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Abstract

Identification and pairing of hydrologic events form the basis of various analyses,

from identifying events for the calibration of hydrologic models, to calculation of

event runoff coefficients for catchment characterization. Despite this, there is no uni-

fied approach for identifying hydrologic events. Here, using the R package, hydro-

Events (https://CRAN.R-project.org/package=hydroEvents), we compare multiple

methods of extracting and pairing hydrologic events focussing on the relationship

between rainfall and runoff. We find the four common analytical approaches used to

identify runoff events—based on either event threshold, local maxima/minima, or

proportion of baseflow contribution, give similar results. However, when rainfall

events are paired to runoff, the type of algorithm and the direction of pairing (either

from rainfall to runoff, or runoff to rainfall) make a considerable difference to the final

event pairs identified and resulting analyses. Here, we demonstrate the value of

automated event extraction and pairing algorithms for large-sample hydrology analy-

sis by calculating event runoff coefficients across Australia. Our results show that cli-

matology is a key driver of catchment rainfall-runoff response with much of Australia

dominated by excess rainfall runoff generation. However, our results also show that

the variability due to pairing method can introduce a variability equal to that of the

climatology due to biasing the runoff mechanism within the sample. With this analy-

sis we demonstrate the importance of systematic and consistent approaches to

hydrologic characterization when identifying and pairing hydrological events.

K E YWORD S

baseflow, event delineation, event identification, precipitation, rainfall-runoff, runoff
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1 | INTRODUCTION

Hydrologic events, such ‘pulses’ or ‘peak periods’ of rainfall or

streamflow, have important environmental and ecological functions

(Frazier et al., 2003; Tonkin et al., 2019). On the one hand, extreme

precipitation events can cause flooding and risk to life (Razavi

et al., 2020; Wasko et al., 2021a), but on the other hand, a lack of pre-

cipitation events can result in drought, water scarcity, and threaten

agricultural production (Vogel et al., 2019). The calculation of hydro-

logic event characteristics such as event runoff coefficients can

describe runoff generation processes and classify catchment behav-

iour (Merz et al., 2006; Tarasova et al., 2018; McMahon and
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Nathan, 2021). Calculating the water quality during periods of

streamflow events and baseflow helps understand the source and

transport of contaminants (Minaudo et al., 2019; Guo et al., 2022).

Streamflow events are used to calibrate hydrologic models (Tramblay

et al., 2010; O'Shea et al., 2021) while streamflow recessions are used

to estimate hydraulic conductivity, storage capacity, aquifer thickness

(Stoelzle et al., 2013), and reconstruct precipitation (Kirchner, 2009).

Hence, the identification and characterization of hydrologic events is

crucial to our understanding of catchment hydrology and hydrologic

applications such as flood forecasting, flood protection, and water

resource and quality management.

A hydrologic event is generally identified as a sequence of contin-

uous observations above a certain threshold with a given separation

time between subsequent events. For example, rainfall events are rou-

tinely identified using a peaks over threshold (POT) approach, with

non-zero rainfall separated by a rainless minimum inter-event time

(Dunkerley, 2008). However, when identifying streamflow events,

there remains streamflow in the system not directly related to the

precipitation event, termed baseflow, which needs to be removed for

event separation. As tracer or water balance modelling experiments

are required to accurately identify the source of streamflow

(Partington et al., 2012; Ladson et al., 2013; Li et al., 2013; Zhang

et al., 2020; Yao et al., 2021), baseflow separation practice remains

largely empirical (Linsley et al., 1958). Graphical methods of baseflow

separation either: i) extend the recession prior to a storm to a point at

the end of the surface runoff; or ii) project from after the storm back

to a point of inflexion of the falling limb and match the start of the

runoff with a smooth curve (Linsley et al., 1958; Raudkivi, 1979).

Graphical methods however are often manual and hence not practical

for large sample studies. Due to the ease of use in computational

studies, digital filters (Lyne and Hollick, 1979) are now the most com-

mon method for baseflow separation. But, baseflow separation is not

sufficient to identify streamflow events, particularly in small catch-

ments (Hewlett and Hibbert, 1967). Therefore, additional approaches

are often used to identify streamflow events including turning points

and fractional baseflow ratios (Merz et al., 2006; Sikorska et al., 2015;

Kaur et al., 2017; Tang and Carey, 2017; Tarasova et al., 2018).

In addition to identifying hydrologic events from individual time

series, there is a need to pair events from multiple time series. Cli-

matic catastrophes are often the result of extremes in multiple vari-

ables such as rainfall and a high tide coinciding in space and time

(Leonard et al., 2014) and their coincidence needs to be considered in

engineering design (Wasko et al., 2021b). Groundwater level response

to rainfall and streamflow is an indicator of the level of interconnec-

tedness of the surface and groundwater system (Zimmer and

McGlynn, 2017). Rainfall-runoff partitioning (Saft et al., 2016;

Peterson et al., 2021) is critical to classifying catchment response and

when performed on an event basis relies on pairing rainfall to the

corresponding runoff (Blume et al., 2007). Understanding the drivers

of flooding and attributing trends in flood response also relies on

accurate pairing of rainfall-runoff events (Merz et al., 2012).

