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MicroRNAs are now increasingly recognized as biomarkers of disease progression. Several 
quantitative real-time PCR (qPCR) platforms have been developed to determine the relative levels of 
microRNAs in biological fluids. We systematically compared the detection of cellular and circulating 
microRNA using a standard 96-well platform, a high-content microfluidics platform and two ultra-
high content platforms. We used extensive analytical tools to compute inter- and intra-run variability 
and concordance measured using fidelity scoring, coefficient of variation and cluster analysis. We 
carried out unprejudiced next generation sequencing to identify a microRNA signature for Diabetic 
Retinopathy (DR) and systematically assessed the validation of this signature on clinical samples 
using each of the above four qPCR platforms. The results indicate that sensitivity to measure low 
copy number microRNAs is inversely related to qPCR reaction volume and that the choice of platform 
for microRNA biomarker validation should be made based on the abundance of miRNAs of interest.

MicroRNAs (miRNAs/miRs) are 20–22 nucleotide long RNA molecules that are important negative 
regulators of protein-coding gene expression. They are transcribed by RNAPol-II1 to generate mature 
microRNAs that regulate key processes from embryonic development2,3 to adulthood4–6. MicroRNAs 
have been intensively studied over the past two decades for their role in regulation of gene expression7. 
However, their importance as biomarkers of disease progression in multiple diseases, including cancer8–12 
and diabetes13–16, is now being identified. MicroRNAs are central to the development and function of 
the pancreas17–20, as well as glucose-insulin metabolism in target tissues15. It is believed that circulating 
miRNAs may represent a more sensitive and accurate estimation of diabetic retinopathy progression 
when compared to conventional clinical examination and/or analysis of retinal images.

Currently, quantitative PCR (qPCR) is the favored method for determining miRNA expression, due 
to its accuracy, simplicity, reproducibility and lower cost than other hybridization or sequencing-based 
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technologies21. To validate microRNA biomarkers in clinical diagnosis, microRNAs must be quantified in 
multiple replicates from a large number of clinical samples to achieve the desired statistical power. Due 
to this, several manufacturers have developed ultra-high throughput technologies to allow a significantly 
larger number of assays/samples to be processed and analyzed at a time. Whilst the underlying chemistry 
of probe-based qPCR assays remains unchanged, advances in microfluidics and nano-engineering have 
enabled a large number of assays to be carried out in smaller reaction volumes (nanoliters). To date 
there are no reports systematically comparing microRNA abundance using high throughput technologies 
with the staple 96-well platform, currently the most accessible platform to the research community. One 
published platform comparison study evaluated PCR assay efficiencies and platform variability22 for two 
different platforms and a limited number of microRNAs. Although a recent study23 has compared mul-
tiple qPCR, hybridization and next generation sequencing platforms for cellular microRNA detection, 
further analysis of qPCR platforms to determine their suitability in reliably measuring low-copy number 
microRNAs from human biological fluids (plasma/serum) is needed.

Here, we compare four different qPCR platforms from two different vendors, with specific focus 
on circulating human (plasma) microRNAs. We test the performance of these platforms in validating 
a microRNA signature for diabetic retinopathy (DR), identified in clinical samples using a discovery 
approach. We examine both cell and serum RNA isolations on the ViiA7 (Life Technologies), TaqMan 
Low Density Array (TLDA, Life Technologies, supplemental data), OpenArray (Life Technologies) and 
Dynamic Array (Fluidigm) systems. The ViiA7 employs the standard 96-well plates (5 μ l reaction volume 
described earlier)24 as well as the TLDA cards (1 μ l reaction volume). The OpenArray (OA) platform has 
been described earlier for detection of gene transcripts25,26 but only recently optimized for miRNA quan-
tification. They utilize unique hydrophobic/hydrophilic interactions to create 33 nl reactions suspended 
in “through-holes”26. The Dynamic Array (DA)27 offers the hardware to use any validated TaqMan qPCR 
assay (mRNA/miRNA/DNA) via microfluidic circuits that create a 15 nl reaction volume. We compared 
these two high-throughput systems and evaluated each system on their ease of use, relative costs, flexi-
bility of the software and most importantly, the quality of the data obtained, compared with the current 
“gold standard” 96-well plate platform. These analyses help in identifying qPCR platforms that offer 
better reproducibility, and present a cogent alternative for researchers interested in profiling multiple 
miRNAs from a large set of clinical samples. Ultimately, this investigation will guide researchers consid-
ering high-throughput miRNA qPCR to make an informed decision.

