, nighttime

darkness, and crowded scenes of irregular ice floes. The significant perspective distor-

tion observed in in-situ images poses a particular challenge due to the lack of a size

39
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reference for correction. Consequently, sophisticated orthorectification, based on the

camera’s parameters and its position relative to the ice-covered ocean, becomes nec-

essary. In addition, manual segmentation is performed on a subset of these images,

serving as a benchmark for the evaluation of subsequent automated segmentation meth-

ods (Chapter 5, Chapter 6). A sensitivity analysis is also conducted to examine how ship

motion, resulting from navigation in rough ocean waters, affects the accuracy of ice floe

size estimation. This analysis seeks to quantify the impact of the ship’s oscillations on

the quality of the final images and, thus, the precision of size distribution calculations.

Through all these processes, the complexities of managing and analyzing sea ice images

under field conditions for accurate quantitative analysis are explored.

4.2 Image acquisition

Close-range optical sea ice imagery was acquired underway from a sensor installed on

the icebreaker S.A. Agulhas II, during three winter expeditions to the Antarctic MIZ

in the Eastern Weddel Sea and the Western part of the Indian Ocean sector. For

the following chapters, we primarily focus the discussion on data acquired during an

austral winter expedition in the Eastern Weddell Sea (Figure 4.1) in July-August 2022,

which was part of the Southern oCean seAsonaL Experiment (SCALE [140]). The sea

ice region was reached at approximately 58 degrees South and 1 degree West on 19

July 2022 (Figure 4.1b). The vessel then continued along a Southward route until it

reached consolidated sea ice at latitude 58.8◦S (≈85 km from the ice edge). Overall,

the expedition spent six days in the MIZ before heading back North [see details on the

expedition in 11].

The sensor consisted of a GigE monochrome industrial camera (Figure 4.1a) equipped

with 2/3” Sony CMOS Pregius sensors and 5 mm F1.8 C-mount lenses (angle of view

≈120 degrees). It was mounted on the port side of the monkey bridge at 25 m above the

water line and tilted by ≈70 degrees relative to the ground. The field of view covered a

portion of the ocean surface of ≈ 200×200 m2. Images were recorded continuously with

a resolution of 1920×1080 pixels and at a sampling rate of 1 Hz. The camera was paired

with an Inertial Measurement Unit (IMU) to monitor the vessel’s motion at a sampling

rate of 10 Hz. Flashlights were used to illuminate sea ice overnight.

During the expedition, around 90,000 images were collected, with approximately 70%

capturing complex ice scenarios. This significant portion includes images taken in the

darkness of night or featuring irregularly shaped and densely packed ice floes with vary-

ing gradients. To accurately reflect the diversity of conditions encountered, three images,
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Figure 4.1: Antarctic SCALE expedition, winter 2022: (a) camera mounted on S.A.
Agulhas II; (b) ship’s track; (c) high-resolution image of the sea ice surface obtained
under clear sky conditions; (d) exhibiting varying ice gradients; (e) taken at nighttime.

each exemplifying a distinct scenario, were selected; sample images are reported in Fig-

ure 4.1c-e. These images form the basis for evaluating image segmentation techniques

for sea ice applications. While many image processing methods perform well under ideal

conditions, field conditions seldom meet this criterion, presenting a non-uniform and

unpredictable environment.

4.3 Camera calibration

Camera calibration is a pivotal step in image processing, especially critical in domains

such as robotics and navigation where precision is fundamental to functionality and

effectiveness. The aim of camera calibration is to correct lens and perspective distortions

arising from the inherent characteristics of cameras and their environmental context. By

addressing these distortions, it becomes possible to accurately measure objects within

images using real-world units. This makes camera calibration an essential preparatory
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step for computer vision tasks that require a detailed understanding of object size, shape,

and position.

The calibration process involves estimating parameters within the so-called camera ma-

trix, a mathematical model that represents how a camera maps the 3D world space onto

a 2D image plane. This matrix consists of intrinsic parameters – focal length, optical

center, and pixel size in world units – affecting how the image is formed, and extrin-

sic parameters, describing the camera’s spatial position and orientation. The intrinsic

parameters are derived from a calibration process [a common method is presented in

45], which evaluates image distortion by analysing multiple images of a planar pattern

with known geometry [a chessboard; see technical details in 141, 142]. Estimation of

these parameters necessitates a known correlation between the 3D world coordinate sys-

tem and the 2D image points. Zhang’s methodology [45] employs the distinctive square

corners of the chessboard, which are automatically detectable in the images, while the

corresponding 3D world coordinates are determined using the known dimensions of the

chessboard’s squares. Due to their minimal size, these corner points are particularly

beneficial for calibration as they are highly resistant to the effects of perspective and

lens distortion, thus ensuring more accurate parameter estimation.

Figure 4.2: Computer Vision Toolbox for Camera Calibration in MATLAB.

The calibration was conducted using the Computer Vision Toolbox available in MAT-

LAB [142] (see Figure 4.2). Forty chessboard images, spread across the camera’s field

of view (refer to Figure 4.3), were taken to reduce uncertainties and secure optimal

calibration results. Notably, while theory advises the use of an asymmetric chessboard

for enhanced orientation detection during calibration, the critical task of identifying the
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chessboard’s corners and utilizing them for intrinsic parameter estimation can be accom-

plished with either type of chessboard. Calibration was executed both before and after

the expedition to confirm the consistency of intrinsic features throughout the campaign.

Figure 4.3: Chessboard images distributed across the camera’s field of view.

After completing the calibration, its accuracy was verified through the analysis of re-

projection errors. These errors are measured as the distances, in pixels, between the

corner points identified in the calibration images and the positions of these same points

when reprojected using the parameters of the estimated camera matrix. The average

reprojection error was found to be less than one pixel, the smallest unit measurable in

an image. This low level of error indicates that the calibration is sufficiently precise for

correcting perspective distortions, demonstrating a high degree of accuracy in aligning

digital image representation with the physical world.

4.4 Orthorectification

The tilt of the sensor produces a perspective distortion so that ice floes close to the

camera appear bigger than those at a farther location. This creates inconsistencies

in the scaling, which changes throughout the imagery scene and, hence, compromises

the pixel-to-metre conversion. Therefore, a correction process that rectifies the sensor

orientation, known as orthorectification, was applied to rearrange the displaced pixels

as if the image were aligned with the focal plane (i.e. pixels are projected onto a plane

perpendicular to the optical axis).
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The process relies on the interpolation of the pixels in the original image as a function of

the camera projection matrix, which maps the conversion from a three dimensional point

cloud in the real world into a two dimensional plane (the image) through intrinsic and

extrinsic parameters [143]. The former depends on how the sensor captures the images

and includes, but they are not limited to, the focal length, aperture, resolution, and

the optical center of the camera’s sensor. The extrinsic parameters, on the other hand,

describe the translations and rotations of the sensor relative to a reference Cartesian

coordinate system. For simplicity, the camera was centered at the origin of the horizontal

axis, so that translations in the x and y directions were nil and at a height of 25 m

above the water line. The rotations encompass three components: the tilt around the

transverse axis, which was applied during deployment; the roll around the optical axis,

which was negligible assuming alignment with the horizon; and the heading around the

vertical axis, which aligned with the sensor’s direction. The latter is relevant only if

the target is a specific object in the field of view, but it becomes negligible if the target

is an extended portion of the image (the ocean surface in the present application). In

the absence of any external forcing such as the ship motion, translations, and rotations

are constant over time. A sensitivity analysis relative to ship motion is discussed in

Section 4.6.

The orthorectification was undertaken with the CameraTransfor Python package [144].

The process was limited to a portion of the ocean surface confined into a rectangle of

about 95 m × 165 m, which, based on a visual assessment over samples of images,

includes clearly visible floes. The resolution (i.e. pixel-to-metre conversion) was forced

to 0.05 m, to ensure both a good object accuracy and capacity of determining small-

scale features in sea ice [in the order of tens of centimetres; 34]. A sample image and its

orthorectified counterpart are shown in Figure 4.4.

Figure 4.4: Sample image from winter 2022 after perspective correction, with the
region of interest for analysis highlighted in red.

A quality check after the orthorectification revealed that floe edges loosed sharpness

with distance from the sensor (see upper band of Figure 4.4b). To avoid ambiguity in
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the far field and, thus, reduce the risk of detecting unrealistic floes, the workable portion

of the orthorectified images was restricted to an area of about 60 m × 120 m close to

the sensors (see area within the red rectangle in Figure 4.4b).

4.5 Benchmark segmentation

In the field of image segmentation, establishing a ground truth is crucial. It acts as a

reliable reference or true dataset, providing an objective standard to evaluate the accu-

racy of various detection algorithms. Manually segmenting images that depict the wide

range of conditions in the Southern Ocean (refer to Figure 4.1c-e) serves to create this

critical benchmark, indispensable for evaluating the automated segmentation methods

discussed in subsequent chapters. The selected images display different levels of sea

ice clarity, showcasing scenarios that deviate from the idealized conditions of clear ice

boundaries and consistent contrast. Instead, they reflect the complex and varied real-

ities of Antarctic sea ice, from well-illuminated scenes to those captured in nighttime

darkness.

Original Image Manual Benchmark

Figure 4.5: Sea ice images acquired under various conditions: clear (a), complex envi-
ronment (c), and nighttime (e). Contours of the ice floes identified through benchmark

manual segmentation are shown in corresponding images (b, d, f).
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The manual segmentation was conducted using Pixelmator, a photo editing software

designed for MacOS, but the process is compatible with any photo editing software.

By meticulously outlining the contours of ice floes based on human observation and

expertise, a set of high-fidelity reference data was created. These contours were then

superimposed onto the original images to highlight the segmentation, as displayed in

Figure 4.5. For nighttime images, the manual segmentation was confined to areas illu-

minated by the ship’s lights, as the edges of ice floes become indistinct and undetectable

in the darker regions of the image.

Figure 4.6: Sea ice floes categorized by diameter, from an image captured under
optimal ice conditions.

From the manual segmentation, the parameters of each individual floe, such as size and

concentration, can be extracted and analyzed. Figure 4.6 displays the resulting floe size

distribution from an image with optimal ice conditions (see Figure 4.5b) as an example.

Creating this subset of manually segmented sea ice images ensures that the perfor-

mance of automated detection techniques can be evaluated with precision, revealing

their strengths and identifying areas for improvement.

4.6 Effect of ship motion

The orthorectification, upon which segmentation is based, relies on precise knowledge of

the sensor’s position and orientation (extrinsic parameters). Consistently with similar

applications from mobile platforms like aircraft [16, 36] and ships [34, 42], the initial

assumption was that the sensor remained fixed and, hence, the ship-induced motion was

neglected. Although this hypothesis holds under relatively calm seas, the ship motion

during the expedition was significant [cf. 24]. As the displacement of the supporting



Chapter 4 Field Observations in the Southern Ocean: Sea Ice Image Acquisition and
Preprocessing 47

Figure 4.7: Uncertainty analysis of extrinsic camera parameters on the average di-
ameter of selected ice floes, highlighted in red. The analysis includes variations of (a)
elevation, (b) tilt, and (c) roll, considered independently. Variations are ± 1 m in ele-
vation, ± 1 degree in tilt, and ± 2 degrees in roll. Diameters are normalized to those
derived using reference extrinsics measured aboard the ship. The shaded blue area

indicates a 5% uncertainty range.

platform can shift the camera’s orientation relative to the ocean surface, it affects the

orthorectification and, eventually, the estimated floe sizes.

