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ABSTRACT  

The incidence of type 1 diabetes globally has increased dramatically over the last 50 

years. Proposed environmental reasons for this increase mirror the modern lifestyle. 

Type 1 diabetes can be viewed as part of the non- communicable disease epidemic in 

our modern society. Meanwhile rapidly evolving new technologies are advancing our 

understanding of how human microbial communities interface with the immune system 

and metabolism, and how the modern pro-inflammatory environment is changing these 

communities and contributing to the rapid rise of non-communicable disease. The 

majority of children who present with clinical type 1 diabetes are of school age; 

however 80% of children who develop type 1 diabetes by 18 years of age will have 

detectable islet autoantibodies by 3 years of age.  The evolving concept that type 1 

diabetes in many children has developmental origins has directed research questions in 

search of prevention back to pregnancy and early life. To this end the world’s first 

pregnancy to early childhood cohort study in at-risk children has commenced. 
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The incidence of type 1 diabetes in the Western World  

The incidence of type 1 diabetes in the Western World has increased dramatically over 

the last 50 years with geographical differences, as illustrated by a two fold increase 

reported in Australia (1)  a  five fold increase in Finland (2).  In parallel with the rise in 

type 1 diabetes is the emergence of childhood overweight and obesity and an increased 

incidence of other immune mediated disease: coeliac disease, inflammatory bowel 

disease, and allergy. The epidemics have occurred in our modern pro-inflammatory 

environment, which is notable for its obesogenic influences, changes in the perinatal 

environment and increased use of antibiotics and environmental pollutants (table 1).  

 

The majority of children who present with clinical symptoms and signs of type 1 

diabetes are of school age; however 80% of children who develop type 1 diabetes by 18 

years of age have detectable islet autoantibodies by 3 years of age (3).  The percentage 

is even higher in children who develop type 1 diabetes before puberty (4). Initiators of 

the autoimmune process leading to beta cell destruction and dysfunction in child and 

adolescent onset cases must therefore frequently occur early in life, possibly as early as 

pregnancy.  

 

The developmental origins of health and disease  

The developmental origins of health and disease (DOHaD) paradigm arose from the 

original seminal observation in the 1980s that lower birth weight predicts late cardio-

metabolic disease in adulthood, the Barker Hypothesis (5,6). The concept has been 
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extended to propose that metabolic, immune and physiological adaptations to antenatal 

life modify later health and disease risk, in childhood and adulthood, and in subsequent 

generations.  It has been applied to understand the origins of cardiovascular, metabolic 

and allergic disease. 

 

The  impact of the ‘omes 

In the last 10 years rapidly expanding new technologies in the ‘omic sciences have 

advanced our understanding of how the environment alters genetic material and how 

microbial communities and their metabolites interface with the immune system and 

metabolism. The genome, epigenome, microbiome, metabolome and lipidome have 

provided new avenues to investigate gene –environment interactions and interactions 

between metabolism, physiology and immunology. Transcriptome and proteome 

sequencing identify gene activity at a given time and suggest possible function.  

Metagenome and metatranscriptome sequencing of the whole microbiome nucleotide 

pool uses more sophisticated computational and bioinformatics skills, and can generate 

a functional profile. These new sciences are revolutionizing our capacity to investigate 

how  the modern pro-inflammatory environment  influences adaption in utero and 

physiology to change disease susceptibility in future generations and to drive the rapid 

rise of non-communicable diseases.  They hold the potential to discover early 

biomarkers, pathogenic mechanisms and intervention targets.  

 

The microbiome in early life   
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The microbiome defines the micro organisms that reside as commensals in our bodies 

and their collective genome. Nominally, the term microbiome refers to the bacterial 

communities and to a lesser extent fungi and archaea with the term virome used to 

describe the viral component of the complete microbiota. The microbiome is influenced 

by the site in the body, life-stage, living environment and geographical location. It 

changes rapidly after birth and during the first two years of life (7) underscoring the 

importance of prospective studies from early life. The largest numbers of microbes 

reside in the gut. The maternal gut microbiome is influenced by pre-pregnancy weight, 

pregnancy weight gain, antibiotics, hygiene, smoking gestational complications and her 

partner’s microbiome (7). The fetus was thought to grow in a sterile environment, but 

this has been challenged by the description of a placental microbiome that most closely 

resembles the mother’s mouth microbiome (8). The infant’s gut microbiome is 

influenced by the maternal microbiome, mode of delivery, infant feeding, birth weight, 

gestational age, antibiotics, and intensive care at birth (9). For example, children born 

by Cesarean section and children born prematurely have reduced diversity of their gut 

microbiome throughout infancy.  

