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Abstract
The use of artificial intelligence (AI) and robotics in endovascular neurosurgery promises to transform
neurovascular care. We present a review of the recently published neurosurgical literature on artificial
intelligence and robotics in endovascular neurosurgery to provide insights into the current advances and
applications of this technology.

The PubMed database was searched for "neurosurgery" OR "endovascular" OR "interventional" AND
"robotics" OR "artificial intelligence" between January 2016 and August 2021. A total of 1296 articles were
identified, and after applying the inclusion and exclusion criteria, 38 manuscripts were selected for review
and analysis. These manuscripts were divided into four categories: 1) robotics and AI for the diagnosis of
cerebrovascular pathology, 2) robotics and AI for the treatment of cerebrovascular pathology, 3) robotics and
AI for training in neuroendovascular procedures, and 4) robotics and AI for clinical outcome optimization.

The 38 articles presented include 23 articles on AI-based diagnosis of cerebrovascular disease, 10 articles on
AI-based treatment of cerebrovascular disease, two articles on AI-based training techniques for
neuroendovascular procedures, and three articles reporting AI prediction models of clinical outcomes in
vascular disorders of the brain. Innovation with robotics and AI focus on diagnostic efficiency, optimizing
treatment and interventional procedures, improving physician procedural performance, and predicting
clinical outcomes with the use of artificial intelligence and robotics. Experimental studies with robotic
systems have demonstrated safety and efficacy in treating cerebrovascular disorders, and novel
microcatheterization techniques may permit access to deeper brain regions. Other studies show that pre-
procedural simulations increase overall physician performance. Artificial intelligence also shows superiority
over existing statistical tools in predicting clinical outcomes.

The recent advances and current usage of robotics and AI in the endovascular neurosurgery field suggest
that the collaboration between physicians and machines has a bright future for the improvement of patient
care. The aim of this work is to equip the medical readership, in particular the neurosurgical specialty, with
tools to better understand and apply findings from research on artificial intelligence and robotics in
endovascular neurosurgery.

Categories: Neurosurgery, Healthcare Technology
Keywords: ai and machine learning, computer-assisted diagnosis, neurosurgery, endovascular, robotics, artificial
intelligence

Introduction And Background
Artificial intelligence (AI) is generally defined as the ability of a machine to analyze data and use it to learn
and model human behavior. The general subtypes of AI technology that are currently being used and studied
in healthcare are machine learning (ML), which identifies and analyzes patterns to detect associations in a
dataset; deep learning (DL), which allows machines to make decisions through the use of neural network
(NN) models; natural language processing, which allows machines to analyze human language; computer
vision, through which computers can learn by analyzing images and videos; and physical robotics used for
surgical procedures [1,2]. In the last 10 years, there has been an exponential increase in the study and use of
AI in the medical field due in part to the ever-growing datasets that can be used to train and test emerging
NNs and algorithms [3]. AI has demonstrated the potential to improve diagnostic accuracy, predict clinical
outcomes, increase precision in surgical procedures, accelerate decision-making, and aid physicians in
selecting ideal treatment protocols.

By comparison, robotic systems in surgery are generally divided into three categories: 1) active systems,
which work autonomously; 2) semi-active systems, in which the surgeon complements the preprogrammed
component of the robot; and 3) surgeon-driven systems [4]. The current robotic systems utilized in
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endovascular surgery fall into the surgeon-driven mechanism. They consist of a mechanical robot on the
patient side and an operator control station that is radiation-shielded and allows the operator to control
catheters and guidewires via sensors and joysticks [5]. Advantages to robotic systems in endovascular
procedures include improved stability of the catheter tip, which in turn decreases the number of movements
needed, enhanced performance navigating through tortuous vascular anatomy, and decreased exposure to
radiation [6,7].

Understanding the impact and advances that robotics and AI have in the overall management of
cerebrovascular disease will fundamentally and permanently enhance endovascular neurosurgery. Artificial
intelligence has shown promise in both diagnostic and treatment settings. Deep learning algorithms have
been effective in image recognition and may be instrumental in the improvement of decision-making in the
clinical setting [8,9]. For example, Titano et al. demonstrated that a DL algorithm was capable of
interpreting and triaging urgent neurological findings on head computed tomographies (CTs) 150 times
faster than humans in the setting of intracranial hemorrhage (ICH), stroke, and hydrocephalus [10], and
similar studies have shown encouraging results in stroke imaging and stroke care [11,12]. Physical robotic
systems, such as the da Vinci robotic system (Intuitive Surgical Inc., Sunnyvale, CA, USA), have also become
broadly accepted and proven to boost surgical precision, especially in abdominal surgery and
prostatectomies.

