Doherty Institute - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    CD4+ T cell calibration of antigen-presenting cells optimizes antiviral CD8+ T cell immunity
    Gressier, E ; Schulte-Schrepping, J ; Petrov, L ; Brumhard, S ; Stubbemann, P ; Hiller, A ; Obermayer, B ; Spitzer, J ; Kostevc, T ; Whitney, PG ; Bachem, A ; Odainic, A ; van de Sandt, C ; Nguyen, THO ; Ashhurst, T ; Wilson, K ; Oates, CVL ; Gearing, LJ ; Meischel, T ; Hochheiser, K ; Greyer, M ; Clarke, M ; Kreutzenbeck, M ; Gabriel, SS ; Kastenmueller, W ; Kurts, C ; Londrigan, SL ; Kallies, A ; Kedzierska, K ; Hertzog, PJ ; Latz, E ; Chen, Y-CE ; Radford, KJ ; Chopin, M ; Schroeder, J ; Kurth, F ; Gebhardt, T ; Sander, LE ; Sawitzki, B ; Schultze, JL ; Schmidt, SV ; Bedoui, S (NATURE PORTFOLIO, 2023-06)
    Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-β (IFNα/β)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/β or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.
  • Item
    No Preview Available
    Influenza virus infection history shapes antibody responses to influenza vaccination
    Auladell, M ; Hoang, VMP ; Le, TQM ; Tseng, Y-Y ; Carolan, L ; Wilks, S ; Pham, QT ; Price, D ; Nguyen, TD ; Nguyen, LKH ; Le, TT ; Nguyen, THT ; Tran, TKH ; Nguyen, TND ; Vu, TNB ; Khvorov, A ; Hensen, L ; Tran, ND ; Kedzierska, K ; Dang, DA ; Wertheim, H ; Boyd, SD ; Good-Jacobson, KL ; Smith, D ; Barr, I ; Sullivan, S ; van Doorn, HR ; Fox, A (NATURE PORTFOLIO, 2022-02)
    Studies of successive vaccination suggest that immunological memory against past influenza viruses may limit responses to vaccines containing current strains. The impact of memory induced by prior infection is rarely considered and is difficult to ascertain, because infections are often subclinical. This study investigated influenza vaccination among adults from the Ha Nam cohort (Vietnam), who were purposefully selected to include 72 with and 28 without documented influenza A(H3N2) infection during the preceding 9 years (Australian New Zealand Clinical Trials Registry 12621000110886). The primary outcome was the effect of prior influenza A(H3N2) infection on hemagglutinin-inhibiting antibody responses induced by a locally available influenza vaccine administered in November 2016. Baseline and postvaccination sera were titrated against 40 influenza A(H3N2) strains spanning 1968-2018. At each time point (baseline, day 14 and day 280), geometric mean antibody titers against 2008-2018 strains were higher among participants with recent infection (34 (29-40), 187 (154-227) and 86 (72-103)) than among participants without recent infection (19 (17-22), 91 (64-130) and 38 (30-49)). On days 14 and 280, mean titer rises against 2014-2018 strains were 6.1-fold (5.0- to 7.4-fold) and 2.6-fold (2.2- to 3.1-fold) for participants with recent infection versus 4.8-fold (3.5- to 6.7-fold) and 1.9-fold (1.5- to 2.3-fold) for those without. One of 72 vaccinees with recent infection versus 4 of 28 without developed symptomatic A(H3N2) infection in the season after vaccination (P = 0.021). The range of A(H3N2) viruses recognized by vaccine-induced antibodies was associated with the prior infection strain. These results suggest that recall of immunological memory induced by prior infection enhances antibody responses to inactivated influenza vaccine and is important to attain protective antibody titers.