 

Recent comparison of early life  gut microbiomes in Finland and Estonia, and those 

in neighbouring Russian Karelia with its contrasting low incidence of childhood 

autoimmune disease,  showed a distinct difference. Bacteroides species, particularly B 

dorei, were dominant in Finnish and Estonian infants, but low in Russian Karelian 

infants. Bacteroides lipopolysaccharide (LPS), higher in Finnish and 
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Estonian microbiomes, did not activate innate immunity and, in contrast to E. Coli LPS 

which does activate innate immunity, did not decrease the incidence 

of autoimmune diabetes in non-obese diabetic mice.  These findings may provide a 

mechanism for the “hygiene hypothesis“ whereby reduced frequency of early life 

infections (Table 1) contributes to the increasing  incidence of autoimmune disease in 

Western countries. (10)  

 

There are few studies of the human gestational gut microbiome. One study during 

normal human pregnancy shows major changes between the first and third trimesters, 

with an increase in pro-inflammatory and a decrease in anti-inflammatory bacteria, and 

with increasing differences in the diversity between the mothers’ gut microbiomes that 

persist for one month post-partum (11). Neither gestational diabetes nor obesity in the 

mother increases these inflammatory changes further. When transferred to germ-free 

mice, human microbiota from the third trimester induce adiposity and insulin 

insensitivity (11). There are no data to our knowledge from the second trimester of 

human pregnancy, and none on the human gestational virome.  

 

The effect of nutrition on the microbiome during pregnancy and early life  

The short term effect of nutrition and fibre on the composition and diversity of both the 

adult human gut microbiome and the murine gestational microbiome is well 

documented (12,13). The component of dietary fibre that consists of non-digestible 

oligosaccharides and resistant starches (prebiotics) escapes digestion in the small 
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intestine and is fermented by colonic bacteria to the anti-inflammatory short chain fatty 

acidss acetate, butyrate and propionate. Higher dietary fibre intake in late human 

pregnancy is associated with higher maternal serum acetate levels (14). There is 

otherwise minimal information as to the effect of nutrition on the human gestational 

microbiome. Yet nutrition is one factor that has changed dramatically over the last 50 

years. One third of Australian woman begin pregnancy overweight or obese (15) and 

few attain recommended dietary intakes of fibre. Optimising gestational nutrition is a 

potential intervention strategy, if the effect of diet on the gut microbiome also occurs 

during pregnancy, and if the gestational gut microbiome alters immune regulation in 

early life.   Pregnancy is a time when motivation to change lifestyle is high. 

 

The gut microbiome in type 1 diabetes 

The role of the gut microbiome in type 1 diabetes is a particular focus of research 

because of the known major impact of the modern environment on the microbiome and 

the known interactions between gut microbes and immune regulation (16). Altered 

balance of the gut microbiota (gut dysbiosis) is reported in children with islet 

autoimmunity and type 1 diabetes at both taxonomic and functional levels. Lactate- and 

butyrate-producing bacteria support mucin production to maintain intestinal integrity 

in health. Children with islet autoimmunity who progress to type 1 diabetes have shown 

an increased Bacteroidetes: Firmicutes Phyla ratio, a lower proportion of butyrate-

producing bacteria, and reduced bacterial diversity (17,18). Despite the considerable 

differences conferred by geographical locations and ethnicities, dysbiosis with 
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perturbations in composition and diversity can be detected widely in children with islet 

autoimmunity and type 1 diabetes from different countries and continents (17,19). The 

gut dysbiosis can be detected early, before 2 years, in those children who later develop 

islet autoimmunity and type 1 diabetes. Metagenomic sequencing has identified one 

species in particular, Bacteroides dorei, that peaks around the time when solids are 

introduced in genetically at-risk Finnish infants, who later develop islet autoimmunity 

(20,21). This is the same species that is dominant in the gut microbiomes of  Finnish 

and Estonian infants in contrast to  Russian infants, as discussed above (10). These 

findings support an early life role of the microbiome in the immune dysregulation 

leading to islet autoimmunity and type 1 diabetes.  Studies outside Europe are needed 

to clarify whether these spikes of B dorei in children who develop islet autoimmunity 

are specific to Finland or more universal, because of the substantial geographic-specific 

differences in the microbiome in children at risk of type 1 diabetes(22) .  

Maintenance of a balanced healthy gut microbiome and intestinal integrity from birth 

therefore appears critical, but how dysbiosis of the microbiome disturbs immune 

regulation to initiate or progress islet autoimmunity remains unknown. There are no 

gestational data in humans but in experimental models antibiotics provide NOD mice 

with the greatest protection from diabetes development, through alterations in the gut 

microbiome, when they are given prenatally (23).  
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Significantly, for the future development of primary prevention strategies, the early life 

microbiome is potentially modifiable, through changes in diet, prebiotics and probiotics. 

The Environmental Determinants of Diabetes in the Young (TEDDY), a large prospective 

cohort study following children at risk of type 1 diabetes from 3 months of age in the US 

and Europe, recently reported that early probiotic supplementation in the first 27 days 

of life, documented retrospectively, was associated with a decreased risk of islet 

autoimmunity in children with the highest risk HLA DR 3/4 genotype (24). 

 

The Epigenome  

Environment -gene interactions are mediated by epigenetic modifications that underlie 

the complex and dynamic control of gene expression. Epigenetic modifications provide 

a mechanism for environmental cues to integrate and impact at the cellular level (25). 

