
This is the author manuscript accepted for publication and has undergone full peer review but 

has not been through the copyediting, typesetting, pagination and proofreading process, which 

may lead to differences between this version and the Version of Record. Please cite this article 

as doi: 10.1111/2041-210X.13518

This article is protected by copyright. All rights reserved

1

2 MR DAVID PETER WILKINSON (Orcid ID : 0000-0002-9560-6499)

3 DR NICK  GOLDING (Orcid ID : 0000-0001-8916-5570)

4 DR GURUTZETA  GUILLERA-ARROITA (Orcid ID : 0000-0002-8387-5739)

5

6

7 Article type      : Research Article

8

9

10 Handling editor: Professor Robert Freckleton

11

12 Running title: Predictions for joint species distribution models

13 Title: Defining and evaluating predictions of joint species distribution models

14 David P. Wilkinson1*, Nick Golding1,2,3, Gurutzeta Guillera-Arroita1, Reid Tingley4, Michael 

15 A. McCarthy1

16

17 1.  School of BioSciences, University of Melbourne, Parkville, 3010, Victoria, Australia

18 2.  Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, 6009, 

19 Western Australia, Australia

20 3. Curtin University, Kent St, Bentley, 6102, Western Australia, Australia

21 4.  School of Biological Sciences, Monash University, Clayton, 3800, Victoria, Australia

22 *Corresponding author: dwilkinson@unimelb.edu.au

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1111/2041-210X.13518
https://doi.org/10.1111/2041-210X.13518
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13518&domain=pdf&date_stamp=2020-11-08


This article is protected by copyright. All rights reserved

23

24 Number of words: 6744

25 Number of tables: 1

26 Number of figures: 4

27 Number of references: 45

28

29

30 Abstract:

31 1. Joint species distribution models (JSDMs) simultaneously model the distributions of 

32 multiple species, while accounting for residual co-occurrence patterns. Despite 

33 increasing adoption of JSDMs in the literature, the question of how to define and 

34 evaluate JSDM predictions has only begun to be explored. 

35 2. We define four different JSDM prediction types that correspond to different aspects of 

36 species distribution and community assemblage processes. Marginal predictions are 

37 environment-only predictions akin to predictions from single-species models; joint 

38 predictions simultaneously predict entire community assemblages; and conditional 

39 marginal and conditional joint predictions are made at the species- or assemblage-

40 level, conditional on the known occurrence state of one or more species at a site. We 

41 define five different classes of metrics that can be used to evaluate these types of 

42 predictions: threshold-dependent, threshold-independent, community dissimilarity, 

43 species richness, and likelihood metrics. 

44 3. We illustrate different prediction types and evaluation metrics using a case study in 

45 which we fit a JSDM to a frog occurrence dataset collected in Melbourne, Australia.

46 4. JSDMs present opportunities to investigate facets of species distribution and 

47 community assemblage processes that are not possible to explore with single-species 

48 models. We show that there are a variety of different metrics available to evaluate 

49 JSDM predictions, and that choice of prediction type and evaluation metric should 

50 closely match the questions being investigated.

51 Keywords: joint species distribution models, prediction, evaluation metrics, biotic 

52 interactions, community assemblage, species richness
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53

54 1. Introduction

55 Species distribution models (SDMs) are commonly used to predict into un-sampled areas or 

56 to new environmental conditions (Elith & Leathwick 2009). Joint species distribution models 

57 (JSDMs) are an extension of standard correlative SDMs that allow multiple species to be 

58 modelled simultaneously while accounting for species correlations not explained by available 

59 environmental predictors, e.g. due to species interactions or important missing covariates 

60 (Kissling et al. 2012; Pollock et al. 2014; Golding, Nunn & Purse 2015; Ovaskainen et al. 

61 2016b; Clark et al. 2017). Despite increasing adoption of JSDMs in the literature, it remains 

62 unclear how predictions of JSDMs differ from those of standard SDMs, and how specifically 

63 JSDM predictions can be used to address different questions in ecology and conservation 

64 (Ovaskainen et al. 2016a; Zhang et al. 2018; but see: Norberg et al. 2019). 

65 Modelling distributions of single species with correlative SDMs ignores the impacts of 

66 species interactions, which potentially biases estimated coefficients and resultant predictions 

67 (Kissling et al. 2012; Wisz et al. 2013). There have been attempts to account for biotic 

68 interactions by using other species’ occurrence states as predictor variables alongside abiotic 

69 variables (Leathwick & Austin 2001; Araújo & Luoto 2007; Meier et al. 2010; Pellissier et 

70 al. 2010), or by constraining predicted distributions to observed or predicted distributions of 

71 species on which the target depends (Schweiger et al. 2012), but these approaches are 

72 restricted to unidirectional interactions (Kissling et al. 2012) and require that distributions of 

73 the non-target species are known a priori or estimated using analogous single-species SDMs. 