While the use of robotics in neurovascular intervention is in its infancy, promising steps have been made to
incorporate this technology into clinical practice. Interventionalists have employed AI and robotics to
enhance medical treatment, yet most advances have been implemented in interventional cardiology; for
instance, the CorPath GRX robotic system (Corindus, Waltham, MA, USA) has been utilized for coronary
interventions since 2012 and was approved for peripheral vascular procedures in 2018 [13]. The CorPath GRX
is also widely used in endovascular neurosurgery for procedures such as endovascular coiling and has strong
potential for optimizing stroke thrombectomy. The FDA approved the Magellan Robotic System (Hansen
Medical, Auris Health, Redwood, CA, USA) for clinical use in 2012 [5], and this system has also shown
promise in neurovascular procedures, especially in the treatment of carotid artery stenosis (CAS)
[14,15]. These robotic systems help control the catheter and augment support during interventional
procedures [13]. Experiments have also been conducted on robotic endovascular devices and catheters that
may allow for easier endovascular navigation and access to deeper regions in the brain [16-18]. A number of
DL and ML algorithms have also been studied in the context of cerebrovascular disease. For example, the
Viz large vessel occlusion (LVO) deep learning neural network (DLNN) has shown promising results in stroke
care to reduce diagnosis and treatment times [19]. Similar studies have evaluated the use of other ML and DL
frameworks for the optimization of the diagnosis of stroke and large vessel occlusion (LVO), intracranial (IC)
aneurysms, intracranial hemorrhage (ICH), and other pathologies.

Within this work, we review the recent literature on the role of AI and robotics in endovascular neurosurgery
to summarize significant findings from a series of reports and experimental studies in order to inform
neurosurgeons and physicians in any medical specialty who wish to better understand emerging technology
and its influence on clinical practice. Specifically, we survey the literature from January 2016 to August 2021
to understand how AI and robotics impact the diagnosis of cerebrovascular disorders, the treatment of
cerebrovascular disorders, the training of endovascular neurosurgeons, and the outcome optimization in the
management of neurovascular disease.

Review
Methods
In order to perform an analysis of the existing literature on robotics and artificial intelligence in
endovascular neurosurgery, the PubMed database was searched for articles between January 2016 and
August 20, 2021. We selected this time window to focus on the examination of the most recent literature.
The search terms utilized were "neurosurgery" OR "endovascular" OR "interventional" AND "robotics" OR
"artificial intelligence." Initially, 1296 articles were identified.

Articles were included in this study if they presented primary data related to AI or robotics in the context of
endovascular neurosurgery (i.e., treatment and diagnosis of intracranial aneurysms, arteriovenous
malformations (AVM), arteriovenous fistulas, intracranial hemorrhage, and strokes), as well as optimization
of catheterization procedures. To focus on novel primary data, literature reviews were excluded. To focus
further on endovascular neurosurgery, articles were excluded if their focus was on non-neurovascular
pathology (e.g., brain tumors and hydrocephalus).

A careful reading of the above articles revealed four general classes of AI and robotics research: 1) robotics
and AI for diagnosis in endovascular pathology, 2) robotics and AI for the treatment of endovascular
pathology, 3) robotics and AI for training in neuroendovascular procedures, and 4) robotics and AI for
clinical outcome optimization. Articles under the diagnosis category were further classified into
intracerebral hemorrhage (ICH) and Moyamoya disease detection, vascular visualization and diagnosis of
vascular pathology (i.e., angiography, AVMs, aneurysms, and AV fistulas), and diagnosis of large vessel
occlusion (LVO) and stroke. This subclassification is intended to help the reader map the many uses of AI as
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they pertain to different cerebrovascular pathologies.

Results
A total of 1296 articles were initially identified from the PubMed database. After applying the inclusion and
exclusion criteria, 38 papers were selected for review and analysis: 23 articles on AI-based diagnosis of
cerebrovascular disease, 10 articles on AI-based treatment of cerebrovascular disease, two articles on AI-
based training techniques for neuroendovascular procedures, and three articles reporting AI prediction
models of clinical outcomes in vascular disorders of the brain. Figure 1 shows a flowchart representing the
article selection process.

FIGURE 1: Article selection flowchart.

AI-Based Diagnosis of Cerebrovascular Disorders

Twenty-three articles describing AI-based diagnostics in endovascular neurosurgery were included. A
complete description of the results from these studies can be found in Table 1. Within the 23 articles, we
identified 12 retrospective reviews, five retrospective cohort studies, one prospective cohort study, one
prospective observational study, one cross-sectional retrospective review, two experimental studies, and one
case series study.

We identified seven articles that demonstrated the potential clinical utility and time-effectiveness that DL
algorithms offer in the setting of stroke and LVO [19-25]. Morey et al. demonstrated that the Viz LVO DLNN
reduces the door-to-neuroendovascular team notification time in patients with acute ischemic stroke [19].
Yahav-Dovrat et al. also utilized the Viz LVO DLNN as a stroke diagnostic tool but reported a high false-
positive rate (66%) [20]. Block et al. demonstrated a more time-effective identification of cerebral ischemia
signs through neural network-processed physiological and clinical data [21]. An ML algorithm was also
capable of distinguishing patients with basal ganglia stroke onset of 4.5 hours or more by CT scan analysis in
a retrospective review by Yao et al. [22]. Rava et al. and Bernard et al. both established that DL CT image
processing is accurate in stroke diagnosis [23,24]. Kasasbeh et al. also tested an artificial NN that used
computed tomography perfusion images and baseline clinical data to successfully predict the ischemic core
in stroke patients [25].

