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Abstract— Estimating the finite-dimensional state of dynamic
systems using modern sensors such as cameras, lidar, and radar
involves processing increasingly high-dimensional observations.
In this paper, we exploit concepts from the theory of infinite-
dimensional systems to examine state estimation in the contin-
uum limit of infinite-dimensional observations. Specifically, we
investigate state estimation in discrete-time linear systems with
finite-dimensional states and infinite-dimensional observations
corrupted by additive noise. In contrast to previous derivations
of the Kalman filter for infinite-dimensional observations, we
are able to derive an explicit solution for the optimal Kalman
gain by modeling the infinite-dimensional observation noise as a
stationary Gaussian Process. We demonstrate the utility of our
Kalman filter in a simulation of a linearized system derived
from the pinhole camera model.

I. INTRODUCTION

Autonomous navigation and state estimation of physical
systems with high-dimensional observations is an area of
research with a wide array of applications. These applica-
tions include autonomous navigation in indoor environments,
outdoor environments, and extraterrestrial environments [1]
[2] [3]. This high-dimensional observation space introduces
delays to the system, which adversely affects real time state
estimation. Due to the high dimensionality of this data,
algorithms that process this data in real-time require some
method of dimensionality reduction. This takes the form of
either feature selection, where there must be some process to
omit a large amount of data, or feature extraction, where the
data is in some way transformed to a lower dimension. These
feature detection methods are generally heuristics-based and
involve finding regions of interest via edge detection, corner
detection, blob detection, or some other heuristic. For this
reason, algorithms that require speedy real-time performance
such as those used in autonomous navigation often consist
of a front-end stage for feature detection and a back-end
stage for optimization of state estimates [3]. State of the art
autonomous navigation algorithms such as ORB-SLAM2 [4]
and SVO [5] include this front-end/back-end split design.
Control techniques for performing visual state estimation,
specifically visual SLAM, have recently been developed
using noise free observers [6] [7]. There is also recent work
on control with high-dimensional states and observations [8].

In contrast to these approaches, this paper proposes a
stochastic approach in which we treat high-dimensional
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Fig. 1. Example form of vision-based state estimation. Adapted from [3].

observational measurements as infinite-dimensional Gaussian
Processes. By approaching the continuum limit of the system,
we are able to apply well-known concepts from the theory
of stochastic infinite-dimensional systems.

In contrast to finite-dimensional systems where the
state/measurements are represented by vectors with a discrete
i indexing the vector components, an infinite-dimensional
system represents the state/measurements with functions that
are indexed by a continuous i. These systems can be used to
model distributed-parameter systems in areas like material
engineering, chemical engineering, and biotechnology [9],
as well as systems with high-dimensional measurements
such as vision, radar, or lidar. This paper examines per-
forming state estimation in a system with finite-dimensional
states and infinite-dimensional measurements by designing
a Kalman filter for this system. This filter echoes similar
work done in this area. Distributed-parameter Kalman filters
for continuous-time stochastic systems have been explored
and derived by authors such as Meditch and Tzafestas [10]
[11] [12] [13]. Tzafestas has also derived the distributed-
parameter Kalman filter for discrete-time stochastic sys-
tems using a Bayesian approach [12], and the discrete-time
Kalman filter has been derived via the Wiener-Hopf equation
by Nagamine et al. [14]. Minimum variance estimators
for distributed-parameter systems are discussed in detail by
Morris [15] [16], who also discusses the controllability and
observability of such systems and optimal sensor location for
purposes of estimation. All of these works provide Kalman
filtering algorithms for distributed-parameter systems, but
rely on the existence of a certain implicitly defined inverse
operator, which Tzafestas labels the distributed-parameter
matrix inverse.