74 Stacked species distribution models (SSDMs) combine, or stack, multiple single-species 

75 SDMs to estimate community structure and species richness (Gelfand et al. 2005; Parviainen 

76 et al. 2009; Mateo et al. 2012). Yet, it has been suggested that, because they do not account 

77 for species interactions, SSDMs tend to over-predict species richness (Pineda & Lobo 2009; 

78 Guisan & Rahbek 2011; Calabrese et al. 2014; Thuiller et al. 2015). By accounting for 

79 interactions between multiple species, the expectation is that JSDMs might allow for more 

80 accurate predictions. The captured interactions might be true biotic interactions, or reflect the 

81 effect of relevant missing predictors.  

82 An important decision when aiming to obtain predictions from a JSDM is defining what to 

83 predict, based on the JSDM’s multivariate output. In a single-species SDM, the focus of 

84 prediction is clear: some feature of the target species (presence/absence, abundance, etc). 
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85 Multivariate JSDMs, however, have multiple response variables (one per species), all of 

86 which are potentially correlated. Prediction can therefore be approached in several ways. For 

87 instance, we may aim to predict community composition at sites where we have no 

88 knowledge of distributions, or, we may be interested in exploring how having data on the 

89 distributions of some species changes our prediction for a focal species.

90 Once we have a prediction, we need to evaluate it. Even ill-fitting models can generate 

91 predictions, and poor predictions can hamper species management. More broadly, by 

92 evaluating predictions we can use predictive performance to assess which combinations of 

93 environmental variables best predict species distributions, compare performance between 

94 different modelling approaches, and assess the reliability of the predictions we generate 

95 (Guisan & Zimmermann 2000; Lawson et al. 2014). How do we approach this for JSDMs? 

96 The substantial literature on the evaluation of SDM predictions (Fielding & Bell 1997; Liu, 

97 White & Newell 2009; Lawson et al. 2014) covers a wide variety of metrics, but are they 

98 appropriate in a multi-species context? Are the most common metrics used for single-species 

99 SDMs (such as AUC) still the most relevant? JSDMs can predict community assemblages, 

100 which opens up a suite of potential evaluation metrics in the form of the dissimilarity indices 

101 widely used in community ecology (Legendre & De Cáceres 2013). What insight can be 

102 gained from these additional metrics? 

103 Our article outlines different types of prediction from JSDMs. Marginal predictions are 

104 environment-only predictions that average over the occurrence and co-occurrence patterns of 

105 other species, and would be the most familiar to users of single-species SDMs. Joint 

106 predictions simultaneously predict the occurrence of multiple species while accounting for 

107 environmental responses and species correlations. Both prediction types (marginal and joint) 

108 can be calculated conditional on the known occurrence state(s) of one or more species in the 

109 community. We outline which evaluation methods are appropriate for different prediction 

110 types. Finally, we fit a standard JSDM to a frog occurrence dataset from Melbourne, 

111 Australia. Our case study is not intended to authoritatively compare JSDM performance, 

112 which would require multiple datasets and modelling methods, but rather to provide practical 

113 examples of the different types of JSDM predictions and evaluation metrics.

114 2. Materials and Methods:

115 2.1. Joint, marginal and conditional probabilities
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116 Probability theory defines the relationships between the joint, conditional and marginal 

117 probabilities. Considering the presence/absence of two species at a single site, let  denote �
118 presence of species A and  denote presence of species B (and conversely  and  would � �′ �′
119 denote the absence of species A and B respectively). The joint probability of both species 

120 being present is:

Pr(�,�) = Pr(�|�) ∙ Pr(�)

= Pr(�|�) ∙ Pr(�)

(1)

121 where Pr(A|B) is the (conditional) probability that species A is present given species B is 

122 present, and Pr(A) is the marginal probability of species A being present.

123 The two-species scenario can be extended to more species to consider the relationship 

124 between the joint probability of occurrence and the probability of presences (or absences) of a 

125 subset of the species conditional on the presence (or absence) of the complement of species. 

126 In a four-species scenario:

Pr(�,�,�,�) = Pr(�,�|�,�) ∙ Pr(�,�)

= Pr(�|�,�,�) ∙ Pr(�,�,�)

(2)

127 Here we define  as a joint conditional probability (the probability of the joint Pr(�,�|�,�)

128 occurrence of species A and B at the site, conditional on the presence of both species C and 

129 D).  is a conditional probability (the probability of the occurrence of species A at Pr(�|�,�,�)

130 the site conditional on the presence of species B, C and D).