To assess the impact of ship-induced motions, a sensitivity analysis was conducted by

intentionally varying the elevation, tilt, and roll of the camera. An image captured under

clear sky conditions was selected for this purpose. Orthorectification was performed
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with controlled misalignments from the original sensor position: ± 1 m in elevation, ± 1

degree in tilt, and ± 2 degrees in roll, consistent with extreme ship motion observations.

A set of clearly distinguishable floes was then manually segmented to ensure precise

comparisons of their dimensions under different motion conditions. Figure 4.7 presents

the average variation in floe size, relative to the dimension extrapolated from the image

with the sensor in its original position, as a function of the misalignment. Variations in

elevation result in size differences within a 5% range (Figure 4.7a). Changes in tilt have

a slightly larger effect, with size deviations marginally exceeding 5% (Figure 4.7b). Roll

variations have the least impact, causing size changes of less than 2% (Figure 4.7c).

It should be noted that the impact of ship motion was evaluated by considering eleva-

tion, tilt, and roll independently, though in reality, they occur concurrently and could

potentially interact, mitigating or amplifying overall distortion. During navigation, how-

ever, these motions tend to counteract each other due to the ship’s dynamic equilibrium.

Ships are designed for stability, and their natural balancing mechanisms limit these mo-

tions to maintain balance and prevent capsizing. Consequently, while tilt, roll, and

elevation affect the process, their combined impact is often mitigated, minimizing the

overall effect on orthorectification. The sensitivity analysis demonstrates that even with

the maximum expected variations, the uncertainties remain within a manageable range,

ensuring confidence in the accuracy of floe size estimations derived from orthorectified

images assuming a fixed sensor position and orientation throughout the expedition.



Chapter 5

Active Contours Model

5.1 Introduction

The edge detection method presented in Chapter 3 excels in laboratory setups where

variables like illumination, contrast, and the texture of model ice are known or controlled.

This experimental approach mitigates common challenges associated with in-situ imag-

ing, where unpredictable conditions, such as varying light intensity and contrast, can

lead to the potential misinterpretation of floe edges. However, it also confines the efficacy

of the segmentation method to the specific collection of laboratory-acquired images.

Sea ice images captured in natural environments are characterized by non-uniform illu-

mination, shadows, impurities, and other dynamic variables that complicate the process

of floe segmentation. Addressing these complexities requires adaptable image processing

solutions that can identify ice floes across various conditions, which is beyond a standard

edge detection method.

Figure 5.1: Illustration of the Gradient Vector Flow (GVF) method, featuring a
dynamic curve that adjusts to precisely conform to the boundaries of the ice floes.
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Active contour models, also known as snakes, prove to be a powerful tool for segmenting

floes that are seemingly connected in the image [16], a common scenario in the South-

ern Ocean. They incorporate a dynamic curve that adjusts until conforming to the

precise boundaries of the floes (for an example, see Figure 5.1). The Gradient Vector

Flow (GVF) snake algorithm extends the capabilities of these models in detecting weak

boundaries, especially when the floes exhibit a heterogeneous ice gradient. However, the

efficiency of a snake-based method relies on the accuracy of the initial contour place-

ment. If this contour does not approximate the actual floe shape closely, the curve risks

converging toward incorrect results. Conversely, when the contour is positioned close to

the true boundary, the GVF model accurately finds the boundary after a few iterations.

An automated initial contour generator that adapts to the various ice floe shapes is then

proposed in the following sections. This approach not only eliminates the need for man-

ual contour initialization but also decreases the number of iterations required to match

the edges, consequently reducing the computational time for the model’s segmentation.

Despite the initial contour placement, the algorithm’s performance can still be influ-

enced by the quality of the input image. Factors such as uneven grayscale distribution

across floes can lead to inaccuracies in segmentation. Therefore, preprocessing that en-

hances the sharpness and smoothness of images is required to optimize their suitability

for analysis with the GVF snake algorithm.

Herein the snake-based method is applied to the subset of images presented in Chapter 4.

The results are discussed and compared with the manual benchmark segmentation.

5.2 Image enhancement

The illumination of images varied significantly within the database (see Figure 4.1c-e)

due to differences in lighting and weather conditions. Consequently, the boundaries of ice

floes in the raw images often remained uncertain, posing a challenge for the automation

of segmentation processes [see, for example, 48].

Image enhancement techniques were applied to sharpen the edges. This was achieved

through the homogenization of gray-scale levels [see, for example, 36], using a combina-

tion of an edge-preserving Gaussian bilateral filter [145] and an anisotropic diffusion filter

[146]. These filters smoothed regions with low gradients while preserving the boundaries

of the ice floes. Contrast enhancement was then applied using contrast-limited adap-

tive histogram equalization (CLAHE) [147] to accentuate the boundaries and reveal fine

details (see transition from original to enhanced image in Figure 5.2a,b). It is worth

mentioning that the adaptive nature of this method allows it to tailor its adjustments to

the specific characteristics of each image, eliminating the need for predefined thresholds.
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Figure 5.2: Ice floe detection algorithm: (a) region of interest of the image in Fig-
ure 4.4; (b) gray-level homogenization through Gaussian bilateral and anisotropic dif-
fusion filter, and contrast enhancement using CLAHE; (c) seeds in red of the ice floes
in the binary equivalent of the image; (d) perimeter in red of the floes containing a
single seed; (e) elliptical initial contour in red of the floes containing a single seed af-
ter a morphological erosion; (f) circular initial contour in red for each remaining and
unused seed; (g) ice floes already identified in Figure 5.2d; (h) ice floes detected by the
GVF snake algorithm initialized with the elliptical contours; (i) ice floes detected by
the GVF snake algorithm initialized with the circular contours; (j) final binary image

with all the detected ice floes.

For night photographs, image enhancement was limited to the area illuminated by the

vessel’s spotlight, which was identified through haze removal techniques [148].
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5.3 Gradient Vector Flow snake algorithm

The several steps for the image segmentation are illustrated in Figure 5.2. The pro-

cess starts with the separation of the foreground (i.e. the objects) from the background

through the transformation of the enhanced ice image into a binary counterpart (Fig-

ure 5.2c). This is achieved by selecting an appropriate threshold in the gray-scale his-

togram of the entire image. Pixels below the threshold are allocated a value of zero and

labeled as non-feature pixels (background), while those above it are assigned a value

of one and labeled as feature pixels (foreground; this corresponds to the white islands

in Figure 5.2c). In the presence of many objects with low gray-scale contrast, the his-

tograms do not show distinctive modes necessarily, leaving ambiguities in the selection

of appropriate thresholds. To prevent uncertainties, the Otsu method [149] is used for

automated thresholding. Otsu’s method automatically determines the optimal threshold

by maximizing the variance between the foreground and background pixel intensities.

To further improve accuracy, the binarization is applied on small clusters of size 12 m

× 12 m, each containing approximately 20 floes. The smaller size of the clusters pro-

duces more segregated modes in the grey-scale histogram, enhancing the effectiveness of

automated thresholding [61].

A distance transformation [150] is then applied to the binary image to assign each

feature pixel a value corresponding to its distance from the nearest non-feature pixel

[151]. The local maxima within this matrix, defined as pixels with values greater than

or equal to those of their neighbors, identify seeds that pinpoint individual objects [cf.

16]. Similarly to the clustering of binarisation, regional local maxima from sub-regions

of the whole image were considered to enhance accuracy. If the portion of image within

a sub-region is sharp, objects are well separated and possess only one seed. Therefore,

their segmentation automatically follows from the binarisation. This initial phase of floe

detection is reported in Figure 5.2d,g, which show seeds and the concurrent segmented

objects respectively.

For the majority of sub-regions, however, adjacent objects were merged through the

process and thus could not be segmented by binarisation alone. This resulted in large

and irregular (white) islands pinpointed by more than one seed (see Figure 5.2c). For

these cases, the segmentation is achieved through a second phase, which relies on a

gradient vector flow (GVF) Snake algorithm [152]. This consists of an active contours

(snakes) model [153], which evolves initial curves within an object towards its boundaries

until it matches the perimeter. Compared to traditional active contour methods, the

GVF Snake algorithm is less dependent on the initial contour and, thus, can process

objects with complex shapes more efficiently, even in noisy and low contrast images. The

accuracy depends on the initial contour being positioned as close to the true boundary
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as possible, noting the initial shape does not prevent the final contour from aligning

with more irregular boundaries (an example of the evolution of an initial contour is

presented in the inset of Figure 5.1). As most of the objects are connected to each

other through only a few pixels, they can be isolated by smoothing the edges with a

morphological erosion process [154]. These newly emerging objects are initialised by

ellipses, which represent a natural shape for ice floes [cf. 1, 34]. The initial contour is

selected so that the second moment of the covariance matrix matches the one of object

[129]; see Figure 5.2e. The unprocessed objects remain within conglomerates of white

regions as they share a significant portion of the edge with their neighbors, which cannot

be consumed with morphological erosion. Segmentation is achieved by applying circles

as initial contours to seeds, noting that the circular shape is an alternative to ellipses

for approximating ice floes of small dimensions [34]. Relying on the distance transform,

the radius is selected such that the contour is within the object, but not too far from

the presumed edge (Figure 5.2f). Once initial contours are assigned to all seeds, the

GVF snake algorithm is applied to expand the contours and, hence, identify the object’s

boundaries (Figure 5.2h-i). The algorithm requires approximately 30 seconds per floe

to complete the segmentation.

The GVF approach is not free from anomalies and inaccuracies, which can result in

features that are not present in the original image. Coefficients of circularity and ec-

centricity are used to quantify how closely the various shape resembles a perfect circle

or how much elongated the feature is [see 155, 156]. Through the imposition of high-

valued thresholds, spurious features in the form of nearly-perfect circular shapes or line

segments are eliminated. Furthermore, objects without closed boundaries at the image’s

edges are also disregarded.

The final output of the analysis combines results from the various phases and is reported

in Figure 5.2j. From this binary mask, geometric properties such as area, perimeter, and

diameter are extracted by identifying connected pixel regions corresponding to each floe.

Area is calculated from the number of pixels in each region, while perimeter and diameter

are determined using boundary tracing techniques [157], which follow the edges of each

floe to measure their outlines and maximum span.

5.4 GVF snake algorithm versus benchmark segmentation

The GVF snake algorithm is applied to the benchmark images presented in Chapter 4,

and the outcomes are visually compared with those from manual segmentation (refer to

Section 4.5). Figure 5.3 displays the segmentation of ice floes as contours superimposed
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on the original images, which represent different levels of sea ice clarity and lighting

conditions.

GVF snake algorithmManual Benchmark

Figure 5.3: Contours of ice floes identified through benchmark manual segmentation
under clear conditions (a), in a complex environment (c), and at nighttime with the
ship’s spotlight-lit area highlighted in yellow (e). Corresponding contours detected

using the GVF snake algorithm are shown in images (b, d, f).

In comparing the snake-based method (Figure 5.3b,d,f) with manual segmentation (Fig-

ure 5.3a,c,e), notable variations in detection precision emerge, primarily due to the

contrast and heterogeneity of the ice’s appearance. Under optimal ice conditions (see

Figure 5.3b), the snake model segments floes with high accuracy, though it misses some.

