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Abstract  

The increasing role played by liquid chromatography-mass spectrometry (LC-MS)-based proteomics 

in biological discovery has led to a growing need for quality control on the LC-MS systems. While 

numerous quality control tools have been developed to track the performance of LC-MS systems 

based on a pre-defined set of performance factors (e.g. mass error, retention time), the precise 

influence and contribution of the performance factors and their generalization property to different 

biological samples are not as well characterized. Here, we developed a web-based application 

(QCMAP) for interactive diagnosis and prediction of the performance of LC-MS systems across 

different biological sample types. Leveraging on a standardized HeLa cell sample run as QC within a 

multi-user facility, we trained predictive models on a panel of commonly used performance factors to 

pinpoint the precise conditions to a (un)satisfactory performance in three LC-MS systems. We 

demonstrated that the learned model can be applied to predict LC-MS system performance for brain 

samples generated from an independent study. By compiling these predictive models into our web-

application, QCMAP allows users to benchmark the performance of their LC-MS systems using their 

own samples and identify key factors for instrument optimization. QCMAP is freely available from: 

http://shiny.maths.usyd.edu.au/QCMAP/. 
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Liquid chromatography-mass spectrometry (LC-MS) is a maturing technology for high-throughput 
proteomics. Given the increasing role of LC-MS in biological discovery and clinical applications, 
quality control (QC) of LC-MS systems has become a prerequisite for MS-based proteomics 
experiments [1]. Numerous publicly available LC-MS QC tools have been developed [2] and many 
multi-user, core facilities also implement QC measures as part of their routine workflows [3]. 
Examples of popular public QC tools include MSQC [4], QuaMeter [5], SIMPATIQCO [6], 
SPROCoP [7], qcML for openMS [8], and PTXQC [9]. While these tools excel in assessment of 
overall performance of a LC-MS system, few of them offer an interactive and diagnostic view of 
individual performance factors such as mass error, percentage of MS/MS identified, and retention 
time. To optimize the instrument for best performance, it is particularly useful to analyze the 
performance factors leading to (un)satisfactory performance of the LC-MS system. Indeed, several 
recent LC- MS QC pipelines have taken into account the analysis and visualization of individual 
performance factors [10], [11]. However, these tools often restrict the analysis to a set of control 
samples such as those from CPTAC [12]. The precise characterization of factors that influence the 
performance of multiple LC-MS systems and their generalization properties across different 
biological sample types and organisms is still lacking. 
 
Here, we developed an interactive web-based application for quality control of mass spectrometry-
based proteomics systems (QCMAP). In particular, we trained predictive models on a standardized 
HeLa cell protein sample to characterize a panel of commonly utilized performance factors and their 
contribution to the performance of LC-MS systems. We demonstrated that the model trained on the 
HeLa sample can be applied to predict LC-MS system performance in analyzing brain samples 
obtained from mice in an independent study. Taken together, the proposed web-application provides 
(i) overall performance benchmark, (ii) interactive analysis of performance factors for multiple LC-
MS systems, and also (iii) predictive models that are generalizable across different species and can be 
applied to assess LC-MS systems using diverse biological sample types. 
 

The workflow of QCMAP is shown in Figure 1. Key components in QCMAP are described in detail 

below. 
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Figure 1. Schematic illustration of QCMAP web-application workflow. 
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Firstly, to train a set of models for performance assessment of multiple LC-MS systems, we compiled 
a total of 223 datasets generated from a standardized sample (1ug HeLa cell protein followed by 
tryptic digestion) by Sydney Mass Spectrometry core facility using three state-of-the-art LC-MS 
instruments – Q Exactive HF (QEHF), QEplus, and QEClassic (QECl) (Table S2). Raw LC-MS data 
(Figure. 1A) were first processed by the MaxQuant software [13] (Figure. 1B) and the text outputs (13 
plain text files) for each dataset were collected to form a performance benchmark database (Figure. 
1C). To pinpoint the performance of LC-MS systems, 11 commonly utilized performance factors [14] 
were extracted from each dataset in the database (Figure. S1). The 11 performance factors are listed in 
Table S1 and their values were standardized as described in the model building section of the 
supplementary file. Next, by using the number of unique peptides identified in the standardised HeLa 
sample as a surrogate of performance of each LC-MS system, a set of multivariate linear models 
(ridge regression) were trained to learn the relative importance of these 11 performance factors in 
contribution to the overall performance of the three LC-MS systems (Figure. 1D; Figure. S2 and 
S3A). Note that high peptide identification rates require optimal performance across the entire 
platform including chromatography, ionization, ion transfer, precursor detection and selection, 
fragmentation and MS/MS detection etc. Hence, a simplistic measure of unique peptides is beneficial 
for rapid assessment of the entire platform by all users. Ridge regression is a highly interpretable 
statistical model and an ideal choice for assessing the importance of the 11 performance factors 
provided they are scaled to a similar numeric range.  
 