We are interested in a system with finite-dimensional state
but infinite-dimensional measurements on an infinite domain
D. These measurements are corrupted by additive zero-mean
Gaussian Process noise that is stationary on D, taken to be



the real line. This is motivated by a mobile robot that wishes
to estimate its low-dimensional pose from high-dimensional
observations, the infinite-dimensional measurements repre-
senting the continuum limit of the high resolution sensor.
These observations could be based on vision, sonar, lidar,
or any other high-dimensional sensor modality. We show
that applying the previously described distributed-parameter
Kalman filter to this scenario may result in an operator
inverse that does not exist.

The key contribution of this paper is the formulation of
a discrete-time Kalman filter for linear systems with finite-
dimensional states and infinite-dimensional observations. By
exploiting the stationarity of the infinite-dimensional obser-
vation noise we calculate an explicit, well-defined solution
for the optimal Kalman gain as the kernel of an integral
over the domain of interest D. Many vision-based SLAM
techniques rely on heuristic-based front-end feature detection
techniques which are separated from back-end state estima-
tion, resulting in the feature extraction procedure taking little
to no account of the system’s state dynamics [17] [18]. While
the simulations in section V are motivated by a simple vision-
based system, our solution is applicable to other modalities
that are measured via high-dimensional sensors. Such sensors
include vision, but also sensors like sonar, radar, and lidar.
The current approach is constrained by the assumption of
a linear system, but serves as a rigorous foundation for
future analysis. In particular, we believe it will lead to an
understanding of how to extract state estimates from high-
dimensional sensors in a principled manner, and in a way
that inherently accounts for the system dynamics.

This paper is structured as follows. Section II discusses
Gaussian Processes and Gateaux Derivatives. Section III
presents the form of a system with finite-dimensional states
and infinite-dimensional observations, as well as the noise
properties of our system. Section IV derives an explicit
solution for the Kalman gain associated with our system and
an algorithm for applying the Kalman filter to this system.
Section V applies this algorithm to a simulated system and
presents the resulting behavior and performance of the filter.
Section VI concludes the paper.

II. PRELIMINARIES

A. Gaussian Processes
A Gaussian Process is an Rm-valued random process such

that any finite set of samples of that process forms a multi-
variate Gaussian distribution. A zero-mean Gaussian Process
(v(i))i∈D on domain D is completely described by its
covariance function R(i, i′) = E[v(i)v(i′)T ]. The Gaussian
process is called stationary if R(i, i′) = R(i− i′),∀i, i′ ∈ D.
All covariance functions are positive semi-definite, i.e. for all
n ∈ N, i1, . . . , in ∈ D, and u1, . . . , un ∈ Rm,

n∑
j=1

n∑
k=1

uTj R(ij − ik)uk ≥ 0.

B. Gateaux Derivatives
The Gateaux derivative generalizes the directional deriva-

tive and can be extended to infinite-dimensional spaces.

Definition 2.1: Let X be a vector space, Y a normed
space, and F : X1 → Y1 a transformation with X1 ⊂
X,Y1 ⊂ Y . If it exists for all φ ∈ X1, the Gateaux derivative
is given by

dF (x, φ) = lim
ε→0

F (x+ εφ)− F (x)

ε
. (1)

where x ∈ X1, φ is arbitrary and ε is scalar-valued. A
necessary condition at any extrema of an unconstrained
functional is that the Gateaux derivative must be equal to
0 for any arbitrary test function φ(i) [19].

III. PROBLEM FORMULATION

Consider a system model with state dynamics

xk+1 = Axk + wk, (2)

where xk ∈ Rn, wk ∈ Rn, A ∈ Rn×n, and k ∈ N
denote the state vector, process noise, state matrix, and time
index respectively. For ease of exposition we assume that
the control input is zero; the results here would still hold
with minor changes if it were non-zero and available to the
estimator. The state is not measured directly but is observed
via an infinite-dimensional observation waveform defined on
domain D, that is,

zk(i) = (Γxk) (i) + vk(i) ∈ Rm, i ∈ D, (3)

where vk = (vk(i))i∈D is a stationary Gaussian Process with
covariance R.