When initial contours are set within irregular floes or those with heterogeneous gradi-

ents, curve evolutions can converge to incorrect segmentations. These are filtered out

based on the coefficients discussed in Section 5.3, resulting in fewer identified floes.

Under less than optimal ice conditions (see Figure 5.3d), inaccuracies rise considerably.

Contours often converge on smaller and less accurate segmentations, particularly with

floes displaying varied gradient levels. This generally leads to boundaries that are smaller

than the true floe edges, causing an over-representation of smaller floes compared to the

manual segmentation, which then affects further quantitative ice floe analysis.
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As outlined in Section 5.2, nighttime image analysis is limited to areas illuminated

by the vessel’s spotlight. This approach allows for the examination of images that

would otherwise have been unusable due to the prevailing darkness across most of the

image. The nighttime application of the GVF snake algorithm (see Figure 5.3f) presents

both strengths and issues of the aforementioned conditions. Floes close to the ship’s

light source are accurately identified, benefiting from a consistent gradient. Conversely,

floes farther away are segmented with lower reliability due to increased darkness and

blurriness.

Section 7.4.1 provides a detailed understanding of the snake-based method’s perfor-

mance, featuring a more objective analysis that includes statistical evaluation of the

results and comparison with manual benchmarks.

5.5 Conclusions

The effectiveness of a snake-based method in segmenting ice floes is evaluated using

a subset of images detailed in Section 4.5. An automated initial contour generator is

developed to closely mimic the shape of ice floes, thereby reducing the generally high

computational time of the model. The outcomes from the application of the GVF snake

algorithm are then compared with those obtained through the manual segmentation.

Both pre-processing and post-processing are essential to improve image clarity and re-

move incorrect segmentations that do not match any ice floes in the original images.

The GVF snake algorithm has proven to be an effective technique for capturing the

boundaries of ice floes, even in densely packed scenarios. Incorporating an automatic

initial contour generator allows for the method’s generalization, making it autonomously

applicable to a multitude of ice images under various conditions. However, the model

is computationally intense and its success heavily depends on the initial contour inputs.

When these contours are not sufficiently close to the final floe boundaries, segmentation

becomes less accurate. As a result, this method successfully identifies approximately

80% of the floes in the image, leaving the rest unsegmented. For these reasons, the

snake-based method is not considered reliable for analyzing parameters such as ice con-

centration, and its use for this type of analysis is discouraged. Despite these limitations,

where floes are detected, they are segmented with significant reliability. This precision

makes it suitable for floe size analysis, particularly beneficial in large datasets where

the effects of minor inaccuracies, such as contours slightly smaller than the true floe

boundaries, are mitigated. An extensive statistical analysis of these findings is detailed

in Section 7.4.1.





Chapter 6

Vision Foundation Model

6.1 Redefining Image Segmentation with AI

The main limitation of the snake-based method (Chapter 5) is its high sensitivity to

initial contour placement, which directly depends on the image’s clarity. When the ice

floes feature a heterogeneous ice gradient or share a significant portion of their edges with

neighboring floes, the automatic initial contour generation does not succeed in producing

contours that are sufficiently close to the true floe boundary, causing a reduction of the

segmentation efficiency.

Image segmentation techniques have experienced profound transformations due to recent

advancements in AI. Contrary to the traditional snake-based models, modern techniques

use AI systems to interpret images through general patterns learned from a training

dataset, instead of relying on the specific features at a pixel level, such as smoothness,

roughness, and contrast, unique to the individual image. Among AI-based technology,

vision foundation models [158] represent an alternative approach to image segmenta-

tion that eliminates the need for manual feature engineering through the application of

deep learning techniques. By processing the entire image without dependency on initial

contours, these methods not only eliminate the necessity of a priori knowledge of the

object’s shape but also significantly reduce the computational time.

Vision foundation models are trained on a massive amount of varied data that can be

adapted to a wide range of tasks and operations, and so serving as general-purpose

systems. Although the training requires more time and computer resources than other

deep learning models [such as convolutional neural networks; 159], the applicability of

foundation models across diverse contexts reduces the need for multiple domain-specific

models.
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Segment Anything Model (SAM) by Meta AI Research [57] emerges as the first vision

foundation model capable (in principle) of segmenting any object within an image. It is

the product of training on an unprecedented segmentation dataset, comprising 1 billion

masks across 11 million images. SAM introduces promptable segmentation to highlight

specific objects in an image based on user commands, without labelling them, unlike

traditional DL methods that assign a featured class to every pixel. Mimicking the

human eye in delineating object borders without prior knowledge, SAM achieves zero-

shot learning, which is the ability to process objects that are not observed during training

without additional labeled data. However, its efficacy in real-world applications remains

to be fully tested. Studies have highlighted its challenges in accurately identifying small

densely packed or transparent objects [160]. While achieving comparable accuracy to

specialized and highly trained models, SAM’s performance drops when processing images

with weak ice gradients or non-uniform ice distributions [58].

Advancing vision foundation models to adapt to various and complex segmentation

tasks becomes crucial [161], especially in polar regions where new, relevant training

data is scarce and challenging to obtain. In the following sections, SAM is introduced

and applied to the same subset of images processed by the snake-based method. The

methodology for using the model and obtaining segmentation masks is detailed. The

outcomes are then compared with the manual benchmark segmentation and suitability

for applications in polar regions is discussed.

6.2 Segment Anything Model

Segment Anything Model (SAM) is built upon the popular deep learning framework,

PyTorch [162], and offers two distinct modalities to segment images: an automatic mask

generator and a prompt-based mode. The first modality is designed to independently

segment every recognizable element within an image without any need for instructions

or input from the user. With this mode, SAM autonomously determines which parts of

the image to segment, based on its built-in parameters. In contrast, the prompt-based

mode allows users to guide the segmentation process by marking regions of interest with

points or drawing bounding boxes around them. This can be as specific as a single object

in a crowded scene or a particular portion of a landscape. This modality is particularly

useful when precision and control over the segmented areas are crucial.

The performance of SAM for detecting sea ice floes is explored herein using both au-

tomatic and prompt modes. As for the snake-based algorithm, the sea ice images are

enhanced as described in Section 5.2 before being processed by the SAM. This increases

the overall quality of the output as the enhancement already addresses some common



Chapter 6 Vision Foundation Model 59

challenges like the differences in lighting and weather conditions in the image database.

It is worth mentioning that the model is initialized on a consumer CPU. For faster

deployment, application on an HPC computer is recommended.

6.2.1 Automatic mask generator

With the automatic mask generator mode SAM selects a fixed sample of points in a grid

over the image (see Figure 6.1a). For each of these points, it can generate one or multiple

masks assigning a value of one to the feature pixels corresponding to the identified

objects and a value of zero to the non-feature pixels representing the background. Then,

the model autonomously eliminates the redundant masks and filters them for quality.

The output returned is a list of filtered masks corresponding to all the elements in the

image (see Figure 6.1b). For sea ice images, this list includes masks containing ice floes,

interstitial ice, and open water regions.

As with the snake-based models, SAM requires post-processing to eliminate anomalies,

inaccuracies, and objects with open boundaries at the image’s edge (cf. Section 5.3).

However, this process alone does not discard all the masks with water regions (a feature

that is not the target of the sea ice analysis), for which the coefficient of convexity [163] is

exploited as a filtering criterion. In general, the less irregular an object’s boundary, the

higher its convexity will be. Ice floes, being approximated by ellipses and circles, exhibit

convexity values tending to 1. Consequently, the more irregular, complementary water

regions display lower convexity values. By setting a high threshold for this coefficient,

these irrelevant regions are therefore filtered out (cf. [164]).

A closer examination of the output list reveals that certain masks redundantly represent

the same ice floes, indicating that the deduplication of the masks applied by the model

is not optimal. This issue primarily occurs with adjacent or overlapping floes that have

poorly defined boundaries. In these scenarios, the model tends to generate identical

masks for the floes multiple times, compromising the output list’s suitability for direct

quantitative ice floe analysis (see first two layers in Figure 6.1b). To address this chal-

lenge, all masks from the list are consolidated into a single comprehensive mask (cf.

[58]). Consequently, masks corresponding to the same floe are merged. This final mask

displays a feature pixel if any of the original masks also marked that pixel as positive

(see Figure 6.1c).

Perimeters and properties of the ice floes segmented by SAM are finally extracted from

the comprehensive mask using boundary tracing techniques. The runtime of this SAM

mode is approximately 3 minutes per image.
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Figure 6.1: SAM’s automatic mask generator algorithm: (a) fixed points selected by
SAM over the grid in the enhanced sea ice image; (b) consolidation of the list of filtered
masks returned by the model; (c) final unified mask with all the detected ice floes.

6.2.2 Prompt-based

In the prompt-based modality, the prompts necessary to initialize the model must be

specified by the user. These prompts can take the form of points, bounding boxes, or a

combination of them. Points may be single or multiple and are used to either directly

indicate the desired object or to delineate both the object and areas to be excluded

from identification. This modality does not incorporate any quality filtering, leaving the

output’s quality dependent on the chosen prompts.

For sea ice images, seeds derived from the distance transform matrix (see description

in Section 5.3 and Figure 5.2c) are found to be effective at pinpointing individual ice

floes (cf. Fig. 6.1a and Fig. 6.2a). Each seed is then utilized as a single prompt, which

is fed into the model to generate the mask for the specific ice floe (Figure 6.2a). The

resultant output is a list of masks of dimension n, where n corresponds to the number
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Figure 6.2: SAM’s prompt-based algorithm: (a) seeds in red of the ice floes in the
enhanced sea ice image; (b) consolidation of the list of filtered masks returned by the

model; (c) final unified mask with all the detected ice floes.

of seeds in the image. However, introducing a seed to identify a floe in an area of

the image characterized by uncertainty often results in an inaccurate mask. Instead of

isolating the single floe, this mask may erroneously include discontinuous water regions

or parts of adjacent floes (see first two layers in Figure 6.2b). The application of the

shape-based filters – measuring circularity, eccentricity, and convexity – filters out the

clusters of feature pixels in the mask that do not match the typical shape of ice floes.

While clusters representing portions of the floes, rather than the floes in their entirety,

are corrected with the appropriate masks for those same floes by consolidating all the

output list into a single unified mask (Figure 6.2c). From this final binary mask, all

properties of each individual ice floe can be easily extracted.

SAM is up to 5 times faster with seeds entered as prompts and produces more masks

on average than the automatic mode. By bypassing the model’s internal point selection

process, the segmentation becomes more efficient. The higher number of masks produced
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is due to the limitations of the automatic mode, whose internally selected points are fixed

and often insufficient to cover the multitude of ice floes present in the image.

6.3 SAM versus benchmark segmentation

The two SAM modalities are applied to the benchmark images introduced in Chap-

ter 4 and the results are visually compared against those obtained through the manual

segmentation (refer to Section 4.5). Figure 6.3 and Figure 6.4 show the ice floes seg-

mentation as contours superimposed on the three original images, each representing a

different ice or illumination condition.

SAM automatic modeManual Benchmark

Figure 6.3: Contours of ice floes identified through benchmark manual segmentation
under clear conditions (a), in a complex environment (c), and at nighttime with the
ship’s spotlight-lit area highlighted in yellow (e). Corresponding contours detected

using SAM in automatic mask generator mode are shown in images (b, d, f).