Results
Overview of platforms. An overview of the different platforms (Fig. 1a) compared within this study 
can be found in Table 1. The ease of workflow and cost analysis was computed considering a study size 
of > 100 samples and 48 miRNAs to be screened. The ease of the workflow is also a reflection of the time 
and experience needed to create the cDNA, pre-amplify it and load it onto the respective platform. All 
software was supplied by the manufacturer and utilized with default recommended parameters.

The raw cycle threshold (CT) values generated on each platform are plotted in Fig.  1b. A distinct 
decrease in CT values is seen in the Dynamic Array, most likely due to the increase in the number of 
pre-amplification cycles and lower dilution factor (1:10 versus 1:40 for the OpenArray), as recommended 
for the DA platform. The median CT value for the entire miRNA dataset analyzed is 18.09 for the ViiA7, 
15.79 for OA and 12.76 for DA.

Platform variability. To assess the variability of each platform, the co-efficient of variation (CV) 
was calculated for each microRNA assay (Fig. 1c–e and Supplementary Fig. 1). The median CV of the 
replicates was lowest in the 5 μ l 96-well platform (0.6%), ranging from 0.1 to 1.9% (Fig. 1c), then OA at 
2.1% (range 0.7–4.6%; Fig. 1d), TLDA at 8.3% (range 0.3–19.1%; Supplementary Fig. 1) and DA at 9.5% 
(range 2.2–27.6%; Fig. 1e).

As an indicator of overall reproducibility, the fidelity of each platform was assessed. Fidelity was 
calculated as the percentage of replicates that differed by less than 1, 2 or 3 CT values and is presented 
as deviation from fidelity in Fig. 2a–c and Supplementary Fig. 2. The standard 96-well format attained 
99.23% fidelity for both 1 and 2 CT values, and 100% fidelity for the 3 CT cut-off (Fig.  2a–c). Both 
OpenArray and Dynamic Array platforms performed capably (Fig. 2a–c); 88.1% (OA) and 77.78% (DA) 
of replicates differed by less than 1 CT, 96.29% (OA) and 91.27% (DA) less than 2 CTs, and 98.41% 
(OA) and 94.44% (DA) less than 3 CTs. Neither of the high-throughput technologies were able to attain 
100% fidelity using these CT cut-off points. This variation of the CT values would effectively translate 
to ~8-fold difference in transcript abundance. It is worth noting that even if an 8-fold variation between 
replicates is considered acceptable, 1.59% (OA) and 5.56% (DA) of replicates may still show greater than 
8-fold variability.

CT values were then segregated into expression levels and the replicate variation plotted (Fig. 2d–g 
and Supplementary Fig. 3). Ultra-high expression was considered to be CT values less than 10, high 
expression defined to be a CT value between 10.01 and 20.00, moderate expression between 20.01 and 
30.00, and low expression above 30.01. Replicate variability increased across all platforms as the tran-
script abundance decreased. This was especially apparent in the high-throughput platforms, where rep-
licate variability increased substantially when the transcript was present at moderate or low expression 
(Fig. 2d–g and Supplementary Fig. 3). The 96-well plate platform (ViiA7) maintained a CT variation of 
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Figure 1. Platform overview and co-efficient of variation analysis. (a) Representative pictures of the four 
platforms. (b) CT/CRT values from all samples. Lines indicate median and IQR. Boxplots (median, 10–90th 
percentile) of the CV distribution for (c) ViiA7, (d) OA and (e) DA.
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less than 1 cycle until the target transcript was expressed at low levels (> 30.01 CT; Fig. 2g). The ViiA7 
platform thus truly represents the “gold standard” amongst these qPCR platforms as any variation seen 
for such low level transcripts is potentially due to the Poisson distribution28. When dealing with low copy 
transcripts, the Poisson distribution predicts that in a large number of replicates containing an average of 
one copy of starting template per reaction (rxn), approximately 37% rxns should actually have no copies, 
only 37% rxns should contain one copy, and 18% rxns should contain two copies28. Therefore, reliable 
detection of single copy transcripts in any sample calls for a large number of replicates to assess statistical 
significance and overcome the limitations of Poisson distribution.

