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Abstract 

Protein–protein interactions (PPIs) play a vital role in cellular functions and are essential for therapeutic development and understanding diseases. 
Ho w e v er, current predictiv e tools often struggle to balance efficiency and precision in predicting the effects of mutations on these complex 
interactions. To address this, we present DDMut-PPI, a deep learning model that efficiently and accurately predicts changes in PPI binding free 
energy upon single and multiple point mutations. Building on the robust Siamese network architecture with graph-based signatures from our 
prior work, DDMut, the DDMut-PPI model was enhanced with a graph con v olutional netw ork operated on the protein interaction interf ace. We 
used residue-specific embeddings from ProtT5 protein language model as node features, and a variety of molecular interactions as edge features. 
By integrating e v olutionary conte xt with spatial information, this framework enables DDMut-PPI to achieve a robust Pearson correlation of up to 
0.75 (root mean squared error: 1.33 kcal / mol) in our e v aluations, outperf orming most existing methods. Importantly, the model demonstrated 
consistent performance across mutations that increase or decrease binding af finity. DDMut-PPI of fers a significant advancement in the field and 
will serve as a valuable tool for researchers probing the complexities of protein interactions. DDMut-PPI is freely a v ailable as a w eb serv er and 
an application programming interface at https:// biosig.lab.uq.edu.au/ ddmut _ ppi . 
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ntroduction 

rotein–protein interactions (PPIs) are fundamental to many
ellular processes, making them important targets for thera-
eutic intervention and critical focus in the study of various
iseases. PPI sites contain critical areas known as hotspots,
hich are crucial for the strength and specificity of the in-

eractions ( 1 ,2 ). The stability of these PPIs is vital for cel-
ular equilibrium and the regulation of complex biological
ctivities ( 3 ,4 ). 
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Mutations, particularly non-synonymous single-nucleotide
polymorphisms (nsSNPs), can significantly alter these PPI in-
terfaces. Such modifications can interfere with the typical
functioning of proteins, potentially triggering a series of cellu-
lar dysfunctions and leading to diverse diseases ( 5 ). Notably,
nsSNPs associated with diseases are more prevalent in PPI re-
gions ( 6 ), highlighting the importance of these interfaces in
maintaining health ( 5 ). This finding underscores the neces-
sity for an in-depth understanding of mutation impacts on
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PPIs, which is crucial for the creation of targeted therapeutic
strategies. 

Traditional methods for exploring the effects of mutations
on PPIs face challenges related to experimental complexity,
cost and scalability. While computational methods provide a
quicker alternative, they frequently encounter difficulties in
achieving a balance between speed and precision and may not
adequately represent the complex dynamics of PPI networks
( 7 ). 

In response, we have developed DDMut-PPI, a tool leverag-
ing a graph-based deep learning approach (Figure 1 ) to predict
the effects of single and multiple point mutations on protein
binding accurately and efficiently. This model demonstrated
consistent performance across mutations that strengthen or
weaken interactions, offering essential insights into the molec-
ular basis of diseases and supporting the development of novel
therapeutic strategies. DDMut-PPI is freely accessible as a
web server and an application programming interface (API)
at https:// biosig.lab.uq.edu.au/ ddmut _ ppi , providing a signif-
icant resource for the research community. 

Materials and methods 

Datasets 

To predict the impact of single point mutations, our study uti-
lized the S4169 dataset, derived from SKEMPI 2.0 ( 8 ), for
model training to ensure comparability with existing meth-
ods. This dataset comprises 3268 mutations that reduce bind-
ing affinity ( ��G ≤ 0 kcal / mol) and 901 mutations that en-
hance it ( ��G > 0 kcal / mol), spanning 319 distinct pro-
tein complexes that are further classified into 138 types of
interactions (e.g. protease–inhibitor, antibody–antigen, T-cell
receptor–peptide, etc.). To address the skewed distribution of
��G , we incorporated hypothetical reverse mutations ( 9 ,10 ),
where �G represents the binding free energy, as follows: 

��G Mut → WT = �G WT − �G Mut = − ( �G Mut − �G WT ) 

= −��G WT → Mut . 

