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49 Abstract

50 Infectious diseases are strong drivers of wildlife population dynamics, however, empirical analyses 

51 from the early stages of pathogen emergence are rare. Tasmanian devil facial tumour disease 

52 (DFTD), discovered in 1996, provides the opportunity to study an epizootic from its inception. We 

53 use a pattern-oriented diffusion simulation to model the spatial spread of DFTD across the species’ 

54 range and quantify population effects by jointly modelling multiple streams of data spanning 35 

55 years. We estimate the wild devil population peaked at 53,000 in 1996, less than half of previous 

56 estimates. DFTD spread rapidly through high-density areas, with spread velocity slowing in areas of 
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57 low host densities. By 2020, DFTD occupied >90% of the species’ range, causing 82% declines in local 

58 densities and reducing the total population to 16,900. Encouragingly, our model forecasts the 

59 population decline should level-off within the next decade, supporting conservation management 

60 focused on facilitating evolution of resistance and tolerance.

61 Introduction 

62 Emerging infectious diseases are a global threat for wildlife (De Castro & Bolker 2005; 

63 Skerratt et al. 2007; McCallum 2012), leading to cascading ecosystem impacts (McCallum & Dobson 

64 1995; Daszak et al. 2000; Buck & Ripple 2017). Understanding the spatial and temporal dynamics of 

65 epizootics is key to managing their effects on host populations (Langwig et al. 2015; Plowright et al. 

66 2019), with variation in host density a major driver of whether epizootics establish in a population 

67 and spread to others (Swinton et al. 1998; Dobson & Foufopoulos 2001; Hagenaars et al. 2004). 

68 Simple diffusion models suggest that the velocity of pathogen invasion is determined by factors that 

69 influence a pathogen’s basic reproductive number (R0) and/or the movement rate of infected hosts, 

70 which can be interrelated (van den Bosch et al. 1990; van den Bosch et al. 1992). The processes 

71 leading to pathogen transmission can vary with host density and environmental heterogeneity, and 

72 can operate at different scales (e.g., within versus between population spread). For instance, the 

73 spatial spread of rabies in racoons was accelerated by unpredictable long-distance dispersal (Russell 

74 et al. 2005) but slowed by rivers (Smith et al. 2002), whereas low host abundance restricted the 

75 spread of Mycoplasma gallisepticum in house finches (Carpodacus mexicanus) (Hosseini et al. 2006). 

76 Classic epidemiological models require estimates of pathogen prevalence and transmission, 

77 mortality rates and host densities (Anderson & May 1979; McCallum et al. 2001), which are difficult 

78 to obtain in wild animals (Dobson & Hudson 1995). The difficulty of obtaining this information can be 

79 overcome by leveraging ecological data, not necessarily collected for epidemiological purposes, to 

80 understand host population dynamics and infer epidemiological processes. Recent advances in 

81 species distribution modelling have made it possible to integrate multiple datasets into “joint-

82 likelihood” models (Miller et al. 2019; Isaac et al. 2020). These integrative approaches can translate 

83 across common ecological data types (Isaac et al. 2020), making them highly relevant in an age 

84 where large online databases can supplement systematically collected data (Theobald et al. 2015; 

85 Fletcher Jr. et al. 2019). Using multiple datasets can help answer questions where each dataset alone 

86 is insufficient (Pacifici et al. 2019). Here we use a Bayesian joint-likelihood model (Bachl et al. 2019; 

87 Isaac et al. 2020) to model the long-term population effects of an emerging infectious disease. 

88 The emergence and spread of Tasmanian devil facial tumour disease (DFTD) provides an 

89 opportunity to study an epizootic from its inception. DFTD is a transmissible cancer that has caused 
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90 severe population declines in Tasmanian devils (Sarcophilus harrisii, hereafter ‘devil’) over the last 

91 three decades (Hawkins et al. 2006; McCallum et al. 2007). DFTD was discovered in 1996 and has 

92 since spread across most of the devil’s geographic range (Hawkins et al. 2006; Lazenby et al. 2018). 

93 The nearly 100% fatal infection causes large tumours on a devil’s mouth, face and neck (Fig 1.A), 

94 which are transmitted through biting (Pearse & Swift 2006). 

95 Early studies indicated that DFTD transmission is strongly frequency-dependent (McCallum 

96 et al. 2009), making transmission possible at very low host densities (De Castro & Bolker 2005). This 

97 frequency dependence arises because most bite injuries occur during mating interactions when 

98 males guard females, which happens irrespective of density (Hamilton et al. 2019). The frequency-

99 dependence led early models to suggest the possibility of disease-induced extinction (McCallum et 

100 al. 2009), and consequently, the species was listed as Endangered (Hawkins et al. 2008). While 

101 transmission within populations may be maintained by frequency-dependent processes (McCallum 

102 et al. 2009), we hypothesise here that the initial spatial spread of DFTD might be a density-

103 dependent process at larger spatial scales.