The number of ice floes identified using the automatic SAM mode is lower than the

corresponding benchmark value for all the sample images (see Figure 6.3). This dis-

crepancy is mainly due to the mask unification process aimed at eliminating the output

redundancy, described in Section 6.2.1.
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Adjacent floes correctly segmented as separate entities may also be represented by a

single, larger mask showing them as one connected, irregular floe. In the mask consoli-

dation process, this larger, inaccurate mask overwrites the correct, smaller ones due to

its size. This leads to an over-representation of larger floes that impacts the accuracy

of floe size distribution analysis. Further, the segmentation of the floes becomes less

reliable at the image’s edge as the model tends to produce masks with closed-boundary

objects even for the floes extending beyond the borders, which cannot be automatically

filtered out. This occurs predominantly in the complex ice scenarios (Figure 6.3d) and

nighttime images (Figure 6.3f).

SAM prompt modeManual Benchmark

Figure 6.4: Contours of ice floes identified through benchmark manual segmentation
under clear conditions (a), in a complex environment (c), and at nighttime with the
ship’s spotlight-lit area highlighted in yellow (e). Corresponding contours detected

using SAM in prompt-based mode are shown in images (b, d, f).

The contours of the ice floes obtained with the prompt-based mode are shown in Fig-

ure 6.4. Imposing the seeds as prompt leads to the detection of almost the totality of the

floes in all the conditions examined. Most of the adjacent floes that the automatic mode

identified as a single unit are completely separated by this second approach, with the re-

maining part connected only through a few pixels. When the edge between two adjacent

floes is particularly blurred, without a clear discontinuity, the model finds it difficult to

assign that portion of the edge to just one of the two floes. If the portion is assigned
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to both the floe masks, these end up being merged by the mask unification process.

While this leads to a lower overall count of detected floes under all conditions, there’s a

specific behavior in more complex ice scenarios that can artificially inflate their number.

Specifically, in images where ice floes exhibit a heterogeneous ice gradient and have low

contrast against water, the model is prone to hallucinate, i.e. to generate false contours

that do not correspond to any actual object in the image. These anomalies, resembling

ice floes in shape but lacking real counterparts, are neither corrected by merging with

the actual floe masks nor eliminated by the shape-based filtering coefficients discussed

in Section 6.2.2.

6.4 Conclusions

The performance of SAM in segmenting ice floes is evaluated across both its automatic

mask generator and prompt-based modality. The two modalities are tested on the same

subset of images also processed by the snake-based method and the results are compared

against those obtained through the manual segmentation. The subset contains images

obtained under optimal or complex ice scenarios (low ice gradient homogeneity), acquired

at daytime or nighttime. As for the snake-based algorithm, post-processing is necessary

to refine the segmentation as the output list of masks from both the SAM modalities

includes redundant masks or masks that do not correspond to ice floes. Nonetheless,

when compared to the snake-based method, this model succeeds in covering with its

segmentation a broader ice surface in a considerably shorter time frame.

Besides a majority of correctly identified ice floes, the principal difficulties are encoun-

tered in segmenting adjacent floes as separate entities, especially in images character-

ized by an inhomogeneous ice gradient and weak edges between floes. In such scenarios,

SAM’s prompt-based mode outperforms the automatic mask generator modality by cor-

rectly separating a greater number of floes. Therefore, SAM’s automatic mode is effective

for calculating ice concentration, successfully identifying larger floes despite challenges

in their boundary segmentation, while the prompt-based mode offers versatility for both

ice concentration and floe size analysis. Caution is needed when the dataset primarily

consists of images featuring complex ice scenarios, as these conditions can cause the

prompt-based mode to produce misleading segmentations. A detailed statistical anal-

ysis in Section 7.4.1 explores the advantages and limitations of each mode, providing

comprehensive insights into their application efficiency.

The main drawback of the prompt-based mode is the occurrence of hallucinations, which

are incorrect segmentation masks that become more frequent in images with low ice-

water contrast. These hallucinations represent a trade-off when aiming to generalize the
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method across various sea ice images. Ideally, such inaccuracies could be avoided by

focusing the model’s attention on parts of the images with higher contrast. However,

this approach would necessitate manual intervention, thereby undermining the objective

of automating the sea ice segmentation process. On the other hand, as the SAM’s

prompt-based mode segments are based solely on seeds without insight into the ideal

shapes of the floes, the segmentation of adjacent floes can be automatically improved

by incorporating knowledge of the optimal ice floe shapes into the model. This can

be achieved by adding a layer into SAM where floes that are not correctly separated

are further processed by the snake-based algorithm whose initial contours summarize

the shape information. By integrating specific shape characteristics into the model, this

approach combines the strengths of both methods, refining segmentation results without

sacrificing process automation.





Chapter 7

A Combination of SAM and GVF

algorithms

7.1 Introduction

Snake-based models excel in delineating detected floes with reliability and accuracy.

Despite this, their sole reliance on visual characteristics and lack of data learning ca-

pabilities cause them to struggle in complex scenarios, such as ice floes with varied

gradients. In contrast, foundation models are adept at pattern recognition, benefiting

from training on extensive and diverse datasets. However, they cannot include efficiently

specific shape details of floes in their segmentation processes, resulting in inaccuracies

particularly when distinguishing adjacent floes with weak edges. To overcome the in-

herent limitations of each approach, when applied independently, an integration of SAM

and GVF snake models is proposed.

The combination of SAM and active contours offers a comprehensive solution for ice

floe segmentation. By incorporating the GVF model as a refinement step, the pro-

cess is enriched with floe shape information, compensating SAM’s shape awareness

limitations. This approach not only leverages SAM’s global learning and recognition

strengths to manage diverse and complex image data but also improves detection accu-

racy through the GVF algorithm’s shape-informed segmentation. A similar strategy of

merging geometrical information with the concept of region similarity originating from

shape-agnostic deep learning models has been efficiently utilized in fields beyond sea

ice analysis [165, 166], achieving remarkable success in medical imaging where precision

in object delineation is critical. This application emphasizes the nature of foundation

models, designed to be versatile tools adaptable to meet the exacting needs of tasks

requiring a higher level of accuracy.
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Section 7.2 detail the integration of the GVF algorithm into the SAM’s prompt-based

mode, culminating in the SAM-GVF hybrid algorithm. This combined approach is

applied to the same subset of images also processed by the other segmentation techniques

for direct comparison with the manual benchmark.

Subsequently, Section 7.4 discusses an application of image segmentation with a focus on

the estimate of floe size statistics. A small subset of images is used to assess the perfor-

mance of the various segmentation methods within a more robust statistical framework

(Section 7.4.1). Variations in floe size statistics arising from GVF, SAM, and combined

SAM-GVF are discussed. The best performing method is then applied to the entire

databases (Section 7.4.2) – comprising winter expeditions to the Antarctic MIZ in 2017,

2019, and 2022 (e.g. [11, 24]). Parameters such as floe area, diameter, and ice concen-

tration are determined for each sea ice image through the segmentation and statistical

properties are analysed.

7.2 SAM and GVF combined algorithm

The combination of SAM and GVF involves an initial broad identification of ice floes

across the entire image using SAM, followed by precise, shape-specific refinements using

GVF. The steps for the segmentation with this hybrid approach are displayed in Fig-

ure 7.1. The process starts with the application of SAM’s prompt-based mode to the

enhanced sea ice images, as discussed in Section 6.2.2. Seeds derived from the distance

transform matrix (see description in Section 5.3 and Figure 5.2c) are used to initialise

the model. Each seed effectively pinpoints an ice floe, enabling SAM to generate a mask

for that specific floe, resulting in a collection of masks equal to the number of seeds

in the image. While this modality efficiently isolates floes under various conditions, it

sometimes produces inaccurate masks due to uncertainty in certain image areas. To

address these uncertainties, the individual masks are consolidated into a unified mask,

which results in a binary image (Figure 7.1b). This consolidation corrects segmentation

by eliminating uncertain masks and retaining those unequivocally associated to floes.

Nevertheless, although most ice floes are successfully detected and separated, challenges

arise with blurred edges between floes that lack clear discontinuity. The model strug-

gles to assign these ambiguous edge portions exclusively to one floe. During the mask

unification process, this ambiguity causes such floes to be welded together at their most

unclear edges, underscoring the need for further refinement in distinguishing closely

adjacent floes.

The refinement of SAM segmentation is achieved through a subsequent phase that uti-

lizes the GVF model (Figure 7.1c-e). As previously discussed, snake algorithms are
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Figure 7.1: SAM-GVF hybrid algorithm: (a) original image (b) unified binary mask
produced by SAM’s prompt mode with seeds in red of the ice floes; (c) contour in
red of the floes containing a single seed because already correctly segmented by SAM;
(d) initial contour in red of the floes containing a single seed after a morphological
erosion; (e) circular initial contour in red for each remaining and unused seed; (f) ice
floes already identified in Figure 7.1c; (g) ice floes detected by the GVF snake algorithm
initialized with the initial contours in Figure 7.1d; (h) ice floes detected by the GVF
snake algorithm initialized with the circular contours; (i) final binary image with all

the detected ice floes.

particularly adept at separating ice floes in dense scenarios by leveraging the shape in-

formation provided by initial contours. In this process, seeds are employed to generate

these initial contours. A distance transformation is then applied to the binary compre-

hensive mask shown in Figure 7.1b. This transformation calculates the distances from

each feature pixel, which corresponds to ice, to the nearest non-feature pixel, which rep-

resents the background. Similarly to the snake-based method, the local maxima of this

distance matrix serve to identify the seeds that pinpoint individual ice floes. However, in
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this hybrid approach, the binary image used for finding seeds comes from a unified mask

derived from the image segmentation through SAM, whereas in the standalone snake-

based method, it is generated through automated thresholding (detailed in Section 5.3).

As a result, the majority of floes are already detected accurately and require no further

processing. These pre-detected floes are represented by the objects possessing only one

seed in Figure 7.1c. Excluding these floes (Figure 7.1f) from the GVF processing reduces

computational time and focuses the initial contour placement only on those floes that

SAM did not segment correctly. These result in objects pinpointed by more than one

seed in Figure 7.1d,e.

Part of the interconnected objects are merged with each other by only a few pixels

and, hence, they can be isolated through morphological erosion, which smooths the

edges. The contours of the newly emerged objects serve as the initial contours for

the snake model (see Figure 7.1d). These objects represent the ice floes that SAM

partially segments, capturing their shapes successfully but not completely separating

them. Therefore, utilizing their contours retains the shape characteristics of the floes,

enabling the snake model to accurately expand the contours to the true boundaries of

each floe.

The remaining unprocessed objects, which share a significant portion of their edges

with neighboring objects, cannot be effectively isolated through morphological erosion.

For these cases, the binary image lacks detailed information about the floe shapes.

Therefore, segmentation is facilitated by applying circles as initial contours around the

seeds, a shape commonly used to approximate ice floes in the marginal ice zone. The

radius for each circle is chosen based on the distance transform to ensure the initial

contour lies within the object but remains close to the presumed edge (Figure 7.1e).

Once initial contours are established for all seeds, the GVF snake algorithm is applied

to expand these contours, thereby delineating the object’s boundaries (Figure 7.1g-h).