The linear operator Γ : Rn → L2(D,Rm) is defined by

(Γxk)(i) , γ(i)xk ∈ Rm, (4)

where the function γ ∈ L2(D,Rm×n). The initial state,
process noise, and observation noise are jointly Gaussian
such that ∀j, k ∈ N and i, i′ ∈ D,

E[wk] = 0 (5)
E[vk(i)] = 0 (6)

E[vk(i)wTj ] = 0 (7)

E[wkw
T
j ] = Qδj−k, Q ∈ Rn×n (8)

E[vk(i)vTj (i′)] = R(i− i′)δj−k, R(i− i′) ∈ Rm×m, (9)

where Q and R are positive-definite and δj−k is the discrete
impulse. We wish to examine the performance of a one-step
predictor which takes the following form{

x̂k+1 = Ax̂k +Kk[zk − ẑk]

ẑk = Γx̂k.
(10)

Here Kk is a linear mapping from the space of stationary
Gaussian processes on D to the space of Gaussian random
vectors in Rn. We assume the integral form

Kkz̃ ,
∫
D

κk(i)z̃(i)di,

where κk(i) ∈ L2(D,Rn×m). This stochastic integral is
defined in the Ito sense. Alternatively, from an engineering



perspective it may be thought of as giving the unique random
vector u jointly Gaussian with z̃ such that

cov[u] =

∫
D

∫
D

κk(i)G(i, i′)κTk (i′)didi′

E[uz̃(i)T ] =

∫
D

κk(i′)G(i, i′)di′,

where G is the covariance of the Gaussian process z̃ and
the integrals, now deterministic, are defined in the usual
Lebesgue sense. For present purposes, we shall assume
that G and κk are suitably “nice” so that expectations and
integrals can be swapped in order.

We highlight that the state estimation error previously
defined as ek , xk − x̂k satisfies1

ek+1 = Mkek + nk,

where Mk = A−KkΓ ∈ Rn×n, and nk = −Kkvk + wk ∈
Rn. Hence, the state estimation error dynamics and the best
(component) gains κk(i) to apply to points i ∈ D in the
observation domain depend on the dynamics of the system,
A. In particular, as k →∞, the steady-state gain operator K
must be chosen so that A −KΓ is stable to yield bounded
mean-square estimation errors. In other words, the gain must
take account of the underlying dynamics. This observation
is important since standard methods of processing high-
dimensional observations (e.g., the front-end/back-end based
approaches in vision-based state estimation illustrated in
Fig. 1) typically perform the detection and weighting of
observation features in isolation to the system dynamics. In
this paper, we shall explore this point further by deriving the
optimal Kalman gain Kk with kernel κk(i), with optimality
defined as minimizing the trace of the error covariance at
every step.

IV. DERIVATION OF OPTIMAL KALMAN GAIN

In this section, we derive optimality conditions for the
Kalman gain and our novel explicit form for it.

A. Optimal Kalman Gain Conditions

We now derive the form of the Kalman filter for this
system by finding the gain kernel κk(i) that reduces the
mean square error via minimization of the covariance matrix
at each time step. We begin by defining

P−k = APk−1A
T +Q (11)

x̂−k = Ax̂k−1. (12)

Here P−k ∈ Rn×n defines the a priori estimation error
covariance at time index k, i.e. the expected covariance of
the error at time k, given measurements up to time k − 1.
x̂k defines the estimated state vector at time k.

The application of (3) and (10) now gives us a formulation
of the error at each time step, namely

ek = xk − x̂k
= xk − x̂−k −Kk(Γxk + vk − Γx̂−k )

= (I −KkΓ)(xk − x̂−k )−Kkvk.

1See section VII-A for derivation.