This adjustment expanded the original S4169 dataset by
incorporating an additional 4169 hypothetical reverse muta-
tions, each paired with its corresponding forward mutation,
resulting in the S8338 dataset. This serves as the basis for
training and fine-tuning our model via cross-validation. The
distribution of ��G values is depicted in Supplementary 
Figure S1 . For further validation, we employed several blind
test sets, including the S645 dataset from the AB-Bind
database (covering 645 mutations across 32 antibody–antigen
complexes) ( 11 ), experimental ��G s for the previously unex-
amined MDM2–p53 complex (PDB ID: 1YCR) ( 12 ), featuring
26 interface mutations analysed through a high-throughput
binding assay . Additionally , we explored deep mutational
scanning datasets to evaluate the model’s predictive accu-
racy on novel PPIs using experimental log 2 enrichment ratios.
This encompassed the SPIKE–ACE2 dataset ( 13 ) with 418 in-
terface mutations (PDB ID: 7KMB) and two sets from the
Critical Assessment of PRedicted Interactions (CAPRI) round
26 ( 14 ,15 ), focusing on computationally designed inhibitors
against H1N1 influenza haemagglutinin, namely T55 (1007
mutations, 285 at the interaction interface) and T56 (855 mu-
tations, 285 at the interaction interface). 

For multiple mutations, the performance of DDMut-PPI
was assessed using datasets of multiple point mutations from
the SKEMPI 2.0 database ( 8 ). The SM1124 dataset, compris- 
ing 900 mutations that decrease affinity and 224 that increase 
it, is limited to double and triple point mutations. Meanwhile,
the SM595 dataset encompasses mutations that range from 4 

to 27, with 442 reducing affinity and 153 enhancing it. Ad- 
ditionally, the SM_ZEMu dataset ( 16 ), exclusively containing 
mutations from SKEMPI 1.0 ( 17 ), includes 217 mutations that 
decrease affinity and 53 that increases it. 

The wild-type structures for our analysis were sourced from 

the Protein Data Bank ( 18 ). Subsequently, corresponding mu- 
tant structures were generated from these wild-type structures 
using the MODELLER software (version 10.4) ( 19 ), employ- 
ing its standard minimization pipeline. Both wild-type and 

mutant structures were utilized for generating the features for 
both forward and reverse mutations. 

Feature engineering and protein graph encoding 

A comprehensive set of features was generated to capture var- 
ious aspects of PPIs, considering the effects of mutations on 

both individual proteins and their interactions with partner 
proteins. 

Features focusing on the individual proteins are sequence- 
based, derived from various substitution matrices. AAindex 

( 20 ) helped in understanding how mutations alter the physic- 
ochemical and biochemical properties such as hydrophobic- 
ity, charge or size, which may further impact PPI affinity and 

specificity. BLOSUM and PAM ( 21 ) matrices identify con- 
served amino acids, where mutations might disrupt interac- 
tion sites or structural integrity essential for PPIs. Addition- 
ally, position-specific scoring matrix scores were calculated 

using PSI-BLAST in BLAST 2.6.0 ( 22 ) based on multiple se- 
quence alignments, which highlights positions where muta- 
tions in highly conserved regions could affect PPI interfaces,
emphasizing the importance of evolutionary conservation in 

PPI dynamics. 
Features considering the entire protein–protein complex are 

structure-based. These include solvent accessibility, residue 
depth and secondary structure calculated using Biopython 

(version 1.79) ( 23 ), alongside energetic terms calculated by 
FoldX ( 24 ). We also analysed atomic interactions (both within 

the same protein and across interacting proteins) between 

the target residue and its neighbours using Arpeggio ( 25 ).
This was complemented by assessing the mutation-induced 

changes in these interactions. Furthermore, we incorporated 

graph-based signatures from mCSM ( 26 ), utilizing a cut-off 
scanning algorithm ( 27 ) within a graph-theoretical represen- 
tation of the local residue environment. This method helped 

in capturing the spatial arrangements between atom pairs,
where each atom is categorized into eight pharmacophores 
(hydrophobics, positives, negatives, hydrogen acceptors, hy- 
drogen donors, aromatics, sulphurs and neutrals). 

