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A B S T R A C T

This algorithmic systematic review investigates the applications of electroencephalography (EEG) for recog-
nizing psychological hazards and monitoring mental health in construction safety. As automation and wearable 
technologies gain traction, EEG systems provide real-time insights into workers’ cognitive and emotional states, 
helping to identify stress, fatigue, and safety risks. Utilizing a structured search algorithm, literature from Scopus 
and Web of Science was filtered and analysed to create a comprehensive framework for EEG deployment in five 
key domains: automated psychological and cognitive assessment, hazard recognition and safety decision-making, 
advanced technology integration, situational awareness enhancement, and sustainability contributions. The re-
view underscores the synergy of EEG with robotics, virtual reality, and wearable devices, enhancing safety 
management in construction. Challenges such as data privacy and scalability are thoroughly examined. This 
paper significantly advances the understanding of EEG’s role in construction automation, offering future research 
directions to optimize EEG-based systems for a safer, more sustainable construction industry.

1. Introduction

The Introduction section presents a structured overview of four key 
areas central to this study. 1.1 explores construction safety with a focus 
on psychological hazards such as stress, fatigue, and cognitive overload. 
1.2 introduces electroencephalography (EEG) as a promising tool for 
real-time cognitive monitoring in high-risk environments. 1.3 highlights 
the existing knowledge gaps in the integration of EEG within construc-
tion safety practices. Finally, 1.4 outlines the research objectives and 
methodology adopted to address these gaps and guide the investigation.

1.1. Construction safety and psychological hazards

The construction sector represents approximately 13 % of the global 
gross domestic product and has been linked to a significant proportion of 
workplace injuries [1–3]. In 2023, the construction industry accounted 

for 27 % of all reported fatal and serious injuries [4,5]. In the United 
States, construction-related occupational fatalities made up 28 % of the 
total workplace fatalities in 2018. Meanwhile, in the United Kingdom, 
the 2019 fatality rate in construction was three times higher than the 
average across all industries. Similarly, Singapore experienced 14 fatal 
accidents in its construction sector in 2022 [2,6]. A large portion of the 
construction industry faces mental health challenges, with high stress 
levels being prevalent. In 2021, 16.5 % of construction workers reported 
heavy alcohol use [7,8]. In 2015, construction and extraction workers 
accounted for 20 % of male suicides, while in 2012, the industry had the 
second-highest rate of heavy alcohol consumption [7,9]. These alarming 
statistics highlight the critical importance of addressing both physical 
and psychological hazards to improve overall worker well-being and 
safety in the construction sector.

Psychological hazards are elements or aspects of the work environ-
ment that pose a risk to an individual’s mental health and well-being, 
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such as workplace stress, harassment, emotional demands, lack of social 
support, job insecurity, and organizational factors that can contribute to 
mental health issues such mental fatigue, psychological stress, anxiety, 
depression, and burnout [10,11]. Psychological hazards, such as mental 
fatigue, are prevalent in construction projects because of high-pressure 
environments and demanding workloads. Workers, including labour-
ers, employees, and engineers, face long shifts, tight deadlines, complex 
tasks, and stringent safety regulations, all of which heighten psycho-
logical stress [12,13]. These stressors reduce cognitive function, focus, 
and decision-making abilities, increasing the risk of accidents and 
compromised safety. The mental workload in such high-risk settings 
emphasises the need to recognize, assess, and mitigate psychological 
hazards [14,15]. Addressing these issues is essential to improve worker 
well-being, enhance performance, and ensure the safe and efficient 
completion of construction projects [14]. Neurophysiological hazards 
pertain to how the brain and nervous system respond to physical or 
environmental stressors [16,17]. Neurophysiological hazards include 
excessive noise, vibrations, or extreme temperatures that can impair 
cognitive and motor functions, leading to decreased reaction times, 
focus, and overall physical performance, increasing the likelihood of 
accidents. While psychological hazards affect mental well-being, 
neurophysiological hazards directly impact the brain’s functioning 
and physical motor coordination [18].

1.2. Electroencephalography (EEG)

EEG is a non-invasive neuroimaging method that captures and 
evaluates brain electrical activity [19]. It has been demonstrated that 
the bio-signals collected by EEG correspond to the postsynaptic poten-
tials of pyramidal neurons in the cerebral cortex [20,21]. The cerebral 
cortex represents the human brain’s external layer of neural tissue and is 
crucial for cognitive functions. As the primary centre for neural inte-
gration in the central nervous system, it is essential to manage attention, 
perception, awareness, thinking, memory, language, and consciousness 
[20,21]. Voltage fluctuations recorded by an EEG bio-amplifier and 
electrodes enable the assessment of typical brain activity. In a healthy 
individual, EEG patterns reflect different states of wakefulness. The 
observed frequency range is between 1 and 30 Hz, while the amplitudes 
vary from 20 to 100 μVolt [22,23].

EEG electrodes, typically worn on the scalp, capture brainwaves 
across various frequency bands, including Delta (0.3–4 Hz), Theta (4–8 
Hz), Alpha (8–13 Hz), and Beta (13–30 Hz) as in Fig. 1. These signals are 
analysed in multiple domains: frequency, time, time-frequency, and 
nonlinear analysis, utilizing advanced techniques such as AI, as well as 

quantitative EEG (qEEG) [24,25]. The insights derived from EEG anal-
ysis find applications across a diverse set of fields such as safety moni-
toring, brain-computer interfaces (BCI), control systems for robots and 
machines, medical neuroscience, neuromarketing, education and 
training, and other sectors, including military and gaming. This 
comprehensive integration of EEG data acquisition through electrodes, 
sophisticated analysis, and broad application spectrum emphasises its 
significance in both research and practical deployments [26,27].

Artificial Intelligence (AI) plays a transformative role in construction 
engineering and management, with applications ranging from digital 
twin modelling [28–31] and cost prediction [31–35] to the development 
of smart cities [36,37]. These technologies enhance decision-making, 
optimize resource allocation, and improve project lifecycle efficiency. 
In parallel, AI contributes significantly to the field of construction safety 
by enabling the classification and interpretation of electroencephalog-
raphy (EEG) signals. By applying advanced machine learning algorithms 
such as deep neural networks, support vector machines, and recurrent 
architectures. Accordingly, AI systems can detect and analyse cognitive 
states, including mental fatigue, stress, and attention levels among 
construction workers. This capability supports the early identification of 
psychological hazards, facilitating proactive safety interventions. The 
integration of AI with EEG analysis thus represents a novel approach in 
enhancing occupational health monitoring and promoting a data-driven 
safety culture within the construction industry.

1.3. Knowledge gaps and objectives

Several past related works reviewed the impact and benefits of EEG 
on smart construction safety. As outlined in Table.1, some studies share 
a focus on hazard recognition and safety decision-making [38,39]. Other 
studies focus on the technological integration of EEG in the construction 
of psychological assessment [40–42]. However, there are several gaps: 

• A few papers, such [39,41] require an update to 2024 papers and 
knowledge.

• Numerous publications are surveys rather than systematic literature 
reviews (SLR), and most papers do not include a systematic literature 
review.

• While the studies listed explore various aspects of EEG application 
from hazard recognition and cognitive decision-making to worker 
adversities, none of them address the intersection with sustainability. 
This gap suggests a potential area for exploring how EEG technolo-
gies can contribute to sustainable construction practices, potentially 

Fig. 1. Integrative framework of EEG technology from electrode placement to diverse applications [22,23].
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by optimizing safety protocols to improve long-term worker health 
outcomes.

• Some studies’ inclusion and exclusion criteria, research questions, 
and paper selection procedures were not entirely apparent.

• Some studies conducted research based on only one database. As a 
result, many articles have been neglected, and the results will not be 
dependable.

• Some papers did not consider limitations and future perspectives, 
while others did not focus on construction engineering and 
management.

• Scarcity of studies combining EEG technology with psychological 
and cognitive assessments in the construction sector.

Therefore, there is a need for comprehensive research examining 
how EEG can monitor and enhance the cognitive and psychological well- 
being of workers simultaneously. This represents an opportunity to 
develop multi-dimensional EEG applications that can contribute signif-
icantly to improving occupational health and safety protocols in the 
construction industry. Therefore, this study aims to dissect the current 
landscape of research, identify gaps, and propose future directions for 
integrating EEG solutions. By analysing trends, network collaborations, 
and thematic focuses within the existing literature, the research 

objective is to explore the impact of EEG on the following: 

1) Hazard recognition and safety decision-making,
2) Psychological and cognitive assessment,
3) Technology integration,
4) Sustainable Construction,
5) Future Perspectives and Limitations.

1.4. Research methods

This work explores the application of EEG technology in enhancing 
psychological and mental health within sustainable construction safety. 
As the construction industry faces unique challenges related to mental 
health risks and safety concerns, leveraging EEG offers a novel approach 
to monitoring and managing these issues effectively. As in Fig. 2, the 
structure of a study on EEG applications in sustainable construction 
safety. Section 2 describes the Algorithmic Systematic Review (ASR) 
methodology used to gather and analyse relevant EEG studies, high-
lighting the use of the Search Papers Algorithm (SPA). Section 3 presents 
the Results and Discussion of Scientometric Research, focusing on 
trends, networks, and key analyses, including the contributions of re-
searchers and countries. Section 4 details the EEG Applications for 

Table 1 
Comparison of past review papers and this work.

Reference Main Objective Year Research Pillars SLR

Hazard recognition and 
safety decision-making

Psychological and 
cognitive assessment

Technology 
integration

Sustainability Future perspectives 
and limitations

[39] EEG in Construction Safety 
Review

2019 ✓ ✓ £ £ ✓ ✓

[41] Review of Human Fall 
Detection Technology

2020 ✓ ✓ ✓ £ ✓ £

[42]
SLR for Wearable Sensors and 
AI for Safety and Ergonomics 2022 ✓ £ ✓ £ £ £

[40]
Physiological computing for 
construction safety 2022 ✓ £ ✓ £ ✓ £

[43]
EEG and Computing 
Neuroscience of Construction 
Workers

2022 £ ✓ £ £ ✓ £

[44]
Applications of EEG in 
construction 2022 ✓ £ ✓ £ ✓ ✓

[45]
Cognitive Statuses Tools in 
Construction Health and 
Safety

2023 £ £ ✓ £ ✓ ✓

[38] EEG for Construction Site 
Hazard Identification

2024 £ £ ✓ £ £ ✓

This work EEG applications in 
construction safety

– ✓ ✓ ✓ ✓ ✓ ✓

Fig. 2. Research structure.
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Construction Safety, presenting the findings from the systematic review 
of EEG-related studies. Section 5 addresses Limitations and Future 
Research Directions, identifying knowledge gaps that need further 

exploration. Section 6 answers the Research Questions (RQs) posed in 
this article, while Section 7 completes with Conclusions, summarising 
key findings, and discussing the implications of using EEG to enhance 
psychological and mental health in construction safety.

2. Algorithmic Systematic Review (ASR)

Algorithmic Systematic Review (ASR) is a literature review approach 
to reviewing academic literature that employs algorithms to systemati-
cally filter, select, and evaluate relevant papers. This method begins 
with the identification of a broad set of studies using predefined key-
words, followed by the application of specific inclusion and exclusion 
criteria across multiple databases, such as Scopus and Web of Science 
[46–48]. The algorithm merges and removes duplicates of the resulting 
papers, creating a refined pool for deeper analysis. Each paper un-
dergoes further scrutiny, such as through full-text reviews, to assess its 
relevance based on established research questions or hypotheses. By 
using algorithmic techniques, ALR enhances the efficiency, consistency, 
and transparency of the review process, especially in handling large 
volumes of literature, and reduces human bias while ensuring a rigorous 
and replicable synthesis of knowledge.