Lemma 4.1: The gain function κk(i) that minimizes the
trace of the error covariance Pk satisfies the equation∫

D

κ(i′)
[
R(i, i′) + γ(i′)P−k γ(i)T

]
di = P−k γ(i)T

Proof: First note that Pk may be expressed as2

Pk =E
[
eke

T
k

]
=P−k −

∫
D

κk
(
i′
)
γ
(
i′
)
di′P−k − P

−
k

∫
D

γT (i)κTk (i) di

+

∫
D

κk
(
i′
)
γ
(
i′
)
di′P−k

∫
D

γT (i)κTk (i) di

+

∫
D

∫
D

κk (i)R
(
i, i′
)
κk
(
i′
)
didi′ (13)

We now minimize the trace of Pk by finding the func-
tional extrema. We do this by calculating when the Gateaux
derivative is equal to zero. The Gateaux derivative is given
by 3

dtr (Pk)

dK
=

∫
D

φ (i) 2[−γ(i)P−k +

∫
D

γ(i)P−k γ
T (i′)κk

(
i′
)T
di′

+

∫
D

R
(
i, i′
)
κk
(
i′
)T
di′]di. (14)

We now set (14) to zero. Note that φ(i) is an arbitrary
function and thus for the integral to be zero, the term in
square brackets must be zero.∫

D

φ (i)
[
− 2γ(i)P−k + 2

∫
D

γ(i)P−k γ
T (i′)κk

(
i′
)T
di′

+ 2

∫
D

R
(
i, i′
)
κk
(
i′
)T
di′
]
di = 0

=⇒ − 2γ(i)P−k + 2

∫
D

γ(i)P−k γ
T (i′)κk

(
i′
)T
di′

+ 2

∫
D

R
(
i, i′
)
κk
(
i′
)T
di′ = 0

=⇒
∫
D

κk
(
i′
) (
R
(
i, i′
)

+ γ(i′)P−k γ(i)T
)
di′ = P−k γ(i)T .

(15)

Note that the combination of (15) and (13) yields4

Pk = (I −KkΓ)P−k . (16)

It is useful to check if this reduces to the standard Kalman
filter if measurements are finite-dimensional. In this the
measurement operator Γ is a matrix, and the Kalman gain
acts like the matrix. The integral representation (15) can then
be inverted to yield

Kk =
(
R+ ΓP−k ΓT

)−1
P−k ΓT .

This is the well-known Kalman gain for standard Kalman
filters. Similar expressions to (15) can be found in previous
works [10] [11] [12] [13] [14]. In these papers, (15) is
solved by defining an operator inverse (·)† via the integral
relationship∫

D

G(i, i′)G†(i′, i1)di′ = Iδ(i− i1), (17)

2See section VII-B for derivation.
3See section VII-D for derivation.
4See section VII-C for derivation.



where δ(·) is the Dirac delta function. When this inverse
operation is employed, the Kalman gain operator can be
formulated as [10] [13] [14]

Kk = P−k ΓT (R+ ΓP−k ΓT )†.

Alternative forms can also be found where the operator
inverse is applied to the measurement noise covariance kernel
R(i, i′), however this operator inverse is not guaranteed to
exist and its existence is assumed. This operator inverse can
also lead to results that are not easily implementable. As an
example we examine the Ornstein-Uhlenbeck process, which
is used to model many physical processes.

The Ornstein-Uhlenbeck process is zero mean, with co-
variance kernel R(i, i′) = Ie−|i−i

′|. Taking the domain D to
consist of the entire real number line R, we use (17) to find∫

D

Ie−|i−i
′|R†(i′, i1)di′ = Iδ(i− i1)

=⇒ Ie−|i| ∗R†(i′, i1) = Iδ(i− i1)

F{Ie−|i| ∗R†(i′, i1)} = F{Iδ(i− i1)}

=⇒ I
1

ω2 + 1
R̄† = Iejωi1

=⇒ R̄† = Iejωi1
(
ω2 + 1

)
=⇒ R† = I[δ(i− i1)− δ′′(i− i1)]

where δ(i) and δ′′(i) denote the Dirac delta function and its
second derivative respectively.