Seven of the identified studies focused on intracranial aneurysm detection and surveillance and reported
successful results using AI-assisted diagnosis [26-32]. Silva et al. found that an ML algorithm can classify
aneurysm rupture status based on previously established predictors [26]. Zhu et al. evaluated an ML model
that exhibited superior performance in assessing intracranial aneurysm stability than an existing statistical
logistical regression model and the population, hypertension, age, size of aneurysm, earlier subarachnoid
hemorrhage (SAH) from another aneurysm, and site of aneurysm (PHASES) score that predicts an absolute
five-year risk of intracranial aneurysm rupture [28]. Park et al. evaluated the HeadXNet DLNN and found
that physicians who utilized this AI tool had an improved sensitivity, accuracy, and interrater reliability in
the diagnosis of intracranial aneurysms [30]. Shimada et al. demonstrated that a NN model was capable of
detecting unruptured intracranial aneurysms measuring <2 mm in diameter that were previously missed by
two radiologists [29]. Kim et al. described an AI prediction model that found that aneurysm size has the most
significant influence on the risk of vasospasm in the setting of aneurysmal subarachnoid hemorrhage (SAH)
[32]. A prospective cohort study conducted by Kordzadeh et al. determined that a DLNN model could predict
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the functional maturation of AV fistula with >80% accuracy [33]. Two articles evaluated AI in imaging
processing [34,35]. Fu et al. assessed a DLNN (CerebralDoc) for computed tomography angiography
reconstruction, reporting high image quality and significantly reduced postprocessing times [34]. Lang et al.
proved that AI-based 3D angiography is a reliable method for visualization of cerebral vasculature that
additionally might reduce radiation exposure to the patient [35]. Heunis et al. explored a robotic ultrasound
system and revealed a conceivable radiation-free alternative to catheterization procedures in an animal
model [36].

Four studies were related to AI-based ICH diagnosis or classification [37-40], and one study evaluated the
diagnosis of Moyamoya disease [41]. Teng et al. reported that a DL model, BioMind (BioMind Technologies,
Beijing, China), has high sensitivity and specificity for the early prediction of ICH expansion [38]. Rava et al.
found that the DL model AUTOStroke Solution Program (Canon Medical Systems, Otawara, Japan)
demonstrated effectiveness in detecting ICH with volumes > 3 mL [37]. Nawabi et al. found that an ML
algorithm was capable of accurately distinguishing between neoplastic and non-neoplastic ICH [39]; similar
findings have been reported by Yeo et al. [42]. Another DL algorithm explored by Voter et al. interestingly
demonstrated decreased diagnostic accuracy in the setting of ICH [40]. Akiyama et al. tested a DL algorithm
to differentiate between Moyamoya disease and atherosclerosis by analyzing T2-weighted images, reporting
high accuracies to do so in the basal cistern, basal ganglia, and centrum semiovale levels [41].

Author Year
Type of

study
Title Time

Sample

size

AI/robotics

subtype
Key objective Key findings

Akiyama

et al. [41]

2020

(September)

Retrospective

review

Deep Learning-Based

Approach for the Diagnosis of

Moyamoya Disease

2009

to

2016

84 
Deep learning

algorithm 

Moyamoya

disease

diagnosis

AI analyzing T2-weighted images showed high-

accuracy results in distinguishing between

atherosclerotic disease and Moyamoya

disease at the level of the basal cistern, basal

ganglia, and centrum semiovale.

Kordzadeh

et al. [33]

2019

(March)

Prospective

cohort study

The Role of Artificial

Intelligence in the Prediction of

Functional Maturation of

Arteriovenous Fistula

2012

to

2016

266

Deep learning

neural network

model

AV fistula

maturation

prediction

With 10 given patient attributes, AI could

predict functional maturation of AV fistula with

>80% accuracy (p < 0.01).

Lang et al.

[35] 

2020

(October)

Retrospective

review

Evaluation of an Artificial

Intelligence-Based 3D-

Angiography for Visualization

of Cerebral Vasculature

2019 15

Deep learning

neural network

model

Cerebral

angiography

optimization

An AI-based 3DA technique based only on a

single contrast-enhanced run that functions

with approximately half of the radiation

required for the conventional subtraction

technique shows comparable results to

standard 3D DSA with a significant reduction in

patient radiation dose.

Silva et al.

[26]

2019

(November)

Retrospective

cohort study

Machine Learning Models can

Detect Aneurysm Rupture and

Identify Clinical Features

Associated with Rupture

2002

to

2018

615

Machine

learning

algorithm

Aneurysm

rupture

detection

The model can accurately classify aneurysm

rupture status based on previously established

predictors. The model suggests that location is

significantly more important than size when

estimating rupture risk. The ML techniques

show promise in clinical neurosurgical

applications.

Faron et

al. [27]
2019 (June)

Retrospective

review

Performance of a Deep-

Learning Neural Network to

Detect Intracranial Aneurysms

from 3D TOF-MRA Compared

to Human Readers

2015

to

2017

85

Deep learning

neural network

model

IC aneurysm

diagnosis

Statistical analysis revealed no significant

differences in overall sensitivity between the

neural network, reader 1, and reader 2. Human

readers detected a significantly higher portion

of aneurysms (<3 mm) compared to the neural

network in this study. In a clinical setting,

neural network algorithms may potentially

increase detection rates of cerebral

aneurysms.