ASR begins with the curiosity of research questions (RQs) and 
developing search algorithms to systematic the literature review 
research. The screening papers algorithm (SPA) is an algorithm that is 
designed to systematically filter and select relevant academic papers 
from large databases for ALR as in Fig. 3. Initially, papers are retrieved 
using predefined basic keywords depending on RQs. The algorithm ap-
plies inclusion and exclusion criteria for each database to filter the initial 
set of papers, resulting in two subsets: Nsc from Scopus and Nw from Web 
of Science. These subsets are then merged to create a combined set of 
papers, Nm. The algorithm removes duplicate entries to ensure unique-
ness, generating a screened set of Ns, where Ns is the final, non- 
redundant set of papers. A deeper evaluation is performed on each 
paper within Ns through a full-text review, applying further specific 
criteria to discard irrelevant papers. This results in a final set of screened 
papers, Nf, representing the most relevant studies meeting the research 

objectives. Therefore, SPA ensures efficiency and consistency in large- 
scale literature reviews. The steps of the SPA algorithm are in Algo-
rithm 1 as follows:

The SPA is crucial for conducting ALR as it organises and streamlines 
the process of identifying and evaluating relevant academic papers. By 
integrating databases such as Scopus and Web of Science, SPA efficiently 
filters, and merges search results based on predefined inclusion and 
exclusion criteria. The SPA paves the way for the automation of SLR and 
ASR, which significantly reduces the time and effort involved in manual 
searches. This automation ensures a consistent and unbiased selection of 
literature, enhances the reproducibility of the review, and allows re-
searchers to focus on analysing the content rather than on the logistics of 
paper retrieval. The algorithm’s ability to remove duplicates systemat-
ically and conduct in-depth evaluations ensures that only the most 
pertinent and high-quality papers are considered, leading to more reli-
able and comprehensive outcomes in academic research.

ALR’s philosophy depends on combining both scientometric and 
systematic review approaches as a mixed review method to provide a 
comprehensive analysis. The resulting final sample (NF) is divided into 
two primary analytical pathways: scientometric analysis and identifying 
research pillars. The scientometric analysis includes examining the 
annual research trend, and constructing a network of countries, re-
searchers, citations, and keywords, mapping the intellectual landscape 
and collaboration patterns within the field. Concurrently, the research 
pillars focus on classifying the literature into different application-based 
and sustainability-based categories and identifying existing knowledge 
gaps and future trends. This dual approach provides a comprehensive 
overview of the field, integrating quantitative metrics and thematic in-
sights to inform subsequent research efforts.

2.1. Formulation of Research Questions (RQs)

The research questions (RQs) are the first step in the ALR for 
investigating the use of EEG technology in assessing psychological and 
mental health within the context of sustainable construction safety. In 
Section 1.3, a few knowledge gaps were highlighted. To fill these gaps, 
the following RQs were developed to explore how EEG can be leveraged 
to monitor mental health, enhance worker well-being, and prevent 
safety risks associated with cognitive impairments. RQs aim to explore 

Algorithm 1 
Screening papers algorithm (SPA).

Inputs: Basic Keywords, Inclusion/Exclusion Criteria, Database (Scopus, Web 
of Science)
Definitions:
Nsc: Number of filtered papers from Scopus database
Nw: Number of filtered from the Web of Science (WoS) database
Nm: Number of merged papers
Ns: Number of screened papers
Nf: Number of final screened papers
1. Initialise: Retrieve initial sets of papers using basic keywords
2. For each database (Scopus and WoS):

Apply inclusion/exclusion criteria to filter papers
End For

Return [Nsc, Nw]
3. Merge results from both databases:

Nm = Nsc + Nw
Return [Nm]
4. Remove duplicates to ensure unique papers:

Nm ≥ Ns ≥ Max (Nsc + Nw)
Return [Ns]
5. For each paper in Ns

Perform deeper evaluation (e.g., full-text review)
Discard papers not meeting further specific criteria
Update Nf where Nf ≤ Ns

End For
Return [Nf]
End
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how EEG can be leveraged to monitor mental health, enhance worker 
well-being, and prevent safety risks associated with cognitive impair-
ments. As the methods outlines, the RQs guide the ASR of EEG appli-
cations in detecting psychological stressors and their impact on the 
specific area of construction safety. The following discussion addresses 
each research question, thoroughly analysing EEG’s role in promoting 
mental health and safety in sustainable construction.

RQ1: What is the trend of annual research publications and 
citations?

RQ2: What are the influential keywords and recurrence relations?
RQ3: What are the current research avenues in EEG for Psycho-

logical and Mental Health in Sustainable Construction Safety?
RQ4: How does EEG-based real-time monitoring of brain activity 

correlate with improvements in worker performance and safety in 
construction?

RQ5: What role can EEG technology play in promoting sustainable 
construction safety through the early detection of cognitive 
impairments?

RQ6: How effective are current machine learning algorithms in 
analysing EEG data for predicting mental health issues in high-risk 
construction settings?

RQ7: What are the primary challenges in integrating EEG technology 
with existing safety protocols in construction practices?

RQ8: To what extent can EEG analysis contribute to sustainable 
construction by improving long-term mental health outcomes for 
workers?

RQ9: What is the impact of EEG-based situational awareness eval-
uation on team coordination, communication, and decision quality in 
dynamic construction tasks?

RQ10: To what extent does EEG contribute to sustainable develop-
ment goals (SDGs), particularly in promoting long-term mental health, 
decent work conditions, and innovation in construction safety practices?

RQ11: What are the ethical, legal, and organizational implications of 
widespread EEG adoption for continuous worker monitoring in 
construction?

RQ12: How can EEG data support the development of adaptive, 
individualized safety protocols that respond to real-time cognitive 
states?

2.2. Screening Papers Algorithm (SPA) execution

After formulating RQs, the bibliometric data extraction process starts 
with a searching phase using specific keywords: “EEG” OR “electroen-
cephalography” combined with “construction safety” OR “construction 
sustainability”. The search is conducted across two major databases: 
Scopus and Web of Science (WoS). A total of 364 papers from Scopus 
(Nsc) and 187 papers from WoS (Nw) were identified in this identifica-
tion phase.

In the screening phase, the identified papers are filtered based on 
inclusion criteria, such as publication years (2014–2024), document 
type (articles and review papers only), and language (English only). This 
results in 117 included papers from Scopus and 128 from WoS, which 
are then merged into a combined set (Nm = 245 papers). After removing 
66 duplicate entries, 179 unique papers (Ns) were considered for further 
eligibility assessment. In the eligibility phase, titles, abstracts, and full 
texts of these 179 papers were scanned, resulting in the exclusion of 87 
papers. The final included sample (Step 5) comprises 92 papers (Nf), 
which are deemed relevant and are included in the systematic review.

In other words, the inclusion and exclusion criteria for the literature 
selection process were systematically applied to ensure the relevance 
and quality of the screened studies. The inclusion criteria required that 
papers be published between 2014 and 2024, classified as either 
research articles or review papers, and written in English. These criteria 
were uniformly applied across both Scopus and Web of Science (WoS) 

Fig. 3. Algorithmic literature review (ALR) including the screening papers algorithm (SPA).
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databases. Initially, 364 papers were retrieved from Scopus and 187 
from WoS. After applying the inclusion criteria, the number of eligible 
papers was reduced to 117 from Scopus and 128 from WoS. Duplicate 
entries were then removed, resulting in a non-redundant set of 179 
papers. A deeper evaluation through title, abstract, and full-text reviews 
led to the final inclusion of 92 papers that fully met the research ob-
jectives as in Fig. 4.

3. Results and discussion of the scientometric review

The Results and Discussion section of the scientometric review pre-
sents a comprehensive analysis across several key dimensions. It begins 
with an examination of the annual research trends in EEG applications 
for construction safety (3.1), followed by an analysis of the countries 
actively contributing to this field (3.2) and the leading researchers 
involved (3.3). The section also includes a network analysis of active 
institutions (3.4), citation patterns of published articles (3.5), interdis-
ciplinary research interactions (3.6), and a keyword co-occurrence 
network analysis (3.7) to identify emerging themes and research 
hotspots.

3.1. Annual EEG for construction safety studies trend

The analysis of the final sample (Nf) shows that the screened papers 
were divided into 84 articles (89 %) and 9 reviews (11 %), with a total of 
2265 citations for articles (93 %) and 175 citations for reviews (7 %). As 
a result, there are a few review papers (9 articles) with little citation 
impact (7 % of citations). Fig. 5 shows a clear upward trend in the 
number of citations for EEG studies in construction safety from 2014 to 
2024. After a relatively low number of papers, with only 6 papers 
published in 2018 and 3 in 2020, the cumulative number of citations 
increased from 73 citations in 2014 to 2440 citations in 2024, with a 
significant jump between 2021 and 2022 (from 13 to 17 articles). The 
number of papers published in 2024 peaked at 24 papers. This suggests a 
growing trend and exploration in EEG research for construction safety.

3.2. Analysis of engaged countries

While developed countries have made significant contributions to 
the safety and human well-being field, there is a clear need for greater 
research efforts in developing regions to ensure that construction 
workers worldwide benefit from the advancements in EEG technology. 
Fig. 6 illustrates the global distribution of EEG studies related to con-
struction safety. The colour of each country represents the number of 
papers published in that region, ranging from 0 to 24. The majority of 
EEG studies in construction safety have been conducted in developed 
countries, particularly in North America, Europe, and Asia. Countries 
with the highest number of papers include China, the United States, and 
the United Kingdom, suggesting that these regions have been at the 
forefront of research in this area. However, the map reveals a significant 
gap in research coverage for developing countries. Various regions in 
Africa, South America, and Oceania have limited or no published EEG 
studies on construction safety. This suggests that there is a need for 
increased research efforts in these areas to address the unique challenges 
faced by construction workers in developing countries and to promote 
safer working conditions.

There is a strong network of collaborations between countries, sug-
gesting a shared interest in advancing EEG applications for construction 
safety. Fig. 7 illustrates the relationships between countries based on the 
number of co-authored EEG studies on construction safety. The size of 
each circle represents the number of papers published by that country, 
while the lines connecting the circles indicate collaborative research 
efforts. As the largest circle, the United States appears to be the domi-
nant player in EEG research for construction safety. It has collaborated 
with a wide range of countries, including China, Hong Kong, Germany, 
Australia, and the United Kingdom. China also plays a significant role in 
the field, with numerous published papers and collaborations with the 
United States, Hong Kong, and other countries. Australia has collabo-
rated with the United States and Germany, suggesting a growing interest 
in this field in the region.

The collaborative landscape of EEG research for construction safety 
among various countries is shown in Fig. 8. Based on the total link 
strength, which represents the intensity of collaboration, the United 
States and China emerge as the central hub, connecting with a wide 
range of countries. South Korea and the United Kingdom have estab-
lished substantial collaborations with the United States, indicating their 
active participation in this field. While Australia, Belgium, Canada, 
Germany, Hong Kong, Italy, Pakistan, and Singapore have fewer 
collaborative links, their contributions to the research are still valuable, 
demonstrating a global interest in advancing EEG technology for con-
struction safety.