This introduces an implementation issue. The Dirac delta
function is only well-defined under an integral, and must
be handled carefully when implemented on real-world hard-
ware. As we introduce the doublet, triplet5 and higher deriva-
tives it also causes difficulties in implementation. This may
also be particularly troublesome for purposes of estimation
and discretisation.

We propose an alternative formulation that gives an ex-
plicit definition of κ(i), as well as potentially avoiding the
issues relating to the implementation of generalized functions
such as the Dirac delta function and its derivatives.

B. Explicit Solution for Optimal Kalman Gain

We will now show that if we impose the condition of
stationarity on the infinite-dimensional observation noise,
we can derive an alternative formulation that does not rely
on the problematic operator inverse discussed above. This
formulation of the optimal Kalman gain avoids some of
the stated drawbacks of the inverse and leads to an explicit
solution.

Theorem 4.1: The Kalman gain κ(i) that satisfies (15) for
a system (2)-(9) with stationary Gaussian Process measure-
ment noise vk(i) on domain D = R is explicitly given by

κk (i) = P−k

(
I +

∫
D

f (i) γ (i) diP−k

)−1

f (i) .

Here f(i) = F−1{γ̄T (jω)R̄(jω)−1},

5First and second derivative of the Dirac delta function.

where γ̄ and R̄ are the respective Fourier transforms of γ
and R. F and F−1 denotes the Fourier and inverse Fourier
transform respectively.

Proof: From Lemma 4.1,∫
D

κk
(
i′
) (
R
(
i, i′
)

+ γ(i′)P−k γ
T (i)

)
di′ = P−k γ

T (i)

(18)

=⇒
∫
D

κk
(
i′
)
R
(
i, i′
)
di′ =

(
I −

∫
D

κk (i) γ (i) di

)
P−k γ

T (i)

=⇒
∫
D

κk
(
i′
)
R
(
i, i′
)
di′ = F (κk)γT (i)

where F (κk) =

(
I −

∫
D

κk (i) γ (i) di

)
P−k . (19)

As the covariance kernel is stationary, and taking the domain D
to be the entirety of R, we can deduce that∫

D

κk
(
i′
)
R
(
i− i′

)
di′ = F (κk)γT (i)

=⇒ (κk ∗R)(i) = F (κk)γT (i)

=⇒ F{(κk ∗R)(i)} = F{F (κk)γT (i)}
=⇒ κ̄k(jω)R̄(jω) = F (κk)γ̄T (jω)

=⇒ κ̄k(jω) = F (κk)γ̄T (jω)R̄(jω)−1

=⇒ κk(i) = F (κk)f(i). (20)

Where f(i) = F−1{γ̄T (jω)R̄(jω)−1} and j =
√
−1.

By substituting (20) into (19) we find

F (κk) =

(
I − F (κk)

∫
D

f (i) γ (i) di

)
P−k

=⇒ F (κk)

(
I +

∫
D

f (i) γ (i) diP−k

)
= P−k

=⇒ F (κk) = P−k

(
I +

∫
D

f (i) γ (i) diP−k

)−1

=⇒ κk (i) = P−k

(
I +

∫
D

f (i) γ (i) diP−k

)−1

f (i) , (21)

where the last equality follows from (20) again.
Combination of (10), (11), (12), (16), and (21) allows us

to state our Kalman filter as follows:
Algorithm 1: Kalman Filter for Infinite-Dimensional
Measurements

Input: Pk−1, x̂k−1, zk, S ,
∫
D
f(i)γ(i)di

x̂−k = Ax̂k−1

P−k = APk−1A
T +Q

Pk = (I + P−k S)−1P−k
x̂k =
x̂−k + P−k

(
I + SP−k

)−1 ∫
D
f(i)

(
zk(i)− γ(i)x̂−k

)
di

Output: Pk, x̂k
Here, f is defined after (20). We remark that this explicit

characterization arises from the stationarity of R and the
assumption that D = R. This yields a convolution that
converts to a product in frequency domain, leading to (20).
As in the standard Kalman filter, the covariance matrices are
independent of the observations and can be pre-computed
ahead of time. The matrix S =