  • Item
    Thumbnail Image
    Defective Severe Acute Respiratory Syndrome Coronavirus 2 Immune Responses in an Immunocompromised Individual With Prolonged Viral Replication
    Gordon, CL ; Smibert, OC ; Holmes, NE ; Chua, KYL ; Rose, M ; Drewett, G ; James, F ; Mouhtouris, E ; Nguyen, THO ; Zhang, W ; Kedzierski, L ; Rowntree, LC ; Chua, BY ; Caly, L ; Catton, MG ; Druce, J ; Sait, M ; Seemann, T ; Sherry, NL ; Howden, BP ; Kedzierska, K ; Kwong, JC ; Trubiano, JA (OXFORD UNIV PRESS INC, 2021-09)
    We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.
  • Item
    Thumbnail Image
    Integrated immune dynamics define correlates of COVID-19 severity and antibody responses
    Koutsakos, M ; Rowntree, LC ; Hensen, L ; Chua, BY ; van de Sandt, CE ; Habel, JR ; Zhang, W ; Jia, X ; Kedzierski, L ; Ashhurst, TM ; Putri, GH ; Marsh-Wakefield, F ; Read, MN ; Edwards, DN ; Clemens, EB ; Wong, CY ; Mordant, FL ; Juno, JA ; Amanat, F ; Audsley, J ; Holmes, NE ; Gordon, CL ; Smibert, OC ; Trubiano, JA ; Hughes, CM ; Catton, M ; Denholm, JT ; Tong, SYC ; Doolan, DL ; Kotsimbos, TC ; Jackson, DC ; Krammer, F ; Godfrey, D ; Chung, AW ; King, NJC ; Lewin, SR ; Wheatley, AK ; Kent, SJ ; Subbarao, K ; McMahon, J ; Thevarajan, I ; Thi, HON ; Cheng, AC ; Kedzierska, K (CELL PRESS, 2021-03-16)
    SARS-CoV-2 causes a spectrum of COVID-19 disease, the immunological basis of which remains ill defined. We analyzed 85 SARS-CoV-2-infected individuals at acute and/or convalescent time points, up to 102 days after symptom onset, quantifying 184 immunological parameters. Acute COVID-19 presented with high levels of IL-6, IL-18, and IL-10 and broad activation marked by the upregulation of CD38 on innate and adaptive lymphocytes and myeloid cells. Importantly, activated CXCR3+cTFH1 cells in acute COVID-19 significantly correlate with and predict antibody levels and their avidity at convalescence as well as acute neutralization activity. Strikingly, intensive care unit (ICU) patients with severe COVID-19 display higher levels of soluble IL-6, IL-6R, and IL-18, and hyperactivation of innate, adaptive, and myeloid compartments than patients with moderate disease. Our analyses provide a comprehensive map of longitudinal immunological responses in COVID-19 patients and integrate key cellular pathways of complex immune networks underpinning severe COVID-19, providing important insights into potential biomarkers and immunotherapies.