Reproducibility. To determine how reproducible the high-throughput technologies are, RNA extracted 
from human islet cells and serum was run twice on each platform by two different users (RJF and MVJ). 
The average difference between the two sets of replicates is plotted in Fig. 2h–m. The OpenArray system 
produced fairly reproducible results, with the greatest variation being 2.06 cycles, whilst the Dynamic 
Array system demonstrated larger variation (up to 8.17 cycles; Fig. 2j–m). Interestingly, the second repeat 
on the Dynamic Array system produced consistently lower CT values. All aspects of the procedure were 
kept constant so we cannot comment on why this may have occurred.

miRNA signature detection. One of the ultimate goals of most miRNA expression studies is to 
determine a biomarker signature related to particular pathology. To assess a biomarker signature for 
diabetic retinopathy (DR), we used unbiased small RNA sequencing of plasma samples from diabetic 
individuals with or without retinopathy. While analyzing samples from subjects with (DR) and without 
(No DR; NDR) diabetic retinopathy (Fig. 3a–d) we selected five miRNAs based on consistent differences 
between DR and NDR subjects and assessed the detection of such a “fingerprint” (Fig. 3e) using the four 

Table 1.  Overview of platforms compared in this study. *See supplemental data. °The use of individually 
available TaqMan primer/probe assays or pre-printed TaqMan primer/probe assays. Note: we recommend 
using the individual TaqMan assays for the panel of microRNAs proposed as there may be compatability 
issues between off-the-shelf megaplex primer pools and the individual microRNA TaqMan assay. †Based on 
the possible reactions that can be assessed on each platform in a single run on a single instrument. ‡Based 
on actual total costs involved in Sydney, Australia. §Based on our analysis of software capabilities, robustness 
and ease of use of the software supplied by the manufacturer and ranked by 3 independent users.

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_comp  <FFFC>    .html
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different qPCR platforms. We carried out rigorous analyses (Fig. 4) to compare differences in expression 
of this microRNA signature amongst DR and NDR subjects. Interestingly, these analyses demonstrate 
that the features of miRNA expression (denoted by shaded areas in Fig.  4) retain their profile across 
three qPCR platforms - ViiA7 (96-well), TLDA and OA platforms - whilst these same features appear 
skewed for the DA platform. As expected, the area and feature properties are different for the sequencing 
platform and vary between the DR and NDR groups amongst the sequencing profile.

Correlation between platforms and cluster analysis. To determine intra-platform consistency, 
the correlation between platforms was analyzed. We assessed 42 miRNAs (including the DR signature 
miRs) in four human subject samples (two islet cell samples and two serum samples; a total of 168 
matched measurement pairs) and plotted these as pair-wise comparisons against ViiA7 (“gold standard”) 
platform for OA, DA (Fig. 5a,b) and TLDA (Supplementary Fig. 4). All platforms show good correlations 
with ViiA7, with the R2 values 0.88 and 0.66 for OA and DA respectively. The TLDA platform had an 
R2 value of 0.91 (Supplementary Fig. 4). The lowest compression was observed in OA platform (slope: 
0.98) and TLDA (slope: 0.94) whereas DA platform showed the moderate compression with slope 0.81.