131 2.2. Joint SDMs

132 Most occurrence-based JSDMs are built on the foundation of the Chib and Greenberg (1998) 

133 multivariate probit regression model. In what follows, we focus on the multivariate probit 

134 model formulation, though the same principles can be applied to the multivariate logistic and 

135 latent factor models that have also been used as JSDMs. For this model, the occurrence state 

136 (present or absent) of species , for , at a site , for , is  and modelled via � � = 1,…,� � � = 1,…,� ���
137 a normally-distributed latent variable, , with  equal to  when , and  otherwise ��� ��� 1 ��� > 0 0

138 (see Figure 1a for a visual representation). This latent variable is not to be confused with the 

139 latent variable/latent factor concept of latent factor models (Warton et al. 2015; Wilkinson et 

140 al. 2019). The model is as follows:

141
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142 ��� = 1(��� > 0)��� = ��� + ������ = ��,.�.,���~���(�,�)

(3)

143 where the latent variable, , is the sum of the linear predictor, , and the correlated residual ��� ���
144 error, . The linear predictor is the product of the measured environmental variables , and ��� ��,.
145 their corresponding regression coefficients , as in standard generalised linear models. �.,�
146 Correlations in the residual error  are captured in , a symmetric and positive-definite �� �
147 matrix; its diagonal elements are 1 and its off-diagonal elements – the residual correlations 

148 between species – are restricted between -1 and 1. The elements of  reflect species co-�
149 occurrence patterns not described by the environmental predictors (i.e. species interactions, or 

150 missing predictors). Standard deviations, and in turn variances, are constrained to equal 1 in 

151 probit regression, thus covariance and correlation matrices are equivalent. Because the 

152 variance of the latent variable distribution remains constant, the probability of presence for a 

153 single species is controlled only by the mean value of the distribution,  (compare Figures 1a �
154 and 1b).
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155

156 Figure 1: Visualisations of different normally-distributed latent variables representing species 

157 probabilities of presence for two species (A and B). a) The normally distributed latent 

158 variable, , with mean, , of 0.5 for species A.  is equal to the area under the curve �� �� Pr(�)
159 where , shown here in grey. b) The normally distributed latent variable, , with mean, �� > 0 ��
160 , of -1 for species B.  is equal to the area under the curve where , shown here �� Pr(�) �� > 0

161 in grey. c) The multivariate, normally-distributed latent variable, , for a two species ���
162 scenario. The mean of the distribution, , on each species’ respective axis is the same as ���
163 their independent distributions in a) and b) and there is positive correlation of 0.75 between 

164 them. The contours of the probability distribution, the grey ellipses, indicate probability 

165 density values of 0.1, 0.3, 0.5, 0.7, and 0.9. The numbers in the four corners are the 

166 probabilities of the multivariate latent variable integrated in that quadrant, e.g. in the upper 

167 right quadrant; there is a probability of 0.16 that both species will occur at the site. d) The 

168 multivariate, normally-distributed latent variable from c) truncated on the known occurrence 

169 state of species A.
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170 The correlation in  makes the space of the latent variables multivariate. Therefore, the ��
171 whole species community at a site is represented by a multi-dimensional latent normal 

172 random variable with as many dimensions as species. Integration over the relevant portion of 

173 the multivariate latent variable space yields the joint probability of observing a given 

174 configuration of presence/absence of all species at a site. For instance, in the two-species 

175 scenario (Figure 1c), the joint probability  that both species  and  are present is:Pr(�,�) � �
sdfsdPr(�,�) = Pr(�� > 0, �� > 0) =∫∞

0
∫∞

0

�(��,��)������,
(4)

176 Where  is the joint probability distribution for the bivariate normal. The double �(��,��)

177 integral calculates the probability in the region where both  and  are greater than zero �� ��
178 (i.e. both species are present). In this two-species case, this probability can be visualised as 

179 the volume under the corresponding region of a three-dimensional surface (as in Figure 1c).

180 Similar to Equation 1, a joint probability distribution can be written as a function of 

181 conditional and marginal density functions; therefore, the joint probability in Equation 4 can 

182 be rewritten as follows:

183

Pr(�,�) =∫∞
0
∫∞

0

�(��|��) ∙ �(��)������
=∫∞

0
∫∞

0

�(��|��) ∙ �(��)������
sdfsd

(5)

184 Here the conditional probability distribution  reflects how likely different values of �(��|��)

185  are (and therefore  given a fixed value of ). The marginal probability distribution �� Pr(�) �� �
186  reflects how likely different values of  are (and therefore ) independent of the (��) �� Pr(�)

187 occurrence of species ). The order of items in the joint probability is inconsequential, so �
188 species can be marginalised out in any order (lines 1 and 2 in Equation 5 are equivalent).