3.3. Analysis of engaged researchers

The productivity and impact of researchers engaged in EEG appli-
cations for construction safety are illustrated in Fig. 9. Based on the 
number of published papers and citations, Jebelli H emerges as the most 

Fig. 4. Application of SPA algorithm.

Fig. 5. Annual research publications and citations.
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prolific researcher, with a considerable number of documents and a high 
citation count. Liu Yz and Hwang S. also demonstrate significant con-
tributions to the field, with a strong balance of publications and cita-
tions. While the number of papers and citations decreases for subsequent 
researchers, it is crucial to note that each researcher has made valuable 
contributions to the advancement of EEG technology in construction 
safety.

3.4. Network analysis of active institutes

The collaborative landscape of EEG research for construction safety 
among various institutions is displayed in Fig. 10. Based on the total link 
strength, which represents the intensity of collaboration. City University 
of Hong Kong and the University of Michigan demonstrate significant 
research output and impact, with a combined total of 17 documents and 
1085 citations. Shenzhen Research Institute and Pennsylvania State 

Fig. 6. Research’s most influential countries based on the number of publications.

Fig. 7. Network of the research’s most influential countries.

Fig. 8. Top collaborating countries.
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University demonstrate strong collaborative networks, with total link 
strengths of 23 and 18, respectively. While Northumbria University and 
the University of Michigan system have fewer collaborative links, their 
contributions to the field are still valuable.

3.5. Analysis of article citations

The analysis presented in Table 2 reveals that EEG research in con-
struction safety is acquiring traction, with 1480 citations (61 % of total 
citations) stemming from only 13 key papers. The highest-cited articles 
are concentrated in leading journals such as Automation in Construction 
and the Journal of Construction Engineering and Management, reflect-
ing the interdisciplinary nature of this research. Studies with the most 
citations, such as those by [49](236 citations) and [50] (210 citations), 
focus on monitoring fatigue and stress in construction workers using 
EEG, indicating the critical importance of physiological and psycho-
logical hazard detection in the construction industry. Several studies 
emphasise the development of wearable EEG systems for real-time 
monitoring, such as [51,52], which demonstrates the technological ad-
vancements in EEG applications for safety.

A noticeable trend in the articles is the focus on mental workload and 

cognitive monitoring, exemplified by the works of [54,55,60]. These 
studies explore the cognitive demands placed on workers and their 
impact on safety and performance, reinforcing the importance of mental 
health alongside physical safety in construction. The relatively recent 
articles, such as [55] (2020) and [55](2022), focus on integrating EEG 
with advanced neurophysiological approaches and cognitive 
computing, showcasing the growing sophistication of EEG applications 
in construction safety.

The distribution of citations among the top-cited journals in the 
research field is displayed in Fig. 11. The dominant journal is Automa-
tion in Construction, accounting for a substantial 70 % of the total ci-
tations (1480). This suggests that research published in this journal has 
had a significant impact on the EEG for construction safety. Following 
Automation in Construction, the Journal of Construction Engineering 
and Management, Journal of Computing in Civil Engineering, IEEE 
Systems Journal, and IEEE Transactions on Computational Social Sys-
tems receive 13 %, 7 %, 5 %, and 5 % of the citations, respectively. These 
findings indicate that while Automation in Construction is the leading 
journal, research published in the other journals also contributes valu-
able insights.

Fig. 9. Most influential authors.

Fig. 10. Analysis of engaged institutes.
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3.6. Research discipline interactions

The bar chart on the left-hand side of Fig. 12 categorizes various 
disciplines based on the frequency of papers analysed in the study. The 
chart spans multiple disciplines, with ‘Engineering’ appearing as the 
most frequent, indicating a strong emphasis on technical aspects in the 
study. Other prominently featured disciplines include ‘Computer Sci-
ence’ and ‘Neuroscience,’ reflecting the integration of technological and 
neural analysis in the EEG research for construction safety. 

‘Construction Safety’ and ‘Psychology’ also stand out, highlighting the 
focus on safety and mental health aspects within the construction safety 
practices. Other significant frequencies are observed in related fields 
such as ‘VR and brain-machine interface (BMI) Technology’, ‘Environ-
mental Science’, ‘Automation Control’, and ‘Behavioural Sciences’, 
showcasing a multidisciplinary approach to understanding and 
improving mental health and safety in construction settings through 
EEG applications for sustainable construction safety.

The Venn diagram on the right side of Fig. 12 visualises the in-
tersections of Engineering, Medicine, and Computer Science research 
disciplines. Key focal areas include “EEG for Safety,” which lies at the 
convergence of all three fields, demonstrating its multidisciplinary 
relevance in areas such as biomedical engineering and safety protocols. 
Virtual reality and augmented reality “VR/AR” and “Robots” are shared 
between Engineering and Computer Science, highlighting their tech-
nological and automation aspects. The overlap between Engineering and 
Medicine emphasises integrations in “Biomedical Engineering” and 
“BMI” (Brain-Machine Interfaces), pointing to advancements in medical 
devices and technologies. Finally, the shared space between Medicine 
and Computer Science features “Computational Neuroscience” and “Bio- 
signals processing,” underscoring the role of data science and algorithms 
in analysing neurological and physiological data. This diagram suggests 
a dynamic interplay of disciplines aimed at enhancing EEG technology 
for safety.

3.7. Network of keywords analysis

The interrelationships among various keywords related to EEG ap-
plications in construction safety are displayed in Fig. 13. Several key 
clusters of keywords emerge from the network. Cluster 1, highlighted in 
red, primarily focuses on the cognitive and physiological aspects of 
construction worker safety. Keywords such as attention, vigilance, fa-
tigue, and mental workload are central to this cluster, emphasizing the 
importance of monitoring these factors to assess worker performance 
and identify potential risks. Cluster 2, depicted in green, centres around 
the technological advancements in EEG research. Keywords like ma-
chine learning, deep learning, risk, and construction highlight the role of 
these technologies in developing innovative EEG-based solutions for 
construction safety. Cluster 3, coloured blue, is concerned with the 
broader context of construction safety, including concepts such as 
recognition, safety, mental fatigue, and workload. This cluster empha-
sises the importance of addressing these factors to improve overall 
worker safety. Finally, Cluster 4, represented in yellow, focuses on the 
methodological aspects of EEG research. The identified cluster of key-
words, such as ‘classification’ and ‘management,’ emphasises key 
methodological aspects in EEG research. ‘Classification’ relates to the 
processing and categorisation of EEG data, while ‘management’ refers to 
the techniques and strategies required for effectively managing and 
implementing data analysis processes in EEG applications.

Table 2 
Top-cited articles in EEG for construction safety research with 1480 citations 
(61 %) of 2440 total citations based on the final sample (Nf).

Reference Citations Journal Year Key findings

[49] 236
Automation in 
Construction 2017

Physiological measures 
for tracking construction 
worker tiredness.

[50] 210
Automation in 
Construction

2018
Construction site stress 
recognition by EEG-based 
personnel.

[53] 133

Journal of 
Construction 
Engineering and 
Management

2018
Utilizing EEG to Monitor 
Construction Workers’ 
Emotional States.

[54] 128
Automation in 
Construction 2016

Determining Construction 
Safety via Mental 
Workload Evaluation.

[51] 111
Automation in 
Construction 2017

Monitoring construction 
workers’ attentiveness 
and alertness with a 
wearable, wireless EEG.

[52] 104
Journal of 
Computing in Civil 
Engineering

2018

High-quality brain waves 
obtained from a wearable 
EEG device using the 
signal-processing 
framework.

[55] 78
Automation in 
Construction 2020

Construction workers’ 
physical exhaustion and 
the production of mental 
exhaustion: A pilot 
research using a 
neurophysiological 
method.

[43] 77
IEEE Transactions 
on Computational 
Social Systems

2022

Critical Review on 
Assessing Construction 
Workers’ Cognitive 
Statuses Using EEG.

[43] 76
Automation in 
Construction 2021

Brainwave-driven 
cooperative human-robot 
work in the building.

[56] 73
Automation in 
Construction 2021

Brain-computer interface 
enables construction 
robots to operate hands- 
free.

[57] 73
IEEE Systems 
Journal

2014

Universal Plug and Play 
(UPnP) home networking 
smart living 
environmental auto- 
adjustment management 
system based on brain- 
computer interface.

[58] 64
Automation in 
Construction 2019

Construction workers’ 
pre-service tiredness 
detection using wearable 
EEG-based signal spectral 
analysis.

[59] 61 Automation in 
Construction

2019

Monitoring and assessing 
the attentiveness of 
construction workers 
using hybrid kinematic- 
EEG data

[60] 56

Journal of 
Construction 
Engineering and 
Management

2017

Evaluating Cognitive Task 
Stress in Construction 
Projects by An Innovative 
EEG Method.

Fig. 11. Top-cited Journals in the research (1480 citations).
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Fig. 12. Venn diagram of research disciplines interactions based on a bar chart of disciplines frequencies in the studied papers (Nf).

Fig. 13. Keywords clusters and interrelations.
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4. EEG applications for construction safety

The scientometric review offers a broad perspective on EEG’s impact 
on construction safety. However, it overlooks detailed applications and 
gaps. Therefore, an algorithmic systematic review was conducted on the 
final sample (Nf = 92) papers included in the scientometric review to 
address this shortcoming. This process involved analysing these papers’ 
introduction, methodology, and discussion sections. To categorise and 
arrange the 92 papers, a combination of literature review, systematic 
sorting, and synthesis methodologies was conducted. The primary aim 
was to categorise these articles based on the type of EEG applications 
and the sustainability impact on construction safety practices. As a 
result, the final sample (Nf = 92) was synthesised into five main cate-
gories: Automated Psychological and Cognitive Assessment, Hazard 
Recognition and Safety Decision-Making, Advanced Technology Inte-
gration, Situational awareness enhancement, and Sustainability contri-
bution, as in Fig. 14.

Recent advancements in EEG and physiological sensing have signif-
icantly enhanced research on construction safety, with notable contri-
butions from leading institutions. Researchers at the University of 
Illinois Urbana-Champaign (UIUC), led by H. Jebelli, have pioneered 
EEG-based brain-computer interfaces (BCIs) to monitor workers’ 
cognitive states, enabling real-time detection of attention lapses and 
mental fatigue to improve safety outcomes [50,53,61]. At Pennsylvania 
State University (Penn State), studies have explored EEG-driven human- 
robot collaboration, where brainwave signals are used to optimize ro-
botic assistance, thereby reducing cognitive workload and enhancing 
operational safety [62]. The University of Michigan (UMICH) has 
further expanded EEG applications by investigating the impact of 
emotional states on hazard perception, demonstrating that stress and 
anxiety impair risk assessment capabilities in construction workers 
[52,53].

Recent advancements have enabled the practical implementation of 
electroencephalography (EEG) in real-world construction scenarios to 
monitor workers’ cognitive states and enhance safety protocols. Jiang 
et al. (2024) provided a comprehensive review of EEG applications for 
understanding cognitive processes under risky scenarios, shedding light 
on how safety performance can be improved using brain activity data 
[19]. Jeon and Cai (2023) conducted a comparative study that utilized 
EEG-based hazard identification in both virtual and real environments, 
emphasizing the dynamic nature of construction sites [26]. Their earlier 
work (Jeon & Cai, 2022) further demonstrated the use of wearable EEG 

devices to classify construction hazards through cognitive state assess-
ment, using thousands of real project cases to validate their classifier 
[63]. Complementing these findings, Cheng et al. (2022) critically 
reviewed methods for measuring and computing construction workers’ 
cognitive status using EEG, highlighting its growing reliability in prac-
tical field settings [43].