To better consider the interface interactions within a 
3D framework, the PPI interface was represented as a graph.
Interface residues were identified as those having at least one 
atom within a 5.0 Å radius of atoms in the opposing pro- 
tein chain. Each of these residues was represented as a graph 

node, enriched with ProtT5 embeddings ( 28 ) from the pro- 
tein language model to account for evolutionary information.
The interactions across chains at the interface were depicted 

as edges, generated using Arpeggio ( 25 ). Leveraging this graph 

representation, we computed various network analysis met- 
rics using python-igraph (version 0.7.1) ( 29 ) to extract and 

https://biosig.lab.uq.edu.au/ddmut_ppi
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Figure 1. Methodology w orkflo w o v ervie w. T he methodology includes f our primary steps. Initially, datasets are collected from v arious sources, with 
protein–protein complex str uct ures sourced from the RCSB Protein Data Bank ( 18 ). Subsequently, a comprehensive set of features that captures 
geometric and ph y sicoc hemical c haracteristics is deriv ed and normaliz ed, including the construction of the PPI interf ace graph. T hese features, together 
with the PPI graph, are fed into neural networks, which undergo refinement through the adjustment of hyperparameters and layers guided by training 
perf ormance. T his process is further v alidated using non-redundant blind test sets. Finally, the predictiv e model w as deplo y ed through an easy -to-use 
w eb interf ace. 
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nterpret the complex information embedded within the PPI
etwork. Degree and PageRank metrics were used to identify
ey residues; closeness and eccentricity described residue con-
ectivity and peripherality; clustering coefficient highlighted
roups of closely interacting residues; diameter and radius
easured the network’s overall dimensions; Kleinberg’s au-

hority score identified key interaction hubs; energy and en-
ropy evaluated network stability and interaction diversity.
dditionally, the distinction between central points and end
oints differentiated highly connected from isolated residues.
ollectively, these metrics offered a comprehensive insight

nto the structure and dynamics of the PPI network. 

rchitecture design 

he DDMut-PPI model was developed using TensorFlow
.4.2 ( 30 ). Building upon the foundational structure of the
DMut ( 31 ) Siamese network, we incorporated a graph con-

olutional network (GCN) within each sub-network to anal-
se the PPI interface graph ( Supplementary Figure S2 ). This
pproach leverages ProtT5 embeddings ( 28 ), which provide
 rich 1024-dimensional representation for each node, and
rpeggio’s ( 25 ) detailed characterization of interactions, dis-

inguishing 10 unique types (van der Waals, aromatic, hy-
rophobic, carbonyl–carbonyl, polar, ring interactions, cova-
ent bond, hydrogen bond, halogen bond and metal complex
ormation) to define the edge properties. Additionally, the
odel employs a convolutional layer and a transformer en-

oder to process the graph-based signatures. In contrast, other
eatures are processed by dense layers. These processed fea-
ures are then aggregated together. 

Similar to DDMut ( 31 ), an important aspect of DDMut-
PI’s architecture is the utilization of a modified contrastive
oss function, inspired by Benevenuta and colleagues ( 32 ).
This function is designed not only to evaluate the discrepan-
cies between the predicted and actual ��G values but also to
account for the anti-symmetry inherent in the relationship be-
tween forward mutations and their reverse counterparts. The
loss function is defined as follows: 

loss = log cosh 

(
��G Forward − ��G Reverse 

2 

− y 
)

+ 

∣∣��G Forward + ��G Reverse 
∣∣ . 

Here, ��G Forward and ��G Reverse represent the model’s pre-
dictions for forward mutations and their reverse counter-
parts, respectively, while y denotes the experimentally mea-
sured ��G for the forward mutation. Ideally, a model that
perfectly captures the anti-symmetry and accuracy of these
mutations would satisfy the conditions ��G Forward = y and
��G Reverse = −��G Forward , resulting in a zero loss. 