The choice of event identification and pairing approach can lead

to differing results in the subsequent hydrologic analyses and

applications (Blume et al., 2007). For example, if independent events

are not properly identified, additional serial correlation will be intro-

duced and trends artificially detected when none are present (von

Storch, 1999). As there is no unified approach to identifying hydro-

logic events, the implementation of multiple automated approaches

for event identification and pairing, especially in the application of

large-sample analyses, is preferable. Several software tools exist for

identifying and pairing hydrologic events (Table 1). Most packages

focus on baseflow separation, with few packages identifying or pairing

events. While HydRun (Tang and Carey, 2017) does pair events, this is

performed on the basis of runoff response, but, as Wasko and

Nathan (2019) noted, pairing based on precipitation is necessary for

ensuring antecedent conditions are independent of the runoff

response. The R package hydroEvents (Wasko and Guo, 2021) is the

only package which implements multiple event identification and

pairing strategies, including pairing in different search directions

(e.g. from rainfall to runoff, or from runoff to rainfall).

Existing large-scale studies of event runoff responses are largely

focused on catchments in temperate climates in Europe and North

America (Cerdan et al., 2004; Merz et al., 2006; Tarasova et al., 2018;

Stein et al., 2020). This means the climate conditions explored so far

for event runoff responses are rather narrow, potentially limiting trans-

ferability to other climate zones and parts of the world due to the criti-

cal role of climate in controlling catchment hydrological regimes (Beck

et al., 2013). Therefore, this study aims to explore the event rainfall-

runoff relationship across a wide range of climatic conditions, consider-

ing multiple methods of extracting and pairing hydrologic events. Here,

we use the R package hydroEvents (Wasko and Guo, 2021), which sam-

ples and pairs hydrologic events in a flexible and parsimonious manner,

to calculate event runoff coefficients for the first time on a continental

scale across Australia. We first test the event identification and pairing

algorithms, before calculating runoff coefficients across Australia and

comparing the results to annual rainfall-runoff relationships. Finally,

the impact of climate variability, catchment area, and pairing strategy

on the calculated runoff coefficients is examined.

2 | DATA

We apply hydroEvents to calculate event runoff coefficients for the

467 Hydrologic Reference Stations (HRS) across Australia. The HRS are

the highest-quality, unimpacted daily streamflow stations for the conti-

nent of Australia (Zhang et al., 2016) and are presented in Figure 1

underlain by the Köppen Climate classification (Beck et al., 2018). Miss-

ing data is infilled using hydrologic modelling (Zhang et al., 2016). The

record lengths vary from 30 to 69 years with a median record length of

48 years. Catchment average rainfall is calculated from the Australian

Water Availability Project (AWAP), a 0.05� � 0.05� daily gridded rain-

fall derived from surface gauging (Jones et al., 2009) using the

R package AWAPer (Peterson et al., 2020). The rainfall and streamflow

records are restricted to the nearest complete water year, where the

start of water year is defined as the first day of the month which has

the lowest monthly average flow (Wasko et al., 2020a).

2 of 14 WASKO AND GUO
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With reference to the Köppen climate classification (Figure 1),

Australia's climate is tropical (A) in the north, temperate (C) on the

east and southern coasts, and arid (B) inland. There is a small

region in the northeast which is classified as temperate with a dry

winter (Cw) and closely resembles the tropical region, though

experiencing greater mean rainfalls due to advection of moisture

TABLE 1 Summary table of selected packages performing hydrologic event separation

Package name Code Summary of event analysis Reference

Baseflow R Computes hydrograph separation an automated

process (Pelletier and Andréassian, 2020). Does not

explicitly identify events.

(Pelletier et al., 2021)

BaseJumper - Computes baseflow using a Lyne-Hollick (Lyne and

Hollick, 1979) baseflow filter. Does not explicitly

identify events.

(Sinclair Knight Merz, 2007)

BFLOW - Computes baseflow using a Lyne-Hollick (Lyne and

Hollick, 1979) baseflow filter. Does not explicitly

identify events.

(Arnold and Allen, 1999)

AQUAPAK - Applies a Lyne-Hollick (Lyne and Hollick, 1979)

baseflow filter. Calculates and reports on spells

above and below a threshold.

(Nathan et al., 2007)

EcoHydRology R Applies a Lyne-Hollick (Lyne and Hollick, 1979)

baseflow filter. Does not explicitly identify events.

(Fuka et al., 2018)

FlowScreen R Implements three different recursive digital filters for

separating baseflow (Boughton, 1993;

Eckhardt, 2005, 2012). Identifies flow peaks over a

given threshold within a minimum separation

between peaks and annual maxima. Does not

identify the start and end of events.

(Dierauer and Whitfield, 2019)

HydroEvents R Removes baseflow using a Lyne-Hollick (Lyne and

Hollick, 1979) baseflow filter. Identifies hydrologic

events using four different algorithms including

peaks over threshold, the difference between

neighbouring peaks, the difference between

neighbouring values, and baseflow fraction. Events

(e.g. rainfall to runoff) are paired using one of five

event pairing algorithms.