  • Item
    Thumbnail Image
    Exposure of Human CD8+ T Cells to Type-2 Cytokines Impairs Division and Differentiation and Induces Limited Polarization
    Fox, A ; Harland, KL ; Kedzierska, K ; Kelso, A (FRONTIERS MEDIA SA, 2018-05-28)
    Effector CD8+ T cells generally produce type-1 cytokines and mediators of the perforin/granzyme cytolytic pathway, yet type-2-polarized CD8+ cells (Tc2) are detected in type-2 (T2) cytokine-driven diseases such as asthma. It is unclear whether T2 cytokine exposure during activation is sufficient to polarize human CD8+ T cells. To address this question, a protocol was developed for high-efficiency activation of human CD8+ T cells in which purified single cells or populations were stimulated with plate-bound anti-CD3 and anti-CD11a mAb for up to 8 days in T2 polarizing or neutral conditions, before functional analysis. Activation of CD8+ naïve T cells (TN) in T2 compared with neutral conditions decreased the size of single-cell clones, although early division kinetics were equivalent, indicating an effect on overall division number. Activation of TN in T2 conditions followed by brief anti-CD3 mAb restimulation favored expression of T2 cytokines, GATA3 and Eomes, and lowered expression of type-1 cytokines, Prf1, Gzmb, T-BET, and Prdm1. However, IL-4 was only weakly expressed, and PMA and ionomycin restimulation favored IFN-γ over IL-4 expression. Activation of TN in T2 compared with neutral conditions prevented downregulation of costimulatory (CD27, CD28) and lymph-node homing receptors (CCR7) and CD95 acquisition, which typically occur during differentiation into effector phenotypes. CD3 was rapidly and substantially induced after activation in neutral, but not T2 conditions, potentially contributing to greater division and differentiation in neutral conditions. CD8+ central memory T cells (TCM) were less able to enter division upon reactivation in T2 compared with neutral conditions, and were more refractory to modulating IFN-γ and IL-4 production than CD8+ TN. In summary, while activation of TN in T2 conditions can generate T2 cytokine-biased cells, IL-4 expression is weak, T2 bias is lost upon strong restimulation, differentiation, and division are arrested, and reactivation of TCM is reduced in T2 conditions. Taken together, this suggests that exposure to T2 cytokines during activation may not be sufficient to generate and retain human Tc2 cells.
  • Item
    No Preview Available
    Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19
    Thevarajan, I ; Nguyen, THO ; Koutsakos, M ; Druce, J ; Caly, L ; van de Sandt, CE ; Jia, X ; Nicholson, S ; Catton, M ; Cowie, B ; Tong, SYC ; Lewin, SR ; Kedzierska, K (NATURE PORTFOLIO, 2020-04)
  • Item
    Thumbnail Image
    Cross-lineage protection by human antibodies binding the influenza B hemagglutinin
    Liu, Y ; Tan, H-X ; Koutsakos, M ; Jegaskanda, S ; Esterbauer, R ; Tilmanis, D ; Aban, M ; Kedzierska, K ; Hurt, AC ; Kent, SJ ; Wheatley, AK (NATURE PUBLISHING GROUP, 2019-01-18)
    Influenza B viruses (IBV) drive a significant proportion of influenza-related hospitalisations yet are understudied compared to influenza A. Current vaccines target the head of the viral hemagglutinin (HA) which undergoes rapid mutation, significantly reducing vaccine effectiveness. Improved vaccines to control IBV are needed. Here we developed novel IBV HA probes to interrogate humoral responses to IBV in humans. A significant proportion of IBV HA-specific B cells recognise both B/Victoria/2/87-like and B/Yamagata/16/88-like lineages in a distinct pattern of cross-reactivity. Monoclonal antibodies (mAbs) were reconstituted from IBV HA-specific B cells, including mAbs providing broad protection in murine models of lethal IBV infection. Protection was mediated by neutralising antibodies targeting the receptor binding domain, or via Fc-mediated functions of non-neutralising antibodies binding alternative epitopes including the IBV HA stem. This work defines antigenic cross-recognition between IBV lineages and provides guidance for the rational design of improved IBV vaccines for broad and durable protection.
  • Item
    Thumbnail Image
    Prior exposure to immunogenic peptides found in human influenza A viruses may influence the age distribution of cases with avian influenza H5N1 and H7N9 virus infections
    Komadina, N ; Sullivan, SG ; Kedzierska, K ; Quinones-Parra, SM ; Leder, K ; McVernon, J (CAMBRIDGE UNIV PRESS, 2019)
    The epidemiology of H5N1 and H7N9 avian viruses of humans infected in China differs despite both viruses being avian reassortants that have inherited six internal genes from a common ancestor, H9N2. The median age of infected populations is substantially younger for H5N1 virus (26 years) compared with H7N9 virus (63 years). Population susceptibility to infection with seasonal influenza is understood to be influenced by cross-reactive CD8+ T cells directed towards immunogenic peptides derived from internal viral proteins which may provide some level of protection against further influenza infection. Prior exposure to seasonal influenza peptides may influence the age-related infection patterns observed for H5N1 and H7N9 viruses. A comparison of relatedness of immunogenic peptides between historical human strains and the two avian emerged viruses was undertaken for a possible explanation in the differences in age incidence observed. There appeared to be some relationship between past exposure to related peptides and the lower number of H5N1 virus cases in older populations, however the relationship between prior exposure and older populations among H7N9 virus patients was less clear.
