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Abstract With the rise of deep learning algorithms nowadays, scene image rep-7

resentation methods have achieved a significant performance boost, particularly8

in accuracy, in classification. However, the performance is still limited because9

the scene images are mostly complex having higher intra-class dissimilarity and10

inter-class similarity problems. To deal with such problems, there have been sev-11

eral methods proposed in the literature with their advantages and limitations.12

A detailed study of previous works is necessary to understand their advantages13

and disadvantages in image representation and classification problems. In this pa-14

per, we review the existing scene image representation methods that are being15

widely used for image classification. For this, we, first, devise the taxonomy using16

the seminal existing methods proposed in the literature to this date using deep17

learning (DL)-based, computer vision (CV)-based, and search engine (SE)-based18

methods. Next, we compare their performance both qualitatively (e.g., quality of19

outputs, pros/cons, etc.) and quantitatively (e.g., accuracy). Last, we speculate20

on the prominent research directions in scene image representation tasks using21
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keyword growth and timeline analysis. Overall, this survey provides in-depth in-22

sights and applications of recent scene image representation methods under three23

different methods.24

Keywords Computer vision · Classification · Deep learning · Machine learning ·25

Scene image representation26

1 Introduction27

Scene image analytics (e.g., scene representation, classification, clustering, etc.)28

is a highly-researched topic owing to its strong connection to recent technologies29

such as sensors, video cameras, robotics, and the internet of things (IoT) [1]. It30

also has an association with other sectors such as hyperspectral image analytics31

[2], satellite image analytics [3], climate image analytics [4], and so on. The im-32

age representation methods for each of them are dependent on the nature of the33

images; therefore, we need to adopt the appropriate feature extraction methods34

for their representation accordingly [5]. To perform such tasks, researchers have35

extended their works from very basic levels that use traditional computer vision-36

based methods to more sophisticated levels that use recent deep learning-based37

methods in addition to search engine-based methods.38

Initially, researchers mostly preferred to use the traditional Com,puter Vision39

(CV)-based methods until 2014 for the scene image representation tasks. This40

is because Deep Learning (DL) models did not flourish at that time and tradi-41

tional CV-based methods dominated scene representation tasks. Later on, DL-42

based methods, which originated in 1943 [6], have been dominant in the computer43

vision community from 2014 until now, particularly for scene image representa-44

tion and classification [1]. Recently, to tackle the weaknesses of visual information45

achieved from either traditional CV-based methods or DL-based methods, in 2019,46

researchers proposed new methods based on the Search Engine (SE) to capture47

the contextual information for the scene image representation tasks, which are also48

called SE-based methods [7].49

Because of such predominant growth and application of such methods, it has50

been challenging to explore the potential of each of them. Therefore, a survey study51

is crucial, not only to explore the surging potentials but also to help understand the52

application areas, research trends, and developments. Some recent review works53

Questions Wei et al.
[8]

Anu et al.
[9]

Singh et al.
[10]

Xie et al.
[11]

Ours

Traditional CV-
based methods?

✓ ✓ ✓ ✓ ✓

Latest DL-based
methods?

✗ ✗ ✗ ✓ ✓

SE-based meth-
ods?

✗ ✗ ✗ ✗ ✓

Trend and keyword
growth analysis?

✗ ✗ ✗ ✗ ✓

Table 1: Comparison of our work with existing works
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related to scene image representation are summarised below, whereas the summary54

is reported in Table 1.55

(i) Wei et al. [8] studied the traditional feature extraction methods using empirical56

analysis, when the DL-based methods were not dominant, which helped un-57

derstand the efficacy of traditional feature extraction methods for scene image58

representation. In addition, they perform an empirical study of such meth-59

ods on four benchmark datasets. However, they explain limited DL-methods60

for scene image representation, which lacks in-depth elaboration of recent DL61

methods in this domain.62

(ii) Anu et al. [9] discussed the traditional CV-based methods to extract the image63

features, which shed light on the applicability of different CV-based methods64

for scene image representation during that time. However, their study does not65

classify the traditional CV-based methods in-detail.66

(iii) Singh et al. [10] presented a review of recent methods of scene representation,67

including DL-based methods, which provided a great promise of DL-based68

methods for scene image representation. They categorised the range of methods69

into three broad categories. However, their study limits recent advances of DL-70

based methods in this domain.71

(iv) Xie et al. [11] discussed the recent DL-based methods and traditional CV-based72

methods for scene representation, which not only carried out an in-depth study73

of each of them but also underscored the efficacy of DL-based methods against74

other methods for the scene image representation. However, their study has75

two main limitations. First, semantic approaches (e.g., SE-based methods) that76

have been gaining popularity recently are not included in their study. Second,77

their study lacks a comparative study of traditional CV-based methods, DL-78

based methods, and SE-based methods.79

While looking into existing review works, we find the following gaps. First,80

the traditional CV-based methods are reviewed by most of the works, whereas81

the latest DL-based methods are not explored at their full potential. Second, the82

SE-based methods, which are recently introduced, also need in-depth analysis for83

their possible merits on scene image representations. Finally, the possible trend84

and research growth analysis are essential to show the possible research avenues85

but not available in the existing works.86

To bridge the gaps in existing survey works, we study the recent and existing87

methods used in scene recognition and analyse them under their appropriate tax-88

onomy using both qualitative and quantitative analysis. In addition, we present89

the ongoing research trends in scene image representation.90

The main contributions in this paper are as follows:91

(i) We perform a detailed review of the existing and recent scene image represen-92

tation methods for classification using a comprehensive taxonomy.93

(ii) We analyse the existing scene representation methods qualitatively and quan-94

titatively. For quantitative analysis, we use a statistical approach, particularly95

box-plot analysis, across the performance measurein whereas, for qualitative96

analysis, we take the help of the pros/cons of methods.97

(iii) Based on the pros and cons of the existing methods, we point out the potential98

directions of scene image representation and classification.99

(iv) We reveal the trend and keyword growth analysis in the scene image represen-100

tation area.101
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Fig. 1: Step-wise procedure to retrieve the articles reviewed in this survey.