Secondly, for an interactive diagnosis of instrument and LC-MS systems, QCMAP allows users to 
simultaneously visualize and interpret data by providing an overall historic view and a set of boxplots 
for individual performance factors (Figure. 1E). While the overall historic view enables multiscale to 
summarize instrumentation performance over time, boxplots of performance factors illustrate how 
changes of other factors could affect a LC-MS system. We have also generated a ridge regression 
model for each instrument for accurate diagnostics of the instrument and assessed the contribution of 
each feature. The contributing features for each model were assessed and showed high correlation 
between instruments (Figure. S3B). 
 
To utilise the predictive models for performance assessment, a user can upload the MaxQuant output 
files (either as a zip file or individual files) and a newly input dataset will instantly appear as a red bar 
compared to the existing database in the histogram plots (Figure. 1E). The top panel of Figure 1E 
shows the historical plot from weekly, monthly to yearly. This provides a quick summary view of the 
number of „Peptide Sequences Identified‟. The horizontal line in the bar plot indicates the different 
thresholds for different instruments. The selected bar in the plot is highlighted green when the red bar 
is clicked. The user can observe the value of features in the boxplot for the corresponding file selected 
from the bar plot (as shown in the middle panel of Figure. 1E).  
 
On the 11 boxplots, the five latest datasets by date are shown in color gradient (yellow to brown) to 
help the user to identify the reason for any failure if a particular dot is outside the normal range of the 
boxplot. For example, if „Mass precision [ppm]‟ shows a decreasing value along with the color 
gradient for the last 5 readings, then that indicates a suboptimal performance of the instrument on 
mass detection. The bottom panel of Figure. 1E is the comparison of different instruments for each 
parameter. 
 
Thirdly, the predictive models trained from QCMAP are generalizable to different biological samples. 
To demonstrate this, we generated 10 datasets on a QECl instrument from mouse brain samples with 
different levels of quality (PRIDE: PXD010307). Four datasets were acquired directly after the 
instrument was cleaned and are high quality while six datasets were acquired on a dirty instrument 
producing different degrees of lower quality data. By applying our model that we trained for the QECl 
using HeLa samples, we accurately predicted the performance of the instrument with the four datasets 
acquired on a clean instrument having higher predicted scores using only the 11 performance factors 
in each brain sample (Figure. 2A). Furthermore, the lower quality data correspond to lower percentage 
of MS/MS identified while the FWHM remains largely unchanged for all datasets (Figure. 2B), 



 

www.proteomics-journal.com Page 4 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

 
This article is protected by copyright. All rights reserved. 
 

4 

indicating the drop of performance is due to poorer mass spectral quality and not reduced 
chromatography performance. These results demonstrate that the trained models from QCMAP are 
predictive to diverse biological samples and is not locked or limited to standard quality control sample 
such as the HeLa samples. As such, this enables users to provide their own data generated from 
different biological samples to assess the performance of their LC-MS system. The generalization 
property of the trained predictive models greatly increases the applicability of QCMAP. 

 
 

 

 

 

Current models in QCMAP were trained for datasets from data-dependent acquisition (DDA) method. 

However, additional models can be trained and included for datasets acquired from other methods 

(e.g. data-independent acquisition (DIA)) on any instrument platform supported by MaxQuant. 

Peptide load is an important consideration when assessing instrument performance on proteome 

depth. Although QCMAP does not restrict the peptide load used for LC-MS system performance 

assessment, a consistent peptide load is required to assess instrument performance over longer 

periods. We also note that QCMAP is dedicated to rapid QC and monitoring of instrument 

performance and not the sample. Hence, the identical sample needs to be acquired over time. Lastly, 

while we have demonstrated that power of QCMAP in isolating performance factors on the LC and 

the MS system using the mouse brain dataset in this study, in our future work, we aim to generate 

additional synthetic datasets that capture unique performance factors associated with LC and MS 

systems; and generalizing the tool for samples obtained from affinity-purification (AP)-MS. 
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Figure 2: Prediction analysis of the 10 mouse brain samples generated from LC-MS using QECl 
instrument. A. Rigid regression prediction scores of mouse brain samples (x-axis) and the number 
of peptides identified from each sample (y-axis). Correlation and p-value are calculated from a 
linear fit of the Rigid regression prediction scores and the actual number of peptides identified. B. 
Scatter plot of percentage of MS/MS identified against FWHM. 
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