Cluster analysis was implemented to determine the ability of these qPCR platforms in allocating miR-
NAs into distinct clusters. Each platform grouped the microRNAs into four distinct clusters (Fig. 5c–f and 
Supplementary Fig. 5). Again, the 96-well ViiA7 platform was used as the benchmark; clusters produced 
by the other platforms were directly compared to this “gold standard” (Fig.  5g–j and Supplementary 
Fig. 6). Comparison of all of the platforms (qPCR and small RNA-Seq) reveal that approximately 8% of 
miRNAs were assigned to different clusters by OA, 17% by TLDA, 28% by small RNA-Seq, and 39% by 
DA (Fig. 5k).

Discussion
The appeal of high-throughput technologies is readily apparent; they provide a significant decrease 
in sample processing time and reagents consumed, with a substantial increase in the volume of data 

Figure 2. Platform variability and reproducibility. (a–c) Fidelity scoring using (a) 1 CT/CRT, (b) 2 CT/CRT 
or (c) 3 CT/CRT cut-off. Data is presented as deviation from fidelity (100%) and plotted as mean +  SEM.  
(d–g) Tukey boxplots (median +  IQR) of variation between replicates (maximum CT/CRT—the minimum 
CT/CRT) for the four expression levels, (d) ultra-high (CT/CRT < 10), (e) high (CT/CRT 10-20), (f) 
moderate (CT/CRT 20-30) and (g) low (CT/CRT > 30). Dotted line is 1, 2 or 3 CT/CRT cut-off used in 
fidelity scoring. (h–m) RNA from islet cells and human serum was run twice on the (h,i) OA and (j,k) DA 
(same batch/lot). Data are mean ±  SD. The average difference (boxplots, median +  min/max) between runs 
for each miRNA tested for cellular miRNAs is plotted in (l) and for serum miRNAs in (m).
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generated in the same time. For researchers within the burgeoning field of miRNA biomarker research, 
such a tool is immensely desirable, especially when dealing with a multitude of clinical samples from 
large trials. Such assay performance would also be required should a miRNA profile related to diabetes, 
reach clinical practice. It is imperative that technologies used for quantitative research or in clinical prac-
tice be accurate, sensitive and reproducible, and high-throughput platforms must present a similar (if not 
greater) level of reproducibility offered by current high sensitivity/low-throughput platforms.

The two high-throughput technologies discussed here represent the two most contemporary 
high-throughput qPCR platforms. The Dynamic Array platform offers a finely crafted plate with a set 
of individually pressure-tested valves that control the flow of reagents into the microfluidic plate. The 
OpenArray platform provides a high density PCR plate/slide that allows automated sample loading using 
a specially designed robotic device (Accufill™). The major difference is that the OpenArray comes with 
pre-printed miRNA assays while the Dynamic Array provides flexibility to choose the miRNA assays 
just before setting up the plate. The DA platform thus provides only the “hardware” for users to perform 
qPCR. Although this flexibility is an advantage, the limitation of the DA is that it heavily depends on 
the compatibility of the pooled RT primers with the TaqMan real-time PCR assays. Of the 48 miRNAs 
selected from the TaqMan primer pool A (Life Technologies, CA) six of these assays could not be read 
on the DA due to incompatibility between the RT and PCR primers. Since the proprietary primer pools 
are compatible with the primers printed in TaqMan Low Density Arrays (TLDAs) or OpenArray plates 
only, the individual assays available from Life Technologies may not be compatible with the multiplex 
RT pools. Of course, users can avoid this by ordering customized primer pools from Life Technologies 
to assess a specific set of miRNAs.

In our analysis, the OpenArray system was the most reproducible high-throughput platform tested, 
with less inter- and intra-run variation than the Dynamic Array. This conclusion correlates with a recent 
study comparing these platforms for screening genomic mutations in the Ashkenazi Jewish community25. 
The OA platform also proffers a simple, cost-effective workflow, with user-friendly software for further 
analyses.