The rest of the paper is organised as follows. Sec. 2 explains the process used102

to retrieve the papers for review. Similarly, Sec. 3 provides the basic concepts used103

in the scene representation, and Sec. 4 categorises the existing methods into three104

broad categories with their explanation. Sec. 5 explains the datasets used in the105

scene representation and details the comparative study of the existing methods and106

Sec. 6 discusses the overall methods and suggests the possible directions. Finally,107

Sec. 7 concludes the paper with final remarks.108

2 Survey Method109

In this section, we outline the procedure to retrieve the papers for review. We110

follow a systematic procedure to collect the papers for review. For this, we first111

search three popular databases: IEEE Xplore, Scopus, and Web of Science with112

the search string: ”Scene Image OR Place” AND ”Representation” AND ”Classi-113

fication”. With this, we find 52, 169, and 75 articles with IEEE Xplore, Scopus,114

and Web of Science, respectively (Accessed date: 2022/11/10). After screening the115

title, abstract, author keywords, and full text, we end up collecting 100 articles.116

In addition to the searching method, we also collect 15 related articles using a117

snowballing technique. Last, a total of 115 articles are included for final review,118

including both scene representation methods and their related articles. The de-119

tailed pipeline of our survey method is presented in Fig. 1.120



Recent Advances in Scene Image Representation and Classification 5

3 Background121

Here, we explain the fundamental concepts, including both representation and122

classification algorithms, used in the literature mostly.123

3.1 Representation algorithms124

3.1.1 Scale Invariant Feature Transform (SIFT)125

SIFT feature extraction algorithm, which was published in Lowe et al. [12], extracts126

the features based on the local sense of the image. This algorithm is mainly used127

for object recognition, gesture recognition, video tracking, etc.; however, it has128

also been used in scene representation problems [13]. It is a complex algorithm,129

which follows four steps to extract the descriptor: a) Scale-space detection, b) Key130

points localization, c) Orientation assignment, and d) Key points descriptor.131

At first, to detect the key points in scale-space detection, multiple-scaled images132

are created and scale filtering is performed. For this, Laplacian of Gradient (LoG)133

could be used as a blob detection in each scale. However, since the LoG is a little134

bit costly, the Difference of Gaussian (DoG) is used in SIFT descriptor. The DoG135

is obtained by the difference of Gaussian blurring of an image with two differences136

σ, such as σ and kσ. Once the DoGs are achieved using such an approach, local137

maxima are found by searching the image with different scales and spaces. Local138

maxima are the potential key points of the corresponding image.139

After the identification of potential key points in scale-space detection, the sec-140

ond step is to refine them for accurate results. For this, the Taylor series expansion141

algorithm [14] is used to get a more accurate location of local maxima in addition142

to the contrast threshold approach. With the help of the contrast threshold, we143

choose those extrema that have less than the threshold (e.g., 0.03), which can be144

chosen empirically. Furthermore, DoG exploits the edge information, which needs145

to be removed. Thus, the Harris corner detector is used to detect them and an-146

other threshold, called the edge threshold, is used to filter them out. With the147

help of such an approach, the extrema with low-intensity and edge key points are148

removed, thereby preserving only strong-intensity key points.149

Next, the third step provides the in-variance to the extracted key points. In150

this step, orientation is assigned to each key point, where the neighborhood is151

considered into account around each key point depending on the scale, gradient,152

and direction. In this way, an orientation histogram is created with 36 bins covering153

360 degrees. The highest peak of the histogram is taken and a peak below 80% is154

discarded.155

Finally, the descriptor is created by taking the window of 16 × 16 neighborhood156

around the key points. Such a neighborhood is divided into 16 sub-blocks of 4 × 4,157

where for each sub-block, an orientation histogram of having 8 bins is constructed.158

This results in 128 bins in total for each key point. In this way, SIFT descriptor159

is created.160
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3.1.2 Histogram of Gradient (HoG)161

HoG features also focus on the local sense, that is the gradient in the images. This162

concept was brought by Dalal et al. [15]. It was initially used to detect the objects163

in the image; however, it has been used in scene recognition problems these days164

[16]. To extract the HoG descriptors [17], we follow three steps: computation of165

gradient, orientation binning, and descriptor blocks.166

First, the gradient values are calculated for an image. Specifically, this step167

utilizes filtering the color or intensity data of the image using two kernels such as168

[-1,0,1] and [-1,0,1]T . Next, the histograms of cells are constructed. The structure of169

the cells can be either rectangular or radial and the histogram channels are spread170

over 0 to 180 or 0 to 360 degrees depending on the unsigned or signed gradient,171

respectively. Then, these histograms are normalized. Last, the HoG descriptor172

is obtained by the concatenation of all normalized cell histograms. Such blocks173

generally overlap, which means that each contributes more than once to form the174

descriptor.175

176

3.1.3 Census Transform histogram (CENTRIST)-based features177

The CENTRIST descriptor captures the structural detail of the image with the178

help of local structural detail. For this, spatial geometric information is utilized. To179

achieve such spatial information, it uses CT (Census Transform) values as its basic180

component. CT value is defined as the non-parametric local transform established181

to show the association between the intensity values [18]. To show the association182

in CT values, the intensity values are set to 0 if it is greater than the center value183

and set to 1 otherwise (Eq. (1)). Here, CT values (e.g, CT=224 for 20 in Eq.184

(1)) are calculated based on its 8 neighbouring intensity values. Finally, all the185

CT values are collected and constructed in the histogram to form the CENTRIST186

descriptor.187 10 20 30
10 20 30
10 20 30

 ⇒

1 1 0
1 0
1 1 0

 ⇒ (11010110)2 ⇒ 224 (1)

Furthermore, the mCENTRIST [19] descriptor is the multi-channel CENTRIST188

descriptor, which is developed to overcome the weaknesses of CENTRIST. CEN-189

TRIST has mainly two weaknesses: first, it extracts the descriptor using a sin-190

gle channel; second, its descriptor size is larger. To overcome the weaknesses of191

CENTRIST, mCENTRIST uses complementary information using two or multiple192

channels, which improves the performance. Similarly, with the help of the Census193

Transform pyramid, they can reduce the size of the descriptor significantly.194

3.1.4 Oriented Texture Curves195

To achieve the OTC [20] descriptor, we need to perform three main steps. First,196

we need to sample the patches along the dense grid of the image. Next, each197

patch is represented by the curve, where each curve is based on a certain curve198

descriptor, that is texture-based and rotation sensitive. Note that for the texture-199

based descriptor, we use the HoG descriptor in the method. Last, such descriptor200

is concatenated and normalized to achieve the OTC descriptor.201
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3.1.5 Deep features202