189 The marginal probability is obtained by summing the probabilities for all community 

190 assemblages in which the species is present, regardless of the presence of the other species; in 

191 our two-species scenario . Computing the conditional ��(�) = ��(�│�) + ��(�│�′)
192 probability of presence of a species given the presence (or absence) of another species 

193 involves restricting the probability space to that indicating presence (or absence) of the other 
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194 species. These probability distributions can be combined in different ways to define a number 

195 of prediction types for JSDMs. We next consider four types of JSDM prediction, mapping 

196 onto different ecological questions. These are illustrated in Figure 2.

197

198 2.3. Prediction types

199

200 Figure 2: Five different prediction types possible with JSDMs. The boxes show the 

201 occurrence states of species A, B, and C. Question marks denote the species being predicted. 

202 Empty boxes indicate that the occurrence state for those species is not informing the 

203 prediction, while 1/0 denote a known presence/absence state of species which is used to 

204 inform prediction. Prediction Type is the name of the prediction methodology, and Notation 

205 shows the corresponding probabilistic notation, following the definitions in section 2.1.

206

207 2.3.1. Marginal prediction

208 Similar to single-species SDM predictions, marginal JSDM predictions are based solely on 

209 environmental attributes (they do not consider the presence or absence of the other species, 

210 see Figure 2i). This corresponds to predicting, for example, the occurrence of plant species A 

211 based solely on its response to environmental variables, such as soil nutrient and water 
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212 availability, without accounting for co-occurrence patterns with species B-E in the 

213 community (e.g., Ovaskainen et al 2016a, Zhang et al. 2018). Marginal JSDM predictions can 

214 be calculated using the estimated regression coefficients and the corresponding covariate 

215 values at each site, as in a standard generalised linear model. The sole difference between 

216 marginal predictions for JSDMs and those of single-species SDMs is that inter-species 

217 correlations are accounted for in the estimation of JSDM regression coefficients. 

218 2.3.2. Joint prediction

219 We can predict species community composition that accounts for both the environmental 

220 covariates and species co-occurrence, by using the joint probability distribution. This 

221 corresponds to predicting the assemblage of plant species A-E in a community 

222 simultaneously, while accounting for their individual responses to environmental conditions 

223 (e.g. soil nutrients) and co-occurrence patterns of the species (e.g., Ovaskainen et al 2016a, 

224 Norberg et al 2019).

225 Whereas the marginal prediction of a community at a given site can be represented by a 

226 single vector of probabilities (one for each species), the joint prediction instead yields a 

227 probability value for each possible realisation of the community composition (each 

228 realisation is a vector of 1s and 0s indicating presence/absence of each species; Figure 2ii). 

229 With  species, the number of possible community assemblages is . This number increases � 2�
230 very quickly with J. Whilst with three species there are eight possible assemblages, with ten 

231 species there are 1024, and with twenty species over a million. It is therefore generally 

232 infeasible to compute and store the probabilities of all possible assemblages when evaluating 

233 the predictions. One alternative is to use the model to simulate community assemblages by 

234 taking random draws from the joint probability distribution. The frequencies of the simulated 

235 assemblages reflect the probability of plausible assemblages. Also, in some cases we are only 

236 interested in a subset of the probabilities. For instance, for model evaluation purposes, we 

237 only need to compute joint predictions for the species assemblages observed in held-out data.

238

239 2.3.3. Conditional joint prediction

240 In some cases, we might be interested in estimating a species’ occurrence probability given 

241 the known occurrence state of other species. If we know the correlation between species 

242 (estimated by the JSDM) and the occurrence state of some of those species, we can make a 
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243 more informed prediction of the unknown occurrence state of the remaining species. This 

244 corresponds to predicting plant species A-D in the community simultaneously when we know 

245 the occurrence state of species E, and leveraging that knowledge to constrain the possible 

246 predicted assemblages (e.g., Taylor-Rodriguez et al (2017)).

247 For each species with a known occurrence state, we can truncate the multivariate normal 

248 distribution over the latent variable in the dimension that represents that species, either to be 

249 positive if the species is present, or negative if it is absent (see Figure 1d for a visual 

250 representation). Because probability distributions integrate to one, truncating this distribution 

251 alters the probabilities of the remaining community assemblage possibilities. For instance, in 

252 our example, the marginal probability of species B, , is 0.16 (Figure 1b), but if we Pr(�)

253 know that species A is present, then the conditional probability of species B is Pr(�│�)

254  (Figure 1d).  = 0.23

255 2.3.4. Conditional marginal prediction

256 Conditional marginal predictions, which are simultaneously conditional on and marginal to 

257 the occurrence states of the other species (Figure 2v), are another type of prediction that can 

258 be made with JSDMs. As per conditional joint predictions, we can make more informed 

259 predictions by using the known occurrence state of other species, however, this method 

260 makes use of the updated marginal distribution of the remaining species. This corresponds to 

261 predicting plant species Abased on its response to environmental variables (e.g., soil 

262 nutrients), leveraging information on the known occurrence state of species E, and still being 

263 independent of the remaining species in the community B-D. This prediction type is also 

264 simple to represent; like marginal predictions, it can be stored as a vector of probabilities for 

265 each species. 