4.1. Automated Psychological and Cognitive Assessment (APCA)

EEG offers significant potential to enhance construction safety by 
providing automated psychological and cognitive assessments (APCA) 
of workers in real time. By monitoring brain activity, EEG can detect 
mental states such as fatigue, stress, and cognitive overload. These are 
key factors that compromise decision-making and attention on con-
struction sites. This data can be integrated into safety management 
systems to trigger timely interventions, such as task reallocation or rest 
breaks, to minimize the likelihood of accidents. Moreover, EEG-driven 
insights can be used to personalize safety training and optimize work 
schedules, ensuring that workers are cognitively fit for high-risk tasks 
and contributing to a safer and more efficient construction ecosystem.

Of the 92 papers (Nf), 50 specifically addressed APCA where each 
paper of the 92 papers may be categorized into one or more categories or 
sub-categories of the EEG applications based on its research scope and 
contribution. APCA can be sub-categorized into four methodological 
categories: (1) Mental Fatigue Detection and Monitoring, (2) Cognitive 
Load Assessment, (3) Workload Assessment, and (4) Stress Recognition 
and Management, as in Fig. 15.

4.1.1. Mental fatigue detection and monitoring
The largest share of APCA is allocated to the Mental Fatigue Detec-

tion and Monitoring category, comprising 36 % of APCA (18 papers of 

Fig. 14. A framework of EEG applications for sustainable construction safety.

Fig. 15. Subcategories and applications of APCA.
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Nf), highlighting its prominence in current research. Mental fatigue 
detection and monitoring are crucial in psychological and cognitive 
assessment, especially in high-risk environments such as construction 
sites, offshore operations, or oil and gas-related projects [49]. Utilizing 
technologies such as EEG, this area focuses on identifying signs of 
tiredness and decreased alertness among workers [14,64]. By continu-
ously monitoring brain wave patterns, researchers can pinpoint changes 
that indicate fatigue, potentially preventing accidents caused by lapses 
in concentration or slow reaction times. Early detection of mental fa-
tigue enables timely interventions, such as suggesting breaks or rotating 
tasks, thereby maintaining safety and productivity [3,65].

The research on mental and cognitive fatigue explores various 
methods for assessing and mitigating fatigue in construction tasks using 
EEG and other physiological signals. Key studies include the validation 
of facial feature measurements for real-time fatigue assessment and the 
impact of physical fatigue on cognitive performance [66]. Advanced 
techniques such as deep learning algorithms for detecting mental fatigue 
and the development of wearable EEG-based systems for fatigue 
screening are prominent in this body of work, reflecting the ongoing 
efforts to enhance safety through better fatigue management [66,67].

In pilot research using a neurophysiological methodology, the effects 
of physical exhaustion on the induction of mental weariness in con-
struction workers were investigated. [55]. The impact of cognitive fa-
tigue on attention and the implications for construction safety were 
examined from a neuroscientific perspective [3]. The mental fatigue of 
construction equipment operators was monitored using a smart cushion- 
based method with deep-learning algorithms [64]. To classify mental 
fatigue during construction equipment operations based on data, 
multimodal integration was carried out, combining visual signals, 
electrodermal activity, and electroencephalography. [68]. Mental fa-
tigue in construction equipment operators was detected non-invasively 
through geometric measurements of facial features [69]. Construction 
workers’ pre-service tiredness assessment was carried out using wear-
able EEG-based signal spectral analysis [58]. Enhanced sequential 
learning and timeliness were used to measure construction workers’ 
mental exhaustion in real-time. [70].

4.1.2. Cognitive load assessment
Cognitive load assessment is the second largest portion of APCA, 

which accounts for 26 % of APCA (13 papers of Nf). Cognitive load 
assessment examines the amount of mental demand placed on an indi-
vidual during task performance [43,71]. By assessing cognitive load, 
researchers can determine how much information a person is processing 
and whether it is within their capacity to manage safely and effectively. 
EEG provides real-time insights into brain activity, helping to adjust 
tasks to avoid overwhelming construction workers, which leads to 
mistakes and injuries. Therefore, the cognitive load assessment area is 
fundamental in designing tasks and work schedules that optimize 
human cognitive capabilities and safety [51,72].

On the other hand, investigating cognitive processes and visual 
attention in hazard recognition focuses on understanding the neural 
mechanisms underlying hazard perception in construction ecosystem 
[73]. Research in this subcategory examines fixation-related potentials 
to gauge visual attention and how individual differences, such as per-
sonality traits and prior experience, influence cognitive responses to 
hazards [71]. Studies address the impact of multi-dimensional unsafe 
psychology on cognitive states and the real-time monitoring of mental 
fatigue, providing insights into how cognitive factors affect hazard 
recognition [43,74,75].

A brain-inspired perception feature and cognition model was applied 
to a safety patrol robot [71]. The impact of cognitive fatigue on attention 
and the implications for construction safety were examined from a 
neuroscientific perspective [3]. The cognitive statuses of construction 
workers based on electroencephalograms were measured and computed, 
with a critical review conducted [43]. Workers’ emotional state during 
construction tasks was measured using a wearable EEG device [53]. 

With the use of a wearable EEG device, construction workers’ noise- 
induced distractions were observed. [76]. The attentiveness and focus 
of laborers engaged in building tasks were observed using wearable, 
wireless electroencephalography equipment. [51]. Using wearable EEG, 
a cognitive state evaluation was used to classify construction dangers 
into many classes. [63].

4.1.3. Workload assessment
Workload Assessment research holds a smaller share of APCA with 

20 % (10 papers). Research on fatigue and workload measurement 
emphasises the neurophysiological approaches used to assess these 
factors in construction tasks. Workload assessment focuses on quanti-
fying the physical and mental effort required by tasks to ensure that the 
work tasks are aligned with workers’ capabilities [60,77]. This assess-
ment helps in balancing task demands with worker skills and capacities 
to prevent overburdening. Techniques such as EEG-physiological 
monitoring and task analysis are used to gauge how workload impacts 
worker performance and health. Optimizing workload is essential for 
preventing burnout and ensuring that operational efficiency is main-
tained without compromising safety [39,51,75].

This subcategory focuses on interventions designed to alleviate fa-
tigue and cognitive load in construction ecosystem. The research in-
cludes innovative approaches such as human-centric robotic 
manipulation, which leverages physiological computing mechanisms to 
perceive and respond to workers’ cognitive load [40]. A novel electro-
encephalography approach was proposed for assessing task mental 
workload in construction projects to minimize accidents [60]. The 
attention and concentration of software developers were investigated to 
improve the workers’ productivity and performance [78]. Cross-task 
mental workload recognition was performed based on EEG tensor rep-
resentation and deep transfer learning [77]. Using hybrid kinematic- 
EEG data, construction workers’ attentiveness was identified and 
measured to assess the worker’s workload and mental status [59]. A 
wearable, wireless electroencephalography device was used to monitor 
the attentiveness and attentiveness of construction workers [51]. 
Additionally, the development of transcutaneous acupoint electrical 
stimulation gloves aims to relieve mental fatigue in crane drivers, 
demonstrating practical applications of physiological interventions to 
improve worker well-being and performance [79].

4.1.4. Stress recognition and management
Only nine papers (18 %) discuss stress recognition and management. 

Stress recognition and management involves identifying physiological 
and psychological stressors to help mitigate their negative impacts on 
workers. This process utilizes sensors to monitor indicators such as EEG 
patterns, heart rate variability, and cortisol levels, which reflect stress 
levels [50,80]. The objective is to understand how stress affects worker 
performance and productivity to develop strategies that help manage or 
reduce stress in the workplace. Effective stress management ensures that 
workers remain focused and efficient, reducing the likelihood of errors 
that could lead to accidents, fatalities, or decreased productivity [53].

This subcategory investigates the monitoring of stress and emotional 
states in construction workers using EEG technology. Research focuses 
on the impact of environmental factors such as oxygen content, safety 
equipment, and auditory warnings on workers’ stress levels and 
emotional responses [66,81]. Studies highlight the application of EEG- 
based methods to measure emotional states and habituation to safety 
signals, providing insights into how these factors influence overall well- 
being and performance in construction settings [77]. On building sites, 
EEG-based worker stress recognition was carried out. [50]. Wearable 
EEG was used to evaluate the emotional state of construction workers 
throughout their jobs [53]. Stress levels were determined by physio-
logical signals correlated with the rework of engineering drawing jobs 
[80]. An EEG-based circumplex model of effect was developed to iden-
tify interindividual differences in thermal comfort [81].
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4.2. Hazard Recognition and Safety Decision-Making (HRSDM)

Hazard Recognition and Safety Decision-Making (HRSDM) is a crit-
ical approach in construction safety that utilizes EEG to enhance the 
ability of workers to recognize potential hazards and make informed 
safety decisions in real-time [82]. This methodology leverages the 
brain’s electrical activity to detect cognitive states that signal awareness 
or recognition of danger, enabling pre-emptive actions to mitigate risks 
[63,83,84]. By integrating EEG, HRSDM aids in identifying when 
workers are under cognitive stress or distraction, conditions that 
significantly increase the probability of accidents on construction sites. 
This approach enhances overall project efficiency by ensuring that 
workers remain alert and aware of their surroundings [85–87]. There-
fore, HRSDM is an essential component in the broader field of con-
struction safety management, offering a technologically advanced 
method to protect workers and promote high safety standards on con-
struction sites. Of the 92 papers (Nf), 38 specifically addressed HRSDM. 
These studies can be subcategorized into three methodological cate-
gories: (1) Automated Hazard Perception and Recognition, (2) Intelli-
gent Decision-Making and Safety Alert Systems, and (3) Safety Training 
and Virtual Reality (VR), as in Fig. 16.

The integration of EEG and wearable technology into construction 
safety protocols offers an intelligent pathway to developing personalized 
safety systems that enhance worker participation, improve safety be-
haviours, and reduce accident rates. By continuously monitoring indi-
vidual workers’ cognitive and emotional states, such as fatigue, stress, 
and attention levels. Accordingly, EEG systems can provide real-time 
feedback tailored to each worker’s unique physiological responses 
[19,38]. This personalized approach enables the identification of 
workers who can be at higher risk of accidents due to cognitive overload 
or diminished vigilance. Implementing adaptive interventions, such as 
customized rest breaks or targeted safety training, can address these 
risks proactively. Moreover, involving workers in the process by 
providing them with insights into their cognitive states fosters a culture 
of safety awareness and personal responsibility. Such individualized 
safety measures enhance the effectiveness of safety protocols and 
contribute to a reduction in workplace accidents, promoting a safer and 
more efficient construction environment [88,89].

4.2.1. Automated hazard perception and recognition
Automated Hazard Perception and Recognition comprises the largest 

portion of the HRSDM category, accounting for 42 % (16 papers), 
underscoring the critical role of EEG in detecting and responding to 
potential hazards in real-time. Automated Hazard Perception and 
Recognition refers to the use of EEG technology to detect and identify 
potential safety hazards in laborers’ behaviour on construction sites 
[84,90]. This approach typically involves sophisticated electrodes and 
AI algorithms to analyse brain waves and environmental data to predict 
risks before they lead to accidents. Integrating EEG into the safety 
management framework enhances the system’s capabilities by moni-
toring workers’ brain activity to identify cognitive states that impair 
hazard perception [91].