The advantage of applying the GVF snake algorithm is its ability to capture the shape

of ice floes in densely packed environments where SAM struggles to define boundaries.

However, even the combined SAM and GVF approach may introduce anomalies and

inaccuracies not present in the original image. As with the standalone GVF application,

spurious features such as nearly-perfect circles or elongated line segments are removed

using circularity and eccentricity coefficients (refer to Section 5.3 for details). The final

output, combining results from all phases, is presented in Figure 7.1i, from which floe

properties are extracted using boundary tracing algorithms.



Chapter 7 A Combination of SAM and GVF algorithms 71

7.3 Validation against benchmark

The combined SAM-GVF algorithm is applied to the benchmark images detailed in

Chapter 4, with the results visually compared against those obtained through manual

segmentation (refer to Section 4.5). Figure 7.2 illustrates the segmentation of ice floes,

showing contours superimposed on the original images that depict various levels of sea

ice clarity.

SAM – GVFManual Benchmark

Figure 7.2: Contours of ice floes identified through benchmark manual segmentation
under clear conditions (a), in a complex environment (c), and at nighttime with the
ship’s spotlight-lit area highlighted in yellow (e). Corresponding contours detected
using SAM combined with the GVF snake algorithm are shown in images (b, d, f).

In this hybrid approach, the large number of floes correctly identified by SAM is aug-

mented by those separated by the snake algorithm, achieving nearly complete identifi-

cation of floes regardless of the ice image’s clarity. The GVF algorithm enhances SAM’s

segmentation by separating adjacent floes with unclear boundaries, thereby increasing

the amount of accurately identified floes. However, some uncertainties still persist.

Specifically, these are hallucinations – false contours that do not correspond to actual

floes, primarily occurring in complex scenarios with varying ice gradients and low con-

trast against water – arising from the SAM-based segmentation counterpart. Moreover,
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when the adjacent floes with blurred edges have particularly irregular shapes, initial con-

tours for the GVF step may not accurately conform to the floes’ actual shapes, leading

to incorrect results. However, this issue affects a minority of floes only, and the errors

are typically filtered out using the coefficients of circularity and eccentricity described

in Section 7.2. The advantage of the snake phase is that it either produces correct

contours or incorrect ones that can be effectively identified and removed by these coef-

ficients. Since only a small number of floes are affected and subsequently removed from

the final segmentation, floe size analysis remains unaffected, though ice concentration

might be slightly underestimated compared to the benchmark. An extensive statistical

analysis of these results will be detailed in Section 7.4.1.

7.4 A practical application: Floe size statistics

In this section, the performance of various segmentation methods is evaluated by an-

alyzing floe size statistics. These statistics are derived by applying the methods to a

small subset of 10 random images, which includes a broad range of image quality. Dis-

crepancies in floe size statistics resulting from the GVF, SAM, and combined SAM-GVF

methods are examined and discussed against benchmark statistics derived from a man-

ual segmentation approach. The most effective method is then applied to the whole

database, which comprises imagery from the three winter expeditions to the Antarc-

tic Marginal Ice Zone (MIZ) in 2017, 2019, and 2022. This further application aims to

identify any statistical deviations that may correlate with the different sea ice conditions

encountered during these expeditions (which took place over the same season – winter).

7.4.1 Comparison of floe size distributions from GVF, SAM and SAM-

GVF combined algorithms

A carefully selected subset of 10 images, which deviate from the ideal scenario of clear

ice boundaries and consistent contrast (see examples in Figure 7.3), is used to reflect

the complexity of Antarctic sea ice. These images undergo floe detection through the

segmentation methods discussed in this dissertation, namely GVF, SAM, and the com-

bined SAM-GVF approach. The results of the segmentation are then used to estimate

floe size statistics, including the number of detected floes, floe concentration, and size

distribution for each method. These parameters are shown in Figure 7.4 where they

are compared to those obtained from manually segmenting the same image subset to

provide an objective benchmark. In the upper panels (Figure 7.4a-b), the number of

detected floes and the ice concentration are shown in a normalised form so that values



Chapter 7 A Combination of SAM and GVF algorithms 73

are relative to the corresponding parameters obtained from manual segmentation. Each

black line segment extending from the circles to the horizontal line shows how far each

method’s results deviate from the benchmark. The bottom panel (Figure 7.4c) presents

a size distribution based on the diameter of the floes, with the left side representing

manual segmentation and serving as the benchmark against which the reliability of the

segmentation methods is evaluated.

Figure 7.4a shows that the number of accurately detected floes is underestimated by

both the GVF and SAM automatic mode, with values of 0.85 and 0.76, respectively,

while it is overestimated by the SAM prompt mode, with a value of 1.20. Generally, the

error for this statistic does not exceed 25% of the actual number of floes in the image.

The underestimation in both the GVF and SAM automatic mode reflects the challenge

these methods face in detecting floes in complex scenarios (Figure 7.3). Conversely, the

overestimation in the SAM prompt mode is due to the model’s tendency to generate

hallucinations. The combined GVF-SAM algorithm mitigates both underestimation

and overestimation issues, resulting in a more accurate floe count, with only a slight

overestimation (1.06) of the actual number of floes.

Figure 7.3: Sample from the subset of 10 images illustrating the complexity of Antarc-
tic sea ice, used for method comparison.

Sea ice concentration in Figure 7.4b shows that the method based on SAM, regardless

of the mode, closely approximates the benchmark from manual segmentation, with val-

ues of 0.96 for the automatic mode and 1.01 for the prompt-based mode. Interestingly,

despite not excelling at segmenting individual floes – affecting the floe count – SAM

effectively distinguishes between ice and water, resulting in the reported high accuracy

in separating the sea ice fraction. The combined SAM-GVF method (0.88) introduces

slightly more uncertainty, with an error range of about 10%, than SAM alone. How-

ever, it still outperforms the GVF method (0.68), which tends to under-detect floes or

generate contours smaller than the true boundaries, especially when ice floes display het-

erogeneous gradients. This limitation causes GVF to underestimate ice concentration,

highlighting the benefit of combining it with SAM.
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Figure 7.4: Comparison of floe size statistics obtained through segmentation with
GVF (green), SAM automatic (red) and prompt-based (pink) mode, and the combined
SAM-GVF (purple) against the manual benchmark (orange) segmentation: (a) number
of detected floes for each method, normalized by the corresponding parameter from
manual segmentation (horizontal line); (b) ice concentration for each method, normal-
ized by the corresponding parameter from manual segmentation (horizontal line); (c)
floe size distribution illustrated as violin plots for all methods, with the manual size
distribution shown on the left. Medians and quartiles are represented respectively by

squares inside the violins and darker shaded areas.

The floe size distribution is illustrated as violin plots in Figure 7.4c. These plots combine

features of a box plot and a probability density function, showing the median (squares

inside the violins), the first (Q1) and third (Q3) quartiles (darker shaded areas), and

highlighting potential multimodality in the distribution. In this regard, the benchmark

size distribution exhibits an evident bimodality at small (approximately 2 meters in

diameter) and larger (around 4 meters) floes, noting that this feature may arise due to

the limited size of the sample and, hence, it may both be a characteristic signature of

the floe size distribution. Fifty percent of the floe sizes fall between Q1 at 2 meters

and Q3 at 4.5 meters, with a median of 3.2 meters. Although there are some minor

discrepancies due to biases towards smaller floes, both GVF and SAM-GVF capture the

main features of the distribution, such as the median (2.9 meters for both methods)
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and the bimodality around the distribution’s peak, due to their ability to delineate the

true edges more accurately than SAM-based approaches. To be noted, though, that the

quartiles are underestimated by GVF (1.5 meters for Q1 and 4 meters for Q3), while

SAM-GVF provides a more accurate representation (1.7 meters for Q1 and 4.2 meters

for Q3) relative to the benchmark. Applications based on SAM alone (in both modes)

return a more uncertain distribution. Relative to the benchmark, the prompt-based

approach reasonably captures the median (2.7 meters) and quartiles (1.3 meters for Q1

and 4.2 meters for Q3). The bimodality of the distribution is hinted, but there is an

evident skewness towards small floe size (around 1 meter) that distorts the shape of the

distribution. The standard SAM approach provides the least accurate distribution, with

clear uncertainties in the median (3.8 meters), which is overestimated relative to the

benchmarks and other approaches, and shape of distribution, which returns a unimodal

feature, missing the evident bimodality of the benchmark distribution. Quartiles are

also poorly represented (2.8 meters for Q1 and 4.9 meters for Q3), highlighting the

limitations of SAM automatic mode in accurately detecting individual floes without

seed-based prompts.

Declaring one method as superior to another in absolute terms is not possible, as the

choice depends on the specific use case. Prompt-based and automated SAM, with their

faster computational speed and strong performance in estimating ice concentration, are

better suited for real-time applications where immediacy is critical. In contrast, the

hybrid SAM-GVF approach, along with GVF alone, proved more effective at capturing

the floe size distribution. In particular, SAM-GVF improves concentration estimates

compared to GVF alone, without compromising accuracy in size distribution. However,

their longer computational time makes them more suitable for post-processing and fur-

ther data refinement. It is also important to acknowledge that the manual segmentation

of the benchmark dataset inherently involves some subjectivity, arising not only from

individual interpretation but also from the ambiguous definition of what constitutes an

ice floe. Consequently, how manual segmentation is conducted can affect the entire

comparison process. To mitigate this subjectivity and enhance the robustness of the

benchmark, increasing the number of images in the dataset is a practical approach.

7.4.2 Floe size distribution based on SAM-GVF combined algorithm

7.4.2.1 General

Herein, the SAM-GVF combined algorithm is applied to the entire imagery database.

The camera set up, details of which can be found in Chapter 4, was the same for all the

voyages. An overview of the three expeditions and details on the sea ice concentration
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and floe size are reported in Figure 7.5. All expeditions went through the MIZ and

reached regions of sea ice concentration of 100% (a few hundred km into the MIZ). The

sea ice was not compact at the southernmost location during the 2017 voyage, though,

but it was a mixture of pancakes and solidified frazil ice [34, 69]. Conversely, compact

sea ice was reached during the 2019 and 2022 voyages (e.g. [11]). It is also worth

noting that cyclones develop primarily in the Atlantic and Pacific sectors and typically

follow a south-eastward trajectory, undergoing net cyclogenesis (the development of

cyclonic circulation) in the midlatitudes and net cyclolysis (the process by which a

cyclone weakens and eventually deteriorates) closer to the Antarctic continent. The

South Atlantic, and especially the ice-covered eastern Weddell Sea, is an area of net

cyclolysis for systems originating from open ocean (cf. [69]). Waves conditions here

are characterised by fully developed seas, i.e. long and gently sloping waves. This is

the region where observations were acquired in 2019 and 2022. The voyage in 2017, on

the contrary, focused on the Western Indian Ocean sector, which is again a region of

cyclogenesis [69]. The sea state observed during this expedition was characterised by

relatively young waves with short wavelengths, significant heights, and thus steep forms

even in the sea ice region [24, 167].

The purpose of the analysis presented herein is the evaluation of floe size within a robust

stochastic framework. Due to the different wave conditions in the two explored sectors,

sea ice characteristics differ from each other, despite acquisition occurring during the

same season (winter). Hence, the relation of floe size distribution to the specific sea ice

conditions is discussed.