Our data demonstrates that replicate variability was exacerbated when quantifying low abundance 
transcripts on any of the platforms. As shown in Fig.  2d–g, this variability is especially apparent in 
the high-throughput platforms, highlighting a limitation of these systems. Screening low abundance 
transcripts on these platforms should be avoided, as even the implementation of a pre-amplification 
step was insufficient to reduce CT variability. Increasing the number of pre-amplification cycles is not 
recommended as it would amplify any bias that is introduced in the process. Users of Dynamic Arrays 
could expect 5.56% of their assays to demonstrate more than 8-fold variability. Any data obtained using 

Figure 3. A circulating microRNA signature for Diabetic Retinopathy (DR). Fundus photographs showing 
the clinical spectrum of DR: (a) a normal retina—no DR; (b) mild non-proliferative DR, with hemorrhages, 
microaneurysms and hard exudates; (c) non-proliferative DR; (d) proliferative DR, at the optic disc (white 
arrow) and pre-retinal hemorrhage in the inferior retina. (e) MicroRNAs consistently identified in plasma of 
age and gender matched diabetic individuals with or without DR following analysis of smallRNA sequencing 
(see text). The miRs that constitute part of the DR biomarker signature are displayed in red.
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DAs with differences less than or around 8-fold need to be re-validated using a high sensitive PCR tech-
nology, such as the 96-well platform described herein. For miRNAs detected around a CT value of 30, 
the standard qPCR format proves more reliable.

For medium-throughput studies, researchers can utilize the TLDA platform. We found a comparable 
level of reproducibility on this platform when using cards from the same lot (Supplementary Fig. 1), but 
have observed considerable lot-to-lot variation29.

Correlation between technologies is required to translate relative gene expression data on different 
qPCR platforms. Since CT values cannot be directly compared across platforms due to the differences 
in sample preparation, reaction volume and detection technologies, correlation between z-scored trans-
formed data (Fig.  5a,b) is a reliable method to compare the data obtained from multiple qPCR tech-
nologies. All of the technologies assessed correlated well with the standard 96-well platform, however 
the OpenArray platform deviated the least from the theoretical ideal value of 1, demonstrating that it 

Figure 4. NDR and DR biomarker signature profiles. Radar plots of miRNAs signature profiles from 
smallRNA sequencing of two age and gender matched subjects (with (DR) and without (NDR) DR). Based 
on DR/NDR difference 5 miRNAs were chosen as a “DR biomarker signature”. Radar plots were generated 
using the CT/CRTs for these miRNAs on the four platforms. The results show the profile of the miRNA 
signature plot differs between NDR and DR in all platforms. The DA delivers a different miRNA signature 
profiles for DR and NDR. Scale is normalized reads for smallRNA-Seq and CT/CRT for 96-well, TLDA, OA 
and DA.
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correlates extremely well with the staple 96-well format. As such, up or down scaling miRNA qPCR 
reactions between the ViiA7 and OA platforms will produce parallel data.

Segregation of miRNAs based upon their expression profile is useful for biomarker identification. Our 
cluster analysis (Fig. 5c–k) demonstrated that data obtained from all platforms were able to create four 
distinct miRNA clusters; however, the members of these clusters differed between the platforms. The 
Dynamic Array generated fundamentally different clusters, making it difficult to identify our test DR 
miRNA signature (generated through smallRNA sequencing). The OpenArray platform generated the 
most similar clusters (compared to 96-well), with similar segregation of miRNA DR signature members 
into clusters giving confidence in validating disease-related microRNA signatures. Although quantitative 
real time PCR platforms have different sensitivities and efficacies for reproducing the miRNA DR signa-
ture we assessed the similarity in data obtained from qPCR versus our sequencing platform. Interestingly, 
the small RNA-Seq data also generated four distinct clusters, with 27% of the miRNAs misassigned to 
the four clusters. This may be due to the fact that qPCR and next generation sequencing employ vastly 
different chemistries to quantitate miRNAs and that the outcome of such comparisons would be largely 
impacted by the depth of sequencing achieved.