EEG can be utilized to detect signs of cognitive overload or fatigue in 
real-time, which are critical factors that reduce a worker’s ability to 
recognize hazards promptly [92]. Artificial intelligence and deep 

learning can analyse EEG data, where the system can alert safety man-
agers or workers when there is a diminished capacity for safe decision- 
making, thereby enabling proactive measures to mitigate risks [63]. This 
integration of EEG with automated hazard perception technologies helps 
maintain high safety standards and supports continuous monitoring and 
improvement of occupational health practices, leading to a safer work-
ing environment [93,94].

4.2.2. Intelligent decision-making and safety alert systems
Intelligent Decision-Making and Safety Alert Systems represent 34 % 

(13 papers of Nf) of the HRSDM category, highlighting the use of EEG to 
enhance cognitive decision-making processes and trigger safety alerts 
effectively [44,66,79]. For instance, if EEG data indicates that a worker 
is experiencing cognitive fatigue or stress, the system can automatically 
trigger alerts or recommend breaks, effectively minimizing the likeli-
hood of accidents. In high-risk sectors like construction, where prompt 
and informed decision-making may considerably decrease hazards and 
increase overall safety, these solutions are essential to fostering a 
responsive and adaptable safety culture [1,40,95,96].

Recognizing and classifying awkward working postures in con-
struction was crucial for improving worker safety and ergonomics [82]. 
Automated identification of alcoholic EEG signals was introduced in the 
brain-computer interfaces (BCIs), contributing to the development of 
reliable BCI systems [93]. Brain-regulated learning techniques for clas-
sifying on-site hazards using small datasets were explored [3Using a 
multilevel logistic regression technique, the mediating role of brain 
activity between dispositional characteristics and hazard detection was 
re-examined [87]. The fixation-related potential was used to explore 
visual attention and cognitive processes in construction danger detec-
tion [85].

4.2.3. Safety training and virtual reality (VR)
The Safety Training and Virtual Reality (VR) category covers 24 % (9 

papers) and demonstrates the integration of EEG with VR technologies 
to train workers in recognizing hazards and making safer decisions in a 
controlled, immersive environment. This subcategory explores the 
application of EEG-based hazard recognition in both virtual and real 
construction environments. Comparative studies evaluate the effec-
tiveness of wearable EEG systems in identifying hazards across different 
settings, including immersive virtual environments. Safety training in 
construction is increasingly incorporating Virtual Reality (VR) and EEG 
technologies to enhance effectiveness and engagement [60,65,97]. By 
utilizing VR, trainees can immerse themselves in realistic construction 
environments, experiencing potential hazards without real-world risks. 
The integration of EEG allows for the monitoring of trainees’ cognitive 
and emotional responses during these simulations, providing insights 
into their levels of stress, attention, and engagement. This combination 
enables trainers to tailor training programs to individual needs, optimize 
learning outcomes, and ultimately improve safety performance on 
construction sites by fostering better awareness and quicker response to 
hazardous situations [98–100].

An EEG-based mental workload evaluation was conducted for AR 
head-mounted display use in construction assembly tasks [97]. Trust 
dynamics in human-robot collaboration were analysed through psy-
chophysiological responses in an immersive virtual construction envi-
ronment [97]. Mental fatigue was assessed using 
electroencephalography (EEG) and virtual reality (VR) for construction 
fall hazard prevention [65]. Biometric responses were used to predict 
the individual’s learning success in virtual reality-based construction 
safety instruction [100]. To perform virtual reality safety instruction, 
deep EEG-net, and physiological data were used [101].]. The use of 
wearable electroencephalogram (EEG) and virtual reality (VR) tech-
nologies for classifying construction hazard-related perceptions was 
investigated, demonstrating the potential of immersive technologies in 
safety training [94].

Fig. 16. Subcategories of HRSDM.
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4.3. Advanced Technology Integration (ATI)

Advanced Technology Integration (ATI) in construction safety refers 
to incorporating cutting-edge technologies, such as EEG, to enhance 
hazard identification, decision-making, and overall safety performance 
on construction sites [97,102]. Integrating EEG with other advanced 
systems such as wearable sensors, AI-driven analytics, smart wearables 
such as smartwatches, smart air pods, smart rings, and smart footwear 
that monitor workers’ vital signs, bio-signals, movements, and envi-
ronmental exposure [45,82]. Eye-tracking devices and accelerometers 
measure attention and physical exertion, while construction robotics 
assist in repetitive or dangerous tasks, reducing the likelihood of fatal-
ities. Smart cushions and biosensors provide real-time feedback on 
posture and physical strain, while integrated systems analyse fatigue, 
stress, and focus data [42,102]. By linking these devices, ATI allows for 
continuous, real-time assessment of cognitive and physical states, 
enabling proactive interventions and tailored safety protocols, 
improving safety outcomes by minimizing human error and enhancing 
worker well-being on construction sites. Of the 92 papers (Nf), 23 spe-
cifically addressed ATI. These studies can be subcategorized into two 
methodological categories: (1) Robotics and brain-machine interaction 
(BMI) and, (2) Other Wearable Devices Integration as in Fig. 17.

Integrating EEG and wearable technology with immersive technol-
ogies such as virtual reality (VR) and augmented reality (AR) offers 
significant advancements in construction safety by enabling real-time 
monitoring of workers’ cognitive states. For instance, studies have 
demonstrated that EEG-VR systems can assess mental fatigue and 
attention levels in high-risk scenarios, such as working at heights, 
allowing for proactive interventions to prevent accidents. Similarly, 
EEG-AR integrations have been shown to enhance situational awareness 
by providing real-time feedback on cognitive load, thereby improving 
hazard recognition and decision-making processes [94,98].

Moreover, the application of machine learning algorithms to EEG 
data facilitates the development of predictive models that can identify 
patterns associated with fatigue, stress, or decreased attention. These 
models enable automated safety systems to anticipate and mitigate po-
tential risks before they manifest. The convergence of EEG with VR, AR, 
and machine learning thus represents a transformative approach to 
enhancing safety protocols in the construction industry, promoting a 
proactive and data-driven safety culture [26,65].

4.3.1. Robotics and brain-machine interaction (BMI)
Robotics and brain-machine interaction (BMI) accounts for 52 % (12 

papers) of the ATI focus. In construction safety, the integration of ro-
botics with BMI presents a transformative approach to reducing hazards 
and enhancing worker performance [57,103]. By using EEG-based sys-
tems to monitor brainwave activity, BMI enables real-time communi-
cation between a worker’s cognitive state and robotic systems 
[104,105]. For instance, construction robots can be designed to respond 
to changes in a worker’s mental state, such as detecting fatigue or stress, 
and adjust their operations accordingly either slowing down tasks or 
providing assistance [97,102]. This symbiosis between human cognition 
and robotics enhances task precision and safety in high-risk environ-
ments and reduces the physical strain on workers by enabling robots to 
take over dangerous or repetitive tasks. The combination of EEG data 
and BMI can improve decision-making processes on the site and prevent 

accidents, paving the way for safer, semi-autonomous construction 
practices [74].

Trust dynamics in human-robot collaboration were analysed through 
psychophysiological responses in an immersive virtual construction 
environment [97]. In UPnP home networking, a brain-computer inter-
face-based smart living environmental auto-adjustment control system 
was created [57]. It was suggested to use a brain-computer interface to 
control construction robots with their hands-free [56]. A brain-inspired 
perception feature and cognition model was applied to a safety patrol 
robot [71]. Brainwave-driven human-robot collaboration in construc-
tion was investigated [103]. To assist in building predictive models of 
human-agent interactions in smart settings, electrophysiological char-
acteristics were investigated [106].

On the other hand, the integration of EEG in human-machine 
collaboration holds immense potential for revolutionizing construction 
safety, particularly in high-risk tasks. Future EEG-based systems could 
enable workers to control construction robots directly through neural 
signals, allowing for hands-free operation in hazardous environments 
such as confined spaces, heights, or demolition zones [86,107]. This 
reduces direct exposure to risks and enhances task precision, as robots 
can be guided by real-time cognitive input. Additionally, EEG can help 
assess a worker’s mental workload or stress level, allowing collaborative 
robots to adjust their behaviour, for example, by offering support when 
cognitive fatigue is detected or pausing tasks during moments of mental 
overload. Such adaptive systems, driven by brain-computer interfaces, 
promise a new era of smart, responsive construction environments 
where safety, productivity, and human-machine synergy are optimized 
[19,84].

4.3.2. Other wearable devices integration
Other Wearable Devices Integration accounts for 48 % (11 papers) of 

the ATI focus. Wearable devices integrated with EEG significantly 
elevate construction safety by providing real-time monitoring and 
feedback on both cognitive and physical conditions [38,108]. Smart-
watches, smart rings, and smart air pods track vital signs such as heart 
rate, blood oxygen levels, and physical movements, while smart foot-
wear monitors gait and balance, preventing slips and falls [45,82]. EEG 
headbands detect mental states such as fatigue, stress, or attention 
lapses, allowing for proactive interventions. Additionally, eye-tracking 
devices assess focus and engagement, while accelerometers provide in-
sights into physical strain and potential overexertion [52,109]. When 
these devices are interconnected through ATI, the devices generate a 
comprehensive safety profile of workers, offering data-driven insights 
into both cognitive and physical well-being. This holistic monitoring 
approach enables real-time adjustments, improving both individual 
safety and overall site performance by minimizing risks related to 
human error, mental distraction, or physical exhaustion.

The literature on wearable sensors and artificial intelligence for 
physical ergonomics was thoroughly reviewed [42]. Wearable sensing 
technologies with EEG for personalized construction safety monitoring 
were explored [61,110]. A review was performed on human fall detec-
tion technology as a possible lifesaver [41]. A feasibility study 
employing consumer-grade wearables in an immersive virtual world 
was conducted to determine eye-tracking and brain activity character-
istics for danger recognition assessment [99]. With the use of hybrid 
kinematic-EEG signals, construction workers’ attentiveness was identi-
fied and measured [59]. An EEG signal-processing framework was 
developed to obtain high-quality brain waves from an off-the-shelf 
wearable EEG device [52]. An analysis was carried out on the use of 
electroencephalograms to monitor workers unfavourable reactions and 
identify hazards on construction sites [38].

4.4. Situational awareness enhancement (SWE)

Situational awareness enhancement (SWE) in construction safety 
through EEG focuses on using brainwave monitoring to assess and Fig. 17. Subcategories of ATI.
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improve workers’ cognitive focus, attention, and mental workload. EEG 
devices, such as headbands, detect brain activity associated with 
different mental states, allowing for real-time monitoring of workers’ 
situational awareness. By analysing brainwave patterns, EEG can iden-
tify moments of mental fatigue, distraction, or cognitive overload, which 
are key factors that compromise situational awareness in high-risk 
construction environments. This data can then be used to provide im-
mediate feedback or alerts, prompting workers to refocus or take breaks 
before lapses in awareness lead to accidents. By improving real-time 
understanding of a worker’s mental state, EEG helps enhance 
decision-making and reaction times, leading to safer, more responsive 
behaviour on construction sites. Of the 92 papers (Nf), 28 specifically 
addressed SWE. These studies can be subcategorized into two method-
ological categories: (1) Ergonomics Impact on Cognitive Performance, 
and (2) Situational awareness evaluation, as in Fig. 18.