7.4.2.2 The expeditions and the imagery database

The routes of the three winter voyages are displayed in Figure 7.5a. The first voyage

(hereafter referred to as v1) occurred in July 2017, entering the MIZ in the Western

Indian Ocean sector at approximately 61.3◦S, 30◦E on 04 July 2017 and continuing

south to 62.7◦S, spending only one day in ice. The second voyage (v2) took place in

July-August 2019. The vessel entered the MIZ in the Eastern Weddel Sea at 56.3◦S

and followed a southward route. It reached consolidate sea ice at 57.1◦S and continued

until approximately 58◦S, staying in ice for three days from 26 July to 29 July. The

third voyage (v3) in July-August 2022, followed a similar path. The icebreaker reached

the ice at around 58◦S, 1◦W on 19 July 2002 and traveled southward until it reached

consolidated sea ice at latitude 58.8◦S, spending six days in the MIZ before heading back

North. In total, the three winter expeditions together spent 10 days in sea ice.
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Figure 7.5: Antarctic winter expeditions: (a) ship tracks for 2017 (red; v1), 2019
(green; v2), and 2022 (yellow; v3); (b, c, d) maps of the floe size distribution for 2017,

2019, and 2022 (’o’: pancake/brash; ’square filled’: consolidated ice).

Overall, the combined database includes more than 130,000 images, taken at the sam-

pling frequency of 1 Hz. To ensure independence of data, only one image every 15

seconds is selected for segmentation. Additionally, images taken during stationary pe-

riods are excluded. Therefore, approximately 9,000 images are available for analysis:

1,000 in 2017, 2,000 in 2019, and 6,000 in 2022.
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Figure 7.6: Average floe size and concentration as a function of the distance from the
ice edge (error bar: 1 std).

7.4.2.3 Sea ice concentration and average floe size

A general view of the ice condition along the ship’s route, based on the floes size derived

from the application of the SAM-GVF algorithm and the concentration resulting from

the AMSR2 satellite remote sensing [168], is shown in Figure 7.5b-d. These satellite

data, acquired daily at a 6.25 km grid spacing and averaged for the days spent in ice,

have limited spatial and temporal resolutions. These limitations, along with suscep-

tibility to atmospheric conditions like cloud cover, introduce significant uncertainties.

Consequently, the MIZ edge depicted by satellites differs from that observed directly
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from sea ice imagery (cf. [34]). In particular, during the second voyage, the ice was en-

countered further south than indicated by remote sensing, and further north during the

third expedition, as detailed in Figure 7.5c-d. The size of the ice floes in Figure 7.5b-c

is somewhat proportional to the distance from the ice edge, with dimensions increasing

with distance. When floes are no longer distinguishable, the ice is classified as predom-

inantly compact and indicated as black squares in the figure. It is worth noting that

there is a significant variability of the sea ice in 2022 (Figure 7.5c). This is partially due

to the vessel sailing both southward and eastward, thus exploring a larger sea ice region.

Variation of sea ice floe size with distance is less evident with floe size alternating regions

of large and small floes along the route.

The variation of floe size with increasing distance from the ice edge is further analyzed

in Figure 7.6. Average floe diameters are calculated at 40 km intervals, extending up

to the maximum distance of 200 km from the ice edge reached in 2022. Each data

point includes also a vertical error bar representing one standard deviation (i.e. 64%

confidence interval) associated to the floe size estimate. The average ice concentration,

as determined from the images as the ratio of the total area of detected floes to the total

area of the image, is also reported. In 2017, the size trend shows a slight increase but

remains between 4-5 meters in diameter. The confidence level is relatively stable over

distance. The floe concentration is also rather stable as it only slightly increases from

60% to 80%. Interestingly, satellites detect 100% ice concentration over the entire area

considered herein (see Figure 7.5a and [34]). The discrepancy is due to the presence of

interstitial frazil ice that fills entirely the gaps between floes, enhancing the total sea

ice concentration to the maximum. Samples of frazil ice taken during the expedition

reveal that the interstitial ice was solidifying. While the weak variability of floe size with

distance can be attributed to the limited time spent in the MIZ (one day), it cannot

be excluded that the solid frazil ice acted as a constraint on further increase of the floe

size, somewhat limiting their dimension. Although the sea ice cover was set to turn into

a more compact condition, it remained quite flexible due to intense wave activity with

maximum individual wave height reported up to 9 m [24].

In 2019, floe concentration remained steady at 80%, while floe diameters increased from

an average of 3 meters within the 0-40 km range to 9 meters between 120-160 km from the

ice edge. The variability in size mirrors the increasing trend in diameter, with standard

deviations reaching about 3 meters at greater distances. Wave conditions at the time

were mild and wave energy penetrated into the MIZ only marginally. Therefore, the

pattern suggests a developing growth phase for the sea ice, where floes gradually weld

with each other forming larger floes as the distance from the MIZ’s edge increases and

so does wave action decreases.
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In 2022, the six days spent on the ice led to a greater variability in floe sizes. The floe

diameters initially decrease from 9 to 4 meters before slightly increasing beyond the 120

km mark. Floe concentration fluctuates similarly, dropping from 75% to 65% and then

rising back to 75%. As the vessel moved southward and eastward during this period, it

encountered varying ice types, from fully formed floes to conglomerates of floes merged

together to broken floes, contributing to the high variability observed (cf. [11]). The

standard deviation is consistently greater than 2 meters, reflecting the diverse sizes of

floes found across different days in the same sea ice region. This variability excludes

a gradual growth as observed in 2019. On the contrary, it suggests that sea ice went

through a break up process following intense wave activities, which occurred a few days

earlier than the reported measurements.

7.4.2.4 Floe size distribution

Figure 7.7: Probability density function of floe diameter (continuous line) for 2017
(a), 2019 (b), and 2022 (d). Examples of floes during the expeditions are reported in

panels (d, e, f) respectively.

The empirical probability density functions for floe diameter during each expedition are

shown in Figure 7.7. The distributions are not presented in chronological order but are

displayed to follow the different states of sea ice (see sample images in Figure 7.7d-f). In

2019, the icebreaker encountered the ice during the initial stages of floe formation. This

is further substantiated by the round, pancake-like, shape of the ice floes in Figure 7.7d.



Chapter 7 A Combination of SAM and GVF algorithms 81

This resulted in a narrow, bell-shaped probability density function with a modal diam-

eter of 3.5 meters. In contrast, the probability density functions from 2017 and 2022

exhibit a broader shape, each with a modal diameter of 4.5 meters, indicating a greater

diversity in floe sizes.

Figure 7.8: Exceedance probability in log scale of floe diameter in 2017 (red), 2019
(green) and 2022 (yellow).

The 2017 expedition reported floes that were fully formed, also due to interstitial solid

frazil ice that constrained further increase in dimension. There is evidence of welded

floes, which also gives rise to larger conglomerated floes. The shape of the floe is still of

elliptical or circular type (even those of conglomerated floes), which is typical of pancakes

(a form of sea ice in formation). This produced a rightward skew in the probability den-

sity function relative to the distribution observed in 2019, indicating a higher probability

of encountering larger floes with some exceeding 9 meters. The increased probability for

larger floes is highlighted in Figure 7.8, where the exceedance probability of the floe size

represented in a semi-logarithmic scale is reported. Interestingly, relative to the 2019

data set, the tail of the distribution shows a clear shift towards higher values, while the

tail of the distribution retains the same form. This substantiates, to some extent, an

advanced phase of sea ice growth with consistent ice form but with greater dimensions.

In 2022, the trend towards larger floes is even more pronounced than in 2017, with

many records of multiple pancake-like forms welded together. As shown in Figure 7.7f,

however, the edges of the floe are more irregular and sharp than those observed in 2017

and 2019 (Figure 7.7d,e). This is not the characteristic boundary typical of pancakes, but

it rather represents conditions of broken or brash ice, supporting the earlier conjecture

that the sea ice floes observed in 2022 are the result of breakup events. Despite having

the same mode as in 2017, the right tail of the probability density function extends

further, suggesting an increased likelihood of encountering substantially larger floes.

The abundance of large floe is reported more clearly by the exceedance probability in

Figure 7.8, which shows a very distinctive deviation from the distribution observed in

2017. This departure starts at a floe size of about 6 m.
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7.5 Conclusions

The integration of SAM and GVF algorithms enhances ice floe segmentation by com-

pensating for the individual limitations of each method when used independently. The

hybrid SAM-GVF approach combines SAM’s global learning and pattern recognition

capabilities with GVF’s precise, shape-informed segmentation. This combination ef-

fectively addresses complex scenarios such as adjacent floes with unclear boundaries,

significantly improving detection accuracy.

A detailed evaluation of floe statistics from a controlled subset of 10 images demonstrates

that the combined method substantially outperforms individual algorithms, especially in

accurately separating floes in densely packed ice. These methods, including GVF, SAM,

and combined SAM-GVF, are evaluated against manual segmentation. The comparison

reveals that while SAM excels at distinguishing between ice and water, GVF tends to

underestimate floe numbers but provides accurate outlines when correctly identifying

floes. The combined SAM-GVF method effectively balances these strengths and weak-

nesses, offering more precise floe identification and size estimation, suggesting potential

for (almost) real-time sea ice monitoring.

The analysis is further extended to floe size distribution across the entire imagery

database arising from three Antarctic expeditions. The best-performing SAM-GVF

algorithm was applied to this end. The results indicate a correlation with distance from

the ice edge that depends on the stage of growth of the sea ice. A clear increasing trend

was observed in 2019, where the ice cover was composed of pancake-like floes, a typical

form of growing ice. The small dimensions near the edge were attributed to intense

wave activity, while the reduction of it into the marginal ice zone facilitated welding

and thus an increase of dimensions. In the 2017 voyage, ice was developing into a con-

solidated cover. Floes have pancake-like form, but interstitial frazil ice was solidifying,

constraining further increase of floe size. Although an increasing trend was still evident,

this was weak. In 2022, observations revealed a more dynamic scenario in which sea

ice was subjected to breakup events as substantiated by more irregular and sharp floe

edges. This resulted in an erratic trend with floes first increasing, then decreasing, and

eventually increasing again with distance from the edge.

Overall, these findings highlight the effectiveness of the SAM-GVF algorithm in adapting

to varied and complex sea ice conditions, offering detailed insights into floe size distribu-

tions crucial for understanding and predicting changes in polar marine environments.
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Conclusions

8.1 Recapitulation

Computer vision is a well recognised tool for measuring the properties of sea ice. This

dissertation showcases the development and refinement of advanced segmentation algo-

rithms specifically designed for the complex and varied conditions of Antarctic sea ice.

Imagery from a controlled laboratory set up as well as field observation of the Antarctic

marginal ice zone is used to this end. By enhancing the segmentation of sea ice images,

this research tackles the challenge of data scarcity in polar regions, enabling retrieval of

sea ice data from images acquired by ship-borne sensors of varying image quality. The

outcomes of this study are crucial for deepening our understanding of and improving our

predictive capabilities regarding changes at high latitudes, thereby making a significant

contribution to climate science.