Deep features, which are the deep visual representation of the image, are extracted203

using various intermediate layers of deep learning model such as VGG16 [21]. Deep204

features achieved from different layers provide different kinds of information (e.g.,205

foreground, background, etc.), which can be used to describe the various contents206

present in the image [21, 5, 22, 23]. Moreover, deep features represent the image207

at a higher order; therefore, it can discriminate such images more accurately than208

traditional computer vision-based descriptors such as SIFT, HoG, and so on.209

3.1.6 Word embedding210

Descriptors can also be achieved using the word embedding form from the pre-211

trained models [24, 25, 26]. Such descriptors, which are popular in Natural Lan-212

guage Processing (NLP) [27], have been used to extract the contextual information213

using tags/tokens representing the scene image [7]. There are basically three types214

of word embedding used in NLP tasks, which have also been used in image pro-215

cessing to capture contextual information. They are Word2Vec [24], GloVe [25],216

and fastText [26].217

3.1.7 Sparse coding218

Sparse coding yields the sparse representation of the input image based on the219

dictionary learning method. Based on the training images, a dictionary is con-220

structed at first. Then, with the help of such a dictionary and its optimization,221

sparse representation to attain the final encoded features representing the image.222

This algorithm is popular in scene representation [28].223

3.1.8 Bag of visual words224

The bag of Visual Words (BoVW) encoding method is a slight variation of the225

bag of words (BoW) approach, which is quite popular in the Natural Language226

Processing (NLP) domain mostly. The BoVW method is invariant to scale and227

orientation, which is helpful to achieve better performance irrespective of the dif-228

ferent resolutions and orientations of scene images. This method has been used229

widely in the computer vision domain nowadays [13]. To employ the BoVW in230

computer vision, the frequencies of visual words are considered, unlike the BoW231

approach.232

3.1.9 Fisher vectors233

To avoid the problem of sparsity and higher dimensionality problem in BoVW, the234

concept of Fisher vectors (FV) [29], which adopt the Fisher Kernel (the compact235

and dense representation), has been used. Specifically, the Fisher Vector (FV)236

is the general Fisher kernel, which is obtained by pooling local image features.237

For this, it stores the mean and covariance deviation vectors per component k238

of the Gaussian Mixture Model (GMM) in addition to each element of the local239

descriptor.240



8 Chiranjibi Sitaula* et al.

3.1.10 Locally-constrained Linear coding (LLC)241

In LLC, each descriptor is projected to locality constraints using a local coordinate242

system and then, the projected coordinates are integrated using max-pooling op-243

eration, which results in the final representation [30]. This encoding is also popular244

to attain fixed-sized features for the scene image representation.245

3.1.11 Principal Component Analysis246

Principal Component Analysis (PCA) [31] has been used to reduce the dimension247

of the higher feature size. However, since it can provide fixed-sized features, it248

has also been used as an encoding algorithm. PCA extracts the orthogonal set of249

variables, which are called principal components (PCs). Based on those PCs, we250

achieve the reduced and fixed size of features. In the literature on scene image251

representation problems, this method has been used to reduce the deep feature252

size before the classification takes place [21].253

3.1.12 Threshold-based histogram254

This is an approach, where the fixed-sized features are constructed using the255

threshold operation to increment each bin of the histogram. Although this ap-256

proach is computationally expensive, it can capture discriminating information.257

In scene representation, this approach has been used in SE-based algorithms to258

attain the feature vector representing the textual information [7].259

3.2 Classification algorithms260

After the representation of scene images, they are classified using either DL-based261

or traditional machine learning (ML)-based algorithms.262

3.2.1 DL-based algorithms263

DL-based algorithms learn the input data using different activities such as acti-264

vation, convolution, pooling, and so on across several layers. In recent years, DL-265

based algorithms outperform traditional ML-based algorithms in most cases. This266

is because of their ability to learn several high-order information extracted from267

their intermediate layers. DL-based algorithms are divided into two categories: pre-268

trained and non-pre-trained. Pre-trained DL algorithms are open-access, which can269

be used as feature extractors for transfer learning or fine-tuning, whereas non-pre-270

trained models are user-defined DL algorithms, which are designed from scratch.271

The Softmax or Sigmoid layers are used for classification on top of those DL-based272

algorithms. Regarding the application of DL-based methods in the literature, it is273

noted that pre-trained DL algorithms have been mostly used for scene classifica-274

tion. For example, authors in [32, 33, 34] employed the pre-trained DL algorithms.275

The significant increment of performance from pre-trained DL algorithms due to276

transfer learning and fine-tuning is responsible for their widespread use in the277

literature.278
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3.2.2 Traditional ML-based algorithms279

Traditional ML methods mostly rely on structured data and are simple to under-280

stand, implement, and interpret. They could work on limited data with limited281

hardware/resources, which makes it easier to deploy them in a resource-constrained282

setting. While looking at the literature on scene image classification, we notice that283

the Support Vector Machine [22, 35] is one of the most widely used traditional ML284

algorithms. This algorithm relies on the hyperplanes for the separability of images285

or data. It employs different kernels, including linear, polynomial, and radial basis286

functions. With the help of its complex kernels, it has been able to classify scene287

images. Similarly, researchers also used other algorithms such as nearest neighbour288

classifier [36], logistic regression classifier [21], and so on. The nearest neighbour289

algorithm classifies data based on the proximity of data. Similarly, the logistic290

regression (LR) algorithm employs the logistic function for the classification. It291

is interesting to see that traditional ML algorithms have been mostly used over292

deep features for scene image classification. This is because this approach helps293

improve the performance with the exploitation of both DL-based algorithms and294

traditional ML-based algorithms [21].295

4 Taxonomy of scene image representation methods296

In this section, we categorize the existing scene representation methods into three297

broad categories, which are traditional CV-based, DL-based, and SE-based meth-298

ods (refer to Fig. 2 for the detailed taxonomy). The leaves of the taxonomy depict299

the algorithms for each method. Each method is explained in detail in the next300

subsections.301

4.1 Traditional computer vision (CV)-based methods302

Traditional computer vision-based methods [37, 38, 39, 20, 40] are based on the303

basic components of the image such as colours, pixels, lines, and shapes. The use of304

such basic components helps us understand how images are constructed and based305

on such patterns, we can represent them easily for several tasks such as classifi-306

cation, clustering, recognition, and prediction. The high-level flow of traditional307

computer vision-based methods for scene image representation and classification308

is presented in Fig. 3, which includes three steps: feature extraction, feature en-309

coding, and classification.310

Most popular traditional image representation methods are based on General-311

ized Search Trees (Gist) [41, 37], Gist-Color [37], CENsus TRansform hISTogram312