Throughout the training phase, the model’s hyperparame-
ters were optimized to achieve optimal performance, guided
by a leave-one-binding-site-out cross-validation strategy on
the training dataset. 

Evaluation metrics 

We used seven different metrics to evaluate the model perfor-
mance from diverse aspects. The linear relationship between
experimental and predicted ��G was evaluated by R -squared
and Pearson correlation (denoted by R 

2 and r , respectively),
the non-parametric relationship was evaluated by Spearman’s
rank and Kendall’s rank correlation coefficient (denoted by
ρ and τ , respectively), and lastly, the errors were evaluated by
root mean squared error (RMSE), mean absolute error (MAE)
and mean signed error (MSE). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae412#supplementary-data
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Web server 

DDMut-PPI has been made accessible as a free and intuitive
web server, hosted at https:// biosig.lab.uq.edu.au/ ddmut _ ppi/ .
The frontend is built using MaterializeCSS (version 1.0.0),
while the backend functionality is powered by the Flask mod-
ule (version 2.0.3) from Python 3.6.13. The web server is
hosted on a Linux machine running Nginx. 

Input 

DDMut-PPI offers a versatile platform for predicting the im-
pact of both single and multiple point mutations. To submit
a job for prediction, users are required to provide a wild-type
structure, either by uploading a PDB file or by entering a valid
PDB accession code. Additionally, users have the convenience
of providing an email address to receive notifications upon
completion of their analysis, ensuring that they are promptly
informed when results are available. 

For ‘Single Mutation’ analyses (referenced in
Supplementary Manual S1 , Part A), mutations can be
specified as a text string, such as ‘L45G’, where the format
consists of the wild-type residue’s one-letter code, its position
and the mutant residue’s one-letter code, along with the
associated chain identifier. Alternatively, users can submit a
list of up to 500 mutations either by directly inputting the text
or by uploading a file. The platform also provides the option
to include predictions for hypothetical reverse mutations. 

For more extensive studies, the ‘Interface Analysis’ feature
(detailed in Supplementary Manual S1 , Part B) enables users
to conduct alanine scanning or saturation mutagenesis on in-
terface residues. 

When exploring the effects of ‘Multiple Mutations’
( Supplementary Manual S2 ), users should delineate each mu-
tation in the variant with a semicolon, such as ‘I D46A; I
R48K’, indicating multiple mutations (D46A and R48K in
this example) occurring on the same chain, I. Alternatively,
users can perform a systematic evaluation of all permutations
of double and triple point mutations on one side of a PPI
interface. 

For guidance on submitting jobs and navigating the plat-
form, a detailed help page is accessible at https://biosig.lab.
uq.edu.au/ ddmut _ ppi/ help . 

Output 

For the ‘Single Mutation’ analysis, the web interface displays
the predicted ��G values, and details about the wild-type
residue’s surroundings. It also includes an interactive 3D visu-
alization powered by the NGL Viewer ( 33 ), which highlights
inter-residue interactions ( Supplementary Manual S3 , Part A).
Additionally, a 2D interaction graph, generated using python-
igraph (version 0.7.1) ( 29 ), offers a comprehensive view where
nodes symbolize interacting residues (differentiated by chain
with distinct colours), and edges represent the types of inter-
actions (with dashed lines for those present in the wild-type
structure and solid lines for the mutant). 

For analyses involving a ‘Mutation List’, the outcomes
are compiled into a downloadable table, as shown in
Supplementary Manual S3 , Part B. This table includes direct
links to detailed pages for each mutation, mirroring the infor-
mation found in the ‘Single Mutation’ output. 

The ‘Interface Analysis’ feature, detailed in Supplementary 
Manual S3 , Part C, showcases predictive results through bar
charts for alanine scanning (see Supplementary Manual S3 ,
Part D) and heat maps for saturation mutagenesis (refer to 

Supplementary Manual S3 , Part E), facilitating an intuitive un- 
derstanding of the interaction landscape. 