(Wasko and Guo, 2021)

Hydromad R Identifies events by identifying when data exceeds a

certain threshold. The event lasts until a lower

threshold is met.

(Andrews et al., 2011)

Hydrostats R Applies a Lyne-Hollick (Lyne and Hollick, 1979)

baseflow filter. Calculates a range of high and low

spell statistics over a specified quantile but does not

return the events themselves.

(Bond, 2019)

HydRun Matlab Removes baseflow using a Lyne-Hollick (Lyne and

Hollick, 1979) baseflow filter. Identifies high flow

events based on absolute difference between their

neighbouring valleys and then matches these events

to rainfall events.

(Tang and Carey, 2017)

IETD R Computes statistics of independent rainfall events.

Calculates independent inter-event time estimates

based on three different methods (Joo et al., 2014).

(Duque, 2020)

Lfstat R Can identify low flow periods below a threshold along

with flow statistics. Baseflow separation is present

(Tallaksen and van Lanen, 2004) but individual

events are not identified.

(Koffler et al., 2016)

SAAS Matlab Identifies high flow events based on absolute or

relative differences between the peaks and their

neighbouring valley. Criteria for rising and falling

limbs and magnitude can be included.

(Metcalfe and Schmidt, 2016)

WAFO Matlab Toolbox statistical analysis and simulation of random

waves and random load that includes a POT

algorithm.

(Brodtkorb et al., 2000)
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via southeast trade winds. The south-east temperate region has no

dry season (Cf) while the south-east has a dry summer (Cs). Most

HRS stations are located along the coast in the temperate and

tropical regions.

3 | THE HYDROEVENTS PACKAGE

The hydroEvents package (Wasko and Guo, 2021) available via CRAN

at: https://CRAN.R-project.org/package=hydroEvents is an open-

source package for extracting and pairing hydrologic events written in

the R programming language. The sole input is a vector of continuous

data with the package built around two main features: event identifi-

cation and event pairing (Figure 2). Either before or after baseflow

separation (Section 3.1) events are identified using one of four

methods (Section 3.2), and then, if event identification has been per-

formed on multiple data sets, the events can be paired using one of

five pairing specifications (Section 3.3).

Here we calculate event runoff coefficients using the calcStats()

function which can pass any user defined function to calculate event

statistics. For ease of use, functions for plotting both the single and

paired events are also provided via plotEvents() and plotPairedEvents()

and are used here to generate the resulting plots. Although not used

in calculating runoff coefficients, limbs() can be used to perform rising

and falling limb identification to enable further fine-scale analyses that

focus on individual parts of the hydrographs, for example, to assess

the relationship of water quality and runoff at the rising and falling

limbs (Bende-Michl et al., 2013).

100 110 120 130 140 150 160

Longitude (°)

L
a

ti
tu

d
e

 (
°)

−
4

0
−

3
0

−
2

0
−

1
0

A − Tropical

B − Arid

Cs − Temperate (dry summer)

Cw − Temperate (dry winter)

Cf − Temperate (no dry season)

Data length (yr)

30−40

40−50

50−60

60−70

Catchment area (km2)

<100

100−1000

1000−10000

10000−100000

>100000

F IGURE 1 Hydrologic Reference
Station location, record length, and
catchment area. The gauging stations
are underlain by the Köppen climate
classification (Beck et al., 2018)

Baseflow extrac�on

eventBaseflow()
eventMaxima()
eventMinima()

eventPOT()

Event iden�fica�on

Data

baseflowA()
baseflowB()

Plot paired events

Plot events

Event pairing

pairEvents()

calcStats()

Event sta�s�cs
localMin()

plotPairedEvents()

plotEvents()

limbs()

F IGURE 2 Schematic of the
features in hydroEvents. The only
input is the data (orange) with the
primary (white) and secondary (grey)
workflow steps following the arrows.
The functions (green) attached to

each step are shown. Dashed arrows
represent dependencies within the
package that are not directly called by
the user
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3.1 | Baseflow separation

The are many methods for separating baseflow from streamflow with

new methods regularly being introduced (Chen and

Teegavarapu, 2019; Pelletier and Andréassian, 2020). HydroEvents

uses the one-parameter recursive digital filter (Lyne and Hollick, 1979)

as it is the most prevalent baseflow filter in the literature and arguably

the most parsimonious (Nathan and McMahon, 1990; Eckhardt, 2008).

The digital filter can be described by (Lyne and Hollick, 1979):

fk ¼ αfk�1þ 1þαð Þ
2

yk�yk�1ð Þ ð1Þ

where fk is the filtered quick response at the kth sampling point, yk is

the original streamflow and α is the filter parameter. The baseflow is

hence the difference between the original streamflow yk and the

quickflow fk .

HydroEvents implements the one-parameter recursive digital

filter to separate the streamflow into the baseflow and quickflow

in the functions baseflowA() and baseflowB(). The implementations

of baseflowA() (Fuka et al., 2018) and baseflowB() (Ladson

et al., 2013) are identical to the cited authors. The majority of lit-

erature recommend for daily streamflow a baseflow filter parame-

ter (α) of 0.925 with three passes (Nathan and McMahon, 1990).