(CENTRIST) [39],multi-channel (mCENTRIST) [19], Scale-Invariant Feature Trans-313

form (SIFT) [38], Histogram of gradient(HoG) [15], Oriented Texture Curves314

(OTC) [20], Object bank representation(OBR) [42, 43], SPM [13], Reconfigurable315

BoW (RBoW) [44], Bag of Parts (BoP) [45], Important Spatial Pooling Region316

(ISPR) [46], etc. Among these techniques, the popular method such as Gist ex-317

tracts the features from local details such as color, pixels, and orientation of images318

[37, 47, 48, 42, 44, 45, 46, 49, 50]. Therefore, they are limited to dealing with high319

variations in the local image features. Furthermore, the OTC [20] method extracts320



10 Chiranjibi Sitaula* et al.

Fig. 2: Taxonomy of existing scene image representation methods

Fig. 3: CV-based scene representation pipeline for classification
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Fig. 4: DL-based scene representation pipeline for classification

the image features based on the colour variation of various patches in images,321

keeping in mind that these features are suitable to represent the texture images,322

not much pertinent to scene images. However, Spatial Pyramid Matching (SPM)323

[13] employs SIFT, which are multi-scale and rotation-invariant local features. Go-324

ing forward, SPM first slices the images and then extract image feature based on325

those spatial regions of the image. The extracted features of each region are rep-326

resented as a Bag of Visual Words (BoVW) of SIFT descriptors. Even though this327

method captures more semantic regions than other methods of the scene image to328

some extent, they are still not suitable to represent complex scene images requiring329

high-level information such as object and foreground/background information for330

discriminability.331

4.2 Deep learning (DL)-based methods332

Deep learning models, which are a composition of multiple artificial neural net-333

works [51], have provided a breakthrough performance in various domains such334

as text classification [52, 27], health informatics [53] and computer vision [23, 54].335

Among three different methods, DL-based methods are most popular today to336

represent and classify scene images. The high-level diagram of DL-based meth-337

ods is presented in Fig. 4, which includes deep feature extraction (DFE) using338

pre-trained models (e.g., low-level, mid-level, and high-level), deep feature rep-339

resentation by encoding approach (e.g., a bag of words, fisher vector, etc.), and340

classification. Besides, some DL methods prefer training in an end-to-end fashion341

after the deep feature extraction (DFE) step for the classification.342

There are two approaches/techniques (uni-modal and multi-modal) preferred343

by most of the DL-based methods for scene image representation and classifica-344

tion. First, there are some works in scene representation and classification that use345

uni-modal pre-trained deep models such as ResNet152 [55], VGG-Net [56, 57, 32],346

AlexNet [58], GoogleLeNet [59], and HDF [23]. For example, authors in [60] ex-347

tracted features from VGG-Net pre-trained on hybrid datasets (ImageNet [61]348
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and Places [62]) using Caffe [63] platform. They used fully connected layers (FC),349

which resulted in a feature size of 4, 096-D for each scale of the image to achieve350

orderless multi-scale pooling features. The final feature size of their method is351

higher as the number of scales increases in their experiment. Their method out-352

performs the single-scaled features though their method has a higher dimensional353

feature size. Similarly, authors in [64] used features from VGG-Net pre-trained354

on ImageNet [61] and extracted the high-level feature from the FC-layers after355

a fine-tuning operation. These features were fed into the Naive Bayes non-linear356

algorithm [65] for the classification. The performance of their method is promising;357

however, their method requires a massive dataset for fine-tuning operations, which358

could limit its applicability in real time. Furthermore, authors in [66] utilized three359

classification layers of fine-tuned GoogleNet [59] model, where they extracted the360

deep features in the form of probabilities and then performed the features fusion to361

achieve the results. Although their method outperforms several existing methods362

in the literature, it requires large datasets for fine-tuning coupled with an arduous363

hyper-parameter tuning operation to learn the highly separable features.364

Furthermore, some studies improved the separability of scene images by ex-365

tracting the mid-level features from the pre-trained deep learning models. For366

instance, Zhang et al. [67] randomly cropped the image into multiple patches and367

extracted the visual features from each of them using the AlexNet [58] model.368

Then, these features were used to design the codebook of size 1, 000-D for the369

sparse coding technique to extract the relevant features. Later on, they concate-370

nated the sparse coded features with the tag-based features to get the final fea-371

tures for the classification. Because of highly discriminating features from both372

deep features and sparse coded features, their method imparts a significant boost373

in performance compared to the existing methods. However, their work possesses374

two main limitations: a) the chance of feature repetition as the patches are selected375

randomly; and b) higher feature size. In addition, bag of surrogate parts (BoSP)376

features were proposed by Guo et al. [68] based on the two higher pooling layers–377

4th and 5th of the VGG16 model [56] pre-trained on ImageNet [61]. However, their378

method only captures the foreground information as they employed the VGG-16379

model pre-trained on ImageNet. As a result, it lacks the background information,380

which is one of the important clues required to better discriminate the complex381

scene images having higher inter-class similarity and intra-class dissimilarity. Ad-382

ditionally, authors in [69] compared four different CNN models such as AlexNet383

[58], ResNet152 [55], VGG-16 [56], and GoogleLeNet [59] pre-trained on ImageNet384

and Places datasets for scene image classification using semantic multinomial rep-385

resentation (SMN) approach, where they utilized pre-trained models available for386

Caffe [63] model zoo without fully connected layers and fine-tuning operation. This387

is one of the recent methods used in scene image representation and classification,388

which has shown great promise against the existing methods.389

Second, a few works proposed to use multi-modal deep features to represent390

the scene image for classification. For instance, Sun et al. [96] used three models:391

YOLOV2 [97], HybridDNN [96], and VGG-16 to represent the scene images. Here,392

the global appearance feature (GAF) from the second-last layer of VGG-16, CFA393

feature from the hybrid DNN and spatial layout maintained object semantics fea-394

ture (SOSF) from the YOLOV2 models were concatenated to represent the scene395

image. The resultant features were trained using the SVM classifier. Moreover, Bai396

et al. [32] proposed a multi-modal architecture utilizing both CNN and Long Short397
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Table 2: Dataset description used in scene image representation and classification.