The miRNA signature profile generated by our smallRNA sequencing, although representative, 
demonstrates the importance of rigorously analyzing new technologies, especially those that may become 
routine for biomarker discovery and validation and potentially be used in clinical practice. Figure  4 
demonstrates the differences in miRNA signature profile detected by multiple platforms.

This report demonstrates the importance of multiple technical factors that can influence the conclu-
sions derived from miRNA qPCR data. Although there are differences in the respective detection systems 
(QuantStudio for OpenArrays, Biomark HD for Dynamic Arrays), the size of the reaction may also affect 
the reproducibility of these high-throughput systems. Although both platforms have a reaction volume 
in nanoliters, the OpenArray reaction volume is 2.2-fold more than the Dynamic Arrays. During the 
optimization of our standard (96-well) qPCR analysis for detection of low-copy miRNA/mRNA tran-
scripts, the amplification curves differed by 0.5 cycles when the reaction volume was reduced from 10 μ l 
to 5 μ l(data not shown). Considering the Poisson distribution of miRNA templates, this difference can be 
significant when more than two-fold difference is factored in, even at the nanoliter range. Although each 
of the platforms discussed have their own advantages/disadvantages, users need to consider all aspects 
before choosing an analytical platform, and ideally should test their data across another high-sensitivity 
platform such as the 96-well platform. These observations provide a useful guide for researchers plan-
ning to switch to high-throughput qPCR technologies for quantitative assessment of gene transcripts in 

Figure 5. Platform concordance and cluster analysis (a–b) Correlation of Z-scored transformed results 
between ViiA7 and either (a) OA or (b) DA. The hypothetical trend line of slope =  1 (dashed line) 
represents complete concordance, with the actual trend plotted as a solid line. The slope of the trend line 
(upper left corner) shows the deviation from 1. (c–f) Dendrograms of cluster analysis, (c) ViiA7, (d) OA, (e) 
DA, and (f) small RNA-Seq. Dotted line represents the cut-off value for the number of clusters (as 
determined by the Mojena rule). (g–j) MicroRNA cluster classification. miRNA clusters as classified by the 
(g) ViiA7, (h) OA, (i) DA, and (j) small RNA-Seq. Highlighted miRNAs represent members belonging to the 
same cluster as those in the ViiA7 cluster analysis. (k) Percentage dot plot of miRNA cluster classification.  
indicates the percentage of miRNAs that have been correctly classified as compared to the cluster analysis 
from the ViiA7 platform, while  indicates those that are misclassified. 8.33% of microRNAs were assigned 
to different clusters by OA, 16.66% by TLDA, 27.77% by small RNA-Seq, and 38.88% by DA.

http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_comp  <FFFC>    .html
http://www.nature.com/nchembio/journal/vaop/ncurrent/compound/nchembio.xxx_comp  <FFFC>    .html
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large number of research/clinical trial samples. Furthermore, the development of a sensitive, reliable and 
minimally invasive test with high predictive power for clinical stratification of DR will provide a surro-
gate marker for clinical trials, improve prognosis information and guide development of future therapies 
aimed towards preventing the vascular complications of diabetes.

Methods
Samples. The study was approved by the University of Sydney Ethics Committee and all samples were 
collected following written informed consent. Total RNA was isolated from human islets (Islet Transplant 
Consortium) and from serum samples, collected from individuals with or without diabetes. The study 
was carried out in accordance with the approved guidelines. Samples were tested for a total of 48 miR-
NAs, selected based upon their expression in small RNA sequencing, their relevance to islet biology or 
diabetes, or their suitability as housekeeping transcripts. However, six of these 48 miRNAs were identi-
fied to be incompatible on the Fluidigm system (see discussion) and therefore all of the analysis for the 
two platforms is based on comparison of the expression of these 42 miRNAs on all the platforms tested. 
The 42 miRNAs include three “housekeeping” miRNAs (U6, RNU44 and RNU48). Each PCR reaction 
was undertaken at least in duplicate. Technical replicates were also included within the same run as well 
as in different runs, and repeated by two or three users (RJF, MVJ and AAH). No significant variation 
was seen in data obtained by the three users.