4.4.1. Ergonomics impact on cognitive performance
Ergonomics’ Impact on Cognitive Performance accounts for 54 % (15 

papers) of the SWE category. Ergonomics is the study of human-machine 
interaction, focusing on designing environments and tools that are safe, 
comfortable, and efficient for users. In the context of construction safety, 
ergonomics has a crucial role in preventing injuries and enhancing 
worker performance. By optimizing physical workspaces, equipment, 
and task demands, ergonomics can reduce physical strain, fatigue, and 
cognitive overload. As a result, Ergonomics can positively impact situ-
ational awareness, which is the ability to perceive, understand, and 
anticipate changes in the environment. EEG can be used to measure 
brain activity and assess cognitive workload, providing valuable insights 
into how ergonomic interventions affect situational awareness. By 
identifying factors that contribute to cognitive fatigue or distraction, 
EEG can help researchers and practitioners develop more effective er-
gonomic strategies to improve safety and productivity in construction 
ecosystem.

EEG-based detection of adverse mental states under multi- 
dimensional unsafe psychology was conducted for construction 
workers at height [15]. The impact of cognitive fatigue on attention and 
the implications for construction safety were examined from a neuro-
scientific perspective [3]. Monitoring of distraction of construction 
workers caused by noise was performed using a wearable EEG device 
[76]. The impact of noise intensity and content on EEG-measured 
cognitive function was examined [67]. Simulated high-altitude heli-
um‑oxygen diving was studied [111]. An integrated approach was 
employed to evaluate the effect of indoor CO2 concentration on human 
cognitive performance and neural responses in an office environment 
[112]. The emotional and mental conditions of high-altitude construc-
tion workers were addressed with a multi-component, neurophysiolog-
ical intervention [113].

4.4.2. Situational awareness evaluation
Situational awareness evaluation accounts for 46 % (13 papers) of 

the SWE category. Situational awareness is the ability to perceive, un-
derstand, and anticipate changes in the environment. In the context of 
construction safety, it refers to a worker’s ability to be aware of their 
surroundings, potential hazards, and the actions of others on the job site. 
This awareness is essential for preventing accidents and ensuring safe 

working conditions [114,115]. EEG can be used to measure brain ac-
tivity and assess cognitive workload, providing valuable insights into a 
worker’s situational awareness. By studying patterns of brain activity, 
researchers can identify factors that may impair a worker’s ability to 
perceive, understand, and respond to potential hazards [116,117]. This 
information can be used to develop training programs, safety in-
terventions, and ergonomic improvements to enhance situational 
awareness and reduce the risk of accidents in construction ecosystem 
[115].

Measuring the habituation of auditory warnings was performed 
using behavioural and physiological data [117]. An investigation was 
conducted on the importance of human factors and ergonomics (HFE) in 
mediating the relationship between Industry 4.0 deployment and 
operational excellence [116]. Trust dynamics in human-robot collabo-
ration were analysed through psychophysiological responses in an 
immersive virtual construction environment [97]. Identification of 
driver emotions was set using multimodal inputs, such as electrophysi-
ological response, nasal-tip temperature, and vehicle behaviour [118]. A 
comparative study was conducted between safety signs and safety 
comics in construction workplaces for the design of safety warnings and 
risk perception inducement [114]. A multimodal analysis based on 
feature-level fusion was conducted to identify and categorise difficult 
working postures in the construction industry [82].

4.5. Sustainability contribution

The application of EEG for construction safety can significantly 
contribute to sustainability by enhancing worker well-being and 
reducing accidents, which minimizes project delays and resource waste 
[39,43]. By proactively addressing these workers’ cognitive states, and 
identifying signs of fatigue, stress, or distraction, construction projects 
can operate more efficiently, reduce the need for costly rework, and 
lower material wastage. Moreover, improving safety through EEG 
monitoring aligns with the broader goals of sustainable development by 
promoting a safer, healthier working environment and fostering a cul-
ture of safety that ensures the longevity and resilience of the workforce 
and infrastructure [39,41,43]. Of the 92 papers (Nf), all papers 
addressed SDGs whereas most of the papers contributed to more than 

Fig. 18. Subcategories of SWE.
Fig. 19. Number and percentage of papers used to address the sustainabil-
ity cluster.
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one goal of SDGs on its research scope and contribution. These studies 
can be subcategorized into six goals: (1) Goal 3: Good Health and Well- 
being, (2) Goal 4: Quality Education, (3) Goal 8: Decent Work and 
Economic Growth, and (4) Goal 9: Industry, Innovation, and Infra-
structure (5) Goal 11: Sustainable Cities and Communities, and (6) Goal 
12: Responsible Consumption and Production as in Fig. 19.

SDGs are meticulously crafted to address the multifaceted nature of 
sustainability, which encompasses environmental, social, and economic 
dimensions. Each SDG targets specific aspects while often overlapping in 
their broader impacts. For instance, SDG 12 (Responsible Consumption 
and Production) is pivotal for environmental sustainability, as it advo-
cates for resource efficiency and waste reduction. In the social sphere, 
SDGs such as Good Health and Well-being (SDG 3) and Quality Educa-
tion (SDG 4) focus on improving health outcomes and educational 
accessibility, respectively, thus fostering a robust and educated society 
[43,80]. Meanwhile, SDG 11 enhances social sustainability by making 
urban environments more liveable and resilient. On the economic front, 
SDG 8 and SDG 9 are crucial, with the former enhancing economic 
growth through decent work opportunities and the latter bolstering 
infrastructure and innovation [43,80]. Together, these goals interlink to 
form a comprehensive framework aimed at achieving a balanced and 
sustainable future, highlighting the need for integrated approaches that 
consider all facets of sustainability [27,119].

4.5.1. Goal 3: Good health and well-being
The Good Health and Well-being goal represents 34 % of SDGs and 

exists in 74 of 92 papers where one paper final screened sample (Nf = 92 
papers) can be classified for more than one SDG. EEG in construction 
safety directly contributes to SDG 3 by monitoring workers’ mental 
health states, such as stress and fatigue, to ensure their well-being 
[14,50,53,76]. By detecting cognitive impairments or mental fatigue 
early, EEG can help implement timely interventions, reducing the risk of 
accidents and promoting a safer working environment [3,15,49,55]. By 
proactively addressing mental health and safety, this strategy helps 
construction workers’ total well-being and works to guarantee healthy 
lifestyles and promote well-being for people of all ages.

Several studies have explored the application of EEG in monitoring 
construction workers’ mental states and implementing interventions for 
their well-being. A suggested method for identifying unfavourable 
mental states under multi-dimensional hazardous psychology in con-
struction workers at heights uses EEG. [15]. An EEG-based system for 
workers’ stress recognition at construction sites was developed [50], 
while mental fatigue in construction workers was identified using EEG 
and deep learning [14]. These studies demonstrate the potential of EEG 
technology in promoting the well-being of construction workers by 
detecting and mitigating mental health issues, contributing to SDG 3.

4.5.2. Goal 4: Quality education
Quality Education represents 4 % of SDGs and exists in nine papers. 

EEG technology in construction safety can enhance training programs by 
integrating neurofeedback into educational tools and simulations 
[98,100,101]. This application aids in developing more effective safety 
training sessions that adapt to the cognitive load and learning paces of 
individual workers, improving learning outcomes [97,99,102]. By 
fostering a better understanding of safety protocols through tailored 
educational content, EEG contributes to achieving quality education in 
the construction industry.

Numerous researchers have investigated the integration of neuro-
feedback and EEG in construction safety education. To evaluate mental 
effort while using AR head-mounted displays for building assembly jobs, 
an EEG-based assessment was created [98], enabling tailored training 
experiences. VR safety training using deep EEG-net and physiology data 
was proposed [100,101], using neural impulses to enable adaptive 
learning. Employing biometric responses to predict individual learning 
outcomes in virtual reality-based construction safety instruction showed 
[100,102]. These studies highlight the role of EEG technology in 

enhancing the quality of construction safety education by adapting 
training content and methods to the individual cognitive states and 
learning patterns of workers.

4.5.3. Goal 8: Decent work and economic growth
Decent Work and Economic Growth represent 18 % of SDGs in 38 

papers. The utilization of EEG for construction safety was aligned with 
SDG 8 by promoting safer and more secure working conditions 
[51,59,76]. EEG monitoring can lead to fewer work-related injuries, a 
healthier workforce, and reduced downtime due to accidents 
[14,49,55]. This enhancement in workplace safety and health can 
improve productivity and economic growth, as well-protected workers 
are more efficient and contribute positively to their companies and the 
broader economy.

Numerous studies have shown how EEG may enhance construction 
site safety and foster respectable working conditions. Construction 
workers’ mental exhaustion was detected using EEG and deep learning 
[14], enabling interventions to prevent fatigue-related accidents. 
Following a neurophysiological methodology, the effects of physical 
exhaustion on the induction of mental exhaustion in construction 
workers were investigated [120]. Fatigue in construction workers was 
monitored using physiological measurements, including EEG [49]. By 
detecting and mitigating fatigue and other cognitive impairments, EEG 
technology contributes to creating a safer and more productive working 
environment, supporting economic growth in the construction industry.

4.5.4. Goal 9: Industry, innovation, and infrastructure
Goal 9 represents 29 % of SDGs in 62 papers. Incorporating EEG into 

construction safety practices represents an innovative approach to 
enhancing industry safety standards and infrastructure development 
[56,71,102]. By using cutting-edge neurological monitoring technolo-
gies, the construction industry can automate and pioneer safety im-
provements that minimize the risk of accidents, showcasing innovation 
in deploying new technologies for critical safety enhancements 
[104,105].

Novel applications of EEG and brain-computer interfaces (BCI) in 
construction safety have been explored in several studies. A suggested 
method for security surveillance assistance that is performance-driven, 
adaptable, and automated to detect hazards is an EEG-based system 
[121]. Investigations were conducted into the multi-class categorisation 
of construction dangers by wearable EEG-based cognitive state evalua-
tion [63]. Wearable EEG and VR were utilized [94] for classifying 
construction hazard-related perceptions. Brain-regulated learning for 
classifying on-site hazards with small datasets was explored [52]. These 
innovative approaches demonstrate the adoption of advanced neuro-
logical technologies by the construction industry to enhance safety 
monitoring, hazard detection, and risk mitigation, contributing to 
improved infrastructure and safer working environments.

4.5.5. Goal 11: Sustainable cities and communities
Goal 11 represent 11 % of SDGs in 23 papers. A contribution to SDG 

11 was made by EEG technologies by ensuring that the construction 
workforce, integral to building sustainable cities and communities, 
operates safely and efficiently [59,76]. Monitoring brain activity to 
enhance safety protocols helps in maintaining a resilient and capable 
workforce that can contribute to the sustainable development of urban 
areas, fostering community well-being and resilience [3,15,50].

Several studies have demonstrated the application of EEG for 
monitoring brain activity and enhancing safety protocols in the con-
struction workforce. The impact of cognitive fatigue on attention and 
the implications for construction safety were examined from a neuro-
scientific perspective [3]. An EEG-based approach for detecting adverse 
mental states under multi-dimensional unsafe psychology for construc-
tion workers at height was proposed [15]. An EEG-based system was 
developed for workers’ stress recognition at construction sites [50,112]. 
By detecting and mitigating cognitive impairments, fatigue, and adverse 
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mental states, these EEG-based approaches contribute to maintaining a 
resilient and capable construction workforce, supporting the sustainable 
development of urban areas, and fostering community well-being.