104 DFTD now encompasses almost the entire geographic range of the devil (i.e., Tasmania, 

105 Australia), presenting the opportunity to study the spread and population effects from the first 

106 detection of DFTD to maximum potential distribution. Data are available across the entire range of 

107 this emerging host-pathogen system from before and during the early stages of the epizootic. We 

108 used three datasets: i) spatiotemporal occurrences of DFTD, ii) 35 years of spotlighting counts of 

109 devils, 10 years prior and 25 years after DFTD discovery, and iii) 21 years of longitudinal capture-

110 mark-recapture host density estimates. Our aims and analysis took a two-stage approach (Fig 1B). 

111 Our first aim was to map and model the spatial spread of DFTD across Tasmania, and to investigate 

112 how host density influenced the pattern of disease spread. To do this, we developed a stochastic-

113 diffusion simulation that responded to host density. We parameterised this model using a pattern-

114 oriented framework (Grimm et al. 2005), providing inference on how host density shaped the spatial 

115 spread of DFTD. Our second aim was to model the effects of DFTD on devil density and total 

116 abundance. Using a map of DFTD spread as an explanatory variable, we jointly modelled the 

117 spotlight counts and capture-mark-recapture data. We forecast these findings to the scenario where 

118 DFTD occupies the entire range of the devil (Storfer et al. 2017). Finally, we provide the first rigorous 

119 estimate of changes in the total abundance of the species.  

120

121 Materials and methods 
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122 Data sources

123 i) Spotlight surveys as an index of devil density

124 The Tasmanian Government has conducted standardised annual spotlighting surveys at up 

125 to 172 transects across Tasmania (Fig 2A; n=5,761) from 1985-2019 (Table S1). The surveys record all 

126 sightings of non-domestic mammalian wildlife species, including devils (Hocking & Driessen 1992), 

127 along 10-km road transects. Transects are driven at a constant speed of 20 km/hr, with one person 

128 using a handheld spotlight to observe animals on both sides of the road (for details, see Hocking & 

129 Driessen 1992; Hollings et al. 2014). Transects are surveyed once per year during the summer 

130 months, ensuring comparability between years, but precluding the use of techniques that require 

131 repeat surveys within a year, like occupancy modelling. We treat the count of devils per transect as 

132 an index of devil density, and henceforth refer to it as ‘relative density’.

133 ii) Estimating absolute density from trapping surveys

134 We assembled 183 estimates of devil density (±95% CI) derived from standardised 10-day 

135 capture-mark-recapture trapping surveys, which used ~40 traps set over 25 km2 (Appendix S1 & 

136 Table S2). We first calculated 87 estimates of devil density using spatially explicit capture-recapture 

137 (SECR) models (Borchers & Efford 2008). Since SECR uses the spatial detection history to estimate 

138 the effective survey area, it can produce comparable estimates of density across different trap 

139 layouts (Borchers & Efford 2008). See Appendix S1 for details. In a second step, we combined our 

140 results with 96 estimates of devil density reported by Lazenby et al. (2018), who also used SECR to 

141 estimate density. In total, the density estimates came from 72,298 trap nights at 15 sites (Fig 2B). 

142 iii) Disease spread

143 We collated records of DFTD locations including those already published from 1996-2015 

144 (Lazenby et al. 2018) and recent cases of DFTD in new areas until September 2020. Lazenby et al. 

145 (2018) reported locations of lab-confirmed DFTD samples until 2015. We additionally used DFTD 

146 locations reported in Hawkins et al. (2006) and McCallum et al. (2007), some of which included cases 

147 with clinical signs of DFTD but were not lab-confirmed, which is important before the disease was 

148 formally identified. Because we aimed to model the progression of the disease front into new areas, 

149 we retained only the earliest arrival of DFTD in each 10×10-km grid cell across Tasmania, leaving 83 

150 records (Fig 3). 

151 There is little trapping data from south-west Tasmania because the region is largely 

152 inaccessible. To survey this area for DFTD, we used records from recent camera-trap surveys. 

153 Although cameras are less sensitive for detecting small tumours, they regularly detect tumours when 
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154 they become larger. In this case, cameras observed tumours in areas with confirmed cases of DFTD 

155 but did not detect DFTD along the south-west coast (2016-2020), where live trapping in 2015 also 

156 did not detect DFTD. We have therefore included 8 absence locations along the south-west coast 

157 (Fig 3). Additionally, one long-term trapping site in the north-west is currently free of disease (Fig 3). 

158 Based on a continuation of the pattern of spread, we estimated that DFTD would arrive at these 

159 disease-free sites in 2022 (Fig 3B). Future disease spread may differ from this estimate, but any 

160 departures will have only a small effect on the population estimates because the influence of these 

161 data points relates to a small, low-density area of Tasmania. 