266

267 2.4. Evaluation metrics

268 To date, the choice of evaluation metric in the multi-species context of JSDMs has not been 

269 thoroughly explored. In a single-species context, choice of metric depends largely on factors 

270 such as data type (e.g., presence-absence vs. presence-only) and prediction format (binary or 

271 probabilistic) (Lawson et al. 2014). Here we consider traditional single-species metrics for 

272 JSDMs and new metrics that may be suitable. We broadly classify metrics for evaluating 
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273 JSDM predictions into five groups, in terms of the aspects of performance on which they 

274 focus (see Table 1).

275 Threshold-independent metrics evaluate continuous predicted probabilities against 

276 observed presence-absence data. A widely used threshold-independent metric used in single-

277 species SDMs is the Area Under the Receiver Operating Characteristic Curve (AUC), but 

278 other metrics include root mean square error (RMSE), the coefficient of determination ( ), �2

279 and the Pearson’s or point-biserial correlation coefficient.

280 Threshold-dependent metrics compare binary predictions against observed presence-

281 absence data. This requires simplifying predicted values (which may be probabilities or some 

282 other metric) to binary outcomes, considering them presences if they exceed a set threshold 

283 value, or absences otherwise. Then, a confusion matrix contrasts observed and predicted 

284 occurrence states, and metrics derived from it. Examples include precision, sensitivity, and 

285 true/false positive/negative rates. The value of thresholding continuous predictions has been 

286 debated in the SDM literature (Liu et al. 2005; Freeman & Moisen 2008; Guillera‐Arroita et 

287 al. 2015), for prediction and evaluation (Lawson et al. 2014). How to determine the threshold 

288 value when binary conversion is wanted is also debated. It is common to set the threshold at 

289 an arbitrary value of 0.5 (Freeman & Moisen 2008), which provides an obvious decision 

290 threshold (i.e. the species is more likely to be present than absent) when predictions are 

291 calibrated estimates of probability of presence. Another frequent suggestion is to set the 

292 threshold to the observed prevalence of the species in question (Hanberry& He 2013). In the 

293 multi-species context of JSDMs, a logical extension of this debate is whether to define 

294 community-wide or species-specific thresholds. However, Lawson et al (2014) showed that 

295 by using a probabilistic confusion matrix we can calculate threshold-dependent types of 

296 metrics without the need to threshold probabilistic predictions. To avoid any issues with the 

297 choice of threshold impacting our analysis, we followed this idea and used the probabilistic 

298 confusion matrix approach when calculating our threshold-dependent metrics.

299 Community dissimilarity indices are widely used in community ecology to quantify the 

300 dissimilarity between two realisations of species assemblages. Examples of common metrics 

301 are Bray-Curtis dissimilarity and Jaccard distance (Chao et al. 2004). These metrics compare 

302 predicted assemblages with observed assemblages and thus probabilistic predictions require 

303 thresholding or samples from a binomial distribution before these metrics can be evaluated on 

304 them.
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305 Species richness metrics consider the ability of models to predict a single (but widely 

306 studied) aspect of community composition – the number of species present. We have 

307 evaluated species richness difference, defined as predicted minus observed richness, as it 

308 directly compares predictions with observed richness values.

309 Likelihood metrics assess model fit by computing the probability of observing a given 

310 community assemblage, assuming the model is ‘correct’ in its structure and parameter 

311 estimates. For reasons of numerical stability, it is common to work with the log of the 

312 likelihood. We use the term independent log-likelihood to represent the typical log-likelihood 

313 metric used in SSDMs. This metric assesses each species individually across all sites– 

314 computing the probability of observing that species’ presence/absence observations– and then 

315 combines these into a single metric, assuming the species’ distributions to be independent 

316 (i.e. the log-likelihoods are summed up). We can also define a joint log-likelihood that 

317 assesses all species simultaneously as an assemblage at each site, accounting for the 

318 correlation structure encoded in the JSDM formulation. 