4.5.6. Goal 12: Responsible consumption and production
Goal 12 represents 5 % of SDGs in 11 papers. The waste associated 

with workplace accidents and injuries can be reduced in the construc-
tion industry by improving safety measures through EEG [75,102]. More 
efficient use of human resources and materials, minimizing losses, and 
promoting responsible production practices, leads to better safety 
management [102,104]. This application of EEG in ensuring efficient 
and safe work processes aids in achieving more sustainable consumption 
and production patterns.

Several studies have explored the use of EEG for improving safety 
and reducing waste in construction. Mental fatigue of construction 
workers was identified using EEG and deep learning, enabling in-
terventions to prevent fatigue-related accidents and associated losses 
[113,122]. A neurophysiological method was used to investigate how 
physical exhaustion affects the development of mental exhaustion in 
construction workers [3,55]. Fatigue in construction workers was 
monitored using measurements, including EEG [75,102]. By detecting 
and mitigating factors like fatigue that can lead to accidents and in-
efficiencies, these EEG-based approaches contribute to responsible 
consumption and production practices in the construction industry 
[43,80].

5. Limitations of the work and future research avenues

Many systematic review papers rely solely on a single database, such 
as Scopus or Web of Science. Therefore, there is a growing need to 
establish algorithmic steps for conducting a comprehensive and repli-
cable systematic literature review. The Screening Papers Algorithm 
(SPA) does not serve as a replacement for traditional systematic review 
methodologies; rather, it represents a formalization of the established 
stages of these methodologies. Specifically, SPA codifies key elements of 
the conventional review process, such as keyword-driven literature 
searches, application of predefined inclusion and exclusion criteria, 
removal of duplicate records, and full-text screening, into a structured, 
algorithmic workflow. This formalization enhances the transparency, 
reproducibility, and operational efficiency of the review process, 
particularly when dealing with multiple and large datasets. By auto-
mating and systematizing these steps, SPA contributes to methodolog-
ical rigor and consistency while maintaining alignment with the 
fundamental principles of traditional systematic reviews. Its contribu-
tion, therefore, lies methodological innovation and in reinforcing 

existing practices through algorithmic precision and scalability. How-
ever, future research is needed to empirically test and validate the 
effectiveness of the SPA algorithm in comparison to traditional manual 
review methods. A key limitation of the current study is the absence of 
such validation, which restricts the ability to generalize the algorithm’s 
performance or confirm its superiority in terms of accuracy, reliability, 
or efficiency.

Following a comprehensive review of 92 research papers, several 
prominent gaps have been identified as especially critical. The authors 
have highlighted important avenues for exploration stemming from 
these gaps and have outlined multiple strategies for implementation to 
address them, as showed in Table 3 and Fig. 20. Studies exploring the 
use of EEG in construction safety encounter several limitations that 
affect both their findings and practical implementation. A common 
challenge is the limited sample size, which restricts the generalizability 
of results, particularly when studies are conducted in controlled labo-
ratory environments that do not accurately reflect the complexity and 
dynamic nature of real construction sites. Participant selection bias 
poses a problem, as workers who volunteer for these studies differ 
significantly in characteristics or motivations from the broader work-
force [65,97–101].

EEG signals are susceptible to noise and artifacts caused by muscle 
activity, eye movements, or electrical interference, which can reduce 

Table 3 
Knowledge gaps of the screened sample.

Gaps Definitions References

Limited sample size A small sample size of participants limits the generalizability of findings. [63,66,83,84,121,124,125]
Controlled experimental 

settings Laboratory or simulated environments cannot fully replicate real-world conditions. [65,97–101]

Participant selection bias
Participants have different characteristics or motivations compared to the general population of 
construction workers. [55,63,66,67,83,84,121,124,125]

Signal quality and noise
EEG signals can be affected by noise and artifacts such as muscle activity, eye movements, and 
electrical interference, reducing data accuracy.

[15,58,67,77,81,123]

Technological limitations Some EEG devices with few electrodes are not suitable in terms of portability, robustness, and ease 
of use in harsh construction environments.

[15,58,67,74,77,81,103,119,123,126]

Data processing challenges
Analysing and interpreting EEG data can be complex, requiring advanced signal processing 
techniques and specialized expertise. [3,15,42,43,57,112,115,127]

Individual differences
Variations in brain activity, sleep patterns, and cognitive processes make it difficult to develop 
generalized models. [45,63,66,73,83,84,121,124,125]

Ethical considerations Privacy, data ownership, and misuse concerns arise from EEG use in the workplace. [3,14,49,55,58,64,68,69]
Integration with existing 

safety protocols
Incorporating EEG-based systems into established safety practices and procedures requires 
significant organizational and cultural changes, which can be challenging to implement.

[3,14,49,55,58,64,68,69,71,84,128,129]

Cost and scalability EEG equipment and integration with other technologies such as robots can be expensive, limiting 
widespread adoption.

[15,58,67,74,77,81,103,105,106,119,123,126]

Fig. 20. Knowledge gaps and challenges of EEG for construction safety.
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data accuracy [15,58,67,77,81,123]. Technological limitations, such as 
issues with portability, robustness, and ease of use, make deploying EEG 
systems in harsh construction environments even more difficult. Data 
processing and interpretation further complicate the use of EEG, as 
advanced signal processing techniques and specialized expertise are 
required. Individual differences in brain activity and cognitive processes 
challenge the development of generalized models or approaches. Ethical 
concerns related to privacy, data ownership, and the potential misuse of 
neuroimaging technologies in the workplace also arise 
[3,14,49,55,58,64,68,69]. Integrating EEG systems into current safety 
protocols requires significant organizational and cultural shifts, while 
the high cost of equipment and data processing creates barriers to 
widespread adoption, especially for smaller companies or projects with 
constrained budgets.

Implementing EEG and bio-signal wearable technologies in the 
construction sector involves substantial initial investments in hardware, 
software, and infrastructure to support real-time data acquisition and 
analysis. For many organizations, particularly those in developing re-
gions, the high cost of integrating such advanced systems can be pro-
hibitive in the absence of clear evidence demonstrating return on 
investment. Furthermore, ongoing requirements for maintenance and 
system upgrades, coupled with concerns around data security and pri-
vacy, add additional layers of complexity that hinder widespread 
adoption [43,64].

Equally important are the human factors that influence the successful 
deployment of such technologies. Change management and Worker 
acceptance play a central role, as the use of wearable EEG devices can 
raise concerns about surveillance, comfort, and personal data privacy. 
Without proper engagement, training, and clear communication of 
benefits, workers may resist adoption or use the devices improperly, 
undermining their effectiveness [19,43]. Training programs tailored to 
both technical and non-technical users are essential to build trust and 
ensure accurate data handling. Therefore, future research should 
explore strategies for enhancing user acceptance, minimizing training 
barriers, and proposing scalable, cost-effective solutions to facilitate 
integration across diverse construction settings [14,101].

On the other hand, the integration of EEG technology into con-
struction safety systems introduces significant ethical considerations, 
particularly concerning data privacy and the potential for misuse. EEG 
data can reveal sensitive information about an individual’s cognitive 
and emotional states, making it imperative to establish robust ethical 
and regulatory frameworks to protect workers’ mental privacy [19,130]. 
Concerns include unauthorized access to neural data, potential 
discrimination based on cognitive profiles, and the risk of coercive 
surveillance in the workplace. To address these issues, it is essential to 
implement comprehensive policies that ensure informed consent, data 
anonymization, and strict access controls [131]. Additionally, devel-
oping international standards and guidelines can provide a consistent 
approach to the ethical use of EEG in occupational settings, safeguarding 

workers’ rights while leveraging the technology’s benefits for enhancing 
safety and performance, as in Fig. 21.

Integrating EEG technology into construction safety systems neces-
sitates stringent measures to protect data privacy and address ethical 
concerns. To safeguard sensitive neural data, employing robust 
encryption techniques is essential to prevent unauthorized access and 
potential misuse. Additionally, anonymization strategies, such as de- 
identification, can further mitigate privacy risks by ensuring that data 
cannot be traced back to individual workers. Given that EEG data are 
classified as personal under regulations such as the General Data Pro-
tection Regulation (GDPR), obtaining informed consent from workers is 
crucial [131,132]. This consent should clearly outline the purposes of 
data collection, storage duration, and any potential data sharing, 
ensuring transparency and respect for individual autonomy. Establish-
ing comprehensive ethical and regulatory frameworks is vital to up-
holding workers’ rights and fostering trust in the use of EEG technology 
within the construction industry. Fig. 22 illustrates a structured ethical 
integration framework for EEG and wearable technology in the con-
struction industry. It begins with identifying ethical concerns, particu-
larly data privacy, followed by establishing ethical safeguards like 
encryption, anonymization, and informed consent [38,107]. These 
measures inform the development of international standards, ensuring 
secure and ethical implementation.

The current research on the application of EEG technology in con-
struction safety has highlighted several gaps that necessitate further 
exploration, along with specific remedial actions to address these issues, 
as in Table 4 and Fig. 23. To enhance the practical effectiveness of EEG- 
based interventions in construction safety, large-scale field studies in 
real construction environments are essential for validating their real- 
world applicability [14,38,44]. These interventions can be further 
strengthened through multimodal data fusion by integrating EEG with 
motion tracking, environmental sensors, and computer vision, providing 
a comprehensive view of worker states and potential hazards. Person-
alized models and adaptive systems should be developed to tailor in-
terventions based on individual worker responses, ensuring precision 
and effectiveness [84,94,121].

Fig. 21. Ethical integration of EEG in the construction industry. Fig. 22. Ethical integration flow chart for EEG in the construction industry.
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Longitudinal studies are necessary to evaluate the long-term impacts 
of these EEG-based interventions on safety, productivity, and worker 
well-being [133–135]. Combining EEG data with augmented and virtual 
reality can create immersive safety training tools that enhance hazard 
recognition and risk mitigation. Hybrid brain-computer interface (BCI) 
systems, integrating EEG with other neuroimaging techniques such as 
functional near-infrared spectroscopy (fNIRS), alongside explainable AI 
models, would improve the quality and transparency of decision-making 
in safety systems [136–139]. Finally, ethical and regulatory frameworks 
must protect privacy, ensure data ownership, and prevent the misuse of 
neuroimaging technologies in the construction industry [19,27,129].

6. Discussion of the research questions

This section addresses the core research questions of the study by 
synthesising findings from the analysis of EEG applications in con-
struction safety. Each research question is explored based on the results 
and insights drawn from the literature, data analysis, and identified 
trends in the field. The discussion answers the research questions and 
highlights the significance of EEG technology in advancing the psy-
chological and mental health aspects of sustainable construction safety. 

Table 5 presents a summary of the responses to each research question.
Therefore, leveraging EEG technology leads to smarter, safer, and 

more sustainable construction practices, aligning with both industry 
needs and global sustainability objectives. Finally, the key recommen-
dations of this paper are: 

A. Research Methodology Perspective

1) Automate algorithmic systematic reviews (ASR) and the Search 
Paper Algorithm (SPA) using Natural Language Processing (NLP) to 
transform review papers into fully automated systematic reviews.

2) Ensure systematic reviews utilize multiple databases, as relying on a 
single database can omit substantial relevant literature, making re-
sults less dependable.

3) Develop and refine the Search Paper Algorithm (SPA) for effective 
literature filtering and selection from databases such as Scopus and 
Web of Science.

B. Construction Safety Perspective About EEG Applications

1) Conduct large-scale field studies in real construction environments to 
validate EEG-based interventions for practical effectiveness.