162

163 Modelling spatial data using integrated nested Laplace approximation

164 We visualised the spatial spread of DFTD and modelled changes in devil density using 

165 integrated nested Laplace approximation (INLA) (Illian et al. 2013), an accurate and computationally 

166 fast option for Bayesian inference from spatial data. We used the inlabru R package (Bachl et al. 

167 2019; R Core Team 2019), which builds on the R-INLA package (Rue et al. 2009; Bakka et al. 2018). 

168 Spatial dependence between observations is modelled using a Gaussian random field, which is a 

169 spatially continuous process where random variables at any point in space are normally distributed, 

170 and are spatially correlated with other random points via a continuous correlation process (Bachl et 

171 al. 2019). The Gaussian random field is approximated by a stochastic partial differential equation 

172 (SPDE) (for details, see Lindgren et al. 2011). In all models, we used a Matérn correlation structure 

173 for the SPDE (Table S6).

174

175 Modelling the pre-DFTD devil population 

176 We spatially modelled devil relative density at the time of DFTD discovery using the count of 

177 devils per spotlight transect from 1985-1996 as the response variable. We created temporally static 

178 continuous variables for the proportional cover of four major habitat classes comprising 84% of 

179 Tasmania: 1) wet eucalypt and rainforest (%wetEuc, 28% of Tasmania), 2) dry eucalypt forest 

180 (%dryEuc, 24%), 3) buttongrass moorlands (%butGrass, 9%), and 4) agricultural land (%agric, 23%). 

181 We excluded %dryEuc from the models because it was negatively correlated with %wetEuc 

182 (Pearson’s r = -0.65). We modelled a non-linear effect of ‘survey year’ (1985-1996) using a one-

183 dimensional SPDE. Finally, to model spatial correlations not accounted for by covariates, as well as 

184 correlations between repeated surveys at a location, we created 1) a temporally static two-
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185 dimensional SPDE and 2) a spatiotemporal SPDE. See Table S6 for details and ecological justification 

186 of these variables and Fig S1 for a vegetation map.

187 We followed the model selection advice of Illian et al. (2013) when inferring the effect of  

188 spatial covariates in models that also include spatial random fields. We began by fitting a model with 

189 the three vegetation covariates and ‘survey year’. Using this model, we tested whether devil counts 

190 best conformed to a Poisson or negative binomial distribution. Then, we fitted all simpler 

191 combinations of the vegetation covariates, aiming to select the statistically important vegetation 

192 covariates. Next, we added a temporally static SPDE, and finally a spatiotemporal SPDE (see Table S7 

193 for models). We selected the best model using a leave-one-out cross-validation quantity, the 

194 conditional predictive ordinate (CPO), with smaller values of -2*Σ(logCPO) indicating better fit (Pettit 

195 1990). To screen for violations of assumptions, we spatially examined CPO scores and histograms of 

196 the predictive integral transform, and visually examined Pearson residuals against model estimates 

197 (Conn et al. 2018). From the best model, we produced a predictive map of devil relative density 

198 across Tasmania as a function of the vegetation covariates and random field, with year set to 1996. 

199 We did this using the predict function of inlabru, which repeatedly draws samples from the 

200 posterior distributions of the model parameters. 

201

202 Pattern-oriented diffusion simulation of the spatial spread of DFTD

203 To investigate the effect of host density on the spatial spread of DFTD, we developed a grid-

204 based, stochastic-diffusion simulation. We parameterised this model using a pattern-oriented 

205 framework, which provides a systematic, data-oriented way of calibrating complex simulation 

206 models (Grimm et al. 2005; Grimm & Railsback 2012). Specifically, we used Approximate Bayesian 

207 Computation (ABC) using the abc package (Csilléry et al. 2012) in R. This involved running many 

208 versions of the model, each with different parameters drawn from vaguely specified prior 

209 distributions. Using summary statistics from the simulations, ABC selects only the models that are 

210 close to reproducing ‘target’ statistics calculated from the observed data, from which ABC estimates 

211 the posterior parameter distributions (Csilléry et al. 2010; Csilléry et al. 2012).

212 To initiate the simulation, we seeded one grid cell in north-east Tasmania with DFTD at a 

213 location between the first two observed cases of DFTD. We started the simulation in 1990 because 

214 genomic evidence suggests that although DFTD probably emerged in the 1980s, it was not until the 

215 mid-1990s that the effective reproduction number increased and DFTD began to spread more widely 

216 (Patton et al. 2020). In each of 31 timesteps (1990-2020), the probability of DFTD spreading into an 
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217 unoccupied grid cell was first determined by the distance, s, from an occupied cell. For cells within s 

218 distance, the odds, Y, of DFTD spreading into a cell was:

219 log(Y) = β1 + β2relativeDensity

220 where β1 is an intercept and β2 is a coefficient for the effect of devil relative density (previous 

221 section). The probability of diffusing into a new cell was stochastically determined by sampling from 

222 the binomial distribution with a probability of exp(Y)/(1+exp(Y)). We assumed that once grid cells 

223 were infected by DFTD, they remained so thereafter, which is broadly true at the landscape scale. 