∫
D
f(i)γ(i)di may also

be pre-computed. We have not solved all of the issues
originally imposed by the operator inverse (·)†. For example,



the inverse Fourier transform yielding f after (20) may not
be well-defined if the measurement noise power spectrum
R̄(jω) decays to zero faster than γ̄(jω) as ω → ±∞. In
rough terms, this suggests that for a well-defined solution
to exist, the effective bandwidth of the measurement kernel
should be smaller than that of the noise covariance kernel.

The filter just derived is the optimal filter in the minimum
mean square error sense. In the context of localization
in mobile robotics, it operates on the pixel level i. In a
real-world system it is not physically possible to perform
computations on an infinite number of pixels, and so some
approximations must be made. These approximations will
apply to the integral

∫
D
f(i)(zk(i)−γ(i)x̂−k )di in Algorithm

1. Indeed, any approximations of this integral can be viewed
as a form of feature detection. By examining the continuum
limit, where a high-dimensional and high-resolution noisy
image or lidar scan is represented as a Gaussian process
on a continuous domain, we have potentially gained the
ability to perform feature detection in a principled manner
via exploitation of the structure of f(i).

V. SIMULATION RESULTS

In this section, we present simulation results for the
Kalman filter with infinite-dimensional measurements, as
described in Algorithm 1. The system consists of a state
vector xk = [xk, ẋk]T representing the position and velocity
of an agent. The motion model consists of a state transition
model where ∆t is the change in time from step to step and
η is a velocity damping constant. A patterned line is fixed
perpendicular to the observer’s line of motion. The pattern
of this line is represented by some function C(y), which
is then related to the observer’s sensor via Γ(i, xk). Both
the motion model and the observation model are affected by
zero-mean additive Gaussian noise such that E[wkw

T
k ] = Q,

E[vk(i)vk(i′)T ] = R(i, i′).
The system equations are given by

xk+1 =

[
1 ∆t

0 1− η

] [
xk
ẋk

]
+ wk

zk(i) = −xk
ie−( ix̄

5F )2

(25F sin( ix̄F ) + 2ix̄ cos( ix̄F ))

25F 2
+ vk(i).

(22)

The observation equation is motivated by a simple pinhole
camera model, as demonstrated in Figure 3, where a gray-
scale intensity pattern

C(y) = e−( y
5 )2

cos(y) + 1. (23)

is observed on a wall that is situated along the y-axis. In
terms of the image domain i, we are then able to derive the
non-linear observation function

zk(i, xk) = C(
ixk
F

) + vk(i)

= e−(
ixk
5F )2

cos(
ixk
F

) + 1 + vk(i).

We then linearize this function around some point x̄ via
a first order Taylor expansion. Neglecting the constant terms
of this function, we arrive at (22).

TABLE I
SIMULATION PARAMETERS

System Variable Notation Value

State Matrix A

[
1 ∆t

0 1 − η

]
Process Noise Covariance Q

[
σ2
x 0
0 σ2

ẋ

]
Observation Kernel γ(i) See (22)

State Vector xk [xk, ẋk]T

Initial State x0 [5, 1]T

Integral Domain D [-1,1]
Wall Pattern C(y) e−

y
5

2
cos(y) + 1

Measurement Covariance Kernel R(i, i′) ζ√
2πl

e
−( i−i′√

2`
)2

Initial Error Covariance P0 Q
Initial State Estimate x̂0 x0

Linearization Point x̄ 5
Time Interval ∆t 1

Position Variance σ2
x 0.01

Velocity Variance σ2
ẋ 0.01

Measurement Noise Coefficient ζ 0.01
Friction Coefficient η 0.1

Focal Length F 0.2
Length Scale ` 0.02

Sample Spacing ∆s 0.002

Comparing (22) to (3)-(4) our gamma function is given by

γ(i) = −
ie−( ix̄

5F )2

(25F sin( ix̄F ) + 2ix̄ cos( ix̄F ))

25F 2
.