In the ‘Multiple Mutations’ scenario, the results are sum- 
marized as a downloadable table. This table allows for the se- 
lection of specific entries for visualization in the interactive 3D 

viewer, as highlighted in Supplementary Manual S4 . Further- 
more, the platform supports a comprehensive systematic eval- 
uation, automatically generating all possible double and triple 
mutant permutations on one side of the interface. The results 
page presents the top 100 mutations that either increase or 
decrease affinity. 

API 

DDMut-PPI is equipped with an API designed to streamline 
its incorporation into diverse research workflows. Upon sub- 
mission, each job is allocated a unique identification num- 
ber. This number facilitates the monitoring of job progress 
and the retrieval of results via the web interface. The inputs 
required by the API are consistent with those used on our 
web platform. Detailed instructions and examples employing 
curl and Python are available at https://biosig.lab.uq.edu.au/ 
ddmut _ ppi/api for further reference. 

Processing time 

W e assessed DDMut-PPI’ s efficiency by comparing its pro- 
cessing time with that of mCSM-PPI2 ( 34 ) and DGCddG 

( 35 ), specifically for single point mutation analysis, ala- 
nine scanning and saturation mutagenesis, as detailed in 

Supplementary Table S1 . 

Validation 

DDMut-PPI demonstrated its capability to accurately predict 
the impacts of both single and multiple point mutations (Ta- 
ble 1 ). Our assessment employed a diverse array of metrics to 

evaluate the linear and non-parametric relationships, as well 
as the discrepancies between the predicted and actual ��G 

values, ensuring a thorough analysis of the model’s predictive 
performance. 

Predicting the effects of single point mutations 

For predicting the effects of single point mutations, we tuned 

the hyperparameters under protein-level cross-validation on 

the training set S8338. Our approach incorporated two dis- 
tinct cross-validation strategies to ensure robustness: 

1. Leave-one-complex-out (CV1): Here, the dataset was 
partitioned into 319 folds, each encompassing muta- 
tions within a unique protein–protein complex identi- 
fied by the same PDB ID. 

2. Leave-one-binding-site-out (CV2): In this strategy, the 
dataset was divided into 138 folds based on distinct 
binding site types from the SKEMPI 2.0 database, such 

as antibody–antigen interactions, protease–inhibitor in- 
teractions, etc. 

Under the CV1 strategy, DDMut-PPI achieved a Pearson 

correlation of 0.75 (RMSE: 1.33 kcal / mol), while the CV2 

approach yielded a slightly lower correlation of 0.67 (RMSE: 
1.51 kcal / mol) as shown in Table 1 and Figure 2 A. These re- 
sults highlight the inherent challenges in achieving broader 

https://biosig.lab.uq.edu.au/ddmut_ppi/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae412#supplementary-data
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Table 1. DDMut-PPI performance under leave-one-complex-out cross-validation (CV1) and lea v e-one-binding-site-out cross-v alidation (CV2) on S8338 and 
blind test sets for predicting effects of single and multiple mutations 

Linear relationship 
metrics 

Non-parametric relationship 
metrics Error metrics (unit: kcal / mol) 

R 

2 Pearson Spearman Kendall RMSE MAE MSE 

Single mutation S8338 CV1 0 .56 0 .75 0 .75 0 .58 1 .33 0 .87 0 .007 
S8338 CV2 0 .44 0 .67 0 .70 0 .53 1 .51 0 .96 − 0 .04 
S645 0 .34 0 .60 0 .66 0 .49 1 .60 0 .84 0 .28 
MDM2–p53 − 0 .17 0 .37 0 .37 0 .27 0 .64 0 .52 0 .12 
SPIKE–ACE2 a 0 .37 0 .45 0 .31 a a a 

T55 a 0 .33 0 .30 0 .20 a a a 

T56 a 0 .31 0 .41 0 .27 a a a 

Multiple mutations SM1124 0 .65 0 .83 0 .80 0 .61 1 .51 1 .13 − 0 .28 
SM595 0 .18 0 .71 0 .69 0 .52 2 .56 1 .85 − 1 .45 
SM_ZEMu 0 .33 0 .72 0 .76 0 .57 2 .04 1 .48 − 0 .85 

a Since the labels of these datasets indicate log 2 of the enrichment ratio instead of ��G , R 

2 and error metrics were not measured. 