224 We used ABC to estimate the posterior distributions of s, β1 and β2. We considered 

225 parameters for β1 and β2 to be important if credible intervals did not span zero. We evaluated the 

226 simulations on their ability to correctly estimate the year of arrival at 83 DFTD locations and the 

227 absence of DFTD in 9 DFTD-free locations. See Appendix S2 for model details and see Appendix S3 

228 for R code.

229 To visually compare the results of the ABC-parameterised simulation with the observed 

230 data, we created an interpolated map of DFTD first cases. Using inlabru (Bachl et al. 2019) in R, 

231 we modelled the year of DFTD arrival using a Gaussian distribution in response to a spatial random 

232 field only (Table S6). From this model, we produced a smooth map of estimated disease-arrival 

233 times. Because this model is based solely on a spatial random field, it provides no direct inference 

234 about the processes responsible for the pattern of disease spread. Nevertheless, because it directly 

235 fits the data, it has higher descriptive fidelity than the diffusion model. We therefore use the 

236 diffusion model to interpret the processes driving DFTD spread, while using the random-field-map 

237 for the subsequent models investigating population effects. 

238

239 Integrating multiple data sources into a joint-likelihood model

240 We integrated the density and spotlight datasets into a Bayesian joint-likelihood model. 

241 Joint likelihood models combine multiple data sources into single integrated models that estimate a 

242 shared set of parameters (Miller et al. 2019; Isaac et al. 2020). The integrated model has sub-models 

243 for each data source, with some or all parameters shared between the sub-models (Bachl et al. 

244 2019; Miller et al. 2019). We fitted the joint-likelihood model using the inlabru R package 

245 (tutorials in Bachl et al. 2019; Watson et al. 2019). To model spatiotemporal changes to devil density 

246 from the spotlighting and density datasets, we created explanatory variables for ‘survey year’ (1985-

247 2019) and the model-estimated number of years since DFTD arrival to a site (‘yrsDFTD’; 0-23 years), 

248 which we estimated from the random-field-map of disease spread (Fig 3B). Non-linear effects of 
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249 ‘survey year’ and ‘yrsDFTD’ were modelled using one-dimensional SPDEs (Table S6). As previously 

250 described, we modelled the effect of three vegetation types: %wetEuc, %agric and %butGrass. 

251 Finally, to model spatial correlations not accounted for by covariates, we included in separate 

252 models a temporally static two-dimensional SPDE and a spatiotemporal SPDE that allows the 

253 random field to change through time (Table S6). 

254 We followed the same model selection process as for the pre-DFTD model, first by selecting 

255 the important environmental covariates, and then adding spatial random fields (Illian et al. 2013). 

256 For the spotlighting sub-model, the response variable was the count of devils observed on a transect 

257 (Poisson or negative binomial distribution). For the density sub-model, the response variable was the 

258 estimated devil density for each trapping session (devils/km2; gamma or Weibull distribution). All 

259 models used the default link function. The most complex joint-likelihood model took the form of 

260 log(spotlight) = β1 + f3(yrsDFTD) + f4(surveyYear) + β5wetEuc + β6butGrass + β7agric + SPDE

261 log(density) = β2 + f3(yrsDFTD)⋅β8 + f4(surveyYear) + β5wetEuc + β6butGrass + β7agric + SPDE

262 where β1 and β2 are intercepts for each sub-model, f3 and f4 are shared non-linear effects, β5, β6, β7 

263 are shared fixed effects, SPDE is a shared spatial random field and β8 is a scaling constant that 

264 modifies f4 (see Chapter 3 of Krainski et al. 2019). We included the scaling constant because initial 

265 exploration of the two datasets suggested that the spotlight data slightly overstated the decline in 

266 devil density. See Table S9 for the structure of all fitted models. From the density sub-model of the 

267 best joint model, we produced predictive maps of devil density across Tasmania at various points 

268 from 1985-2035 (predict function of inlabru). To estimate the total devil abundance, we 

269 multiplied density estimates weighted by the area of each grid location across Tasmania. See 

270 Appendix S4 for example R code.

271

272 Results

273 Density-dependent spatial spread of DFTD

274 Devil relative density varied substantially across Tasmania at the time of DFTD discovery (Fig 

275 3A). The best model of pre-DFTD spotlight detections included a spatiotemporal random field and 

276 negative effects of wet eucalypt/rainforest and buttongrass (Table S7). As a result, devil relative 

277 density was highest in the central and eastern part of Tasmania, where vegetation is dominated by 

278 dry eucalypt forests and woodlands (Fig 3A). 
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279 The diffusion simulation of DFTD spread suggests that devil density played a key role in 

280 mediating the initial spatial spread of DFTD. Within a timestep, the ABC posteriors estimated that 

281 DFTD was able to diffuse into grid cells within ~18 km of already-occupied cells, with the probability 

282 of doing so strongly influenced by the relative devil density of the receiving grid cell 

283 (βrelativeDensity = 7.75, 95% CI: 6.89-8.29) (Table S8; Fig S5). This model goes some way to 

284 explaining why DFTD spread south rapidly in the decade after ‘break-out’, as it moved through an 

285 area with high relative densities (Fig 3). From the mid-2000s, the spread of DFTD was substantially 

286 slower, as the western and southern disease-fronts crossed areas of lower relative densities (Fig 3). 