In this simulation the parameters given in Table I were
used.

The process noise of the position and velocity are consid-
ered uncorrelated. The measurement noise is represented via
a squared exponential Gaussian Process. Interestingly, given

an exponential squared kernel R(i, i′) = e−(
(i−i′)2

2`2
) we can

calculate the kernel inverse defined in (17) as R̄† = I 1
` e

`2ω2

2 .
This function does not admit an inverse Fourier transform
and hence R† does not exist in this case. However, if γ is
such that (γ̄T R̄)(jω) does admit a Fourier inverse, then we
may calculate f(i) and apply algorithm 1.

With these parameters, algorithm 1 was simulated using
Matlab. It was necessary during implementation to discretise
the system for numerical computation. Numerical functions
were evaluated with spacings equal to ∆s, or a frequency of
500 samples per unit of i. Algorithm 1 requires numerical
integration for the posterior state update step, and this was
implemented using the built-in trapz function. To allow
numerical integration, a finite pixel domain D = [−1, 1]
was used. This is larger than the effective pixel-width of
γ and much larger than the effective width l of the noise
covariance R, and thus we expect little impact on the results
obtained. Other methods of numerical integration may exist
that exploit the structure of f(i) and hence lead to more
efficient computation. Analysis of these techniques and their
levels of efficiency will be an important question for future
work in this area.

As the filter is unbiased, the mean square error (MSE)
can be analytically computed via the main diagonals of the
error covariance matrix in steady state. As the simulated
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(a) An observation with smooth noise (` = 0.02).
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(b) An observation with coarse noise (` = 0.001).

Fig. 2. The length scale ` determines the extent to which the correlation between each pixel and its neighbors will decay. A large value of ` indicates that
each pixel is highly correlated with the surrounding pixels, leading to smoother noise functions. A small value of ` indicates that the correlation between
a pixel and its neighbors quickly decays with distance, leading to coarser noise functions.

Fig. 3. A simple pinhole camera model, it is apparent from similar triangles
that x

y
= −F

i
and so y = −xi

F
. F is equivalent to the focal length of the

camera.

error covariance is updated, it will approach this steady state
value. The first main diagonal corresponds to the MSE of the
position while the second main diagonal corresponds to the
MSE of the velocity. Figure 5 plots the mean square error of
the system’s state and compares this with the expected state
MSE. This simulation was allowed to run for 5000 time steps
to allow sufficient decay of transient errors. The asymptotic
error covariance matrix for Figure 5 is

P∞ =

[
1.137 0.108
0.108 0.040

]
The asymptotic position MSE is then predicted to have

a value of 1.137 while the asymptotic velocity MSE is
predicted to have a value of 0.040.

VI. CONCLUSIONS

In this work we have presented a novel formulation of
the Kalman filter for systems with finite-dimensional states

and infinite-dimensional observations affected by stationary
noise. This formulation avoids some of the implementation
issues that previous formulations incur. We believe this filter
will provide a rigorous foundation for localization tasks in
systems with observations provided by high-dimensional sen-
sors. An algorithm for this filter is derived and implemented
in a simulated environment that is motivated by the pinhole
camera model of vision. Future work in this area includes
modeling other observation modalities such as radar, sonar,
and lidar, all of which yield high-dimensional data. This
work could also be generalized to non-linear systems by
allowing the filter to update its linearized model of the system
at each step and hence deriving an extended Kalman filter
for systems with infinite-dimensional measurements.
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Fig. 4. The system was simulated for 100 time steps. The true trajectory of the state was recorded alongside the filters trajectory estimate. Figure 4a
presents the true and predicted position over time. Figure 4b presents the true and predicted velocity over time.
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Fig. 5. Empirical and Asymptotic Mean Square Error. Note that the left
axis denotes values relating to position, while the right axis denotes values
relating to velocity.