The reason for implementing two baseflow filters is that the litera-

ture describing each of these baseflow filters suggests the

implementations are the same. However, when one inspects the

code, it is noted that Fuka et al. (2018) adopts an algorithm with

baseflow as the subject and updates the quickflow at each time

step whereas Ladson et al. (2013) implements an algorithm using

quickflow as the subject and updates the baseflow at the end of

each pass.

3.2 | Event identification

Events are extracted using either event threshold, local maxima/minima

or the proportion of baseflow. A schematic of each of the methods is

presented in Figure 3 with each of the identification methods outlined

below. Identified events are plotted using plotEvents().

3.2.1 | Peaks over threshold

In the method of sampling commonly referred to as a ‘peaks over

threshold’ approach, and implemented in the function eventPOT()

within hydroEvents, only data above a certain value (threshold) are con-

sidered events, with events spaced by a minimum number of time

steps (min.diff ). A common application is to identify rainfall events as

non-zero rainfall with a specified minimum interevent time between

events. Criteria for selecting rainfall events varies depending on the

event of interest and the minimum interevent time can range from

several minutes to days (Dunkerley, 2008; Xuereb and Green, 2012;

Wasko et al., 2022), but generally a threshold of the instrument preci-

sion is used for sub-daily rainfall with an inter-event time of ~3 h

(Molnar et al., 2015; Visser et al., 2020). For daily rainfall, studies have

generally used a threshold of 1 mm and 1 day of zero rainfall (Wasko

and Nathan, 2019). The peaks over a threshold approach is also fre-

quently applied for extracting wave heights, flood levels and spell

characteristics of rainfall and temperature.

3.2.2 | Local maxima

Implemented in the function eventMaxima(), peaks are first identified

and then the relative (or absolute) difference (delta.y) to the

min.diff
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F IGURE 3 Schematic of event identification methods. The blue shading represents the identified event
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neighbouring valleys calculated. If the difference between the neigh-

bouring valleys exceeds a threshold this would characterize a new

event. The methodology is similar to that in SAAS (Metcalfe and

Schmidt, 2016) and AQUAPAK (Nathan et al., 2007) and is commonly

used for identifying high flow events. A minimum spacing between

peaks (delta.x) can be specified and a minimum value (threshold) removes

leading and trailing values that may not be considered part of the event

(see Figure 7-6 Linsley et al., 1958) but will not split events if a valley is

below this threshold. If further splitting of events is required eventPOT()

could be applied after eventMaxima(). For streamflow, independence

between events for event maxima is often based on a minimum interval

of 7 days (Wasko and Sharma, 2017) and a minimum difference in the

maxima of successive events of 75% (Murphy et al., 2009).

3.2.3 | Local minima

Implemented in the function eventMinima(), neighbouring valleys are

first identified and an event subsequently identified once the data has

returned within an absolute difference (delta.y) of the first valley. This

method mimics visual inspection of the data. The choice of delta.y will

be catchment specific and the reader is referred to Tang and

Carey (2017) for a detailed discussion. Similar to eventMaxima() an

additional parameter allows filtering out small values which are not

considered part of the event (threshold) and a minimum difference

between neighbouring valleys (delta.x) can be specified.

3.2.4 | Proportion of baseflow contribution

Events are identified on the basis of exceeding a given baseflow index

(Kaur et al., 2017), and implemented in the function eventBaseflow().

The baseflow index (BFI) is defined as the proportion of streamflow

that occurs as baseflow. The eventBaseflow() function first computes

the BFI for every time step of the series using baseflowB() (Ladson

et al., 2013). Event and baseflow periods are then separated by a

user-defined threshold value of BFI (BFI_Th). A minimum length for an

event can also be specified (min.diff ). The function defaults to a BFI

threshold of 0.5.

3.3 | Event pairing

Pairing of hydrological events (for example rainfall to runoff) is per-

formed using pairEvents(), in which five different specifications (type)

of pairing are implemented within a search window (lag). Figure 4

summarizes the five specification types using the example of pairing

rainfall to runoff:

1. From the start of the rainfall event, search forwards for a runoff

peak with the window extending past the end of the rainfall plus a

suitable lag.

2. From the start of the rainfall event, search forwards for the end of

the runoff with the window extending past the end of the rainfall

plus a suitable lag.

3. From the runoff peak, search backwards for a rainfall maximum

before the start of the runoff plus a suitable lag.

4. Within a suitable window backwards from the start of the runoff

search for the start of the rainfall event.

5. Within a suitable window (lag) from the rainfall peak search both

forwards and backward for a runoff peak.

The function plotPairedEvents() is used to visualize the paired events.