287 The diffusion model correctly predicted that much of south-west Tasmania, a rugged area with low 

288 devil densities (Hawkins et al. 2006), is currently free of DFTD. The diffusion model and random-

289 field-model estimate that DFTD occupies 91% and 96% of Tasmania (Fig 3), respectively, with high 

290 uncertainty in southern Tasmania, where data is sparse (Fig S4) 

291

292 Devil population declines 

293 The joint-likelihood model revealed a strong negative effect of 'yrsDFTD’, with local devil 

294 densities declining by an average of 76% 10 years after disease arrival, at which point the population 

295 decline tends to level off, with 82% decline after 23 years (Figure 4.C). The joint model revealed a 

296 positive effect of ‘survey year’, and negative effects of %butGrass and %wetEuc (Fig 4; Table 1; Fig 

297 S6). Devil density was steadily rising before the discovery of DFTD, peaking in 1996 at a Tasmania-

298 wide mean of 0.84 devils/km2 (95% CI: 0.61-1.08) and a total population of 53,000 (95% CI: 39,600–

299 71,800) (Fig 5). By 2020, estimated mean density had declined to 0.27/km2 (0.20–0.36) and the total 

300 population had declined by 68% to 16,900 (12,500–23,100) (Fig 5). 

301 To project forward to the scenario where DFTD will occupy all of Tasmania, we made the 

302 simplifying assumption, based on a continuation of disease spread trends, that DFTD will occupy all 

303 of Tasmania by 2022. Based on this assumption, our model forecasts a continuing but slowing 

304 decline of total devil abundance (Fig 5), suggesting it should plateau at 11,900 devils (95% CI: 6,300 – 

305 18,600). Overall, this would represent a 78% decline in total abundance. To date, no local extinctions 

306 have been documented, with devil populations persisting at all monitoring sites, albeit at much 

307 lower densities (Fig S2). 

308

309 Discussion

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

 14610248, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.13703 by T

he U
niversity O

f M
elbourne, W

iley O
nline L

ibrary on [15/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



This article is protected by copyright. All rights reserved

310 We modelled the spread of an infectious epizootic disease, DFTD, from emergence until the 

311 present, where it now occupies >90% of the geographic range of its sole host, the Tasmanian devil. 

312 DFTD emerged in an area of high host density, potentially creating the perfect conditions for the 

313 epizootic to establish and spread, with our diffusion simulation suggesting that DFTD spread fastest 

314 in areas of high host density. We integrated 35 years of spotlighting data and 21 years of capture-

315 mark-recapture data to spatially model changes in the devil population, highlighting the utility of 

316 recent advances in data integration for modelling changes to species’ distributions (Miller et al. 

317 2019; Isaac et al. 2020). The joint-likelihood model allowed us to quantify, for the first time, the 

318 wave of severe population declines as DFTD invaded host populations. Our forecast, which does not 

319 include rapid evolutionary dynamics, predicts the devil population decline is likely to level-off within 

320 the next decade. 

321

322 Density-dependent spatial spread of DFTD

323 Our pattern-oriented diffusion simulation suggests that DFTD spread most rapidly through 

324 areas of high host density. This raises an interesting point about spatial scale: although transmission 

325 within devil populations may be maintained by frequency-dependent processes (McCallum et al. 

326 2009), the spatial spread of DFTD was apparently density-dependent. Using a simple diffusion 

327 model, van den Bosch et al. (1992) show that the spread of an invading organism is driven by a 

328 combination of the host movement rate and the intrinsic rate of increase. Both movement rate and 

329 interactions between devils could increase in response to competition. At high devil densities, 

330 carrion and live prey are less available per capita (Cunningham et al. 2018) and aggressive 

331 interactions at carcasses are more common (Hamede et al. 2008). Female devils in high density 

332 populations have larger home ranges (Comte et al. 2020) and disperse larger distances (Lachish et al. 

333 2011; Storfer et al. 2017). Other studies, for instance of European badgers, show that larger home 

334 ranges can lead to increased potential for pathogen transmission (Woodroffe et al. 2006), and 

335 simulations show that greater host movement can increase the probability of a pandemic 

336 establishing (Cross et al. 2005). Adult devils sometimes engage in long-distance excursions of ~15-25 

337 km (unpublished tracking data, Menna Jones). These are likely to be more numerous at high 

338 densities, and could act as rare long-distance transmission events, which have been shown in other 

339 systems to substantially accelerate disease spread (Smith et al. 2002; Russell et al. 2005; Smith et al. 