319

320 Table 1: Summary of evaluation metrics for JSDM predictions. 

Name A
p

p
li

ca
b

le
 t

o
 B

in
a
ry

 p
re

d
ic

ti
o
n

s

A
p

p
li

ca
b

le
 t

o
 P

ro
b

a
b

il
is

ti
c 

p
re

d
ic

ti
o
n

s

T
h

re
sh

o
ld

-d
ep

en
d

en
t 

m
et

ri
c

T
h

re
sh

o
ld

-i
n

d
ep

en
d

en
t 

m
et

ri
c

C
o
m

m
u

n
it

y
 d

is
si

m
il

a
ri

ty
 m

et
ri

c

S
p

ec
ie

s 
ri

ch
n

es
s 

m
et

ri
c

L
ik

el
ih

o
o
d

 m
et

ri
c

Accuracy / True Skill Statistic X X X

Area under the Receiver Operating 

Characteristic curve (AUC)
X X

Bray-Curtis dissimilarity X X X

Canberra Index X X X

Cohen’s Kappa X X

Diagnostic odds ratio X X X

F1 score X X X

False discovery ratio X X X
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False negative rate X X X

False omission rate X X X

False positive rate X X X

Gower Index X X X

Gower Index (alternative) X X X

Jaccard distance X X X

Kendall rank correlation coefficient X X

Kulczynski Index X X X

Log Likelihood – Independent X X

Log Likelihood – Joint X X

Mountford Index X X X

Mean error (bias) X X

Mean square error X X

Negative likelihood ratio X X X

Negative predictive performance X X X

Pearson correlation coefficient X X

Positive likelihood ratio X X X

Positive predictive performance / Precision X X X

R2/ Coefficient of determination X X X

Raup-Crick dissimilarity X X X

Root mean square error X X

Spearman rank correlation coefficient X X

Species richness difference X X X

Sum of squared errors X X

True negative rate / Specificity X X X

True positive rate / Sensitivity X X X

Youden’s J statistic X X X

321 2.5. Case study

322 We illustrate the application of different JSDM prediction types and the appropriate 

323 evaluation metric classes with a case study in which we fit a JSDM to a presence-absence 

324 dataset of frog species in the Greater Melbourne area of Victoria, Australia (Parris 2006). The 

325 dataset contains 9 species, 104 waterbodies (sites), and 3 measured covariates (area, road 

326 density, presence of vertical wall), and was previously analysed in Pollock et al (2014) and 

327 Wilkinson et al (2019). Species prevalence ranged from 0.02-0.52, and were mainly 

328 positively correlated with each other except for a single species negatively correlated with the 

329 rest. In our analysis, we standardised the two continuous variables and used five-fold random 

330 cross validation for model evaluation.
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331 We chose to use a standard multivariate probit regression JSDM (Chib& Greenberg 1998) 

332 implemented with BayesComm v0.1-2 (Golding & Harris 2015) in R v3.5.2 (R Core Team 

333 2018). The JSDM applies independent normal priors, , on the regression �� ~ �(0, 100)

334 coefficients and an inverse Wishart prior, with  degrees of freedom and scale matrix , � +2� �
335 on the correlation coefficients. The model was fit by MCMC using a Gibbs sampler 

336 implemented in R and C++. We used a single MCMC chain of 11,000 samples, discarding 

337 the first 1,000 as burn-in, to sample the posterior distribution. Model convergence was 

338 examined via visual assessment of trace plots for the posterior distributions. Model fitting and 

339 predictions were undertaken on The University of Melbourne’s Spartan HPC infrastructure 

340 (Meade et al. 2017).

341 Once fit to the training data, the JSDM was used to predict to the held-out test data from five-

342 fold cross validation. We calculated four prediction types: marginal, conditional marginal, 

343 joint, and conditional joint. The two conditional prediction types were undertaken under the 

344 assumption that we knew the occurrence state of one randomly selected “high prevalence” 

345 species in the community (Litoria ewingii). Conditional marginal prediction returned 

346 probabilistic predictions for the remaining eight species and conditional joint prediction 

347 generated plausible assemblages of the remaining eight species.

348 While we have defined 35 metrics that can be calculated to assess different aspects of JSDM 

349 predictions, we present only a subset in this analysis for illustrative purposes. More detail on 

350 the metrics, including how they are calculated, which prediction types they are appropriate 

351 for, and how to interpret them can be found in Appendix S1. Threshold-dependent and 

352 threshold-independent metrics are calculated on a per-species basis, whereas community 

353 dissimilarity and species richness metrics are calculated per-site. Most metrics can 

354 theoretically be calculated for either species or sites (as they are just comparing two binary 

355 vectors: observations and predictions) so this split is based on how they are historically used 

356 in ecological literature. Metrics were evaluated once for each of the 1000 posterior samples 

357 drawn.

358

359 3. Results

360 The patterns of predicted probabilities of presence for each species obtained from the 

361 marginal and conditional marginal predictions both broadly matched the community 
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362 assemblage observed in the held-out testing data (Figure 3). The AUC for most species using 

363 the marginal predictions was typically high (>0.88) with a standard deviation of <0.05 across 

364 all posterior samples. Exceptions were L. ewingii and Litoria peroni, which were predicted 

365 approximately randomly with an AUC= ~0.5, and Litoria raniformis, which had no recorded 

366 presences in the held-out data and was thus incompatible with AUC calculations. Marginal 

367 predictions conditioned on the known occurrence state of L. ewingii returned higher AUC 

368 values by a mean of 0.03 (Fig. 3). The largest AUC gain was 0.08 for Litoria verreauxi. For 

369 most other species-level evaluation metrics, we found the conditional marginal prediction to 

370 outperform the marginal prediction, but in most cases the differences were relatively minor. 