2) Implement multimodal data fusion by integrating EEG with motion 
tracking, sensors, and computer vision for comprehensive safety 
monitoring.

3) Develop personalized models and adaptive systems that tailor in-
terventions based on individual worker responses for enhanced 
precision.

4) Perform longitudinal studies to assess the long-term effects of EEG- 
based interventions on safety, productivity, and well-being.

C. EEG Enhancement Perspective

1) Integrate EEG data with AR and VR to create immersive safety 
training tools for improved hazard recognition and risk mitigation.

2) Develop hybrid Brain-Computer Interface (BCI) systems combining 
EEG with other neuroimaging techniques, such as fNIRS, alongside 
explainable AI for better decision-making transparency.

3) Ethical and Regulatory Frameworks

Table 4 
Future research and remedial actions for the current knowledge gaps of the 
screened sample.

Remedial Actions Description References

Large-scale field 
studies

Conducting more extensive studies in real 
construction environments to validate 
findings.

[14,38,44]

Multimodal data 
fusion

Integrating EEG data with other sources 
of information such as motion tracking, 
environmental sensors, and computer 
vision, to provide a more comprehensive 
understanding of worker states and 
hazard scenarios.

[63,68,82,140]

Personalized models Developing models tailored to individual 
differences for targeted interventions.

[84,94,121]

Adaptive and 
closed-loop 
systems

Exploring the use of adaptive and closed- 
loop systems that can automatically 
adjust safety interventions or working 
conditions based on real-time EEG data 
and worker feedback.

[38,54,76,141]

Longitudinal studies Investigating the long-term effects of 
EEG-based interventions on worker 
safety, productivity, and well-being.

[133–135]

AR/VR integration Incorporating EEG data into augmented 
reality (AR) and virtual reality (VR) 
environments for immersive safety 
training and hazard visualization.

[65,97–101]

Hybrid BCI systems Developing hybrid BCI systems that 
combine EEG with other neuroimaging 
techniques, such as fNIRS, for improved 
signal quality and information richness.

[136–139]

Explainable AI 
models

Exploring the use of explainable AI 
models to enhance the interpretability 
and transparency of EEG-based decision- 
making systems for construction safety.

[142–144]

Ethical and 
regulatory 
frameworks

Developing ethical and regulatory 
frameworks to address privacy, data 
ownership, and potential misuse 
concerns associated with the use of EEG 
and neuroimaging technologies in 
workplace settings.

[11,19,27,129]

Cross-industry 
collaboration

Fostering cross-industry collaboration 
between construction, neuroscience, 
engineering, and computer science to 
accelerate the development and adoption 
of EEG-based safety solutions. This 
collaboration leverages interdisciplinary 
expertise to develop cost-effective, 
scalable EEG-based safety solutions by 
integrating advanced technologies and 
shared resources.

[145–147]

Fig. 23. Remedial actions and future research avenues.
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4) Establish ethical and regulatory frameworks to safeguard privacy, 
ensure data ownership, and prevent the misuse of neuroimaging 
technologies in construction.

7. Conclusions

This paper presented a comprehensive exploration of electroen-
cephalography (EEG) applications in enhancing safety and sustainability 
within the construction industry. By systematically reviewing EEG’s role 
in real-time monitoring of workers’ cognitive and emotional states, the 
research underscores its potential in automating the detection of psy-
chological hazards like stress and fatigue, thereby preventing accidents. 
The integration of EEG with advanced technologies such as robotics, 
virtual reality, and wearable sensors is highlighted to improve hazard 
recognition, decision-making, and situational awareness. Furthermore, 
the study addresses critical challenges, including data privacy and sys-
tem scalability, providing practical insights for implementing EEG-based 
systems in construction settings. This research contributes significantly 
to the advancement of intelligent, responsive, and sustainable safety 
management systems in the construction sector.

Building upon this foundation, the study introduces an algorithmic 
systematic review (ASR) of EEG applications aimed at identifying psy-
chological hazards and monitoring mental health for more sustainable 
construction safety practices. Employing the Search Paper Algorithm 
(SPA), the research systematically identifies and analyses relevant 
studies from comprehensive databases such as Scopus and Web of Sci-
ence. A comprehensive framework is developed, outlining the deploy-
ment of EEG systems across five key application domains: automated 
psychological and cognitive assessment, hazard recognition and safety 
decision-making, advanced technology integration, situational aware-
ness enhancement, and contributions to sustainability. The framework 
emphasises the synergy between EEG and other innovative technologies, 
highlighting their roles in promoting safety and sustainable practices 
within the construction industry.

In exploring human-machine collaboration, the study investigates 
how EEG-based methods can infer perceptual thresholds and decision 
confidence, enabling more effective collaboration between humans and 
machines. Innovations include the development of brain-computer in-
terfaces and adaptive automated hazard alerting systems that leverage 

Table 5 
Research findings as responses to research questions (RQ).

RQs Answers

RQ1: What is the current trend of annual 
research publications and citations?

Section 3.1 shows that the trend 
equation in Fig. 5, y = 289.38× −

196.67 with an R2 = 0.9714, indicates a 
strong positive linear relationship 
between publication year (x) and the 
number of citations (y) for EEG papers 
in construction safety. Moreover, the 
number of papers published in 2024 
peaked at 24 papers. This suggests a 
growing trend and exploration in EEG 
research for construction safety.

RQ2: What are the influential keywords 
and recurrence relations?

Section 3.7 explains the network of 
keyword analysis based on four clusters 
and the relations between them. The 
most influential keywords are EEG, 
construction safety, attention, stress, 
recognition, and mental fatigue.

RQ3: What are the current research 
avenues in EEG for Psychological and 
Mental Health in Sustainable 
Construction Safety?

As in Fig. 14 and Section. 4. There are 
five key domains: automated 
psychological and cognitive assessment, 
hazard recognition and safety decision- 
making, advanced technology 
integration, situational awareness 
enhancement, and contributions to 
sustainability.

RQ4: How does EEG-based real-time 
monitoring of brain activity correlate 
with improvements in worker 
performance and safety in 
construction?

Section. 4.1.1 explains mental fatigue 
detection and monitoring, where early 
detection of mental fatigue enables 
timely interventions, such as suggesting 
breaks or rotating tasks, thereby 
maintaining safety and productivity 
[3,65].

RQ5: What role can EEG technology play 
in promoting sustainable construction 
safety through the early detection of 
cognitive impairments?

As in Fig. 19, Section. 4.5 explains that 
the EEG for construction safety 
contributes to SDGs.

RQ6: How effective are current machine 
learning (ML) algorithms in analysing 
EEG data for predicting mental health 
issues in high-risk construction 
settings?

As in Fig. 14 and Section. 4, ML can 
automate and analyse the following 
domains: automated psychological and 
cognitive assessment, hazard 
recognition and safety decision-making, 
advanced technology integration, 
situational awareness enhancement, 
and contributions to sustainability.

RQ7: What are the key challenges in 
integrating EEG technology with 
existing safety protocols in construction 
practices?

As in Table 3 and Section 5 explain the 
limited sample size, controlled 
experimental settings, participant 
selection bias, signal quality and noise, 
technological limitations, data 
processing challenges, individual 
differences, ethical considerations, 
integration with existing safety 
protocols, and cost and scalability are 
the key gaps and limitations.

RQ8: To what extent can EEG analysis 
contribute to sustainable construction 
by improving long-term mental health 
outcomes for workers?

As in Fig. 19, Section. 4.5.1 explains 
that the good health and well-being 
goal represents 34 % of the SDGs. EEG 
in construction safety directly 
contributes to SDG 3 by monitoring 
workers’ mental health states, such as 
stress and fatigue, to ensure their well- 
being [14,50,53,76].

RQ9: What is the impact of EEG-based 
situational awareness evaluation on 
team coordination, communication, 
and decision quality in dynamic 
construction tasks?

As in section 4.4 and Fig. 18, EEG-based 
situational awareness enhancement 
(SWE) in construction safety uses 
brainwave monitoring to detect 
cognitive fatigue, distraction, or 
overload, enabling real-time feedback 
to prevent accidents. Among 92 studies, 
28 focused on SWE, categorized into (1) 
Ergonomics Impact on Cognitive 
Performance and (2) Situational 
Awareness Evaluation.

Table 5 (continued )

RQs Answers

RQ10: To what extent does EEG 
contribute to sustainable development 
goals (SDGs), particularly in promoting 
long-term mental health, decent work 
conditions, and innovation in 
construction safety practices?

As in section 4.5 and Fig. 19, EEG 
applications in construction safety 
support sustainability by enhancing 
worker well-being, reducing accidents, 
and minimizing resource waste. All 92 
reviewed papers addressed SDGs, with 
most contributing to multiple goals, 
primarily Goals 3, 4, 8, 9, 11, and 12.

RQ11: What are the ethical, legal, and 
organizational implications of 
widespread EEG adoption for 
continuous worker monitoring in 
construction?

As in section 5 and Fig. 21, the 
integration of EEG in construction 
safety raises ethical concerns around 
mental privacy, data misuse, and 
potential workplace surveillance. 
Addressing these issues requires 
informed consent, anonymization, strict 
data controls, and international 
standards to ensure ethical and fair use 
while protecting workers’ rights.

RQ12: How can EEG data support the 
development of adaptive, 
individualized safety protocols that 
respond to real-time cognitive states?

As in section 4.2, integrating EEG and 
wearable technology enables 
personalized construction safety 
systems by monitoring workers’ 
cognitive states and providing real- 
time, tailored feedback. This approach 
enhances safety behaviours, reduces 
accident risks, and fosters a proactive, 
participatory safety culture on-site.
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real-time EEG data. These advancements highlight the potential for 
improved safety outcomes through advanced human-machine in-
teractions. Consequently, the findings contribute significantly to In-
dustry 5.0 by emphasizing human-centric technologies that enhance 
worker safety, well-being, and productivity. The integration of EEG into 
neuro-safety frameworks facilitates proactive safety measures, fosters 
situational awareness, and advances the construction industry’s shift 
toward more sustainable and intelligent systems.

Looking ahead, future research should focus on conducting large- 
scale field studies to validate EEG applications in real-world construc-
tion environments. Integrating EEG data with other modalities, such as 
motion tracking and environmental sensors, can provide a more 
comprehensive understanding of worker states and hazard scenarios. 
Developing personalized models tailored to individual differences will 
enable targeted interventions, while exploring adaptive and closed-loop 
systems can allow for automatic adjustments to safety interventions 
based on real-time EEG data and worker feedback. Longitudinal studies 
are also necessary to investigate the long-term effects of EEG-based in-
terventions on worker safety, productivity, and well-being.

Additionally, incorporating EEG data into augmented reality (AR) 
and virtual reality (VR) environments can enhance immersive safety 
training and hazard visualization. Developing hybrid brain-computer 
interface (BCI) systems that combine EEG with other neuroimaging 
techniques, such as functional near-infrared spectroscopy (fNIRS), can 
improve signal quality and information richness. Exploring the use of 
explainable artificial intelligence (AI) models will enhance the inter-
pretability and transparency of EEG-based decision-making systems for 
construction safety. Establishing ethical and regulatory frameworks is 
crucial to address privacy, data ownership, and potential misuse con-
cerns associated with EEG and neuroimaging technologies in workplace 
settings. Finally, fostering cross-industry collaboration between con-
struction, neuroscience, engineering, and computer science will accel-
erate the development and adoption of EEG-based safety solutions, 
leveraging interdisciplinary expertise to create cost-effective, scalable 
systems.
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