In the first instance, the dissertation focuses on the analysis of imagery of model ice in

laboratory facilities. This revealed that traditional segmentation techniques, such as im-

age binarization and edge detection filters, operate well in controlled settings. However,

their extension to field data shows inadequacy for the diverse conditions encountered in

a natural sea ice field. In the laboratory, constant conditions—where lighting and ice

texture remain consistent—allow for the capture of clear and distinct features, facilitat-

ing detection. This differs markedly from field conditions, which are unpredictable, with

ice shapes varying seasonally and resulting in low image quality. Furthermore, ice floes

in the laboratory exhibit a fairly consistent elliptical shape, making the application of

segmentation algorithms more effective compared to field imagery, where the shape of

the floe is arbitrary. The controlled variables in the laboratory also negate the need for

pixel-to-meter conversion, as dimensions and geometric properties can be inferred using

reference measurements or by directly measuring the ice dimensions in the tank.

83
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Although laboratory data provides a good alternative to realistic conditions, they re-

main an approximation of realistic conditions. Therefore, the focus of the thesis was then

shifted towards the analysis of real field conditions with the particular aim of adapting

segmentation algorithms to cope with a broad range of image quality. Imagery data

was acquired from an icebreaker vessel during three Antarctic expeditions. The con-

stant motion of the ship was a challenge for data capture and a robust methodology

was essential for reliable results. In this respect, the thesis discussed the installation

and operation of a camera system aboard the icebreaker S.A. Agulhas II. The system

operated during three winter expeditions in 2017, 2019, and 2022 and acquired more

than 130,000 images. Of those, 9,000 images were selected for further processes, to

ensure Independence in the data set. Essential pre-processing such as detailed cam-

era calibration and orthorectification were discussed to mitigate geometric distortions.

These steps were accomplished without the need to reference known objects within the

camera’s field of view. By effectively adjusting these distortions, the system enabled

precise meter-to-pixel conversions, crucial for the accurate measurement and analysis of

ice floe sizes.

To evaluate segmentation techniques, manual segmentation of a set of images was used

as a high-quality benchmark. To this end, only a few selected images representing a

variety of conditions found in Antarctica, including optimal scenarios with well-defined

floes and uniform lighting, and challenging images taken at night or under variable

lighting conditions where the ice gradient differs across and within floes, were selected.

This benchmark also served to verify the accuracy of the orthorectification process. In

this regard, the position of the camera changes according to the movement of the ship

induced by the ocean waves. Sensitivity analysis performed on a sample of floes for

extreme values recorded during rough waves shows that the final influence on the size

of the floes is less than 5% compared to a steady ocean, thus negligible.

After pre-processing, the dissertation continues with the evaluation of advanced segmen-

tation algorithms for identifying and analyzing sea ice floes, integrating several method-

ologies to enhance accuracy and efficiency. One of the algorithms is the Gradient Vector

Flow (GVF) snake algorithm, which uses an automated initial contour generator to

mimic ice floe shapes. Its advantage is the relatively low computational time and its

capacity to adapt to varied conditions. GVF proved to be effective in capturing floe

boundaries, even for adjacent floes. However, it relies on initial (guessed) contours. Due

to the irregularity of Antarctic sea ice, approximately 20% of the floes in a frame remain

unsegmented. While this is not a critical issue for the accuracy of the detected floes –

particularly effective for estimating floe size in large datasets where minor inaccuracies

are less critical – it limits the suitability for analyzing ice concentration.
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A second algorithm that was assessed was the Segment Anything Model (SAM), which

operates in two modes: an automatic mask generator and a prompt-based approach.

Both modalities cover more ice surface more quickly than the GVF algorithm. How-

ever, they struggle with segmenting adjacent floes in complex conditions with non-

homogeneous ice gradients and weak edges. The prompt-based modality, which relies

on a pre-selection of floes to be processed, excels in separating floes more effectively,

although it is susceptible to producing segmentation errors in low-contrast scenarios,

necessitating careful application.

Various methods have pros and cons. Therefore, a hybrid algorithm was proposed by

integrating SAM and GVF to take advantage of SAM’s pattern recognition capabilities

and GVF’s precise, shape-informed, segmentation. This synergistic method significantly

enhances segmentation accuracy, particularly in scenarios with adjacent floes and un-

clear boundaries, suggesting its potential for near real-time sea ice monitoring. This

hybrid method outperforms the individual algorithms, especially in densely packed ice

conditions, demonstrating superior capabilities in floe identification and size estimation.

The method was further applied to analyze floe size distribution across an entire imagery

database (9,000 images) from three Antarctic expeditions. The analysis indicated that

floe size correlates with distance from the ice edge, varying with the stage of ice growth.

In 2019, smaller pancake-like floes near the edge grew in size further into the ice zone due

to reduced wave activity allowing for floe consolidation. In 2017, though floes also showed

pancake-like forms with solidifying frazil ice, the size increase was more constrained. In

2022, the ice experienced more dynamic breakup events, resulting in irregular floe edges

and erratic size trends with varying distances from the edge.

Overall, these findings demonstrate the effectiveness of the SAM-GVF algorithm in

navigating the complexities of sea ice conditions, providing detailed insights into floe

size distributions that are crucial for understanding and forecasting changes in polar

marine environments.

8.2 Outlook

Looking ahead, the study highlights several areas for potential improvement and further

research. The integration of these image processing techniques into real-time monitoring

systems could significantly enhance our understanding of sea ice dynamics. Additionally,

future work could focus on refining these models to better handle the variability and

complexities of sea ice patterns observed in different conditions and locations.
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A pivotal element in advancing this field is the continuous analysis of sea ice cover, en-

abled by upcoming Antarctic expeditions. These expeditions will provide high-resolution

data that are essential for developing and validating sea ice models. The results derived

from the hybrid SAM-GVF method can serve as a reliable source for verifying satel-

lite measurements, such as ice concentration. The ability to correlate high-resolution,

in-situ data with broader-scale satellite observations will bridge the gap between local

observations and global monitoring systems.

Moreover, these detailed observations can lead to enhanced predictive capabilities of

sea ice models, which are crucial for anticipating changes in ice dynamics and their

subsequent effects on global climate systems. The ongoing development and validation

of these models, supported by empirical data from field expeditions, are critical for

informing climate policy and enhancing our global response strategies to climate-induced

changes in polar regions.

The segmentation masks generated through the hybrid SAM-GVF method can also serve

as training data for specialized deep learning models. These models could be developed

to distinguish between different types of sea ice, such as ice covered by snow versus bare

ice floes, or to calculate the concentration of various ice types accurately.

Currently, the analysis of these characteristics is often qualitative and conducted by

visual observers aboard ships. This manual method, while valuable, introduces subjec-

tivity and potential inconsistencies in data collection. By automating this process, we

can achieve a more standardized and scalable approach to monitoring sea ice properties.

Deep learning models trained on accurately segmented images could automate the de-

tection and classification of ice types, potentially transforming how sea ice is monitored.

This automated approach would not only increase the efficiency and accuracy of sea

ice measurements but also enhance the capability to perform these analyses in real-

time, even in remote or harsh conditions. As these models evolve, they could integrate

seamlessly with satellite imaging and other remote sensing technologies, providing com-

prehensive and timely insights into sea ice dynamics. Such advancements would sig-

nificantly contribute to our understanding of polar ecosystems and their responses to

environmental changes.
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tracking challenge: 10 years of objective benchmarking. Nature Methods, 20(7):

1010–1020, May 2023. ISSN 1548-7105. doi: 10.1038/s41592-023-01879-y.

[49] Wenjun Huang, Anzhu Yu, Qing Xu, Qun Sun, Wenyue Guo, Song Ji, Bowei Wen,

and Chunping Qiu. Sea ice extraction via remote sensing imagery: Algorithms,

datasets, applications and challenges. Remote Sensing, 16(5):842, February 2024.

ISSN 2072-4292. doi: 10.3390/rs16050842.

[50] Zhaohui Wang, Alexander D. Fraser, Phillip Reid, Siobhan O’Farrell, and Richard

Coleman. Antarctic sea ice surface temperature bias in atmospheric reanalyses in-

duced by the combined effects of sea ice and clouds. Communications Earth & En-

vironment, 5(1), October 2024. ISSN 2662-4435. doi: 10.1038/s43247-024-01692-1.

[51] P. Wadhams, G. Aulicino, F. Parmiggiani, P. O. G. Persson, and B. Holt. Pancake

ice thickness mapping in the beaufort sea from wave dispersion observed in sar

imagery. Journal of Geophysical Research: Oceans, 123(3):2213–2237, March 2018.

ISSN 2169-9291. doi: 10.1002/2017jc013003.

[52] Natalia Zakhvatkina, Vladimir Smirnov, and Irina Bychkova. Satellite sar data-

based sea ice classification: An overview. Geosciences, 9(4):152, March 2019. ISSN

2076-3263. doi: 10.3390/geosciences9040152.



94 Bibliography

[53] J. Karvonen, M. Simila, and M. Makynen. Open water detection from baltic sea

ice radarsat-1 sar imagery. IEEE Geoscience and Remote Sensing Letters, 2(3):

275–279, July 2005. ISSN 1545-598X. doi: 10.1109/lgrs.2005.847930.

[54] D. Haverkamp, Leen Kiat Soh, and C. Tsatsoulis. A comprehensive, automated

approach to determining sea ice thickness from sar data. IEEE Transactions on

Geoscience and Remote Sensing, 33(1):46–57, 1995. ISSN 0196-2892. doi: 10.

1109/36.368223.

[55] Yanmei Chai, Jinchang Ren, Byongjun Hwang, Jian Wang, Dan Fan, Yijun Yan,

and Shiwei Zhu. Texture-sensitive superpixeling and adaptive thresholding for

effective segmentation of sea ice floes in high-resolution optical images. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

14:577–586, 2021. ISSN 2151-1535. doi: 10.1109/jstars.2020.3040614.

[56] Xiao-Ming Li, Yan Sun, and Qiang Zhang. Extraction of sea ice cover by sentinel-

1 sar based on support vector machine with unsupervised generation of training

data. IEEE Transactions on Geoscience and Remote Sensing, 59(4):3040–3053,

April 2021. ISSN 1558-0644. doi: 10.1109/tgrs.2020.3007789.

[57] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr

Dollár, and Ross Girshick. Segment anything, 2023.

[58] Siddharth Shankar, Leigh A. Stearns, and C. J. van der Veen. Semantic seg-

mentation of glaciological features across multiple remote sensing platforms with

the segment anything model (sam). Journal of Glaciology, pages 1–10, November

2023. ISSN 1727-5652. doi: 10.1017/jog.2023.95.

[59] Agnieszka Herman, Karl-Ulrich Evers, and Nils Reimer. Floe-size distributions in

laboratory ice broken by waves. The Cryosphere, 12(2):685–699, February 2018.

ISSN 1994-0424. doi: 10.5194/tc-12-685-2018.

[60] Q. Zhang, R. Skjetne, I. Metrikin, and S. Løset. Image processing for ice floe

analyses in broken-ice model testing. Cold Regions Science and Technology, 111:

27–38, March 2015. ISSN 0165-232X. doi: 10.1016/j.coldregions.2014.12.004.

[61] Seok-Ho Byun and Jong-Ho Nam. Estimation of pack ice concentration using

histogram peak analysis and image subdivision. Cold Regions Science and Tech-

nology, 181:103185, January 2021. ISSN 0165-232X. doi: 10.1016/j.coldregions.

2020.103185.