4 | RESULTS AND DISCUSSION

4.1 | Baseflow separation

We present baseflow separation for 67 daily streamflow values

recorded for Bass River at Loch (HRS site number 227219) in South-

East Australia from 30 June 1974 to 04 September 1974. The Bass

Type 1 (search for flow peak)
Type 2 (search for flow end)

Type 3 (search for rain peak)
Type 4 (search for rain start)

Type 5 (search for flow maxima)

Time

M
ag

ni
tu
de

rain

F IGURE 4 Schematic of the five
event pairing algorithms implemented
in function pairEvents. Here the
example of matching rainfall (blue) to
runoff (orange) is presented but the
methods can be applied to any
hydrologic data
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River data is chosen due to its use in related literature (Grayson

et al., 1996; Ladson et al., 2013) and is included in hydroEvents as

dataBassRiver. As stated in Section 3.1, the majority of literature use a

baseflow filter parameter (α) of 0.925 (Nathan and McMahon, 1990),

though other literature suggest the use of 0.980 for the filter parame-

ter (Ladson et al., 2013). The results of sensitivity tests to the filter

parameter using three passes are presented in Figure 5.

Using baseflowA() with a filter parameter of 0.925 gives a baseflow

index of 0.22. For the interested reader, this is the same as in hydroStats

(Bond, 2019) and BFLOW (Arnold and Allen, 1999). Using baseflowB()

with a filter parameter of 0.925 gives a baseflow index of 0.39 (Ladson

et al., 2013) which is the same as BaseJumper (Sinclair Knight

Merz, 2007) and AQUAPAK (Nathan et al., 2007). Using 0.980 in

baseflowB() gives similar results to using 0.925 in baseflowA(). Previous

literature (Ladson et al., 2013) suggested that differing initial values at

the start and end of the flow series as well as the number of passes may

be the reason for differing performance of the baseflow filters. How-

ever, our results suggest differing implementations—despite the litera-

ture suggesting both implementations are the same—are the reason

behind differing baseflow indices. This means users should not simply

use recommended filter parameter values from literature in combination

with any baseflow filter code without verification of their choice of filter

parameter. As the digital baseflow filter is not tied to any physical real-

ism (Nathan and McMahon, 1990) and a larger fractional baseflow may

aid identification of events—even if this is not strictly baseflow as per its

definition (Linsley et al., 1958)—event runoff coefficient calculations for

Australia (Section 4.4) use baseflowB() with a filter parameter of 0.925.

4.2 | Event identification

We apply the four methods (Section 3.2) for identifying events to the

67 daily streamflow values for the Bass River data presented above.

The results are presented in Figure 6 and are plotted using the

plotEvents() function. Except for eventBaseflow() which uses a baseflow

index for its separation criteria, all the event identification methods

have been applied to the quickflow after removal of the baseflow

using baseflowB().

All the event identification methods produce plausible results but

with nuanced differences. Consistent with the literature eventPOT() was

applied using a threshold of zero meaning any streamflow above the

baseflow (i.e. the quickflow) is an event. An advantage here is that small

events like event (1) and (4) are identified, but a disadvantage is that

events arguably that may be thought of as separate events are merged.

For example, events (3) and (6) could each be split into separate events.

Applying eventMaxima() and eventMinima() largely avoids the issue of

unwanted merging of events. The previous single event (3) is split into

events (2) and (3). Event (6) is split into three events, though using a

larger vertical difference (delta.y) for the event identification in

eventMaxima() would result in merging of these events once again.

Both eventMaxima() and eventMinima() fail to identify the first

small peak as there is no strict minima before this event. Applying

eventBaseflow() works well in splitting both large and small peaks in

separate events and classifies the first and last small peaks as separate

events. It can be generalized that, if the aim of the analysis is to iden-

tify independent streamflow maxima then eventMaxima() and

eventMinima() work well and indeed have been traditionally employed

for this task. If identifying independent small events becomes difficult,

or the aim is to identify wet spells, eventBaseflow() may be preferred.

The subsequent results for testing event pairing strategies uses

eventMaxima() as it is best suited for identifying streamflow maxima.

For calculating runoff coefficients across Australia events are identi-

fied using eventBaseflow() due to our aim of identifying a variety of

event sizes.

4.3 | Event pairing

To test the different methods of pairing events from the two hydro-

logical time-series of rainfall and runoff/streamflow we use data for

HRS station 1051015A (�15.77�, 145.01�) located in the tropical

north of Australia (Figure 7). Rainfall events are identified using

eventPOT() using a threshold = 1 (mm) and min.diff = 1. To present the

salient differences between the pairing methods streamflow events

are identified using eventMaxima(). Each event pair is shown in the

same colour using the plotPairs() function.

Searching forwards in time from the start of the rainfall for a flow

peak (type = 1) the first two flow peaks (shown in green) are paired to

the first rainfall event. As there was no streamflow response the third

rainfall event (shown in purple) remains unpaired. Where we search

for the start of a streamflow event (type = 2) the last streamflow peak

(shown in blue) remains unpaired. This is because the streamflow

responded to rainfall which has likely not been accurately captured in

the rainfall gauging of this catchment. This demonstrates the sensitiv-

ity of a pairing algorithm which only searches in the forwards direc-

tion. Pairing backwards from the streamflow peak works well

(type = 3), but the algorithm cannot pair the first two streamflow
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F IGURE 5 Impact of different baseflow filtering for streamflow
data from 30 September 1974 to 04 September 1974 at Bass River at
Loch, South-East Australia. The streamflow is shown in blue with the
different baseflow filters shown in black
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peaks. All the rainfall (yellow) is paired only to the second streamflow

peak, and not the first which remains unpaired. This is because the

streamflow peaks were classified as separate events. Here the user

would need to return to their event separation to ensure these two

streamflow events are identified as one. As in the case of pairing for-

wards (type = 2), the final streamflow event is not paired if one

searches backwards from the start of each streamflow event (type= 4).