Figure 2. DDMut-PPI performance on predicting the effects of single and multiple mutations on PPIs. ( A ) Model performance under 
lea v e-one-binding-site-out cross-v alidation f or the single point mutation training set. T his method ensures minimal redundancy b y assigning protein 
comple x es with identical hold-out types of binding sites to the same validation fold. Outliers, constituting the furthest 10% from the best fit line, are 
distinctly marked in red. The correlations are denoted as r for Pearson, ρ for Spearman’s rank, and τ for Kendall’s rank. ( B ) Comparative analysis of 
DDMut-PPI against the top two methods across various single mutation benchmark datasets. The full benchmarking results are shown in 
Supplementary Tables S2- - S5 . ( C ) The performance on the multiple point mutation dataset SM1124 by aggregating predictions for individual mutations. 
( D ) A comparative evaluation of DDMut-PPI with the leading two methods across benchmark datasets involving multiple point mutations. The full 
benchmarking results are shown in Supplementary Table S9 . 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/W

1/W
207/7680621 by U

niversity of M
elbourne user on 03 O

ctober 2024

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae412#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae412#supplementary-data


W 212 Nucleic Acids Research , 2024, Vol. 52, Web Server issue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/W

1/W
207/7680621 by U

niversity of M
elbourne user on 03 O

ctober 2024
generalization across different interaction types. Nonethe-
less, DDMut-PPI displayed competitive performance when
benchmarked against alternative methods ( 34–37 ) under sim-
ilar protein-level cross-validation conditions, as detailed in
Supplementary Table S2 . 

To compare with other methods, DDMut-PPI was then
evaluated on three different blind test sets, including 645
mutations in antibody–antigen complexes ( 11 ), 26 mu-
tations in the MDM2–p53 complex ( 12 ) and 418 mu-
tations in the SPIKE–ACE2 complex ( 13 ). DDMut-PPI
achieved competitive performance against the top methods
( 12 , 24 , 26 , 34 , 35 , 38–44 ) across these diverse datasets (Figure
2 B and Supplementary Tables S3 –S5 ). Additionally, DDMut-
PPI was further validated on deep mutational scan datasets
from CAPRI round 26 ( 14 ,15 ), encompassing 1007 and 855
mutations on the de novo influenza inhibitors T55 and T56,
respectively ( Supplementary Tables S6 ). It is noteworthy that
the SPIKE–ACE2, T55 and T56 datasets rely on deep muta-
tional scanning and differ from our ��G -based training data,
which may contribute to lower prediction performance. Addi-
tionally, the distinct interaction patterns observed in MDM2–
p53, T55 and T56, which fall into specific ECOD H-level
groups ( 35 , 45 , 46 ) (totalling 3751 groups across 206 556 PDB
structures as of 28 November 2023), were not represented
in the SKEMPI 2.0 training dataset. This dataset is predomi-
nantly composed of protease–inhibitor, antibody–antigen and
interactions of the T-cell receptor with a peptide in the ma-
jor histocompatibility complex, accounting for nearly half of
its composition. This poses additional challenges for predic-
tion due to the diversity and complexity of these structural
classifications. 

An ablation study was conducted to ensure the signifi-
cance and uniqueness of each architectural component within
DDMut-PPI. Through systematic deactivation of individual
sub-components followed by model retraining and evaluation,
we observed a decline in overall performance ( Supplementary 
Table S7 ). This pattern underscores the essential contribution
of each element to the model’s overall robustness. 