340 2005; Meentemeyer et al. 2011). Our simulation model was a first step in establishing a probable 

341 link between host density and the spatial spread of DFTD. Future studies should unpick the 

342 mechanisms that depend on density, and incorporate other drivers or barriers of DFTD spread, both 
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343 of which would likely require a finer scale of study that matches the scale of transmission and host 

344 movement.

345

346 Population trends and conservation

347 Our estimate of pre-DFTD devil population size is less than half the previous estimate of 

348 130,000-150,000 (Hawkins et al. 2008), which would require average densities across Tasmania of 

349 2.15 devils/km2. Our estimates suggest that only 1.3% of Tasmania had densities of at least 2.15 

350 devils/km2 at the time of DFTD discovery (Fig 5.B). This discrepancy might have two main causes. 

351 First, SECR has produced smaller density estimates than older methods. SECR uses the spatial 

352 detection histories of animals to estimate the effective sampling area (Borchers & Efford 2008), 

353 which can differ substantially between similar-sized trapping arrays (Table S5). In contrast, older 

354 methods defined the sampling area based on a buffer around trap sites without considering how 

355 animal movement around study sites influences the effective survey area (Hawkins et al. 2008). 

356 Second, previous extrapolations seemingly suffered from a common form of site selection bias, 

357 whereby study sites are selected in high-density areas (Fournier et al. 2019). Extrapolating such 

358 density estimates to areas with lower suitability, such as the Tasmanian south-west (Jones & Rose 

359 1996; Hawkins et al. 2006), is likely to result in an overestimated population size. The integration of 

360 multiple datasets in our analysis allowed us to incorporate information from a broader range of 

361 environments, including low-suitability habitat, while harnessing the favourable qualities of each 

362 dataset (high-quality density estimates and long-term, wide-spread spotlight counts). 

363 Based on the persistence of devils at all long-term diseased sites, our model predicts the 

364 overall population is likely to stabilize within the next 10 years. This supports recent simulations 

365 suggesting the most likely long-term outcomes are either the coexistence of devils and DFTD, or 

366 DFTD fading out (Wells et al. 2019), with genomic evidence suggesting a transition towards 

367 endemism (Patton et al. 2020). These stabilising trends reflect a growing body of research suggesting 

368 that devils are potentially adapting to DFTD in the face of this extreme selective pressure (Epstein et 

369 al. 2016; Margres et al. 2018a; Ruiz-Aravena et al. 2018; Fraik et al. 2020). Several individual devils 

370 have demonstrated natural tumour regressions in association with an immune response (Pye et al. 

371 2016a), with tumour regression potentially related to genomic variation in both host (Margres et al. 

372 2018b) and tumour (Margres et al. 2020). Nevertheless, it remains unclear how the genomic changes 

373 detected in long-term diseased areas (Epstein et al. 2016) relate to functional traits in devil-DFTD 

374 interactions, and whether genomic changes are involved in the persistence and even recovery of 

375 some populations.
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376 Despite revealing 25 years of ongoing population decline, our results suggest the species no 

377 longer meets the criteria for Endangered status under the IUCN Red List. Because the Red List 

378 evaluates population reductions over the longer of 10 years or three generations (IUCN Standards 

379 and Petitions Committee 2019), the severe devil population decline before 2010 is essentially 

380 excluded from consideration. Our modelling suggests the species now qualifies for Vulnerable status 

381 based on a 31% population decline from 2011-2020 (criterion A2), and a reproductively mature 

382 population size that is likely to be <10,000 but >2,500 individuals within the next decade (criterion 

383 C1). Given the population has declined by 68% over the last 25 years, numbers continue to decline, 

384 and the trend is not reversible with current knowledge, we strongly caution that the potential down-

385 listing of the species does not mean the species is secure. This is particularly so in the face of new 

386 and uncertain threats, including the discovery of a second, independently evolved facial tumour in 

387 2014 (DFT2) which is spreading through southern Tasmania (Pye et al. 2016b; James et al. 2019).

388 Although the outlook for the wild devil population is undoubtedly more positive than it was 

389 a decade ago (McCallum et al. 2009), devils are currently well below ecologically functional densities 

390 across much of Tasmania. Devil declines have had cascading ecological effects, such as carrion 

391 accumulation (Cunningham et al. 2018), mesopredator release with effects on small and medium-

392 sized mammals (Hollings et al. 2014; Hollings et al. 2016; Cunningham et al. 2020), and the 

393 relaxation of anti-predator behaviours by prey (Hollings et al. 2015; Cunningham et al. 2019a; 

394 Cunningham et al. 2019b). In the Supporting Information, we provide annual rasters of estimated 

395 devil densities from 1985-2020, which we expect will be useful for improving our understanding of 

396 the ecological effects of devils and identifying thresholds that could provide longer term targets for 

397 population recovery. 