DNA methylation is determined partly genetically but also by many environmental 

factors implicated in T1D (dietary components, antibiotics, environmental pollutants 

and microbiome products e.g. short chain fatty acids). In addition to DNA methylation, 

histone modifications are also involved in T1D pathogenesis, (26) but our present 

understanding of epigenetic dynamics in autoimmune disease is limited. Certainly 

epigenetic modifications are more reversible and dynamic than previously thought. 

Dynamic epigenetic modifications control the development, differentiation, and 

activation of immune cells (25). 
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Periconceptional development may be the most critical time when the environment can 

induce epigenetic changes in reproductive cells that are associated with a higher risk of 

disease in future generations. Father’s BMI may in fact have a greater impact than 

mother’s BMI on body fat in children in the normal population (27). The impact of 

paternal obesity or type 2 diabetes on the incidence of type 2 diabetes in the offspring 

has also been established in the high risk population of the Pima Indians (28). In 

experimental models this transgenerational risk from the father occurs via epigenetic 

changes in sperm (29). Such paternally-derived epigenetic effects might also contribute 

to the higher risk of T1D in the offspring of paternal as opposed to maternal probands 

(30,31). 

 

New epigenetic-immune signatures are potential biomarkers of risk for T1D and 

umbilical cord blood may reveal signatures that predict risk of T1D, if the pathogenic 

processes begin prenatally. An example of an epigenetic-immune biomarker in early 

development is our recent report of an immune signature of food allergy in human cord 

blood (32). Dynamic epigenetic modifications indicate gene regulatory mechanisms that 

are reversible, so they provide targets for novel therapies. The enzymes catalyzing 

epigenetic modifications, for example, could be developed into therapeutic drugs.  

 

 

The metabolome and lipidome  
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If the origins of type 1 diabetes are prenatal, metabolomic analysis of cord blood may 

also identify children at increased risk for islet autoimmunity and/or progression to 

type 1 diabetes. Cord-blood phosphatidylcholines and phosphatidylethanolamines were 

significantly decreased in children diagnosed with type 1 diabetes before 4 years of age 

(33,34). In a further Scandinavian study, children who progressed from islet 

autoimmunity to T1D had a cord blood lipidomic profile with low choline-containing 

phospholipids (35). 

 

The overlap between type 1 and type 2 diabetes  

The separation of type 1 diabetes and type 2 diabetes, with the implication that they are 

unique pathogenetically, has come under recent scrutiny (36,37). Clinicians caring for 

children with diabetes are aware of the frequent overlap in patients who present as 

overweight and insulin resistant but also have islet autoimmunity. Similarly patients 

with a classical type 1 diabetes presentation may also be overweight with insulin 

resistance. The DOHaD model fits comfortably with this observed clinical overlap. There 

is substantial evidence that the human gestational milieu affects weight, insulin 

resistance, and type 2 diabetes in the offspring (38–40). Children born during the Dutch 

Famine at the end of World War II had a greater incidence of obesity, type 2 diabetes 

and dyslipidaemia as they aged (35,41). Both paternal and maternal nutrition can affect 

the metabolic health of the offspring (42) Ground breaking work shows that adverse 

paternal nutrition can alter beta cell function (43) or DNA methylation of genes that are 

expressed in lipid metabolism in rodent models (44). It is very possible that similar 
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influences in the modern inflammatory environment during conception and gestation 

are driving both overweight and insulin resistance, and immune dysregulation, thus 

impacting the incidence of both type 1 and type 2 diabetes.  

 

 

ENDIA (Environmental Determinants of Islet Autoimmunity)  

The growing evidence that type 1 diabetes has developmental origins directs research 

questions to pregnancy and early life. The world’s first pregnancy to early childhood 

cohort study in at-risk children began in 2014 (ACTRN12613000794707) (45). The 

ENDIA cohort follows at-risk children from early pregnancy through childhood, to 

determine the relationship between genome, epigenome, microbiome, and metabolome 

and the environment, and the development of islet autoimmunity. Maternal and 

paternal health before conception is also detailed. ENDIA aims to complement 

established large international prospective birth cohorts following infants at risk from 

infancy (46–49), by focusing on the earliest life determinants of type 1 diabetes. 
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TABLE 

Table 1: Candidate environmental risk factors for type 1 diabetes (15,50–56)  

Prenatal and perinatal factors Increased rates of  C-section* 

Reduced frequency and duration of breast feeding* 

Maternal overweight and obesity* 

Older parents 

 

Obesogenic factors More calories* 

Poorer food quality* 

Food additives* 

Less physical activity* 

Less thermoregulation* 

Less sleep* 

  

Other environmental factors Less infections* 

More antibiotics* 

Enteroviruses 

Less sunlight and lower Vitamin D status * 

More pollution 

 

* Factors -associated with increased innate immune inflammation with or without 

demonstrated changes in the microbiome 
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