Zhu et al.

[28]
2020 (May)

Retrospective

review

Stability Assessment of

Intracranial Aneurysms Using

Machine Learning Based on

Clinical and Morphological

Features

2014

to

2018

1897

Machine

learning

random forests

(RF) and

support vector

machine (SVM)

and automated

neural network

IC aneurysm

diagnosis

ML models displayed better performance than

the statistical LR model and PHASES score in

intracranial aneurysm stability assessment.
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Shimada

et al. [29]

2020

(October)
Case series

Incidental cerebral aneurysms

detected by a computer-

assisted detection system

based on artificial intelligence

2017

to

2018

1623
Convolutional

neural network

IC aneurysm

diagnosis

A neural network model and computer-

assisted diagnosis detected five unruptured

intracranial aneurysms measuring <2 mm in

diameter previously missed by two radiologists.

Park et al.

[30]
2019 (June)

Retrospective

review

Deep Learning-Assisted

Diagnosis of Cerebral

Aneurysms Using the

HeadXNet Model

2003

to

2017

9455

Deep learning

neural network

model

(HeadXNet)

IC aneurysm

diagnosis

The DL model was successful in detecting

intracranial aneurysms on CTA, and

physicians using the model as aid had an

improved sensitivity, accuracy, and interrater

reliability in the diagnosis of intracranial

aneurysms.

Liu et al.

[31]

2021

(March)

Cross-

sectional

retrospective

review

Deep neural network-based

detection and segmentation of

intracranial aneurysms on 3D

rotational DSA

2014

to

2018

451

Deep learning

neural network

(3D-Dense-

UNet Model)

IC aneurysm

diagnosis

The combination of the 3D-Dense-UNet model

and 3D RA images may have a high sensitivity

in the detection of intracranial aneurysms with

a low false-positive rate.

Fu et al.

[34]

2020

(September)

Retrospective

review

Rapid vessel segmentation

and reconstruction of head

and neck angiograms using

3D convolutional neural

network

2017

to

2018

18766

Deep learning

neural network

(CerebralDoc)

Cerebral

angiography

optimization

DL (CerebralDoc) offers an efficient and fast

method to reconstruct head and neck CTAs

compared to currently utilized techniques. It

may save costs and increase efficiency in

radiology daily clinical workflow.

Kim et al.

[32]

2021

(September)

Retrospective

review

Analysis of risk factors

correlated with angiographic

vasospasm in patients with

aneurysmal subarachnoid

hemorrhage using explainable

predictive modeling

2011

to

2019

343
Machine

learning

SAH

vasospasm

risk analysis

According to the AI prediction model,

aneurysm size has the most significant

influence on the risk of vasospasm in the

setting of aneurysmal SAH.

Teng et al.

[38]
2021 (May)

Retrospective

cohort study

Artificial Intelligence Can

Effectively Predict Early

Hematoma Expansion of

Intracerebral Hemorrhage

Analyzing Noncontrast

Computed Tomography Image

2011

to

2018

118

Deep learning

neural network

(BioMind)

ICH sizing

The sensitivity of intracerebral hemorrhage

hematoma expansion predicted by the artificial

intelligence imaging system was found to be

89.3%, with a specificity of 77.8%, a positive

predictive value of 55.6%, a negative

predictive value of 95.9%, and a Yoden index

of 0.671.

Rava et al.

[37]
2021 (June)

Retrospective

cohort study

Assessment of an Artificial

Intelligence Algorithm for

Detection of Intracranial

Hemorrhage

2016

to

2019

302

Deep learning

algorithm

(AUTOStroke

Solution) 

ICH diagnosis

The ICH detection algorithm was capable of

detecting IPHs, IVHs, SDHs, and SAHs

accurately, as well as determining the absence

of ICH.

Nawabi et

al. [39]
2020 (May)

Retrospective

review

Neoplastic and Non-neoplastic

Acute Intracerebral

Hemorrhage in CT Brain

Scans: Machine Learning-

Based Prediction Using

Radiomic Image Features

2010

to

2017

77
Machine

learning

ICH

classification

The ML approach employing quantitative

image features derived from non-contrast-

enhanced CT scans provides high

discriminatory accuracy in predicting neoplastic

ICHs.

Voter et al.

[40]
2021 (April)

Retrospective

review

Diagnostic Accuracy and

Failure Mode Analysis of a

Deep Learning Algorithm for

the Detection of Intracranial

Hemorrhage

2019 3605

Deep learning

algorithm

(Aidoc, Aidoc

Medical, Tel

Aviv, Israel)

ICH diagnosis

The use of AI diagnostic tool demonstrated

decreased diagnostic accuracy compared to

current methods, emphasizing the need for

standardized study designs. 