  • Item
    Thumbnail Image
    Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses
    Auladell, M ; Jia, X ; Hensen, L ; Chua, B ; Fox, A ; Nguyen, THO ; Doherty, PC ; Kedzierska, K (FRONTIERS MEDIA SA, 2019-07-02)
    Persistent and durable immunological memory forms the basis of any successful vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus the key for maintaining protective immunity to seasonal, pandemic and avian influenza viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell precursors encounter their cognate antigen, the linked processes of differentiation (including Ig class switching) and proliferation also give rise to memory B cells, which then can change rapidly to ASC status after subsequent influenza encounters. Given that influenza viruses evolve rapidly as a consequence of antibody-driven mutational change (antigenic drift), the current influenza vaccines need to be reformulated frequently and annual vaccination is recommended. Without that process of regular renewal, they provide little protection against "drifted" (particularly H3N2) variants and are mainly ineffective when a novel pandemic (2009 A/H1N1 "swine" flu) strain suddenly emerges. Such limitation of antibody-mediated protection might be circumvented, at least in part, by adding a novel vaccine component that promotes cross-reactive CD8+ T cells specific for conserved viral peptides, presented by widely distributed HLA types. Such "memory" cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector status. Here, we review how B cells and follicular T cells are elicited following influenza vaccination and how they survive into a long-term memory. We describe how CD8+ CTL memory is established following influenza virus infection, and how a robust CTL recall response can lead to more rapid virus elimination by destroying virus-infected cells, and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving and unpredictable influenza viruses provides a possible mechanism for preventing a disastrous pandemic comparable to the 1918-1919 H1N1 "Spanish flu," which killed more than 50 million people worldwide.
  • Item
    Thumbnail Image
    Distinguishing naive- from memory-derived human B cells during acute responses
    Auladell, M ; Thi, HN ; Garcillan, B ; Mackay, F ; Kedzierska, K ; Fox, A (WILEY, 2019)
    OBJECTIVES: A fundamental question in influenza research is whether antibody titre decline upon successive exposure to variant strains is consequent to recall of cross-reactive memory B cells that competitively inhibit naive B-cell responses. In connection, it is not clear whether naive and memory B cells remain phenotypically distinct acutely after activation such that they may be distinguished ex vivo. METHODS: Here, we first compared the capacity of anti-Ig and Toll-like-receptor (TLR) 7/8 and TLR9 agonists (R848 and CpG) to augment human B-cell differentiation induced by IL-21 and sCD40L. The conditions that induced optimal differentiation were then used to compare the post-activation phenotype of sort-purified naive and memory B-cell subsets by FACS and antibody-secreting cell (ASC) ELISPOT. RESULTS: Sort-purified naive and memory B cells underwent robust plasmablast and ASC formation when stimulated with R848, but not CpG, and co-cultured with monocytes. This coincided with increased IL-1β and IL-6 production when B cells were co-cultured with monocytes and stimulated with R848, but not CpG. Naive B cells underwent equivalent ASC generation, but exhibited less class-switch and modulation of CD27, CD38 and CD20 expression than memory B cells after stimulation with R848 and monocytes for 6 days. CONCLUSION: Stimulation with R848, IL-21 and sCD40L in the presence of monocytes induces robust differentiation and ASC generation from both naive and memory B-cells. However, naive and memory B cells retain key phenotypic differences after activation that may facilitate ex vivo discrimination and better characterisation of acute responses to variant antigens.