Dataset Type Highlights Ref.

MIT-67 RGB Complex
scene im-
ages

[20, 46, 19, 70, 60, 71, 66, 72, 62, 67,
73, 74, 75, 76, 77, 32, 78, 23, 79, 80, 21,
22, 81, 82, 83, 84, 7, 28, 21, 22]

Scene-15 Grayscale Indoor-
outdoor
images

[37, 13, 85, 86, 87, 39, 20, 88, 46, 70,
71, 66, 67, 75, 76, 23, 79, 22, 84, 83, 7,
16, 89, 28, 22]

Event-8 RGB Sport
events
related
images

[37, 39, 88, 46, 19, 67, 75, 23, 79, 22,
90, 84, 7, 16, 22]

SUN-397 RGB Complex
in-
door/outdoor
scene im-
ages

[20, 60, 71, 66, 72, 62, 73, 74, 76, 32,
78, 80, 21, 81, 82, 28]

Caltech-
256

RGB Natural
and artifi-
cial objects
in a diverse
setting

[91, 87, 92, 93]

NYU-V1 RGB-Depth Indoor im-
ages with
RGB and
depth in-
formation

[94, 95]

Term Memory (LSTM) model for the scene image classification. The LSTM model398

was used on top of CNNs. In their proposal, each image slice feature was extracted399

from VGG-16 [56] pre-trained on Places [62] and then, fed into the LSTM model.400

Since the deep learning model pre-trained model on the Places dataset gives the401

background information and LSTM captures the sequence information of image402

slices, their model outperforms several other previous methods, including tradi-403

tional CV-based methods and several DL-based methods. Furthermore, Liu et al.404

[98] proposed to use the CNN features and euclidean distance approach, which405

improved the performance on both MIT-67 and Scene-15 datasets. Furthermore,406

considering the popularity of metric learning and local manifold preservation, au-407

thors in [34] proposed a novel approach called, a joint global metric learning and408

local manifold preservation (JGML-LMP), which provided a significant boost in409

the classification performance.410

A few works on scene image classification used the whole-part feature extrac-411

tion approach using both foreground and background information. For instance,412

the whole- and part-level feature extraction approach was proposed by Sitaula et413

al. [23] to represent the scene images. In their method, they utilized pre-trained414

VGG model on both ImageNet [61] and Places [62] to capture both foreground415

and background information for each input scene image. Since their method does416

not consider contextual information, it still provides a limited performance while417

dealing with complex scene images having a higher inter-class similarity.Authors418

in [99] also employed the object-centric and place-centric information or features419

to classify the indoor images.420
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Stop words
removal
Alphanumeric
removal
Stemmer
Lematization
Tokenization

Codebook 
design using
supervised or
unsupervised
approach
Use of Bag of
words or
histogram

Deep learning-
based methods
(e.g., CNN)
Traditional
machine
learning-based
methods (e.g.,
K-NN, SVM,)

Preprocessing ClassificationRepresentation

Scene Images

Search Engine

Fig. 5: Search engine (SE)-based scene representation pipeline for classification.

4.3 Search engine (SE)-based methods421

The visual information achieved from either traditional CV-based or DL-based422

methods is not sufficient to represent the complex scene images because they also423

require contextual information (e.g., non-visual information such as tags, tokens,424

and annotation) for their accurate separability. There are very few works [67, 83, 7],425

which extract contextual information using a search engine, for the representation426

of scene images in the literature. These methods are considered SE-based methods.427

While the extraction of features related to scene images using search engines is an428

arduous process, it still has an immense potential to differentiate complex scene429

images due to the presence of human annotations/descriptions for similar images430

on the web. The high-level diagram of SE-based methods is presented in Fig. 5,431

which comprises three steps: preprocessing (e.g., stop words removal, stemmer,432

etc.), representation (e.g., codebook, histogram, etc.) and classification.433

Under the SE-based methods, authors in [67] collated the annotations/tags of434

top 50 visually similar searched images for the phrased input query image on the435

web. The collated tags were preprocessed and classified in an end-to-end fashion.436

The main limitation of their work is the higher feature size incurred by the bag437

of words on raw tags, which could be minimized by using the filter bank. Later438

on, the idea of filter banks to minimize the feature size was established by Wang439

et al. [83], where they proposed the task-generic filter banks using the pre-defined440

category names to filter out the outlier tags to some extent. For the pre-defined cat-441

egory names, they borrowed them from the ImageNet [61] and Places [62] datasets.442

However, their method still lacks domain-specific keywords/tags related to scene443

images, which could lead to out-of-vocabulary problems. As a result, it creates444

an accumulation of unnecessary tags in the filter banks. This, in the end, could445

ultimately degrade the classification accuracy. Given such limitations, Sitaula et446

al. [7] constructed the domain-specific filter bank based on the training data. Their447

domain-specific filter bank not only helped minimize the vocabulary problems but448

also improved the overall classification performance of scene images as they were449
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able to capture more semantic information. By and large, the contextual informa-450

tion captured from the web can provide important clues to discriminate complex451

scene images having both inter-class similarity and intra-class dissimilarity [83, 7].452

5 Datasets453

Although several datasets, including both smaller and larger ones, have been used454

in the literature for scene representation and classification, we list and explain the455

commonly-used larger scene image datasets in this study. There are commonly six456

benchmark datasets (MIT-67 [47], Scene-15 [100], Event-8 [101], SUN-397 [102],457

Caltech-256 [91], and NYU-V1 [94]), which have been used frequently in the liter-458

ature.459

MIT-67 [47] contains 15, 620 images (67 categories), where each category460

contains at least 100 images. There is a standard protocol [47] of train/test protocol461

to be used in the experiments. According to the protocol, 80 images per category462

are taken as the training split, whereas 20 images per category are taken as the463

testing split.464

Scene-15 [100] contains 4, 485 images (15 categories), where each category465

contains at least 200 images. There is no standard train/test protocol defined to466

use this dataset. However, researchers use 100 images per category as training and467

the rest of the images as testing split. The experiment is repeated for 10 runs to468

report the average accuracy.469

Event-8 [101] contains 1, 579 images (8 categories), where each category con-470

tains at least 137 images. There is no standard train/test split ratio to use this471

dataset; however, researchers randomly select 120 images per category and divide472