398 Given DFTD-induced extinction of the devil now seems unlikely, we suggest several 

399 management priorities. First, we emphasise the importance of continued monitoring across the 

400 species’ geographic range, particularly following the discovery of DFT2 (Pye et al. 2016b). Second, 

401 because the now-small devil population is more exposed to other threatening processes (De Castro 

402 & Bolker 2005; McCallum 2012), it is an ongoing priority to minimise additional stressors like vehicle 

403 collisions and habitat destruction. A third exciting priority is that we can attempt to accelerate the 

404 pace of evolution by identifying and then moving advantageous genotypes to areas lacking them 

405 (McCallum 2012). Crucially, these genotypes need to come from populations that are under selective 

406 pressure by DFTD (Hohenlohe et al. 2019; Hamede et al. 2020). It is, however, important to 

407 recognise the potential for DFTD to evolve in response to changes in the host population, and that 

408 selecting for resistant devils might inadvertently select for more virulent tumours. Before 

409 intervening to boost adaptation, it is therefore important to better understand 1) how genotype 
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410 influences phenotype in both devils and DFTD, and 2) how these traits influence the persistence of 

411 devils in long-diseased populations. 

412

413 Concluding remarks

414 Modelling spatial dynamics of pathogens in wildlife populations remains a major challenge (White et 

415 al. 2018), but is critical for managing emerging disease threats, both to wildlife themselves and to 

416 human or livestock populations to which these pathogens may spill over. Our study of DFTD as it has 

417 spread across almost the entire geographic range of its sole host takes advantage of recent advances 

418 in pattern-oriented modelling, as well as joint modelling of multiple datasets. Diffusion-based 

419 approaches are often considered to be high-level general frameworks not well suited to providing 

420 specific predictions (White et al. 2018). By re-imagining a diffusion model as a multi-layer, grid-based 

421 simulation, our framework can accommodate complex processes that would otherwise be 

422 intractable using an analytical diffusion model. Our highly flexible simulation shows that diffusion-

423 based models can provide explicit quantitative information on the relationship between host density 

424 and spatial spread, which should have broad, real-world applications to other wildlife disease 

425 systems, and invading organisms more generally. Ours is, however, one of few studies of emerging 

426 infectious diseases with sufficient spatiotemporal data on both host and pathogen populations from 

427 the time of disease emergence. This highlights the importance of long-term monitoring programs. 

428 Regular, joint analysis of general-purpose survey datasets that monitor a large suite of species would 

429 be valuable for the early detection of population declines or disease emergence at a point where 

430 management interventions can be effective. Our analysis involved the use of survey data that was 

431 established to monitor harvested herbivore species, but has now provided valuable insights into the 

432 influence of host density on infectious disease spread and the population effects of an emerging 

433 infectious disease that did not exist when the surveys were established. 

434
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457

458 Figure 1. (A) Devil facial tumour disease (DFTD) causes large tumours on the face and mouth of 

459 Tasmanian devils (photo: David Hamilton). (B) The main steps involved in our modelling strategy. We 

460 first produced maps of the pre-DFTD devil population based on spotlighting data before the 

461 discovery of DFTD, and then used this map in a diffusion simulation of DFTD spread across Tasmania 

462 (blue box). In a second modelling stage, we used an interpolated map of DFTD spread as a predictor 

463 variable in a Bayesian joint-likelihood model, which jointly modelled 35 years of spotlighting data 

464 and 21 years of devil density estimates derived from spatially explicit capture-recapture (orange 

465 box). From the best joint-likelihood model, we produced maps of devil density, quantified historical 

466 changes in the total abundance of the species, and forecasted to the scenario where DFTD will 

467 occupy all of the devil’s geographic range.  

468

469 Figure 2: Maps of study sites and trends in the spotlighting and trapping datasets. (A) The map 

470 shows the centroids of each of 172 10-km long spotlight transects. To visualise the broad-scale 

471 trends in devil detections, we aggregated transects into the national bioregions (IBRA DSEWPC 

472 2013). The data points show the mean number of devil detections within a bioregion. For 

473 visualisation purposes only, the trend lines show the mean estimates from a generalised additive 
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474 model with 95% confidence band. See Fig S1 for a finer-scale visualisation of the spotlighting data. 

475 (B) Yellow squares show the locations of trapping sites, including those reported by Lazenby et al. 

476 (2018) as well as those analysed in this paper. We present four example time-series of devil densities 

477 (95% CI) estimated using spatially explicit capture-recapture, with blue and grey points representing 

478 densities before and after the arrival of DFTD, respectively. The estimates for Bronte, wukalina and 

479 Woolnorth come from Lazenby et al. (2018), and we present all density estimates in Fig S2. In all 

480 graphs, the vertical dashed lines denote the approximate year of DFTD arrival to an area. 

481   * denotes that disease was discovered at wukalina in 1996, which is earlier than the range of the x-

482 axis.