Interestingly the final method implemented (type = 5), which matches

peaks in both directions, identifies event pairs well, overcoming issues

which result from rainfall gauging not capturing events accurately.

Not shown here, we found using eventBaseflow() with BFI_Th = 0.5

resulted in similar pairing for type = 1 and type = 2, and likewise for

type = 3 and type = 4. Hence the event runoff coefficients across

Australia were calculated from event pairs identified using

eventBaseflow() with both type = 1 and type = 3 pairing algorithms.

4.4 | Event runoff coefficients for Australia

Streamflow events were identified using eventBaseflow() with

BFI_Th = 0.5 and rainfall events using eventPOT() with threshold = 1

(mm) with a min.diff = 1 used for both streamflow and rainfall.

Streamflow events were first paired to rainfall using type = 3 with a

maximum lag equivalent to the time of concentration for individual

catchments, which were estimated by the parsimonious Pilgrim

McDermott formula (McDermott and Pilgrim, 1982). By passing sum()

through calcStats() event runoff coefficients were calculated.

Figure 8a presents the long-term average event runoff coefficients for

each catchment. Event runoff coefficients greater than one were

removed.

Average event runoff coefficients exhibit large variability across

Australia varying from near zero to 0.7. The majority of event runoff

coefficients range from near zero to 0.21 (75th percentile) indicating

that when a rainfall event occurs in Australia very little of the rainfall

is returned to the catchment in the form of streamflow. In the centre

and south-west of Australia runoff coefficients rarely exceed 0.1.

Greater event runoff coefficients are found around the north and

eastern coast, correlating with regions of greater moisture availability

and greater mean rainfall. The greatest event runoff coefficients are

identified in the south of Australia, consistently greater than 0.2, indi-

cating that this region of Australia has the highest proportion or rain-

fall returned as streamflow.
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F IGURE 6 Event identification using four different methods. Events are highlighted in blue with the start and finish identified by filled circles.
The numbers in brackets indicate event index. Maxima are identified using calcStats() and shown in red. The baseflow is indicated by a dashed line
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Event runoff coefficients are indicative of the runoff mechanism,

being smallest for flash floods and increasing for short rain floods,

long rain floods, rain-on-snow floods and snowmelt floods (Merz

et al., 2006). This large variability in event runoff coefficients across

Australia reveals interesting hydrological insights as the dominant run-

off mechanisms across Australia varies little. The dominant runoff

mechanisms in Australia are generally related to saturation excess

overland flow rainfall whereby either rainfall falls on wet antecedent

soil moisture or long (multi-day) rainfall causes the soil to wet up

before overland flow occurs (Stein et al., 2020). As climatology and

runoff mechanisms are the two main factors in changing event runoff

coefficients (Merz et al., 2006) this suggests a large amount of the var-

iability in event runoff coefficients may be explained by climatology

(Section 4.6).

4.5 | Comparison of rainfall-runoff relationships
across event and annual scales

Where event runoff coefficients are indicative of runoff mechanisms,

the annual runoff ratio, aggregates catchment processes to the annual

time step, and thus is a descriptor a catchment's rainfall-runoff

response especially over longer temporal scales (Saft et al., 2015).

Figure 8b presents the long-term mean annual runoff ratio (annual

runoff divided by annual rainfall) across Australia. There is a strong

similarity in the spatial pattern in the annual runoff ratio and event

runoff coefficients with small values inland and in the south-west and

greater values on the east coast and particularly in the south—

suggesting aggregated annual rainfall-runoff relationships may be

indicative of the type of runoff mechanism.
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F IGURE 7 Event pairing using all five pairing specifications. The data is for the year 2015 from station 1051015A located in the tropics of
Australia. Rainfall is plotted as vertical bars and the streamflow as a line. Events are coloured based on the data set being used for pairing, for
example type = 1 pairs based on rainfall. Paired events are then indicated by the same colour and unpaired events are in black and highlighted
using black circles
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Figure 8c presents a scatter plot of the event runoff coefficient

against the annual runoff ratio. The annual runoff ratios underesti-

mate the contribution to runoff from rainfall events that exhibit runoff

in catchments with very small event runoff coefficients, while over-

estimating the runoff contribution for the remaining catchments. For

catchments with low event runoff coefficients, event runoff coeffi-

cients overestimate the streamflow response as for many rainfall

events there is no streamflow response, and this behaviour is not cap-

tured by the event runoff coefficient which samples on streamflow

response alone. Where the runoff response is overestimated by the

annual runoff ratio there is streamflow between individual events

from baseflow (groundwater) contribution that is not captured in the

event response, even when baseflow is included in the event

streamflow. Although annual rainfall-runoff ratios are indicative of

catchment runoff response and processes they can overestimate the

response from induvial events by approximately 50%.