70 images as training and 60 images per category as a testing split. The experi-473

ments are conducted for 10 runs to note the average accuracy.474

SUN-397 [102] contains 108, 754 images (397 categories), where each category475

contains at least 100 images. This dataset provides standard 10 sets of train/test476

protocol [102] to be used in the experiments, where each split contains 50 im-477

ages/category as training and 50 images/category as testing. The average of 10478

runs is used to report the accuracy.479

Caltech-256 [91] contains 30, 607 images(256 object categories). It consists of480

images of various natural and artificial objects in diverse settings. The minimum481

number of images in each category is 80.482

NYU-V1 [94] consists of 2, 347 labeled frames having 7 different classes. The483

images were collected from a wide range of domains, where the background was484

changing from one to another with RGB and depth cameras from the Microsoft485

Kinect. Given that scene images in this dataset contain several objects and their486

associations, this dataset is one of the most challenging datasets for scene image487

classification. Summary details of all of these datasets are mentioned in Table 2.488

6 Discussion489

Here, we discuss the research works carried out in scene representation and clas-490

sification using quantitative (e.g., performance metrics) and qualitative analysis491

(e.g., pros/cons).492
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Table 3: Comparative study of state-of-the-art methods using classification accu-
racy (%) on scene datasets under CV-based methods. The symbol − represents
the no published accuracy.

Approach Scene-15 Event-8 MIT-67 SUN-397

Gist-color [37] 69.5 70.7 - -
SPM [13] 72.2 - - -
pLSA [85] 72.7 - - -
Semantic Theme [86] 72.2 - - -
Kernel Codebook [87] 76.7 - - -
CENTRIST [39] 84.9 78.5 - -
OTC [20] 84.3 - 47.3 34.5
S3R [88] 83.7 40.1 - -
ISPR [46] 85.0 89.5 50.1 -
WSR-EC [70] 81.5 - 38.6 -
mCENTRIST [19] 86.5 44.6 - -
Xie et al. [16] 83.3 84.8 -
Ali et al. [89] 90.4 - -
HIK[103] - - 40.19 -
HPK [104] - - - -
HPK [104] - - - -
HILLC [105] 86.3 85.0 - -
CS-PSL [92] - - 52.5 -
OBR [43] 88.8 86.0 32.3 -
3-DLH [36] - 84.9 - -
LLC [30] 83.2 - - -
PFE [106] 84.2 - - -
SIFT[94] - - - -
W-LBP[107] 85.1 86.2 - -
GPHOG [40] - - - -
Spatial LBP [35] 80.9 71.7 - -
BoW-LBP [36] 80.7 87.7 - -

6.1 Quantitative analysis493

For the quantitative analysis of research articles published in the literature, we494

summarise the performance using box plots, which impart the statistical informa-495

tion of classification performance, as shown in Fig. 6. (Note that we draw boxplots496

based on the performance of three different scene representation methods (DL-497

based, CV-based and SE-based ) achieved from the corresponding Tables 3, 4 and498

5 on four datasets (Figs. 6(a), 6(b), 6(c) and 6 (d), respectively.)499

Here, we analyze the performance, particularly the reported accuracies of three500

or two different methods on four datasets. Since the search engine (SE)-based501

methods only consider three datasets (Scene-15, Event-8, and MIT-67) in the502

literature, we present the results on only such three datasets, whereas, for the other503

two methods (DL-based and CV-based), we present the results on four datasets504

(Scene-15, Event-8, MIT-67, and SUN-397).505

While comparing the performance of three different kinds of methods on four506

datasets, we notice that DL-based methods outperform other remaining methods507

in all datasets. For example, on the Scene-15 dataset, DL-based methods provide508

the highest accuracy mostly (maximum and minimum of 98.7% from RBM [113],509

and 85.2% from ResNet+TL [109], respectively) compared to the traditional CV-510

based methods that has below 85% accuracy mostly except Ali et al. [89] with511
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Table 4: Comparative study of state-of-the-art methods using classification accu-
racy (%) on four scene datasets under DL-based methods. The symbol− represents
the no published accuracy.

Approach Scene-15 Event-8 MIT-67 SUN-397

CNN-MOP [60] - - 68.8 51.9
DAG-CNN [71] 92.9 - 77.5 56.2
G-MS2F [66] 92.9 - 79.6 64.0
SFV+Places [72] - - 79.0 61.7
VGG [62] 91.72 95.17 79.7 63.2
EISR [67] 92.1 89.6 66.2 -
VSAD [73] - - 86.2 73.0
LS-DHM [74] - - 83.7 67.5
DUCA [75] 94.5 98.7 71.8 -
Nascimento et al. [28] 95.7 - 87.2 71.0
Objectness [76] 95.8 - 86.7 73.4
Bilinear-CNN [77] - - 79.0 -
Deep patch [78] - - 79.6 57.4
HDF [23] 93.9 96.2 82.0 -
Sorkhi et al. [79] 95.1 99.2 73.6 -
PaSL [80] - - 88.0 74.0
Semantic-Aware [81] - - 87.1 74.0
LASC [82] - - 81.7 64.3
FBH [21] - - 82.3 66.3
CCF [22] 95.4 98.1 87.3 -
DDSFL [108] 52.2 86.9 84.4 -
ResNet+TL[109] 85.2 - 94.0 -
HFMSF[110] 97.8 - - -
CNN-LSTM[32] - - 80.5 63.0
ABR [111] 91.9 96.2 68.3 -
CSSR [112] - - 77.8 57.3
RBM [113] 98.7 - - -
SOSF+CFA+GAF
[96]

- - 89.5 78.9

DeepFeature [114] - 94.8 72.3 -
SMN [69] - - 84.4 66.8
RVF [115] - - 80.0 60.6
MFAFSNet [116] - - 88.0 72.4
GEDRR [117] 96.0 - 87.7 73.5
MetaObject +CNN
[118]

- - 78.9 58.1

JGML-LMP[119] 96.0 99.0 87.5 73.2
Liu et al. [34] 96.4 - 81.6 -
Selective CNN [34] - - 88.4 -

Table 5: Comparative study of state-of-the-art methods using classification accu-
racy (%) on four scene datasets under SE-based methods. There are no reported
accuracies on SUN-365 dataset using such methods.