VII. APPENDIX

A. Filter Error Trajectory

ek+1 = xk+1 − x̂k+1

= Axk + wk −Ax̂k −Kk(zk − ẑk)

= Aek −Kk(Γxk − Γx̂k + vk) + wk

= Aek −Kk(Γek + vk) + wk

= (A−KkΓ)ek −Kkvk + wk.

B. Covariance Error Update
Let e−k = xk − x̂−k noting that e−k = Aek−1 + wk−1 and

hence cov(e−k , e
−
k ) = APk−1A

T +Q = P−k .

Pk =E
[
eke

T
k

]
=E

[
(xk − x̂k) (xk − x̂k)T

]

=E
[ (

(I −KkΓ) e−k −Kkvk
) (

(I −KkΓ) e−k −Kkvk
)T ]

= (I −KkΓ)E
[
e−k (e−k )T

]
(I −KkΓ)T

+ E
[
Kkvk (i)

(
Kkvk

(
i′
))T ]

= (I −KkΓ)P−k (I −KkΓ)T + E
[
Kkvk (i) (Kkvk

(
i′
)
)T
]
.

(24)

C. Simplified Covariance Update

Note that our covariance update is given by

Pk = (I −KkΓ)P−k (I −KkΓ)
T

+KRKT ,

but our optimal Kalman gain Kk is given by

K
(
R+ ΓP−k ΓT

)
= P−k ΓT

The combination of these allow

Pk = P−k −KkΓP−k − P
−
k ΓTKT

k +KkΓP−k ΓTKT
k +KkRK

T
k

= P−k −KkΓP−k − P
−
k ΓTKT

k + P−k ΓTKT
k

= (I −KkΓ)P−k .

D. Gateaux Derivative

Recall that the Gateaux derivative is given by (1).
We can immediately see that for any function ζ(i)

d

dK

∫
D

κ(i)ζ(i)di = lim
ε→0

∫
D

[κ(i) + εφ(i)] ζ(i)− κ(i)ζ(i)diε−1

=

∫
D

φ(i)ζ(i)di.



It is also readily apparent that

d

dK

∫
D

∫
D

κ(i)ζ(i)κ(i′)T didi′

= lim
ε→0

∫
D

∫
D

(κ(i) + εφ(i))ζ(i)(κ(i′) + εφ(i′)T )

− κ(i)ζ(i)κ(i′)T didi′ε−1

= lim
ε→0

∫
D

∫
D

φ(i)ζ(i)κ(i′)T + κ(i)ζ(i)φ(i′)T

+ εφ(i)ζ(i)φ(i′)T didi′

=

∫
D

∫
D

φ(i)ζ(i)κ(i′)T + κ(i)ζ(i)φ(i′)T didi′

we can then see that the Gateaux derivative of the trace
of (13) can be calculated as follows

tr (Pk) =tr
(
P−k
)
− 2tr

(∫
D

κk
(
i′
)
γ
(
i′
)
didi′P−k

)
+ tr

(∫
D

κk
(
i′
)
γ
(
i′
)
di′P−k

∫
D

γT (i)κTk (i) di

)
+ tr

(∫
D

κk (i)R
(
i, i′
)
κk
(
i′
)
didi′

)
.

Taking advantage of the cyclic permutation of the trace
operator to find

dtr (Pk)

dK
=− 2

[∫
D

φ (i) γ(i)diP−k

]
+ 2

[∫
D

∫
D

κk
(
i′
)
γ(i′)P−k γ(i)Tφ (i) didi′

]
+ 2

[∫
D

∫
D

φ (i)R
(
i, i′
)
κk
(
i′
)
didi′

]
=

∫
D

φ (i)
[
− 2γ(i)P−k + 2

∫
D

γ(i)P−k γ
T (i′)κk(i′)T di′

+ 2

∫
D

R(i, i′)κk(i′)T di′
]
di.
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