371 We did observe some exceptions to this, such as an increased R2 value for L. verreauxi of 

372 0.26.

373 The conditional marginal predictions outperformed the marginal predictions for the majority 

374 of community-level metrics. For most community dissimilarity metrics, the conditional 

375 marginal predictions returned dissimilarity values between 0.05-0.1 lower than the marginal 

376 predictions which indicates a better estimate of community assemblages. Jaccard distance and 

377 Gower Index improved by 0.09, and Bray-Curtis dissimilarity improved by 0.06.

378

379

380 Figure 3: Species-level predictions for the frog community at a subset of 10 sites in the 

381 testing dataset. The left-hand plot depicts the known occurrence state of the species in the 

382 testing dataset (black = present, white = absent). The middle plot depicts the median 
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383 probability of presence from the posterior distributions of the marginal predictions. The right-

384 hand plot depicts the median probability of presence from the posterior distributions of the 

385 conditional marginal predictions. These predictions are conditional on the known occurrence 

386 state of L. ewingii which are highlighted with the red border.

387 The community-level approach of joint predictions yields probabilities of specific 

388 assemblages occurring at a site or, as we present here, one can take random draws from the 

389 posterior distribution to generate plausible community assemblages at a site. In Figure 4 we 

390 show random draws from the joint and conditional joint prediction types for a single site in 

391 our held-out data. While joint predictions generally overpredicted the number of species 

392 found in the assemblage overall, conditioning on the known occurrence state (absence) of 

393 L.ewingii led to draws that were closer to the observed assemblage.

394

395

396 Figure 4: Binary community-level predictions of the frog community at a single site in the 

397 testing dataset. Community-level predictions here are random draws from the multivariate 

398 normal distribution representing plausible community assemblages under the environmental 

399 conditions at the site (blue = present, white = absent). The left-hand plot depicts draws of 

400 plausible community assemblages from joint predictions. The right-hand plot depicts draws 

401 of plausible community assemblages from joint predictions, conditional on the known 

402 occurrence state of L. ewingii at the site (highlighted with the red border). The top row of 
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403 both plots shows the known community assemblage in the testing dataset. The site considered 

404 in this figure corresponds to site 8 in Figure 3.

405 Community dissimilarity metrics were generally between 0.02-0.05 higher for conditional 

406 joint predictions relative to standard joint predictions. Raup-Crick dissimilarity was the 

407 exception. Conditional joint predictions had values that were, on average, 0.25 lower; 

408 however, with a standard deviation of 0.37 across all predictions, this metric is possible 

409 struggling to calculate correctly across all draws. For the site considered in Figure 4, we 

410 observed improvements of between 0.08-0.1 for the Bray-Curtis dissimilarity, Jaccard 

411 distance, Gower index, and Canberra index.

412 As shown in Figure 4, in our dataset, both the joint and conditional joint prediction types 

413 overestimated species richness. The joint prediction type had a mean species richness 

414 difference estimate of 0.95 species in the held-out data, while the conditional joint prediction 

415 type had a mean estimate of 0.7 species per site. By conditioning the community-level 

416 prediction on the known occurrence state of a species, we are able to obtain a prediction 

417 closer to the observed data.

418 4. Discussion

419 We have reviewed and clarified the ways in which predictions of species distributions can be 

420 approached with JSDMs. Our review highlights the additional functionality that JSDMs 

421 enable relative to simple stacking of single-species models. JSDMs have two main 

422 advantages: an ability to partition the effect of measured variables and residual correlations 

423 between species, and predictions of community assemblages that account for these 

424 correlations. By partitioning the effect of measured variables from residual correlations, 

425 which may include species interactions, JSDMs potentially enable more accurate estimates of 

426 environmental drivers of species’ distributions. In addition, by leveraging the information in 

427 the residual correlations, JSDMs can potentially better predict community assemblages. 

428 The different prediction types defined here for JSDMs correspond to different ecological 

429 aims. Marginal predictions correspond to the traditional single-species predictions; joint 

430 predictions predict entire assemblages; while the conditional and conditional marginal 

431 predictions let us inform these predictions with additional information such as easy-to-detect 

432 indicator species. Different aims also imply different evaluation metrics, so each practitioner 
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433 should determine an appropriate prediction type and evaluation metric, or metrics, for their 

434 ecological question.

