Medical Biology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Differential requirement for OBF-1 during antibody-secreting cell differentiation
    Corcoran, LM ; Hasbold, J ; Dietrich, W ; Hawkins, E ; Kallies, A ; Nutt, SL ; Tarlinton, DM ; Matthias, P ; Hodgkin, PD (ROCKEFELLER UNIV PRESS, 2005-05-02)
    Resting B cells can be cultured to induce antibody-secreting cell (ASC) differentiation in vitro. A quantitative analysis of cell behavior during such a culture allows the influences of different stimuli and gene products to be measured. The application of this analytical system revealed that the OBF-1 transcriptional coactivator, whose loss impairs antibody production in vivo, has two effects on ASC development. Although OBF-1 represses early T cell-dependent (TD) differentiation, it is also critical for the completion of the final stages of ASC development. Under these conditions, the loss of OBF-1 blocks the genetic program of ASC differentiation so that Blimp-1/prdm1 induction fails, and bcl-6, Pax5, and AID are not repressed as in control ASC. Retroviral complementation confirmed that OBF-1 was the critical entity. Surprisingly, when cells were cultured in lipopolysaccharide to mimic T cell-independent conditions, OBF-1-null B cells differentiated normally to ASC. In the OBF-1(-/-) ASC generated under either culture regimen, antibody production was normal or only modestly reduced, revealing that Ig genes are not directly dependent on OBF-1 for their expression. The differential requirement for OBF-1 in TD ASC generation was confirmed in vivo. These studies define a new regulatory role for OBF-1 in determining the cell-autonomous capacity of B cells to undergo terminal differentiation in response to different immunological signals.
  • Item
    Thumbnail Image
    Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization
    Blink, EJ ; Light, A ; Kallies, A ; Nutt, SL ; Hodgkin, PD ; Tarlinton, DM (ROCKEFELLER UNIV PRESS, 2005-02-21)
    Immunization with a T cell-dependent antigen elicits production of specific memory B cells and antibody-secreting cells (ASCs). The kinetic and developmental relationships between these populations and the phenotypic forms they and their precursors may take remain unclear. Therefore, we examined the early stages of a primary immune response, focusing on the appearance of antigen-specific B cells in blood. Within 1 wk, antigen-specific B cells appear in the blood with either a memory phenotype or as immunoglobulin (Ig)G1 ASCs expressing blimp-1. The memory cells have mutated V(H) genes; respond to the chemokine CXCL13 but not CXCL12, suggesting recirculation to secondary lymphoid organs; uniformly express B220; show limited differentiation potential unless stimulated by antigen; and develop independently of blimp-1 expression. The antigen-specific IgG1 ASCs in blood show affinity maturation paralleling that of bone marrow ASCs, raising the possibility that this compartment is established directly by blood-borne ASCs. We find no evidence for a blimp-1-expressing preplasma memory compartment, suggesting germinal center output is restricted to ASCs and B220(+) memory B cells, and this is sufficient to account for the process of affinity maturation.