Approach Scene-15 Event-8 MIT-67

BOW [83] 70.1 83.5 52.5
s-CNN(max) [83] 76.2 90.9 54.6
s-CNN(avg) [83] 76.7 91.2 55.1
s-CNNC(max) [83] 77.2 91.5 55.9
TSF [7] 81.3 94.4 76.5
TF [22] 84.9 95.8 77.1
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(a) (b)

(c) (d)

Fig. 6: Box-plot visualization of summary accuracy (%) achieved by three different
methods on four most popular scene image datasets: (a) Scene-15, (b) Event-8,
(c) MIT-67, and (d) SUN-397. Note that DL, CV, and SE represent DL-based,
CV-based, and SE-based methods. Note that there is no reported accuracy for
SE-based methods on the SUN-397 dataset.

90.4% accuracy. The reason for such performance surge while using DL-based512

methods is because of the highly discriminating feature extraction abilities from513

different intermediate layers of DL methods. Notably, deep features could pro-514

vide more information related to scene images, including foreground, background,515

and hybrid. The presence of all three kinds of information helps discriminate the516

complex scene images more accurately. However, traditional CV-based methods517

are not sufficient to capture such information, which as a result fails to discrimi-518

nate the complex scene images during classification. Also, the recent works using519

the search engine (SE)-based methods on three datasets (Scene-15, Event-8, and520

MIT-67) show that SE-based methods could capture complementary contextual521

information, which is difficult to achieve from the visual information achieved from522

the traditional CV-based and DL-based methods, for the scene images to repre-523

sent them during classification. Interestingly, it can outperform the traditional524

CV-based methods and is comparable to DL-based methods during scene image525

representation and classification. For example, SE-based methods on the Event-8526

dataset (6(b)) provide an accuracy of over 90%, whereas the traditional CV-based527

methods and DL-based methods provide an accuracy below 90% and over 90%,528
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respectively. This encouraging classification performance shows the efficacy of SE-529

based methods for scene image representation.530

While comparing the performance throughout the four widely popular datasets531

(Scene-15, Event-8, MIT-67, and SUN-397) reported in Fig. 6, we observe that532

SUN-397 is the most challenging dataset for which the state-of-the-art methods533

have produced the least performance compared to the other three datasets (Scene-534

15, Event-8, and MIT-67). Also, there is no reported classification accuracy for535

SE-based methods for this dataset. Furthermore, the accuracy of SUN-397 re-536

mains between around 71% and 35% in the classification. We believe that this is537

the most challenging dataset compared to other datasets, both in terms of com-538

plexities (higher inter-class similarity and intra-class dissimilarity) and categories539

(higher number of challenging classes). Similarly, we observe that the MIT-67540

dataset is the second-most challenging dataset in terms of performance, which has541

a maximum performance of around 97% by DL-based methods and a minimum542

performance of around 40% by CV-based methods. Although this dataset has only543

67 categories compared to SUN-397 (397 categories), it is still a challenging dataset544

with a similar level of complexity to SUN-397 for scene image representation and545

classification. Compared to the SUN-397 and MIT-67 datasets, two other datasets546

(Scene-15 and Event-8) are relatively less challenging and have produced the most547

prominent classification performance (Scene-15 has the maximum and minimum548

accuracy of over 98% by DL-based methods and over 76%, by SE-based methods549

respectively, whereas the Event-8 has the maximum and minimum accuracy of over550

95% by DL-based methods and over 70% by CV-based methods, respectively). The551

reason for such a significant boost in performance is attributed to the distinguish-552

able scene images (lower inter-class similarity and intra-class dissimilarity) present553

in them.554

To sum up, the DL-based methods outperform both the traditional CV-based555

method and SE-based methods in most cases. This infers that visual content in-556

formation of the scene images provided by the DL-based methods is more discrim-557

inating than others to distinguish ambiguous and complex scene images. Recently,558

the SE-based methods have shown some promise in scene image representation559

by providing some important contextual clues, which are attained using human560

perception and knowledge available on the internet.561

6.2 Qualitative analysis562

Here, we analyse each of the three methods (CV-based, DL-based, and SE-based)563

based on their advantages and shortcomings, which are obtained in terms of their564

viability.565

Regarding CV-based methods, they have four major merits. First, feature ex-566

traction is well-established and easier to implement. For example, we can achieve567

the features based on the traditional CV-based methods such as SIFT (Scale Invari-568

ant Feature Transform) and HoG (Histogram of Gradient) with a few lines of code.569

Second, they have a higher performance with fine-grained and non-ambiguous im-570

ages (no inter-class similarity and intra-class dissimilarity). With the help of basic571

information of scene images such as pixels, lines, and arc details, it is easy to572

distinguish the non-complex images (e.g., fine-grained, texture, non-ambiguous,573

etc.) during classification. Third, CV-based methods are less complex compared574
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to other methods because they do not require arduous training activities to achieve575

the discriminating features of the input image. Fourth, we do not require a domain-576

specific knowledge to implement them. For example, we can apply the same SIFT577

algorithm for both scene images and biomedical images to represent them. In578

contrast, CV-based methods have two major demerits. First, they have a lower579

classification performance for complex scene images having higher inter-class simi-580

larity and intra-class dissimilarity. This is because complex scene images require a581

higher level of information (e.g., object), which is difficult to acquire by CV-based582

methods. Second, given that there are several kinds of features achieved from the583

CV-based methods, it is very difficult to choose the most discriminating and useful584

features corresponding to the study.585

For the DL-based methods, they have two major merits. First, they have a586

higher classification performance on complex images compared to CV-based meth-587

ods. This is because they can extract the high-level information (e.g., object)588

present in the scene image. Second, DL-based methods are flexible. That is, the589

DL models can be re-trained using custom datasets unlike the CV-based methods590

to make them domain-specific. Nevertheless, DL-based methods have three ma-591

jor demerits. First, they are heavy-weight in most cases compared to CV-based592

methods. The DL-based methods are very difficult to deploy in the edge comput-593

ing environment as they require heavily trained weight files to achieve promising594

accuracy. Second, the training and re-training processes of DL-based models are595

labor-intensive as they are prone to over-fitting and under-fitting problems. Third,596

although they have higher accuracy compared to others, they are, in most cases,597

poor in interpretability and explainability.598

The SE-based methods have two major merits. First, they can capture con-599

textual information with the help of human knowledge, which is complementary600

information to visual features. Second, the combination of contextual information601

with visual information could overcome the limitations of each individual. In con-602

trast, they have two major demerits. First, they are computationally infeasible to603

capture the information via search engines if we have a massive number of im-604

ages because search engines have a restriction on the number of query inputs for605

searching. Second, while selecting the tokens or textual information online, it is606

very difficult to select the most important information from the annotations/tags607

as we encounter numerous significant pieces of information. Since the current works608

focus on top-k images for annotations/tags, they could end up missing some im-609

portant information present beyond k images.610

6.3 Research trend analysis611

Here, we analyze the research direction of scene representation based on the cu-612

mulative occurrence of keywords and time duration across different years using613

a Line graph and Forest plot [120], respectively, which are presented in Fig. 7.614