4.6 | Sensitivity of event runoff coefficients to
climate

The event runoff coefficients and annual runoff ratios are grouped by

Köppen climate zone (Figure 9). Most of central Australia is arid

(B) and the annual runoff ratio is very low indicating a lot of rainfall

does not reach the outlet—but this underrepresents the actual catch-

ment behaviour when there is a streamflow response. When pairing

on the basis of streamflow (type = 3) the event runoff coefficients are

much greater, indicating that although for many rainfall events runoff

may not occur, when runoff does occur it is much greater than the

annual runoff ratio may imply; this is consistent with the finding in

Guo et al. (2020) for over 163 Australian catchments, in which more

arid catchments are generally associated with higher skewness in run-

off. This result is indicative of a strong modulation by the antecedent

moisture conditions in these catchments. The same is true for the

temperate dry summer (Cs) region whereby catchments spend much

time being wetted up in the wet season before runoff and high flows

occur (Wasko et al., 2020b).

In the temperate dry winter (Cw) and tropical (A) regions, the

reverse is true with event runoff coefficients much less than annual

runoff ratios. For these climates, although antecedent moisture condi-

tions modulate runoff response there are equal contributions from

rainfall and antecedent soil moisture to the runoff response (Wasko

et al., 2020b) suggesting a contribution from infiltration excess as a

runoff mechanism. As many rivers remain ephemeral, there is a

streamflow (baseflow) contribution between rainfall events that is not

included in the event runoff coefficient, resulting in the greater annual

(a)

●●●●●●

●●●●●●●●●●
●
●

●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●● ●●● ●● ●

●●●●

●●●● ●●●●●●●●●●●●●●●●●●
●●
●●●●

●

●

●
●●●

●●●
●●●●●●●

●
●

●

●●●
●●●●●●●●●●●●● ●●●●●

●●
●●●●●●

●
●

●●

●●●
●●●●

●●●●
●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●

●
●
●●●●

●●

●
●

●●
●

●●●●
●●●

●

●

●●●●●●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●● ●
●

●●●●●●●●●●●●●●●●
●●●●●●●●

●
●

●●●

●●
●

●●
●

●
●●

●
● ● ●●

●●

●

●

●

●

●

Event runoff coefficient

0−0.2
0.2−0.4

0.4−0.6
0.6−0.8

0.8−1

(b)

●●●●●●

●●●●●●●●●●
●
●

●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●● ●●● ●● ●

●●●●

●●●● ●●●●●●●●●●●●●●●●●●
●●
●●●●

●

●

●
●●●

●●●
●●●●●●●

●
●

●

●●●
●●●●●●●●●●●●● ●●●●●

●●
●●●●●●

●
●

●●

●●●
●●●●

●●●●
●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●●

●
●
●●●●

●●

●
●

●●
●

●●●●
●●●

●

●

●●●●●●●●●●
●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●● ●
●

●●●●●●●●●●●●●●●●
●●●●●●●●

●
●

●●●

●●
●

●●
●

●
●●

●
● ● ●●

●●

●

●

●

●

●

Annual runoff ratio

0−0.2
0.2−0.4

0.4−0.6
0.6−0.8

0.8−1 ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●
●●●

●
● ●

●

●

●

●
●

● ●

●●

●

●

● ●
●

●

●●

●

●●

●

●

●
●

●●●

●

●●
●● ●

●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●●

●

●

●

●●
●
●●●

●●
●●

●
●

●

●

●

●●
● ●

●

●

●

●
●

●●
●●

●
●

●

●●
●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●

●●

●
● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●●●

●●
●

●●
●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●
●

● ●

●●
●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●

●

●

●
●

●

●
● ●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●
●

● ●●

●

●

●

●
●

●

●
●

●
●● ●

●
●● ●

●

●

●

●
●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●●

●●

●● ●

●
●●
●

●

●

●
●

●

●
●●

●●●●
●

●

●
●
●

●

●

●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c)

Annual runoff ratio

E
ve

n
t 
ru

n
o
ff
 c

o
e
ff
ic

ie
n
t

F IGURE 8 Comparison of event runoff coefficients and annual runoff ratio for Australia (a) event runoff coefficient (b) annual rainfall ratio
(c) scatterplot of event runoff coefficient and annual runoff ratios
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runoff ratio. It does not appear that this baseflow contributes signifi-

cantly to the flood response as otherwise the event runoff coefficient

and annual runoff ratio would be more similar.

In the temperate no dry season (Cf) climate zone, we see similar

event runoff coefficients and annual runoff coefficients due to peren-

nial rivers and the annual runoff contribution being strongly related to

the event-based runoff. We note though that floods in the temperate

no dry season climate zone (south-east of Australia) are winter domi-

nant, despite rainfall extremes occurring throughout the year, due to

rainfall excess flooding resulting from wet antecedent soil (Wasko

et al., 2020b). Hence the seasonality of the different climate zones

plays a large role in the runoff mechanism affecting Australia. In addi-

tion, if one was to rank the climate zones in terms of their runoff

response, based on annual runoff ratios one might rank arid and tem-

perate dry summer as having different behaviour, but in fact, our

results showed that their runoff behaviour is very similar based on the

event runoff coefficient, with a strong rainfall excess flow mechanism.