Bibliography 95

[62] Li Zhou, Jinyan Cai, and Shifeng Ding. The identification of ice floes and calcu-

lation of sea ice concentration based on a deep learning method. Remote Sensing,

15(10):2663, May 2023. ISSN 2072-4292. doi: 10.3390/rs15102663.

[63] Vernon A. Squire. Past, present and impendent hydroelastic challenges in the polar

and subpolar seas. Philosophical Transactions of the Royal Society A: Mathemat-

ical, Physical and Engineering Sciences, 369(1947):2813–2831, July 2011. ISSN

1471-2962. doi: 10.1098/rsta.2011.0093.

[64] Vernon A. Squire. Ocean wave interactions with sea ice: A reappraisal. Annual

Review of Fluid Mechanics, 52(1):37–60, January 2020. ISSN 1545-4479. doi:

10.1146/annurev-fluid-010719-060301.

[65] Kenneth M. Golden, Luke G. Bennetts, Elena Cherkaev, Ian Eisenman, Daniel

Feltham, Christopher Horvat, Elizabeth Hunke, Christopher Jones, Donald K.

Perovich, Pedro Ponte-Castaneda, Courtenay Strong, Deborah Sulsky, and An-

drew J. Wells. Modeling sea ice. Notices of the American Mathematical Society,

67(10):1, November 2020. ISSN 1088-9477. doi: 10.1090/noti2171.

[66] A. L. Kohout, M. J. M. Williams, S. M. Dean, and M. H. Meylan. Storm-induced

sea-ice breakup and the implications for ice extent. Nature, 509(7502):604–607,

May 2014. ISSN 1476-4687. doi: 10.1038/nature13262.

[67] Alison L. Kohout, Madison Smith, Lettie A. Roach, GuyWilliams, Fabien Montiel,

and Michael J. M. Williams. Observations of exponential wave attenuation in

antarctic sea ice during the pipers campaign. Annals of Glaciology, 61(82):196–

209, June 2020. ISSN 1727-5644. doi: 10.1017/aog.2020.36.

[68] J. Thomson, S. Ackley, F. Girard-Ardhuin, F. Ardhuin, A. Babanin, G. Boutin,

J. Brozena, S. Cheng, C. Collins, M. Doble, C. Fairall, P. Guest, C. Geb-

hardt, J. Gemmrich, H. C. Graber, B. Holt, S. Lehner, B. Lund, M. H. Mey-

lan, T. Maksym, F. Montiel, W. Perrie, O. Persson, L. Rainville, W. E. Rogers,

H. Shen, H. Shen, V. A. Squire, S. Stammerjohn, J. Stopa, M. M. Smith, P. Suther-

land, and P. Wadhams. Overview of the arctic sea state and boundary layer physics

program. Journal of Geophysical Research: Oceans, 123(12):8674–8687, December

2018. ISSN 2169-9291. doi: 10.1002/2018jc013766.

[69] M. Vichi, C. Eayrs, A. Alberello, A. Bekker, L. Bennetts, D. Holland, E. de Jong,

W. Joubert, K. MacHutchon, G. Messori, J. F. Mojica, M. Onorato, C. Saunders,

S. Skatulla, and A. Toffoli. Effects of an explosive polar cyclone crossing the

antarctic marginal ice zone. Geophysical Research Letters, 46(11):5948–5958, June

2019. ISSN 1944-8007. doi: 10.1029/2019gl082457.



96 Bibliography

[70] Martin J. Doble and Jean-Raymond Bidlot. Wave buoy measurements at the

antarctic sea ice edge compared with an enhanced ecmwf wam: Progress towards

global waves-in-ice modelling. Ocean Modelling, 70:166–173, October 2013. ISSN

1463-5003. doi: 10.1016/j.ocemod.2013.05.012.

[71] Fabrice Ardhuin, Guillaume Boutin, Justin Stopa, Fanny Girard-Ardhuin, Chris-

tian Melsheimer, Jim Thomson, Alison Kohout, Martin Doble, and Peter Wad-

hams. Wave attenuation through an arctic marginal ice zone on 12 october 2015:

2. numerical modeling of waves and associated ice breakup. Journal of Geophys-

ical Research: Oceans, 123(8):5652–5668, August 2018. ISSN 2169-9291. doi:

10.1002/2018jc013784.

[72] Michael H. Meylan, Will Perrie, Bechara Toulany, Yongcun Hu, and Michael P.

Casey. On the three-dimensional scattering of waves by flexible marginal ice floes.

Journal of Geophysical Research: Oceans, 125(12), December 2020. ISSN 2169-

9291. doi: 10.1029/2019jc015868.

[73] W. Erick Rogers, Michael H. Meylan, and Alison L. Kohout. Estimates of spectral

wave attenuation in antarctic sea ice, using model/data inversion. Cold Regions

Science and Technology, 182:103198, February 2021. ISSN 0165-232X. doi: 10.

1016/j.coldregions.2020.103198.

[74] Luke G. Bennetts, Siobhan O’Farrell, and Petteri Uotila. Brief communication:

Impacts of ocean-wave-induced breakup of antarctic sea ice via thermodynamics in

a stand-alone version of the cice sea-ice model. The Cryosphere, 11(3):1035–1040,

May 2017. ISSN 1994-0424. doi: 10.5194/tc-11-1035-2017.

[75] Lettie A. Roach, Cecilia M. Bitz, Christopher Horvat, and Samuel M. Dean. Ad-

vances in modeling interactions between sea ice and ocean surface waves. Journal

of Advances in Modeling Earth Systems, 11(12):4167–4181, December 2019. ISSN

1942-2466. doi: 10.1029/2019ms001836.

[76] Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K.
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[120] Rüdiger U. Franz von Bock und Polach. Numerical analysis of the bending strength

of model-scale ice. Cold Regions Science and Technology, 118:91–104, October

2015. ISSN 0165-232X. doi: 10.1016/j.coldregions.2015.06.003.

[121] G.W. Timco and W.F. Weeks. A review of the engineering properties of sea ice.

Cold Regions Science and Technology, 60(2):107–129, February 2010. ISSN 0165-

232X. doi: 10.1016/j.coldregions.2009.10.003.

[122] G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A.

E. M. Janssen. Dynamics and Modelling of Ocean Waves. Cambridge University

Press, September 1994. ISBN 9780511628955. doi: 10.1017/cbo9780511628955.

[123] Leo H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cambridge University

Press, January 2007. ISBN 9780521129954. doi: 10.1017/cbo9780511618536.

[124] M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P. A. E. M. Janssen,

J. Monbaliu, A. R. Osborne, C. Pakozdi, M. Serio, C.T. Stansberg, A. Tof-

foli, and K. Trulsen. Statistical properties of mechanically generated surface

gravity waves: a laboratory experiment in a three-dimensional wave basin.

Journal of Fluid Mechanics, 627:235–257, May 2009. ISSN 1469-7645. doi:

10.1017/s002211200900603x.



102 Bibliography

[125] A. Toffoli, A. Babanin, M. Onorato, and T. Waseda. Maximum steepness of

oceanic waves: Field and laboratory experiments. Geophysical Research Letters,

37(5), March 2010. ISSN 1944-8007. doi: 10.1029/2009gl041771.

[126] A. Toffoli, T. Waseda, H. Houtani, L. Cavaleri, D. Greaves, and M. Onorato.

Rogue waves in opposing currents: an experimental study on deterministic and

stochastic wave trains. Journal of Fluid Mechanics, 769:277–297, March 2015.

ISSN 1469-7645. doi: 10.1017/jfm.2015.132.

[127] E.P.D. Mansard and E.R. Funke. The measurement of incident and reflected

spectra using a least squares method. In Coastal Engineering 1980. American

Society of Civil Engineers, March 1980. doi: 10.1061/9780872622647.008.

[128] R. Jain, R. Kasturi, and B. G. Schunck. Machine vision. McGraw-Hill series in

computer science. McGraw-Hill, 1995. ISBN 0070320187.

[129] Kieran F. Mulchrone and Kingshuk Roy Choudhury. Fitting an ellipse to an

arbitrary shape: implications for strain analysis. Journal of Structural Geology, 26

(1):143–153, January 2004. ISSN 0191-8141. doi: 10.1016/s0191-8141(03)00093-2.

[130] I. de Souza Cabral. Climate change in the Arctic Ocean: Long-term variability of

metocean conditions. PhD thesis, The University of Melbourne, 2020.

[131] Filippo Nelli, Luke G. Bennetts, David M. Skene, and Alessandro Toffoli. Water

wave transmission and energy dissipation by a floating plate in the presence of

overwash. Journal of Fluid Mechanics, 889, February 2020. ISSN 1469-7645. doi:

10.1017/jfm.2020.75.

[132] P. Joseph and J. Hennessey. A comparison of the weibull and rayleigh distributions

for estimating wind power potential. Wind Engineering, pages 156–164, 1978.

[133] Michel K. Ochi. Ocean Waves: The Stochastic Approach. Cambridge University

Press, March 1998. ISBN 9780511529559. doi: 10.1017/cbo9780511529559.

[134] D. Reeve, A. Chadwick, and C. Fleming. Coastal engineering: processes, theory

and design practice. CRC Press, 3rd edition edition, 2018. ISBN 9781351165525.

[135] David M. Skene and Luke G. Bennetts. A transition-loss theory for waves reflected

and transmitted by an overwashed body. SIAM Journal on Applied Mathematics,

81(3):834–852, January 2021. ISSN 1095-712X. doi: 10.1137/20m1386979.

[136] C. Fox and V. A. Squire. On the oblique reflexion and transmission of ocean

waves at shore fast sea ice. Philosophical Transactions: Physical Sciences and

Engineering, 347(1682):185–218, April 1994. ISSN 2054-0299. doi: 10.1098/rsta.

1994.0044.



Bibliography 103

[137] M. H. Meylan, L. G. Bennetts, J. E. M. Mosig, W. E. Rogers, M. J. Doble, and

M. A. Peter. Dispersion relations, power laws, and energy loss for waves in the

marginal ice zone. Journal of Geophysical Research: Oceans, 123(5):3322–3335,

May 2018. ISSN 2169-9291. doi: 10.1002/2018jc013776.

[138] Luke G. Bennetts and Vernon A. Squire. On the calculation of an attenuation

coefficient for transects of ice-covered ocean. Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 468(2137):136–162, August

2011. ISSN 1471-2946. doi: 10.1098/rspa.2011.0155.

[139] Franz von Bock und Polach, Marco Klein, and Moritz Hartmann. A new model

ice for wave-ice interaction. Water, 13(23):3397, December 2021. ISSN 2073-4441.

doi: 10.3390/w13233397.

[140] Thomas Ryan-Keogh and Marcello Vichi. Scale-win19 & scale-spr19 cruise report,

2022.

[141] P.F. Sturm and S.J. Maybank. On plane-based camera calibration: A general

algorithm, singularities, applications. In Proceedings. 1999 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (Cat. No PR00149),

CVPR-99. IEEE Comput. Soc, 1999. doi: 10.1109/cvpr.1999.786974.

[142] Jean-Yves Bouguet. Camera calibration toolbox for matlab. http://www. vision.

caltech. edu/bouguetj/calib doc/, 2004.

[143] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, March 2004. ISBN 9780511811685. doi:

10.1017/cbo9780511811685.

[144] Richard C. Gerum, Sebastian Richter, Alexander Winterl, Christoph Mark, Ben
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