The frequently-used keywords help understand the research direction in scene an-615

alytics because they not only provide the frequency but also their inception and616

current state. In this study, such keywords have been picked by the Forest plot617

automatically based on their importance.618

While looking at Fig. 7 in terms of topic occurrence, we observe that the619

cumulative topic occurrence has been increasing from 1996 to this date. There have620
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(a)

(b)

Fig. 7: Author’s keyword growth during last decades

been several topics popular in scene image representation such as ’classification621

(of information)’, ’computer vision, ’deep learning, and ’semantic’. Among them,622

it is noted that ’classification(of information)’ is the most popular topic, which623

has been sharply increasing in recent years. In addition, some other topics such624

as ’scene classification’, and ’feature extraction’ are also following similar kinds of625

patterns, whereas other topics such as image segmentation and scene classification626

are increasing at a slower rate. We believe that this trend makes sense because627

basic works related to scene image representation have already been done such as628

’scene classification’ and ’feature extraction. The current need is to build robust629

AI models with higher performance. Overall, the research trend of different topics630
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in scene images has been in the upward direction with the predominant use of631

DL-based methods.632

While analyzing the keyword topics’ popularity in terms of time duration at633

Fig. 7, we notice that different topics have different time duration for their popu-634

larity level. For example, from 2010 to 2017, most of the research works in scene635

representation were focused on feature extraction and it was most popular in636

2012. We believe that this is because feature extraction is the foundation work637

of scene image representation. It is seen that most of the research topics in scene638

image representation such as ’semantics’, ’neural networks, ’scene classification’,639

and ’classification’ are quite popular after 2017. In recent days, particularly after640

2019, ’deep learning has become a prominent topic, which is because of the ground-641

breaking classification performance produced by them. To this end, the popularity642

of different keywords in different years reveals the different levels of research in643

scene representation and classification.644

7 Conclusion and future works645

In this paper, we have reviewed the research works carried out in the scene image646

representation area for classification and categorised them into three broad groups:647

CV-based, DL-based, and SE-based methods. This categorisation and analysis648

(both qualitative and quantitative) reveal that the DL-based methods outper-649

form the remaining two methods in terms of classification accuracy in most cases,650

whereas the SE-based methods remain the potential research direction in the fu-651

ture. We also find that the DL-based methods have been frequently used in recent652

years using a transfer learning approach for performance improvement, whereas653

the SE-based methods, which are on the rise, have shown difficulty because of654

search engines although they have a great promise. We also underline that the655

combination or fusion of the DL-based methods with other methods enhances the656

classification performance significantly, which is because of the rich information657

obtained from multiple sources during image representation. In addition, we find658

that scene representation research works (e.g., feature extraction, representation659

learning, scene classification, etc.) are on the rise in recent years.660

Furthermore, we notice that the usability of the method for the scene im-661

age representation is dependent on the requirements. If the requirement is on a662

performance issue, it is inevitable to use the DL-based methods as they provide663

a groundbreaking performance; however, they require higher computational and664

space requirements. As such, we encourage building domain-specific lightweight665

pre-trained DL models to be used in the future. Given that our current study does666

not include the application of domain-specific lightweight DL models on scene667

image analytics followed by their trend analysis, we believe that it could be an668

interesting survey study in the future.669

8 Data availability670

All data are publicly available.671
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9 Abbreviations672

The list of abbreviations used in our study is presented in Table 6.673
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Abbrv. Full form

ABR Attribute-Based high-level image Representation
BSRC Block Sparse Representation Based Classifier
CCF Content Context Features
CFA Contextual Features in Appearance
CSSR Category-Specific Salient Region
CS-PSL class-specific pooling shapes Learning
DDSFL Deep Discriminative and Shareable Feature Learning
DoG Difference of Gaussian
DAG-CNN Directed Acyclic graph-Convolution Neural Network
DUCA Deep Un-structured Convolutional Activation
EISR Explicitly and Implicitly Semantic Representations
FBH Foreground background hybrid features
GAF Global Appearance Feature
GEDRR Global and Graph Encoded Local Discriminative Region Representation
Gist Generalized Search Trees
GPHOG Gabor Pyramid of Histograms of Oriented Gradients
G-MS2F GoogLeNet-based Multi-Stage Feature Fusion
GMM Gaussian Mixture Model
HDF Hybrid deep features
HFMSF Handcrafted Features with Deep Multi-stage Features
HIK Histogram Intersection Kernel
HILLC Histogram Intersection-Locally-constrained Linear coding
HPK Hybrid Pyramid Kernel
ISPR Important Spatial Pooling Region
IoT Internet of Things
LoG Laplacian of Gradient
LASC Locality-constrained Affine Subspace Coding
LS-DHM Locally Supervised Deep Hybrid Model
LSTM Long short-term memory
MFAFSNet Mixture of Factor Analyzers-Fisher Score Network
MOP Multiscale orderless pooling
OTC Oriented Texture Curves
OBR Object Based Representation
pLSA probabilistic Latent Semantic Analysis
PFE Pooled Feature Extraction
RBM Restricted Boltzman Machine
RVF Reduced Virtual Features
SC Sparse coding
SIFT Scale-Invariant Feature Transform
SOSF Spatial-layout maintained Object Semantics Features
SPM Spatial Pyramid Matching
SMN semantic Multinomial Network
S3R Sub-semantic space
SFV Semantic Fisher Vectors
TSF Tag-based semantic features
TF Tag-based features
VGG Visual Geometry Group
VSAD Vector of Semantically Aggregating Descriptor
W-LBP Wigner-based Local Binary Patterns
WSR-EC Weak semantic image representation- Example classifier
3-DLH 3-Dimensional LBP-HaarHOG

Table 6: List of abbreviations used in this study
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