Morey et

al. [19]
2021 (April)

Retrospective

review

Real-World Experience with

Artificial Intelligence-Based

Triage in Transferred Large

Vessel Occlusion Stroke

Patients

2018

to

2020

55

Deep learning

neural network

(Viz LVO)

Stroke

diagnosis

optimization

Implementation of the Viz LVO model in the

management of large vessel occlusion acute

ischemic stroke patients transferred for

endovascular therapy is associated with

decreased door-to-neuroendovascular team

notification time intervals.

Bernard et

al. [24]

2021

(January)

Retrospective

cohort study

Deep learning reconstruction

versus iterative reconstruction

for cardiac CT angiography in

a stroke imaging protocol:

reduced radiation dose and

improved image quality

2018

to

2019

296
Deep learning

neural network

Stroke

diagnosis

optimization

DLR for cardiac CT angiography in an acute

stroke imaging protocol improved the image

quality and reduced the radiation dose

compared to the use of iterative reconstruction.
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Rava et al.

[23]

2021

(March)

Retrospective

cohort study

Validation of an artificial

intelligence-driven large vessel

occlusion detection algorithm

for acute ischemic stroke

patients

2019

to

2020

303

Deep learning

algorithm

(AUTOStroke

Solution)

Stroke

diagnosis

optimization

The DL algorithm was capable of recognizing

ICA and M1 MCA occlusions with precision. It

also was highly accurate in ruling out large

vessel occlusion but had a lower sensitivity for

detecting M2 and MCA occlusions.

Block et

al. [21]
2020 (June)

Prospective

observational

study

Cerebral ischemia detection

using artificial intelligence

(CIDAI)—A study protocol

2020
20

(ongoing)

Convolutional

neural network

Stroke

diagnosis

optimization

Physiological and clinical data processed by AI

could be used to more rapidly identify early

signs of cerebral ischemia.

Yao et al.

[22]
2020 (May)

Retrospective

review

CT radiomics features as a

diagnostic tool for classifying

basal ganglia infarction onset

time

 2016

to

2019

316

Machine

learning

algorithm

Stroke

diagnosis

optimization

Patients with stroke onset within 4.5 hours or

more could be distinguished by image analysis

based on CT scans.

Yahav-

Dovrat et

al. [20]

2021

(February)

Retrospective

review

Evaluation of Artificial

Intelligence-Powered

Identification of Large-Vessel

Occlusions in a

Comprehensive Stroke Center

2018

to

2019

1167

Deep learning

neural network

(Viz LVO)

Stroke

diagnosis

optimization

The Viz LVO algorithm demonstrated high

accuracy but had a false-positive rate of 66%.

The system has potential for the early

detection of patients with stroke but requires

improvements to establish a higher accuracy.

Kasasbeh

et al. [25]
2019 (May)

Experimental

study

Artificial Neural Network

Computer Tomography

Perfusion Prediction of

Ischemic Core

2019 128
Artificial neural

network

Stroke

diagnosis

optimization

The artificial neural network incorporated with

computed tomography perfusion and clinical

data was able to accurately predict ischemic

core in stroke patients.

Heunis et

al. [36]

2021

(November)

Experimental

study

Real-Time Multi-Modal

Sensing and Feedback for

Catheterization in Porcine

Tissue

2020 N/A Robotic system
Catheterization

optimization

An autonomous ultrasound robotic system

equipped with a multi-modal sensing and

feedback framework enables radiation-free

and accurate reconstruction of significant

tissues and instruments in catheterization

procedures.

TABLE 1: Twenty-three studies on AI/robotics for the diagnosis of cerebrovascular disorders.

AI-Based Treatment of Cerebrovascular Disorders

Ten articles describe the role of AI/robotics-based treatment of neurovascular disorders [14-18,43-47]. Table
2 shows a description of the results of these studies. We included six experimental studies, one retrospective
evaluation, one retrospective cohort study, one case report, and one technical report. Endovascular
procedure optimization was the key objective in all of these studies. Both physical robotics and
advancements in catheterization were explored. Pancaldi et al. introduced a flow-driven endovascular
navigation device that may technically permit access to deeper brain regions through the use of
interventional robotics [16]. Similarly, Gopesh et al. tested and explored a steerable endovascular
microcatheter that could facilitate access and treatment of deep intracranial aneurysms [17]. Bao et al.
explored a novel remote-controlled vascular interventional robot (RVIRC), which demonstrated the accurate
operation of a catheter and guidewire, findings that suggest its usefulness in catheterization procedures
[18]. Britz et al. explored modifications to the CorPath GRX system that could further improve its
performance and effectiveness in the catheterization of neurovascular anatomy [43], while George et al. and
Nogueira et al. demonstrated that the CorPath GRX Robotic System is a feasible, safe, and effective
alternative in the treatment of carotid artery stenosis (CAS) [15,47]. Jones et al. had a similar goal and
explored a different vascular interventional system, the Magellan Robotic System, in carotid artery stenting,
demonstrating its safety and effectiveness even in the setting of complex vascular anatomy [14]. Several
papers addressed one of the common criticisms of robotic catheterization: the lack of sensation and haptic
feedback, which is crucial to the interventionalist during catheterization procedures. Miyachi et al. tested a
force-sensing feedback framework that alerts the operator via an audible scale to try to address this problem;
the results were promising for future adaptations of this technology [46]. Another modification to
endovascular robotic systems was evaluated by Chi et al. to try to incorporate three-dimensional
preoperative imaging into the robotic platform. This resulted in a 33.3% reduction in mean contact forces
with smoother catheter paths [45].