483

484 Figure 3. After discovery in 1996, the spatial spread of DFTD occurred most rapidly through areas of 

485 high devil relative density. The spread of DFTD then appeared to slow as the southern and western 

486 disease fronts passed through areas of lower devil relative density. (A) Predictive map of devil 

487 spotlighting detections, a proxy for density, at the time of DFTD discovery. This map shows that 

488 devils were naturally most abundant in the eastern and central part of Tasmania. The model used 

489 data from state-wide spotlight surveys prior to the discovery of DFTD (1985-1996). (B) Map of DFTD 

490 spread across Tasmania based on a spatial random field and (C) on a stochastic-diffusion simulation 

491 model, incorporating a landscape friction layer based on devil relative density, and parameterised 

492 using Approximate Bayesian Computation. The estimated year of disease arrival is shown by colours 

493 and contours. Black crosses show the first incidences of lab-confirmed cases of DFTD, or of devils 

494 with clinical signs of DFTD. The triangle in the far north-west shows the only remaining long-term 

495 trapping site that is currently free of disease, while the squares in the south-west show disease-free 

496 areas determined by recent camera trapping. White polygons (B) show inland water bodies. The grey 

497 polygon in the south (B) denotes an area with very high uncertainty because of sparse data 

498 (standard deviation of at least 3 years; Fig S4). This area of Tasmania is particularly rugged and has 

499 no road access, and consequently very little data from which to infer disease spread.

500

501 Figure 4: (A) Predictive maps of Tasmanian devil density from the joint-likelihood model. Devil 

502 densities were rising before the discovery of DFTD in 1996. The spread of DFTD across Tasmania 

503 then caused a wave of rapid and severe population declines. In the first panel (only), black dots 

504 indicate the location of annual spotlight transects and maroon squares show the location of 

505 longitudinal trapping sites. See Fig S7 for maps of uncertainty around the density estimates. (B-E) 

506 The effect of predictor variables on devil density from the best joint-likelihood model (±95% credible 
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507 interval). Grey lines show the effect of a predictor variable across its range when all other predictors 

508 are held at their mean (i.e., 4.5 years after the arrival of DFTD), and yellow lines show the effect 

509 when sites were free of DFTD. The axis ranges reflect the range of those variables. 

510

511 Figure 5: Changes in the Tasmanian devil population across the entire geographic range of the 

512 species. (A) Estimates of devil density across Tasmania at time points from 1985 and 2030. Yellow 

513 bars distinguish density in areas that are free of DFTD and grey shows densities where DFTD is 

514 present. The vertical dashed lines show the mean density in each disease category, with black 

515 denoting the overall mean. (B) Changes in the global abundance (±95% credible interval) of 

516 Tasmanian devils. Dashed lines represent forecasts into the future. The black line shows the 

517 estimated proportion of Tasmania occupied by devil facial tumour disease based on the random-

518 field-model of disease spread (Fig 3.B). 

519 Table 1: Model selection table for the joint-likelihood model, which simultaneously modelled devil 

520 density at long-term trapping sites and devil detections on long-term spotlight transects. Here we 

521 present the four top-performing models and a null model. We selected the best model based on a 

522 leave-one-out cross-validation metric, the conditional predictive ordinate (CPO), with ∆CPO showing 

523 the difference from the best model. We present the mean coefficient estimate, with 95% credible 

524 interval shown in brackets. ‘nl’ denotes a non-linear effect. All models in this table used the gamma 

525 distribution to model density and the negative binomial distribution to model the spotlight counts. 

526 See Table S9 for the full model selection table.

527

528

Model -2* 

Σ(logCPO)

∆CPO Intercept: 

spotlight sub-

model

Intercept:

density sub-

model

Year Years 

since 

DFTD 

arrival

Scaling 

constant

% button grass % wet 

eucalypt/ 

rainforest

% agric Gaussian 

random 

field

1
7570.5 0.0

2.61 

(-3.46, -1.92)

-1.58 

(-2.3, -0.96)
nl nl

0.70

(0.59, 0.81)

-1.88

(-3.65, -0.19)

-0.80 

(-1.37, -0.24)
✓

2
7571.2 0.7

-2.59

(-3.48, -1.86)

-1.57

(-2.31, -0.91)
nl nl

0.70

(0.59, 0.81)

-1.91

(-3.71, -0.18)

-0.82

(-1.43, -0.20)

-0.05 

(-0.67, 0.57)
✓

3
8036.3 465.8

-2.64

(-3.80, -1.94) 

-1.53

(-2.42, -0.94)
nl nl

0.76

(0.62, 0.89)

-1.05

(-1.74, -0.37)

-0.86

(-1.07, -0.65)

0.27

(0.01, 0.54)

4

8038.7 468.1
-2.57

(-3.75, -1.86)

-1.48

(-2.41, -0.88)
nl nl

0.78

(0.64, 0.92)

-1.28 

(-1.94, -0.61)

-0.93

(-1.14, -0.73)

Null
8884.5 1314.0

-1.07 

(-1.12, -1.01)

-0.49

(-0.60, -0.37)
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