4.7 | Sensitivity of event runoff coefficients to
catchment area and pairing strategy

Different sampling and pairing strategies, as well as catchment proper-

ties, will lead to the calculation of different event runoff coefficients

and hence possible misidentification of runoff generation processes.

Although the relative ranking of event runoff coefficients across cli-

mates remains consistent (Figure 9), when pairing on the basis of rain-

fall (type = 1) the event runoff coefficients are consistently less than

when paired on the basis of streamflow (type = 3). This is because

events with wet antecedence and greater event magnitude are more

likely to be chosen when pairing on the basis on the streamflow. Sam-

pling on the basis of streamflow induces a bias to sampling events

with saturated excess streamflow and results in a much greater

streamflow response being implied from a rainfall event than one

could actually expect. This sensitivity to pairing strategy and climatol-

ogy is further stratified on catchment area (Figure 10). The event run-

off coefficient decreases as catchment area increases (Cerdan

et al., 2004), with the larger the catchment, the less variability in the

event runoff coefficient. This behaviour is consistent across different

climate zones and sampling strategies.

The variability induced by the choice of pairing strategy is no less

than the variability across climate zones and greater than the differ-

ences between annual and event approaches. When paired on the

basis of rainfall, the event runoff coefficients exhibit much less vari-

ability demonstrating how in fact many of the climate zones behave

similarly in terms of runoff mechanism with strong modulation of

flood response due to dry antecedent moisture conditions and the

moisture limited nature of the Australia continent (Anabal�on and

Sharma, 2017). Although the dominant runoff generation processes

remain well represented by both pairing strategies, these results high-

light that the approach used to pair events can have more of an

impact on the magnitude of event runoff coefficients than the primary

driver of runoff variability in Australia, that is, the climatology.

5 | CONCLUSIONS

Here we used the R package hydroEvents to identify and pair rainfall

and streamflow events to compile the first ever evaluation of event-

scale rainfall-runoff relationships across the continent of Australia. As

the hydroEvents package implements four different methods of identi-

fying events and five different methods of pairing events, each was

first tested before subsequent calculation of event runoff coefficients.

For calculating the baseflow contribution, sensitivity testing indicated

that, despite similar descriptions, the baseflow filters did not work

identically. It is hence suggested that one should not simply use a
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recommended filter parameter values from literature in combination

with any baseflow filter implementation without verification of the

resulting baseflow index.

The hydroEvents package implements four methods of identifying

events based on (1) peaks over threshold, (2) event maxima, (3) event

minima and (4) a baseflow index. It was found that, although each

method can give similar results depending on the parametrisation, for

identification of streamflow maxima a method based on local maxima

or minima is preferred, but where small events or wet spells are a tar-

get, a method using the baseflow index may be preferable.

Five approaches to pairing events between two time-series

(e.g. rainfall and runoff) incorporating different search directions and

start/end points were tested. Pairing forwards on the basis of rainfall

may miss events where the streamflow responded to rainfall which

has not been accurately captured in the rainfall gauging of the catch-

ment. Alternatively, pairing backwards from streamflow can fail to

match multiple rainfall peaks requiring careful sampling of rainfall

events. Matching peaks in both directions can overcome issues which

result from rainfall gauging not capturing events accurately.

We presented the first continental analysis of event-scale rainfall-

runoff relationships for Australia. Using the proportion of baseflow

contribution (baseflow index) to identify runoff events, and a peak over

a threshold to identifying precipitation events, event runoff coefficients

across Australia were calculated. Two pairing strategies were tested—

pairing forwards from the rainfall and pairing backwards from the resul-

tant runoff. Event runoff coefficients for Australia indicate that little

rainfall is returned to runoff across the Australian continent with cli-

matic variability being the primary driver of event runoff response.

With the exception of the tropics most runoff is generated due to rain-

fall excess whereby runoff is generated by rainfall falling on wet gro-

und. The impact of analysis choice was presented by calculating event

runoff coefficients pairing rainfall runoff events on the basis of runoff,

and then on the basis of rainfall, with markedly differing results. Sam-

pling on the basis of streamflow induces a bias to sampling events wet

antecedent moisture and results in a much greater streamflow

response being implied from a rainfall event than one would expect is

predicting the runoff response based on rainfall sampling.

The hydroEvents package is the only open-source package to

apply multiple event identification and pairing methodologies. We

note that although we illustrated the use of hydroEvents package on

rainfall and runoff time-series, the package is flexible enough to iden-

tify and pair events in many hydrological variables, such as compound

extremes resulting from rainfall and positive tidal anomaly. The hydro-

Events package will enable efficient analysis of large data sets, facili-

tate replicability of future studies, and lead to improved

understanding of hydrological processes.
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