435 We have shown that conditioning on the known occurrence status of species can improve 

436 both species- and community-level predictions by exploiting the correlations estimated in 

437 JSDMs (Harris 2015). The extent of this improvement is likely dependant on the strength of 

438 the correlation between the known species and other species in the community. We can 

439 expect that a species that is highly correlated with the known species (positively or 

440 negatively) would benefit more than a species that occurs more or less independent of the 

441 known species. Therefore, benefits of JSDM predictions may be observed for only some 

442 species in the community, or to differing extents between species.

443 The JSDM tended to overpredict species richness for all prediction types that account for 

444 correlations between species. For our case study of nine frog species, the JSDM predicted 

445 approximately one extra species per site. Zurell et al (2019) similarly found that a JSDM 

446 overpredicted species richness compared to a SSDM. As the JSDM only overpredicted 

447 species richness for prediction types that account for residual correlations, the estimated 

448 correlations could potentially explain why the JSDM tended to overpredict. A largely positive 

449 correlation matrix between most species combined with high marginal occurrence 

450 probabilities, as seen here, could cause the JSDM to predict likely assemblages in excess of 

451 restrictions, such as site carrying capacities and/or dispersal limitations. 

452 We have presented JSDM prediction methods using only a single dataset for illustrative 

453 purposes. A more in-depth study using a wider array of datasets is required, as dataset 

454 properties likely influence the relative merits of the different prediction types. For datasets in 

455 which all species are reasonably prevalent, the expected performance difference between 

456 prediction types would be smaller than in scenarios of relatively sparse data, in which the 

457 additional information in joint or conditional prediction types could outperform the other 

458 prediction types. The value of additional information in the form of species co-occurrence 

459 will also be greater when correlations between species are stronger; the known occurrence of 

460 a species will provide minimal benefit if it exhibits no correlation with the other species in a 

461 dataset. Future studies incorporating multiple case studies could also usefully evaluate 

462 different prediction types when making vs extrapolative predictions, as our case study only 

463 focused on the former type of evaluation and the latter has been shown to be more difficult 

464 (Norberg et al. 2019).
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465 A small body of literature focuses on large-scale comparisons of JSDMs and single-species 

466 models. These studies have included many species and model types (Zurell et al. 2019; 

467 Norberg et al. 2019) but have not addressed all of the prediction types available to JSDMs. 

468 Norberg et al (2019) used joint predictions but differently than presented here. First, they 

469 generated binary assemblage predictions but took the average of a large number of random 

470 draws to generate species-specific probabilities, which is an approximation of the marginal 

471 distribution. Second, they used joint predictions to generate species richness metrics 

472 equivalent to ours. Third, they used joint predictions and community dissimilarity metrics to 

473 test predictions of species turnover between sites rather than to test community composition 

474 at a site. To our knowledge, no JSDM studies have yet included conditional or conditional 

475 marginal predictions, although they have been identified as desirable avenues of research 

476 (Zurell et al. 2019; Norberg et al. 2019; Blanchet, Cazelles & Gravel 2020). Evaluations with 

477 a broader array of JSDM implementations, prediction types, and datasets are warranted. Both 

478 Norberg et al (2019) and Zurell et al (2019) included latent factor JSDMs in their 

479 comparisons, whereas we use a multivariate probit model. Norberg et al (2019) found that the 

480 HMSC JSDM (Ovaskainen et al. 2016b) outperformed both other JSDMs and SSDMs, while 

481 Zurell et al (2019) found that the boral JSDM (Hui 2016) had similar results to those 

482 described here. Zurell et al (2019) suggested that the poor performance of boral was a result 

483 of how the latent factor model is used when extrapolating predictions. Prediction using latent 

484 factor JSDMs can be performed in two ways: (1) marginalizing over the latent factors by 

485 assigning the mean value of modelled sites to prediction sites when performing regression-

486 style predictions, and (2) defining the latent factor models in the same way as multivariate 

487 probit models (see Wilkinson et al (2019) for notation), which lets one use the prediction 

488 types defined in this paper. This second method may be a better alternative to latent factor 

489 model prediction than marginalizing over the latent factors.

490 5. Conclusion

491 JSDMs enable a variety of different ways to predict species distributions and community 

492 assemblages. Here we have defined environment-only marginal predictions, joint predictions 

493 for whole community assemblages, and conditional marginal and conditional joint 

494 predictions that can also leverage additional information on known species’ occurrences. 

495 Previous studies have either not considered prediction with JSDMs, focussed on marginal 

496 predictions, or considered only limited aspects of joint prediction. We have also shown that 

497 there are several classes of evaluation metrics that can be applied to subsets of these 
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498 predictions. Ecologists seeking to use these prediction methods and evaluation metrics should 

499 consider which method and metric are most closely linked to the ecological question they are 

500 investigating. A larger comparison of prediction types that considers different JSDM 

501 implementations and multiple datasets is required to evaluate general performance of these 

502 models and prediction types.

503
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