Author Year
Type of
study

Title
AI/robotics
subtype

Key
objective

Key findings

Flow driven robotic Robotic
Endovascular
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Pancaldi
et al. [16]

2020
(December)

Experimental
study

navigation of
microengineered
endovascular probes

endovascular
navigation
device

procedure
optimization

Using this technology, endovascular access
to deep brain regions is technically feasible.

Britz et
al. [43]

2019
(November)

Experimental
study

Neuroendovascular-
specific engineering
modifications to the
CorPath GRX Robotic
System

Vascular
interventional
robot (CorPath
GRX Robotic
System)

Endovascular
procedure
optimization

Modifications to the CorPath GRX Robotic
System previously used for cardiac and
peripheral vascular interventions allow
improved effectiveness in neurovascular
anatomy.

Jones et
al. [14]

2021
(January)

Prospective
evaluation

Robot-Assisted Carotid
Artery Stenting: A Safety
and Feasibility Study

Vascular
interventional
robot (Magellan
Robotic
System)

Endovascular
procedure
optimization

Endovascular robotic carotid artery stenting
is safe and effective, demonstrating
success even in the setting of challenging
anatomy.

Bao et
al. [18]

2018
(February)

Experimental
study

A cooperation of catheters
and guidewires-based
novel remote-controlled
vascular interventional
robot

Vascular
interventional
robot (RVIR-CI)

Endovascular
procedure
optimization

The RVIR-CI was demonstrated to
accurately operate a catheter and
guidewire, detect resistance forces, and
complete complex surgical procedures by
cooperation between catheters and
guidewires.

Cheung
et al. [44]

2020
(October)

Retrospective
cohort study

Comparison of manual
versus robot-assisted
contralateral gate
cannulation in patients
undergoing endovascular
aneurysm repair

Vascular
interventional
robot (Magellan
Robotic
System)

Endovascular
procedure
optimization

Utilizing a vascular interventional robot for
contralateral gate cannulation in
endovascular aneurysm repair resulted in
decreased navigation path lengths and
increased economy of movement compared
to manual techniques. Robotic
catheterization also showed increased
cannulation times.

Chi et al.
[45]

2018 (April)
Experimental
study

Learning-based
endovascular navigation
through the use of non-rigid
registration for collaborative
robotic catheterization

Learning from
demonstration
(LfD)-equipped
vascular
interventional
robot

Endovascular
procedure
optimization

Incorporating three-dimensional
preoperative imaging into a
semiautonomous robotic catheterization
platform was associated with smoother and
shorter path lengths, as well as less mean
and maximum contact forces than a manual
approach.

Gopesh
et al. [17]

2021
(August)

Experimental
study

Soft robotic steerable
microcatheter for the
endovascular treatment of
cerebral disorders

Hydraulically
actuated soft
robotic
steerable tip at
dimensions
compatible with
cerebral
arteries

Endovascular
procedure
optimization

The microcatheter was successfully steered
in a pig model, and the deployment of coils
in complex vascular anatomy was
successful.

George
et al. [15]

2020 (May) Case report

Robotic-assisted balloon
angioplasty and stent
placement with distal
embolic protection device
for severe carotid artery
stenosis in a high-risk
surgical patient

Vascular
interventional
robot (CorPath
GRX Robotic
System)

Endovascular
procedure
optimization

The CorPath GRX endovascular robotic
system was successfully used in the
placing of balloons and stents for the
treatment of severe carotid artery stenosis.

Miyachi
et al. [46]

2021 (May)
Experimental
study

Remote Surgery Using a
Neuroendovascular
Intervention Support Robot
Equipped with a Sensing
Function: Experimental
Verification

Vascular
interventional
robot

Endovascular
procedure
optimization

A remote endovascular robotic system was
tested using a force-measuring device for
sensing feedback, yielding promising
results for its use in neurovascular
treatment and procedures.

Nogueira
et al. [47]

2020
(March)

Technical
report

Robotic assisted carotid
artery stenting for the
treatment of symptomatic
carotid disease: technical
feasibility and preliminary

Vascular
interventional
robot (CorPath
GRX Robotic

Endovascular
procedure
optimization

Robotic-assisted carotid artery stenting is
feasible and safe. All steps of the procedure
were performed with success, except for
stent navigation and deployment.
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results System)

TABLE 2: Ten studies on AI/robotics for the treatment of cerebrovascular disorders.

AI/Robotics in Neuroendovascular Training

Two studies looking at AI/robotics-based training and simulation of neurovascular procedures were included
[48,49]. A full description of the results can be found in Table 3. Yamaki et al. evaluated a simulation
technique involving endovascular robotics and a flow-driven robotic stent [48]. An experimental study by
Pannell et al. tested the ANGIO Mentor Simulator (Simbionix, Cleveland, OH, USA) and found that
simulated procedures produced a significant performance improvement in angiograms, embolectomies, and
aneurysm coil embolizations by neurosurgical residents and neuroradiology fellows [49]. Both studies
illustrate the utility of pre-procedural rehearsal in endovascular neurosurgery and robot-assisted
interventions and also demonstrate the need for further studies of this nature.