To further examine the feature importance, we randomly
shuffled each feature in the blind test set S645. Notably, two
features stood out for their pronounced effect on perfor-
mance: the ��G calculated by FoldX ( 24 ) and the �authority
score, with the Pearson correlation coefficient dropping from
0.343 to 0.300 and 0.330, respectively (see Supplementary 
Table S8 ). While FoldX also predicts ��G , �authority score
measures the difference in Kleinberg’s authority score ( 47 ) be-
tween the wild-type and the mutant interaction network graph
generated by python-igraph (version 0.7.1) ( 29 ). It assesses the
changes in importance or centrality of nodes within a graph.
In the context of PPI networks, this difference could evaluate
the changes in importance of residues within the interaction
interface, taking into account the structure of connections and
the influence of neighbouring nodes, making it a critical con-
tributor to the model’s predictive accuracy. 

Predicting the effects of multiple point mutations 

To predict the effects of a multiple point mutation, DDMut-
PPI employs an additive approach, aggregating the effects of
individual single point mutations to predict the overall out-
come. This method yielded a Pearson correlation of 0.83
(RMSE: 1.51 kcal / mol) on the SM1124 dataset, which com-
prises double and triple point mutations from the SKEMPI 2.0 

database (Table 1 and Figure 2 C). Additionally, the model 
demonstrated a Pearson correlation of 0.71 and an RMSE of 
2.56 kcal / mol on the SM595 dataset, encompassing variants 
with 4–27 mutations, outperforming other methods (Figure 
2 D and Supplementary Table S9 ). The comparative decrease 
in performance on the SM595 dataset highlights the challenge 
of accurately predicting the joint effects of a higher number of 
mutations, which may deviate from the straightforward sum 

of individual mutation impacts. Moreover, DDMut-PPI dis- 
played a more consistent performance across mutations that 
either decrease or increase affinity, highlighting its balanced 

accuracy in comparison to other models ( Supplementary 
Table S10 ). We further evaluated DDMut-PPI on variants with 

2–15 mutations that were derived from SKEMPI 1.0 ( 17 ),
where it also exhibited competitive performance when bench- 
marked against mmCSM-PPI ( 48 ) and FoldX ( 24 ), both of 
which also employ an additive approach for their evaluations 
(Figure 2 D and Supplementary Table S9 ). 

Conclusion 

Here we present DDMut-PPI, a web server to predict the ef- 
fects of single and multiple point mutations on PPIs. Building 
upon the Siamese network architecture utilizing both forward 

and hypothetical reverse mutations to account for model anti- 
symmetry, DDMut-PPI added a GCN to better capture the 
importance of residues at the interface based on a 2D inter- 
action network graph. DDMut-PPI’s generalizability is con- 
strained by the diversity of interaction types in the SKEMPI 
2.0 database ( 8 ), which may not fully represent the broader 
range of PPIs encountered in several blind test sets. Addi- 
tionally, given the current research gap in high-precision mu- 
tant modelling tools, our reliance on MODELLER ( 19 ) and 

its optimization energies to generate mutant structures may 
introduce structural errors. While MODELLER optimizes 
the mutant side chain using conjugate gradient and refines 
it with molecular dynamics, it does not account for poten- 
tial structural changes in neighbouring residues. This limits 
the model’s ability to reflect true structural alterations, even 

though these structural inaccuracies might be slightly miti- 
gated by the GCN architecture due to its robustness to noise.
Despite these challenges, DDMut-PPI still shows competitive 
performance against other methods on non-redundant test- 
ing datasets, particularly on the effects of multiple point mu- 
tations, and more balanced performance between mutations 
that decrease and increase binding affinity. We believe that 
DDMut-PPI would be a valuable resource for researchers and 

clinicians looking to explore the complex dynamics of pro- 
tein interactions and their implications for health and disease.
DDMut-PPI is freely available as a user-friendly web server at 
https:// biosig.lab.uq.edu.au/ ddmut _ ppi/ . 

Data availability 

This website is free and open to all users and there is no lo- 
gin requirement. DDMut-PPI web server is available at https: 
// biosig.lab.uq.edu.au/ ddmut _ ppi/ . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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