ViiA7. To aid comparison with the pre-amplified samples run on the high-throughput technolo-
gies, samples were pre-amplified and run in the 96-well format using 5 μ l reaction volumes. Reverse 
transcription (RT) and pre-amplification (PA) was completed using the Megaplex RT/PA Primer Pools 
(Life Technologies) using the manufacturer’s protocol, with minor changes. Briefly, each sample had 
an RNA input of 100 ng (measured by Nanodrop), went through 12 cycles of PA and was diluted 1:40 
in nuclease-free water. qPCR was undertaken in 0.1 ml optically clear 96-well plates using TaqMan 
MicroRNA Primer/Probe mixes and TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG 
(Life Technologies).

OpenArray. RT and PA were undertaken with Megaplex RT/PA Primer Pools using the manufactur-
er’s OpenArray microRNA Panel protocol as described elsewhere29. Briefly, each sample (100 ng input), 
underwent 12 PA cycles, then was diluted 1:40 in 0.1X TE (pH 8.0), combined with TaqMan OpenArray 
PCR Master Mix and loaded onto TaqMan OpenArray Human MicroRNA Panel (AccuFill™ system). 
qPCR was completed using the QuantStudio 12K Flex (Life Technologies).

Dynamic Array. RT and PA were undertaken with Megaplex RT/PA Primer Pools using the protocol 
supplied by Fluidigm Corporation. Each sample (input 100 ng), underwent 16 PA cycles (recommended 
by the manufacturer), then was diluted 1:10 in nuclease-free water, combined with TaqMan MicroRNA 
Primer/Probe mixes and TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG, and loaded 
onto a 48 ×  48 Dynamic Array IFC (Integrated Fluidic Circuit) using the IFC Controller MX. qPCR was 
performed on the BioMark system (Fluidigm Corporation).

Next generation sequencing. RNA was isolated from plasma samples using protocol described 
earlier30. SmallRNA libraries generated using the Ion Total RNA-Seq Kit v2 were processed through 
emulsion PCR using OneTouch 2 (Life Technologies) and the Ion PGM™ Template OT2-200 Kit, then 
enriched using the OneTouch ES (all Life Technologies). One sample was loaded per Ion-318™ chip and 
sequenced on Ion PGM using the Ion PGM™ Sequencing 200 Kit v2 (all Life Technologies). The aligned 
BAM files were analyzed using Strand NGS (Strand Life Sciences) and differential miRNA expression 
was determined by a two-fold change in normalized read number.

Statistical analysis. The data were analyzed using Statistica for Windows analytical software (ver. 
12.0, StatSoft, Tulsa, OK). For intra-platform reproducibility analysis the coefficient of variation (CV%) 
was calculated between replicate measurements. Data was obtained from the multiple measurements 
(lowest number of replicates =  2, highest =  8) of 40 transcripts in four samples. miR-140 and miR-320 
were excluded due to the lack of results on TLDA and DA platforms respectively.

CT/CRT values could not be compared directly so they were transformed into Z-scores within each 
platform. Pearson correlation and linear fits were calculated. Level of compression or expansion of data 
measured on the different platforms were evaluated by comparing the slope of the best fitted line of a 
least square linear regression of the Z-scores between pairs to the “ideal” slope of 1.

Ward’s linkage method and Euclidean distances were used for cluster analysis. Separate dendrograms 
were generated for each analytical platform. Number of clusters was based on Mojena rule or distances 
between the dendrogram knots. In each analytical method four clusters were observed. The miRNAs of 
each cluster were then calculated using k-means method. MicroRNAs with > 15% missing data (across all 
platforms) were excluded from the calculations; otherwise missing data were replaced by mean. Clusters 
concordance was estimated by comparing the clusters generated by other platforms with the ViiA7 (“gold 
standard”). The assignment was declared in concordance if at least two miRNAs were placed in the same 
cluster by different methods.
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