Author Year
Type of
study

Title AI Key objective Key findings

Yamaki
et al.
[48]

2021
(May)

Experimental
study

Biomodex patient-
specific brain
aneurysm models:
the value of
simulation for first
in-human
experiences using
new devices and
robotics

Vascular
interventional
robot and
flow-diverted
stent

Assess the reliability
of an experimental
treatment rehearsal
model

Pre-procedural rehearsal using patient-
specific 3D models provides precise
procedure planning, which can
potentially lead to greater operator
confidence, decreased radiation dose,
and improvements in patient safety,
particularly in first in-human
experiences.

Pannell
et al.
[49]

2016
(August)

Experimental
study

Simulator-Based
Angiography and
Endovascular
Neurosurgery
Curriculum: A
Longitudinal
Evaluation of
Performance
Following
Simulator-Based
Angiography
Training

ANGIO
Mentor
Simulator

Establish
performance metrics
for angiography and
neuroendovascular
surgery procedures
based on
longitudinal
improvement in
individual trainees
with differing levels
of training and
experience

Neurosurgical residents and
neuroradiology fellows should perform a
minimum of five simulated angiograms,
five simulated embolectomies, and 10
simulated aneurysm permanent coil
embolizations prior to scrubbing for
endovascular neurosurgery cases.
Participants demonstrated statistically
significant performance improvements
after performing simulations.

TABLE 3: Two studies on AI/robotics for neuroendovascular training.

AI/Robotics in Clinical Outcome Optimization for Neurovascular Disease

Three articles described the use of AI in outcome prediction and optimization in the setting of
neurovascular disease and treatment. Two retrospective studies and one prospective study were included
[50-52]. Table 4 shows a full description of the results. Asadi et al. evaluated the effectiveness of an ML
algorithm in predicting complications after endovascular treatment of brain arteriovenous malformations
(BAVMs) and found it to have an accuracy of 43% in predicting mortality; it also showed a 97.5% accuracy in
predicting outcomes and identified the presence or absence of nidal fistulae as the most important factor
[50]. A similar study has also shown promise in ML for clinical outcome prediction in the setting of stroke
[53]. Katsuki et al. demonstrated that AI prediction frameworks may be constructed with relative ease and
have superior performance to existing statistical prediction models (SAFIRE score and Fisher CT scale) [51].
Finally, a neural network was evaluated by De Jong et al. for outcome prediction in the setting of aneurysmal
SAH and reported sensitivity rates of 82% for mortality, 94% for unfavorable modified Rankin scales, and
74% for delayed cerebral ischemia (DCI) and specificity rates of 80%, 80%, and 68% for these same three
outcomes, respectively [52].
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Author Year
Type of
study

Title
Sample
size

AI Key objective Key findings

Asadi
et al.
[50]

2016
(December)

Retrospective
study

Outcomes and
Complications After
Endovascular
Treatment of Brain
Arteriovenous
Malformations: A
Prognostication
Attempt Using
Artificial Intelligence

199
Machine
learning

Intracranial hemorrhage
was the most common
clinical presentation
(56%); all spontaneous
events occurred in
previously embolized
BAVMs remote from the
procedure; the standard
regression analysis
model had an accuracy
of 43% in predicting final
outcome (mortality), with
the type of treatment
complication identified
as the most important
predictor

Machine learning techniques can
predict final outcomes with greater
accuracy and may help individualize
treatment based on key predicting
factors.

Katsuki
et al.
[51]

2021 (June)
Retrospective
study

Easily Created
Prediction Model
Using Automated
Artificial Intelligence
Framework
(Prediction One,
Sony Network
Communications Inc.,
Tokyo, Japan) for
Subarachnoid
Hemorrhage
Outcomes Treated by
Coiling and Delayed
Cerebral Ischemia

298
Machine
learning

Comparison of an AutoAI
framework (Prediction
One) and existing
statistical prediction
models (SAFIRE score
and Fisher CT scale) for
SAH outcomes

The AUCs of the AutoAI-based
models for functional outcome in the
training and test dataset were 0.994
and 0.801, respectively, and those
for the DCI occurrence were 0.969
and 0.650, respectively. The AUCs
for functional outcomes calculated
using the modified SAFIRE score
were 0.844 and 0.892. Those for the
DCI occurrence calculated using the
Fisher CT scale were 0.577 and
0.544. AutoAI could easily and
quickly produce prediction models in
less than two minutes as long as we
provide the dataset.

De
Jong et
al. [52]

2021 (May)
Prospective
study

Prediction Models in
Aneurysmal
Subarachnoid
Hemorrhage:
Forecasting Clinical
Outcome With
Artificial Intelligence

585
Machine
learning

To investigate the
prediction capacity of
feedforward artificial
neural networks
(ffANNs) for the patient-
specific clinical outcome
and the occurrence of
delayed cerebral
ischemia (DCI) and
compare those results
with the predictions of
two internationally used
scoring systems

The presented ffANN showed equal
performance when compared with
the VASOGRADE and SAHIT scoring
systems while using fewer individual
cases.

TABLE 4: Three studies on AI and clinical outcome optimization.

Discussion
Artificial Intelligence and robotic systems have transformed the practice of medicine, allowing for time-
effective diagnosis, efficient patient categorization and treatment, improved diagnostic accuracy, and
precise and safe surgical interventions. We describe the spectrum of various AI algorithms and robotic
systems in endovascular neurosurgery and give readers an opportunity to understand the current impact
that this technology may have on neurovascular practice and patient care. In particular, ML and DL
algorithms may facilitate the detection of life-threatening conditions such as stroke and LVO, ICH, and
ruptured aneurysm, while other algorithms can assist with surveillance such as ensuring that unruptured
aneurysms have not grown or changed in morphology. For ischemic stroke, Morey et al. used the Viz LVO
algorithm in a real-world experiment, and it resulted in decreased door-to-neurovascular team notification
times, which in turn resulted in faster reperfusion and augmented clinical outcomes [19]. Evolving
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algorithms also show promise in intracranial aneurysm and ICH detection and classification. These changes
have exceeded human radiologist capability as radiologist augmentation with a DL algorithm resulted in the
detection of a significantly higher proportion of intracranial aneurysms than by physicians alone [27]. This
technology has the power and potential to improve with time.

Robotic systems in interventional procedures also have the potential for more practical interventions and
improved outcomes. Although robotic systems are generally thought to decrease procedural times, Cheung
et al. and Weinberg et al. have demonstrated that this is not always true, primarily owing to increased
robotic cannulation times and a lack of operator familiarity with the robotic system [44,54]. However,
learning curves are expected in every field, and as providers become more experienced with robotics, this
trend may improve as has been shown in other domains of surgical medicine [55].

Robotics naturally may make surgery safer for providers as well. The Percutaneous Robotically Enhanced
Coronary Intervention (PRECISE) study found that by using robotic aids, the median radiation exposure to
operators was reduced by 95.2% (0.98 versus 20.6 mGy, p=0.001) [56]. The use of robotic systems may also
diminish the orthopedic burden on operators since this would eliminate the need for heavy lead gowns
during procedures as the operator would be comfortably sitting behind a radiation-protected cockpit. Novel
enhancements to endovascular catheters and microcatheters may facilitate safe navigation through tortuous
anatomy and allow for the treatment of aneurysms and other vascular pathology in deeper cerebral regions
while exposing the surgeon to less radiation [16,17]. The enhanced catheter tip stability and smoother
catheter and guidewire navigation that robotic systems offer could prompt an even steeper rise in the
evaluation and adoption of this technology in neurovascular practice.

Although robotic systems in endovascular procedures have limitations such as a lack of haptic feedback, the
literature in this review suggests that the incorporation of this technology is forthcoming and will continue
to improve. In this landscape of rapid change and innovation, limitations to AI and robotics must be further
explored and studied through rigorous testing. Although this poses a challenge for the development of a
larger number of clinically safe algorithms, AI technology may pave the way for the future in clinical practice
and augment practicing physicians’ capabilities to efficiently recognize life-threatening conditions.

As the incorporation of AI and robotics continue, this new technology will fundamentally have an impact on
healthcare costs to the individual and society. Approximately $3.3 trillion is spent by the United States on
healthcare [57,58], and the addition of robotic systems may increase the economic burden initially.
Nevertheless, the improved clinical outcomes associated with robotics may lead to an increase in overall
health and quality of life, as well as a reduction in long-term costs. The long-term impact of investing in this
technology and its impact on healthcare costs must be further studied. For example, the CorPath GRX
System developed by Corindus has an initial capital cost of approximately $500K with an additional $400-
$750 cost per procedure, and the Magellan Robotic System is estimated at around $1 million. However, if
these modalities improve outcomes, the costs of innovation are justified [13]. One study estimated that the
instruments and accessories used in robotic surgery cost an average of $1866 per procedure [59]. Despite the
ongoing study and approval of AI and robotics in clinical medicine, few analyses detailing their cost-
effectiveness have been made thus far in the field of endovascular neurosurgery [60]. Additional
comparisons of the incremental costs and incremental effectiveness of AI and robotics in vascular
interventional neurosurgery would provide a sound basis for justifying the adoption of new technologies in
the surgical theater. Still, high initial costs should not deter the modern surgeon from understanding that
investment in these technologies shows promise to fundamentally improve healthcare outcomes.

Conclusions
Our review indicates that AI and robotics in endovascular neurosurgery have an extremely promising future,
albeit with an unknown impact on interventional costs. Becoming familiar with this technology and
understanding its intricacies and clinical applications can be beneficial for neurosurgeons and
neurointerventionalists alike, as AI research and its clinical applications continue to grow and evolve. We
hope to encourage not only neurosurgeons but also other physician specialties to become acquainted with
these advances since they may become the standard for improved patient care in the future.
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